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Abstract We show that the following properties of the C∗-algebras in a class Ω are inherited by

simple unital C∗-algebras in the class TAΩ: (1) (m, n)-decomposable, (2) weakly (m, n)-divisible,

(3) weak Riesz interpolation. As an application, let A be an infinite dimensional simple unital C∗-

algebra such that A has one of the above-listed properties. Suppose that α : G → Aut(A) is an action

of a finite group G on A which has the tracial Rokhlin property. Then the crossed product C∗-algebra

C∗(G, A, α) also has the property under consideration.
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1 Introduction

The Elliott program for the classification of amenable C∗-algebras might be said to have begun
with the K-theoretical classification of AF algebras in [6]. Since then, many classes of C∗-
algebras have been classified by the Elliott invariant. Among them, one important class is the
class of simple unital AH algebras without dimension growth (in the real rank zero case see [8],
and in the general case see [9]). To axiomatize Elliott–Gong’s decomposition theorem for AH
algebras of real rank zero (classified by Elliott and Gong in [8]) and Gong’s decomposition
theorem [15] for simple AH algebras (classified by Elliott et al. in [9]), Lin introduced the
concepts of TAF and TAI [21, 22]. Instead of assuming inductive limit structure, he started
with a certain abstract approximation property, and showed that C∗-algebras with this abstract
approximation property and certain additional properties are AH algebras without dimension
growth. More precisely, Lin introduced the class of tracially approximate interval algebras
(also called C∗-algebras of tracial topological rank one). This axiomatization has proved to
be very important in the classification of simple amenable C∗-algebras. For example, it led to
the classification of unital simple separable amenable C∗-algebras with finite nuclear dimension
in the UCT class (see [10, 16, 32]). The isomorphism theorem was established first for those
separable amenable C∗-algebras with generalized topological tracial rank at most one (see [16]).
Simple C∗-algebras with generalized tracial topological rank at most one have good regularity
properties. There are three regularity properties of particular interest: tensorial absorption
of the Jiang–Su algebra Z, also called Z-stability; finite nuclear dimension [36]; and strict
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comparison of positive elements. The last property can be reformulated as an algebraic property
of the Cuntz semigroup, called almost unperforation. Toms and Winter have conjectured (see
e.g. [12]) that these three fundamental properties are equivalent for all separable, simple, unital,
amenable C∗-algebras (and this has now almost completely been proved (see [2, 3, 18, 29, 31, 33–
35])).

Inspired by Lin’s tracial approximation by interval algebras in [22], Elliott and Niu in [11]
considered the natural notion of tracial approximation by other classes of C∗-algebras. Let Ω
be a class of unital C∗-algebras. Then the class of unital simple separable C∗-algebras which
can be tracially approximated by C∗-algebras in Ω, denoted by TAΩ, is defined as follows. A
simple unital C∗-algebra A is said to belong to the class TAΩ if, for any ε > 0, any finite subset
F ⊆ A, and any non-zero element a ≥ 0, there are a projection p ∈ A and a C∗-subalgebra B

of A with 1B = p and B ∈ Ω such that
(1) ‖xp − px‖ < ε for all x ∈ F ,
(2) pxp ∈ε B for all x ∈ F ,
(3) 1 − p is Murray–von Neumann equivalent to a projection in aAa.
The question of which properties pass from a class Ω to the class TAΩ is interesting and

sometimes important. In fact, the property of being of stable rank one, and the property
that the strict order on projections is determined by traces, are important in the classification
theorem of [16].

In [11], Elliott and Niu showed that the following properties of C∗-algebras in a class Ω
are inherited by a simple unital C∗-algebras in the class TAΩ: (1) being stable finite, (2)
having stable rank one, (3) having at least one tracial state, (4) the strict order on projections
determined by traces, (5) any state of the order-unit K0-group comes from a tracial state of
the algebra, (6) if the restriction of a tracial state to the order-unit K0-group is the average of
two distinct states on the K0-group, then it is the average of two distinct tracial states, (7) the
property of being K1-injective.

In [7], Elliott et al. showed that some regularity properties of C∗-algebras in a class Ω are
inherited by a simple unital C∗-algebras in the class TAΩ.

In this paper, we show that the following Cuntz semigroup properties of unital C∗-algebras
in a class Ω are inherited by simple unital C∗-algebras in the class TAΩ:

(1) (m, n)-decomposable,
(2) weakly (m, n)-divisible,
(3) weak Riesz interpolation property.
The Rokhlin property in ergodic theory was adapted to the context of von Neumann algebras

by Connes in [4]. It was adapted by Herman and Ocneanu for automorphisms of UHF algebras
in [17]. Rørdam [28] and Kishimoto [20] considered the Rokhlin property in a much more
general C∗-algebra context. More recently, Phillips and Osaka studied actions of a finite group
and of the group Z of integers on certain simple C∗-algebras which have a modified Rokhlin
property (see Definition 2.7) in [25, 27].

In [14], the following result was obtained: Let Ω be a class of unital C∗-algebras such that Ω
is closed under passing to unital hereditary C∗-subalgebras and tensoring by matrix algebras.
Let A ∈ TAΩ be an infinite dimensional simple unital C∗-algebra. Suppose that α : G →
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Aut(A) is an action of a finite group G on A which has the tracial Rokhlin property (see
Definition 2.7). Then the crossed product C∗-algebra C∗(G, A, α) belongs to TAΩ.

Using the results mentioned above, we get the following theorem: Let A be an infinite
dimensional separable simple unital C∗-algebra such that A has (m, n)-decomposable (respec-
tively, weakly (m, n)-divisible, or weak Riesz interpolation). Suppose that α : G → Aut(A) is
an action of a finite group G on A which has the tracial Rokhlin property. Then the crossed
product C∗-algebra C∗(G, A, α) has (m, n)-decomposable (respectively, weakly (m, n)-divisible,
or weak Riesz interpolation property).

2 Preliminaries and Definitions

Let a and b be positive elements of a C∗-algebra A. We write [a] ≤ [b] if there is a partial
isometry v ∈ A∗∗ with vv∗ = Pa such that, for every 0 ≤ c ∈ Her(a), cv ∈ A and v∗cv ∈ Her(b).
([a] ≤ [b] implies that a is Cuntz subequivalent to b, i.e. a � b. If A has stable rank one then,
by [5], [a] ≤ [b] if a � b but even in this case the preorder relation [a] ≤ [b] is not necessarily
an order relation.) We write [a] = [b] if, for some v as above, v∗Her(a)v = Her(b). Let n be
a positive integer. We write n[a] ≤ [b] if in addition there are n mutually orthogonal positive
elements b1, b2, . . . , bn ∈ Her(b) such that [a] ≤ [bi], i = 1, 2, . . . , n (see [26, Definition 1.1], [24,
Definition 3.2], or [23, Definition 3.5.2].)

Let A be a C∗-algebra, and let Mn(A) denote the C∗-algebra of n×n matrices with entries
elements of A. Let M∞(A) denote the algebraic inductive limit of the sequence (Mn(A), φn),
where φn : Mn(A) → Mn+1(A) is the canonical embedding as the upper left-hand corner block.
Let M∞(A)+ (respectively, Mn(A)+) denote the positive elements of M∞(A) (respectively,
Mn(A)). Given a, b ∈ M∞(A)+, we say that a is Cuntz subequivalent to b (written a � b) if
there is a sequence (vn)∞n=1 of elements of M∞(A) such that

lim
n→∞ ‖vnbv∗n − a‖ = 0.

We say that a and b are Cuntz equivalent (written a ∼ b) if a � b and b � a. We write 〈a〉 for
the equivalence class of a.

The object W(A) := M∞(A)+/ ∼ will be called the Cuntz semigroup of A (See [5]). Observe
that any a, b ∈ M∞(A)+ are Cuntz equivalent to orthogonal elements a′, b′ ∈ M∞(A)+ (i.e.,
a′b′ = 0), and so W(A) becomes an ordered semigroup when equipped with the addition
operation

〈a〉 + 〈b〉 = 〈a + b〉
whenever ab = 0, and the order relation

〈a〉 ≤ 〈b〉 ⇔ a � b.

Let A be a stably finite unital C∗-algebra. Recall that a positive element a ∈ A is called
purely positive if a is not Cuntz equivalent to a projection. This is equivalent to saying that 0
is an accumulation point of σ(a) (recall that σ(a) denotes the spectrum of a).

Given a in M∞(A)+ and ε > 0, we denote by (a − ε)+ the element of C∗(a) corresponding
(via the functional calculus) to the function f(t) = max(0, t − ε), t ∈ σ(a). By the functional
calculus, it follows in a straightforward manner that ((a − ε1)+ − ε2)+ = (a − (ε1 + ε2))+.
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Theorem 2.1 ([1, 30]) Let A be a stably finite C∗-algebra.

(1) Let a, b ∈ A+ and ε > 0 be such that ‖a − b‖ < ε. Then there is a contraction d in A

with (a − ε)+ = dbd∗.

(2) Let a, p be positive elements in M∞(A) with p a projection. If p � a, then there is b in
M∞(A)+ such that bp = 0 and b + p ∼ a.

(3) The following conditions are equivalent: (1)′a � b, (2)′ for any ε > 0, (a− ε)+ � b, (3)′

for any ε > 0, there is δ > 0, such that (a − ε)+ � (b − δ)+.

(4) Let a be a purely positive element of A (i.e., a is not Cuntz equivalent to a projection).
Let δ > 0, and let f ∈ C0(0, 1] be a non-negative function with f = 0 on (δ, 1), f > 0 on (0, δ),
and ‖f‖ = 1. We have f(a) �= 0 and (a − δ)+ + f(a) � a.

Let Ω be a class of unital C∗-algebras. In this paper, we shall study the class of simple
unital C∗-algebras which can be tracially approximated by C∗-algebras in Ω, denoted by TAΩ.

Definition 2.2 ([11, 13, 22]) A simple unital C∗-algebra A is said to belong to the class TAΩ
if, for any ε > 0, any finite subset F ⊆ A, and any non-zero element a ≥ 0, there exist a
non-zero projection p ∈ A and a C∗-subalgebra B of A with 1B = p and B ∈ Ω such that

(1) ‖xp − px‖ < ε for all x ∈ F,

(2) pxp ∈ε B for all x ∈ F,

(3) [1 − p] ≤ [a].

Let Ik denote the class of all unital C∗-algebras which are unital hereditary subalgebras of
C∗-algebras of the form C(X) ⊗ F, where X is a k-dimensional finite CW complex and F is a
finite dimensional C∗-algebra. A is said to have tracial topological rank at most k if A ∈ TAIk.

Lemma 2.3 ([11]) If the class Ω is closed under tensoring with matrix algebras, or under
passing to unital hereditary C∗-subalgebras, then the class TAΩ is closed under passing to matrix
algebras, or unital hereditary C∗-subalgebras.

Definition 2.4 ([19]) Let A be unital C∗-algebra. Let m, n ≥ 1 be integers. A is said to have
(m, n)-decomposable if, for every u in W(A), any ε > 0, there exist elements x1, x2, . . . , xm ∈
W(A), such that x1 + x2 + · · · + xm ≤ u and (u − ε)+ ≤ nxj, for all j = 1, 2, . . . , m.

Definition 2.5 ([19]) Let A be unital C∗-algebra. Let m, n ≥ 1 be integers. A is said to have
weakly (m, n)-divisible if, for every u in W(A), any ε > 0, there exist elements x1, x2, . . . , xn ∈
W(A), such that mxj ≤ u for all j = 1, 2, . . . , n and (u − ε)+ ≤ x1 + x2 + · · · + xn.

Definition 2.6 Let A be unital C∗-algebra. A is said to have weak Riesz interpolation provided
W(A) satisfies the conditions that given any x1, x2, y1, y2 in W(A), any ε > 0, such that
xi ≤ yj for 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, there exists z such that (xi − ε)+ ≤ z ≤ yj for 1 ≤ i ≤ 2,
1 ≤ j ≤ 2.

Definition 2.7 ([27]) Let A be a simple infinite dimensional unital C∗-algebra, and let α :
G → Aut(A) be an action of a finite group G on A. We say that α has the tracial Rokhlin
property if, for any finite set F ⊆ A, any ε > 0, and any non-zero positive element b ∈ A, there
are mutually orthogonal projections eg ∈ A for g ∈ G such that

(1) ‖αg(eh) − egh‖ < ε for all g, h ∈ G,

(2) ‖egd − deg‖ < ε for all g ∈ G and all d ∈ F,
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(3) with e =
∑

g∈G eg, the projection 1−e is Murray–von Neumann equivalent to a projection
in the hereditary C∗-subalgebra of A generated by b,

(4) ‖ebe‖ ≥ ‖b‖ − ε.

The following lemma is obvious, and we omit the proof.

Lemma 2.8 The property of (m, n)-decomposable (respectively, weakly (m, n)-divisible, or
weak Riesz interpolation) is preserved under tensoring with matrix algebras and under passing
to unital hereditary C∗-subalgebras.

3 The Main Results

Theorem 3.1 Let Ω be a class of stably finite unital C∗-algebras such that for any B ∈ Ω,
B is weakly (m, n)-divisible (m �= n). Then A is weakly (m, n)-divisible for any simple unital
C∗-algebra A ∈ TAΩ.

Proof By Lemma 2.3, enlarging the class Ω, we may suppose it is closed under passing to
matrix algebras and unital hereditary C∗-subalgebras (i.e., Morita equivalent C∗-algebras).

Let u ∈ M∞(A)+. For any ε > 0, we need to show that there exist x1, x2, . . ., xn ∈ M∞(A)+
such that xj ⊕ xj ⊕ · · · ⊕ xj � u for all 1 ≤ j ≤ n, where xj repeats m times, and (u− 20ε)+ �
⊕n

i=1 xi.

(Here, and elsewhere, by x ⊕ y for x, y ∈ M∞(A)+ we mean x + y′ where y′ ∈ M∞(A)+,
y′ ∼ y, y′x = 0.)

We may assume that u ∈ A+ and we divide the proof into two cases.

Case (I) We assume that u is Cuntz equivalent to a projection. There exists projection
r ∈ A+ such that u ∼ r, we may assume u = r.

Since A ∈ TAΩ, for F = {r}, any ε′ > 0, there exist a sub-C∗-subalgebra B of A and a
nonzero projection p ∈ A with B ∈ Ω and 1B = p, such that

(1) ‖rp − pr‖ < ε′,

(2) prp ∈ε′ B.

By (1) and (2), there exist projections r1 ∈ B and r2 ∈ (1−p)A(1−p) such that ‖r−r1−r2‖ <

4ε′.

Since r1 ∈ B and B ∈ Ω, there exist x′
1, x

′
2, . . . , x

′
n ∈ M∞(B)+ such that x′

j ⊕x′
j ⊕· · ·⊕x′

j �
r1 where x′

j repeat m times, and r1 = (r1 − ε)+ �
⊕n

i=1 x′
i.

We prove this part by three steps.

First, If x′
1, x

′
2, . . . , x

′
n ∈ M∞(B)+ are Cuntz equivalent to projections, and r1 ∼

⊕n
i=1 x′

i,
then there exist some j and a nonzero projection q such that (x′

j⊕q)⊕(x′
j⊕q)⊕· · ·⊕(x′

j⊕q) � r1

where x′
j ⊕ q repeat m times, otherwise, this contradicts the stable finiteness of A (since m �= n

and C∗-algebras in Ω are stably finite).

Since (1 − p)A(1 − p) ∈ TAΩ, for F = {r2}, any ε′ > 0, there exist a sub-C∗-algebra D of
(1− p)A(1− p) and a nonzero projection t ∈ (1− p)A(1− p) with D ∈ Ω and 1D = t, such that

(1)′ ‖r2t − tr2‖ < ε′,

(2)′ tr2t ∈ε′ D,

(3)′ [1 − p − t] ≤ [q].
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By (1)′ and (2)′, there exist projections r3 ∈ D and r4 ∈ (1 − p − t)A(1 − p − t) such that
‖r2 − r3 − r4‖ < 4ε′.

Since r3 ∈ D and D ∈ Ω, there exist x′′
1 , x′′

2 , . . . , x′′
n ∈ M∞(D)+ such that x′′

j ⊕x′′
j ⊕· · ·⊕x′′

j �
r3 where x′′

j repeat m times and r3 = (r3 − ε)+ �
⊕n

i=1 x′′
i .

Therefore we have

((x′
j ⊕ q) + x′′

j ) ⊕ ((x′
j ⊕ q) + x′′

j ) ⊕ · · · ⊕ ((x′
j ⊕ q) + x′′

j )

� r1 + r4 + r3 = r

� r1 + r3 ⊕ q

� (x′
j ⊕ q)

n⊕

i=1,i �=j

x′
i

n⊕

i=1

x′′
i

� (x′
j ⊕ q ⊕ x′′

j )
n⊕

i=1,i �=j

(x′
i ⊕ x′′

i ),

and

(x′
i ⊕ x′′

i ) ⊕ (x′
i ⊕ x′′

i ) ⊕ · · · ⊕ (x′
i ⊕ x′′

i )

� r1 + r4 + r3 = r

� r1 + r3 + q

� (x′
j ⊕ q)

n⊕

i=1,i �=j

(x′
i)

n⊕

i=1

x′′
i

� (x′
j ⊕ q ⊕ x′′

j )
n⊕

i=1,i �=j

(x′
i + x′′

i ),

for all i �= j and 1 ≤ i ≤ n where (x′
i ⊕ x′′

i ) repeats m times.
Second, if x′

1, x
′
2, . . . , x

′
k ∈ M∞(B)+ are Cuntz equivalent to projections, and r1 <

⊕k
i=1 x′

i.
Then there exists a nonzero projection s such that r1 ⊕ s �

⊕k
i=1 x′

i.
Since (1 − p)A(1 − p) ∈ TAΩ, for F = {r2}, any ε′ > 0, there exist a sub-C∗-algebra D of

(1− p)A(1− p) and a nonzero projection t ∈ (1− p)A(1− p) with D ∈ Ω and 1D = t, such that
(1)′′ ‖r2t − tr2‖ < ε′,
(2)′′ tr2t ∈ε′ D,
(3)′′ [1 − p − t] ≤ [s].
By (1)′′ and (2)′′, there exist projections r3 ∈ D and r4 ∈ (1− p− t)A(1− p − t) such that

‖r2 − r3 − r4‖ < 4ε′.
Since r3 ∈ D and D ∈ Ω, there exist x′′

1 , x′′
2 , . . . , x′′

n ∈ M∞(D)+ such that x′′
j ⊕x′′

j ⊕· · ·⊕x′′
j �

r3 where x′′
j repeat m times and r3 = (r3 − ε)+ �

⊕n
i=1 x′′

i . Therefore we have

(x′
i ⊕ x′′

i ) ⊕ (x′
i ⊕ x′′

i ) ⊕ · · · ⊕ (x′
i ⊕ x′′

i )

� r1 + r4 + r3 = r

� r1 + r3 ⊕ s

�
n⊕

i=1

x′
j

n⊕

i=1

x′′
i
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�
n⊕

i=1

(x′
j ⊕ x′′

j ),

for all 1 ≤ j ≤ n, where (x′
i ⊕ x′′

i ) repeat m times.
Third, we assume that there is a purely positive element x′

1. Since r1 �
⊕n

i=1 x′
i, for any

ε > 0, there exists δ > 0, such that r1 = (r1 − ε)+ � (x′
1 − δ)+

⊕n
i=2 x′

i,
By Theorem 2.1, there exists a nonzero positive element d such that (x′

1 − δ)+ + d � x′
1.

Since (1 − p)A(1 − p) ∈ TAΩ, for F = {r2}, any ε′ > 0, there exist a sub-C∗-algebra D of
(1− p)A(1− p) and a nonzero projection t ∈ (1− p)A(1− p) with D ∈ Ω and 1D = t, such that

(1)′′′ ‖r2t − tr2‖ < ε′,
(2)′′′ tr2t ∈ε′ D,
(3)′′′ [1 − p − t] ≤ [d].
By (1)′′′ and (2)′′′, there exist projections r3 ∈ D and r4 ∈ (1− p− t)A(1− p− t) such that

‖r2 − r3 − r4‖ < 4ε′.
Since r3 ∈ D and D ∈ Ω, there exist x′′

1 , x′′
2 , . . . , x′′

n ∈ M∞(D)+ such that x′′
j ⊕x′′

j ⊕· · ·⊕x′′
j �

r3 where x′′
j repeat m times and r3 �

⊕n
i=1 x′′

i .
Therefore we have

(x′
i ⊕ x′′

i ) ⊕ (x′
i ⊕ x′′

i ) ⊕ · · · ⊕ (x′
i ⊕ x′′

i )

� r1 + r4 + r3 = r

� r1 ⊕ r3 ⊕ d

� (x′
1 − δ)+ ⊕ d

n⊕

i=1

x′
j

n⊕

i=1

x′′
i

�
n⊕

i=1

(x′
j ⊕ x′′

j ),

for all 1 ≤ j ≤ n, where (x′
i ⊕ x′′

i ) repeat m times.

Case (II) We suppose that u is not Cuntz equivalent to a projection.
We need to show that for any u ∈ M∞(A)+, any ε > 0, there exist x1, x2, . . ., xn ∈ M∞(A)+

such that xj ⊕ xj ⊕ · · · ⊕ xj � u for all 1 ≤ j ≤ n, where xj repeat m times, and (u − 20ε)+ �
⊕n

i=1 xi.
By Theorem 2.1, for ε > 0, there is a non-zero positive element d such that (u−ε)+ +d � u.
For ε > 0, there exists δ′ > 0 with δ′ < ε such that (a − ε)+ + (b − ε)+ � (a + b − δ′)+ for

any a, b ∈ A+.
Since A ∈ TAΩ, with G = {(u − ε)+, d, u}, for ε′ > 0, with ε′ < δ′, there exist a

C∗-subalgebra C of A and a non-zero projection r ∈ A with C ∈ Ω and 1C = r such that
(1) ‖xr − rx‖ < ε′/3 for any x ∈ G,

(2) rxr ∈ε′/3 C for any x ∈ G.
By (1) and (2), there are u1, d1 ∈ C and u2 ∈ (1 − r)A(1 − r) such that

‖u − u1 − u2‖ < 3ε′,

and
‖(u − ε)+ − (u1 − ε)+ − (u2 − ε)+‖ < 3ε′.
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Therefore we have (u1 − 2ε)+ + (u2 − 2ε)+ � (u − ε)+.

Since (u1 − 3ε)+ + (d1 − ε)+ ∈ C and C ∈ Ω, for δ′ > 0, there exist x′
1, x

′
2, . . . , x

′
n ∈

M∞(B)+ such that x′
j ⊕ x′

j ⊕ · · · ⊕ x′
j � (u1 − 3ε)+ + (d1 − ε)+ where x′

j repeat m times, and
(u1 − 4ε)+ + (d − 2ε)+ � (((u1 − 3ε)+ + (d1 − ε)+) − δ′)+ �

⊕n
i=1 x′

i.

Since (1 − r)A(1 − r) ∈ TAΩ, with F = {u2} and ε′ > 0, with ε′ < δ′, there exist a C∗-
subalgebra E of (1− r)A(1− r) and a non-zero projection t ∈ (1− r)A(1− r) with E ∈ Ω and
1E = t such that

(1)′ ‖tu2 − u2t‖ < ε′,

(2)′ tu2t ∈ε′ E,

(3)′ [1 − r − t] ≤ [(d1 − 2ε)+].

By (1)′ and (2)′, there are u3 ∈ E and u4 ∈ (1 − r − t)A(1 − r − t) such that

‖u2 − u3 − u4‖ < 3ε′.

Then (u3 − 3ε)+ + (u4 − 3ε)+ � (u2 − 2ε)+.

Since (u3 − 3ε)+ ∈ E and E ∈ Ω, there exist there exist x′′
1 , x′′

2 , . . . , x′′
n ∈ M∞(E)+ such

that x′′
j ⊕ x′′

j ⊕ · · · ⊕ x′′
j � (u3 − 3ε)+ where x′′

j repeat m times and (u3 − 4ε)+ �
⊕n

i=1 x′′
i .

Therefore, we have

x′
j ⊕ x′

j ⊕ · · · ⊕ x′
j + x′′

j ⊕ x′′
j ⊕ · · · ⊕ x′′

j

� (u1 − 3ε)+ + (d1 − ε)+ ⊕ ((u3 − 3ε)+ + (u4 − 3ε)+)

� (u1 − 3ε)+ + (d1 − ε)+ ⊕ (u2 − 2ε)+

� (u − ε)+ + (d1 − ε)+ � (u − ε)+ + d

� u,

for all 1 ≤ j ≤ n, and x′
j , x′′

j repeat m times, and

(u − 20ε)+ � (u1 − 10ε)+ + (u2 − 10ε)+

� (u1 − 10ε)+ + (u3 − 4ε)+ + (u4 − 4ε)+

� (u1 − 4ε′)+ + (d1 − 2ε)+ + (u3 − 4ε)+

�
n⊕

i=1

x′
i ⊕

n⊕

i=1

x′′
i . �

Theorem 3.2 ([14]) Let Ω be a class of unital C∗-algebras which is closed under passing to
unital hereditary C∗-subalgebras and closed under passing to tensoring with matrix algebras. Let
A ∈ TAΩ be an infinite dimensional simple unital C∗-algebra. Suppose that α : G → Aut(A)
is an action of a finite group G on A which has the tracial Rokhlin property. Then the crossed
product algebra C∗(G, A, α) belongs to TAΩ.

Corollary 3.3 Let A be a unital simple C∗-algebra such that A is weakly (m, n)-divisible.
Suppose that α : G → Aut(A) is an action of a finite group G on A which has the tracial
Rokhlin property. Then the crossed product C∗-algebra C∗(G, A, α) is weakly (m, n)-divisible.

Proof This follows from Theorems 3.1 and 3.2. �
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Theorem 3.4 Let Ω be a class of stably finite unital C∗-algebras such that for any B ∈ Ω, B is
(m, n)-decomposable (m �= n). Then A is (m, n)-decomposable for any simple unital C∗-algebra
A ∈ TAΩ.

Proof By Lemma 2.3, enlarging the class Ω, we may suppose it is closed under passing to
matrix algebras and unital hereditary C∗-subalgebras (i.e., Morita equivalent C∗-algebras).

We need to show that for any u ∈ M∞(A)+, there exists x1, x2, . . . , xm ∈ M∞(A)+ such
that

⊕m
i=1 xi � u and and (u−20ε)+ � xj ⊕xj ⊕· · ·⊕xj for some ε > 0 and for all 1 ≤ j ≤ m,

where xj repeat n times.
We may assume u ∈ A+ and we divide the proof into two cases.

Case (I) We assume that u is Cuntz equivalent to a projection. There exists a projection
r ∈ A+ such that u ∼ r. We may assume u = r.

Since A ∈ TAΩ, for F = {r}, any ε′ > 0, with ε′ sufficiently small, there exist a sub-C∗-
subalgebra B of A and a nonzero projection p ∈ A with B ∈ Ω and 1B = p, such that

(1) ‖rp − pr‖ < ε′,
(2) prp ∈ε′ B.

By (1) and (2), there exist projections r1 ∈ B and r2 ∈ (1−p)A(1−p) such that ‖r−r1−r2‖ <

4ε.
Since r1 ∈ B and B ∈ Ω, there exist x′

1, x
′
2, . . . , x

′
n ∈ M∞(B)+ such that such that

⊕m
i=1 x′

i � r1 and and r1 = (r1 − ε)+ � x′
j ⊕ x′

j ⊕ · · · ⊕ x′
j for some ε > 0 and for all

1 ≤ j ≤ m, where x′
j repeat n times.

We prove this part by three steps.
(I) If x′

1, x
′
2, . . . , x

′
m ∈ M∞(B)+ are Cuntz equivalent to projections, and r1 ∼ x′

j ⊕ x′
j

⊕ · · · ⊕ x′
j for all 1 ≤ j ≤ m where x′

j repeat n times. Then there exists a nonzero projection q

such that
⊕m

j=1(x
′
j ⊕q) � r1, otherwise, this contradicts the stable finiteness of A (since m �= n

and C∗-algebras in Ω are stably finite).
Since (1−p)A(1−p) ∈ TAΩ, for F = {r2}, any ε′ > 0, with ε′ sufficiently small, there exist

a sub-C∗-algebra D of (1− p)A(1− p) and a nonzero projection t ∈ (1− p)A(1− p) with D ∈ Ω
and 1D = t, such that

(1) ‖r2t − tr2‖ < ε′,
(2) tr2t ∈ε′ D,
(3) [1 − p − t] ≤ [q].
By (1) and (2), there exist projections r3 ∈ D and r4 ∈ (1 − p − t)A(1 − p − t) such that

‖r2 − r3 − r4‖ < 4ε′.
Since r3 ∈ D and D ∈ Ω, there exist x′′

1 , x′′
2 , . . . , x′′

k ∈ M∞(D)+ such that
⊕m

j=1 x′′
i � r3

and r3 = (r3 − ε)+ � x′′
j ⊕ x′′

j ⊕ · · · ⊕ x′′
j for all 1 ≤ j ≤ m, where x′′

j repeat n times.
Therefore we have

m⊕

i=1

((x′
j ⊕ q) ⊕ x′′

j ) � r1 + r4 + r3 = r

� r1 + r3 ⊕ q

� ((x′
j ⊕ q) ⊕ x′′

j ) ⊕ · · · ⊕ ((x′
j ⊕ q) ⊕ x′′

j ),

for all 1 ≤ j ≤ m, where (x′
j ⊕ q) ⊕ x′′

j repeat n times.
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(II.I) If x′
1, x

′
2, . . . , x

′
m ∈ M∞(B)+ are Cuntz equivalent to projections, and r1 < x′

j ⊕ x′
j

⊕ · · · ⊕ x′
j , for all 1 ≤ j ≤ m where x′

j repeat n times. Then there exists a nonzero projection
s such that r1 ⊕ s � x′

j ⊕ x′
j ⊕ · · · ⊕ x′

j for all 1 ≤ j ≤ m where x′
j repeat n times.

Since (1−p)A(1−p) ∈ TAΩ, for F = {r2}, any ε′ > 0, with ε′ sufficiently small, there exist
a sub-C∗-algebra D of (1− p)A(1− p) and a nonzero projection t ∈ (1− p)A(1− p) with D ∈ Ω
and 1D = t, such that

(1)′ ‖r2t − tr2‖ < ε′,
(2)′ tr2t ∈ε′ D,
(3)′ [1 − p − t] ≤ [s].
By (1)′ and (2)′, there exist projections r3 ∈ D and r4 ∈ (1 − p − t)A(1 − p − t) such that

‖r2 − r3 − r4‖ < 4ε′.
Since r3 ∈ D and D ∈ Ω, there exist x′′

1 , x′′
2 , . . . , x′′

k ∈ M∞(D)+ such that
⊕m

i=1 x′′
i � r3,

r3 = (r3 − ε)+ � x′′
j ⊕ x′′

j ⊕ · · · ⊕ x′′
j for all 1 ≤ j ≤ m, where x′′

j repeat n times.
Therefore we have

k⊕

i=1

(x′
j ⊕ x′′

j ) � r1 + r4 + r3 = r

� r1 + r3 + s

� (x′
j ⊕ x′′

j ) ⊕ (x′
j ⊕ x′′

j ) ⊕ · · · ⊕ (x′
j ⊕ x′′

j ),

for all 1 ≤ j ≤ m, where x′
j ⊕ x′′

j repeat n times.
(II.II) If x′

1, x
′
2, . . . , x

′
m ∈ M∞(B)+ are Cuntz equivalent to projections, and r1 < x′

1 ⊕ x′
1

⊕ · · · ⊕ x′
1, and r1 ∼ x′

j ⊕ x′
j ⊕ · · · ⊕ x′

j for all 2 ≤ j ≤ m where x′
j repeat n times, then there

exists a nonzero projection s such that r1 ⊕ s � x′
1 ⊕ x′

1 ⊕ · · · ⊕ x′
1 where x′

1 repeats n times.
Since (1−p)A(1−p) ∈ TAΩ, for F = {r2}, any ε′ > 0, with ε′ sufficiently small, there exist

a sub-C∗-algebra D of (1− p)A(1− p) and a nonzero projection t ∈ (1− p)A(1− p) with D ∈ Ω
and 1D = t, such that

(1)′ ‖r2t − tr2‖ < ε′,
(2)′ tr2t ∈ε′ D,
(3)′ [1 − p − t] ≤ [s].
By (1)′ and (2)′, there exist projections r3 ∈ D and r4 ∈ (1 − p − t)A(1 − p − t) such that

‖r2 − r3 − r4‖ < 4ε′.
Since r3 ∈ D and D ∈ Ω, there exist x′′

1 , x′′
2 , . . . , x′′

k ∈ M∞(D)+ such that
⊕m

i=1 x′′
i � r3,

r3 = (r3 − ε)+ � x′′
j ⊕ x′′

j ⊕ · · · ⊕ x′′
j for all 1 ≤ j ≤ m, where x′′

j repeat n times.
(II.II.I) If x′′

1 , x′′
2 , . . . , x′′

m ∈ M∞(B)+ are Cuntz equivalent to projections, and r3 ∼ x′′
j ⊕

x′′
j ⊕· · ·⊕x′′

j for all 1 ≤ j ≤ m where x′′
j repeat n times. Then there exists a nonzero projection

q such that
⊕m

j=1(x
′′
j ⊕ q) � r1, otherwise, this contradicts the stable finiteness of A (since

m �= n and C∗-algebras in Ω are stably finite).
Therefore we have

m⊕

i=1

((x′
j ⊕ q) ⊕ x′′

j ) � r1 + r4 + r3 = r

� r1 + r3 ⊕ q
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� ((x′
j ⊕ q) ⊕ x′′

j ) ⊕ · · · ⊕ ((x′
j ⊕ q) ⊕ x′′

j ),

for all 1 ≤ j ≤ m, where (x′
j ⊕ q) + x′′

j repeat n times.
(II.II.II) If x′′

1 , x′′
2 , . . . , x′′

m ∈ M∞(B)+ are all projections, and r3 ∼ x′′
j ⊕ x′′

j ⊕ · · · ⊕ x′′
j for

all 1 ≤ j ≤ m where x′′
j repeat n times. Then there exists a nonzero projection s such that

r3 ⊕ s � x′′
j ⊕ x′′

j ⊕ · · · ⊕ x′′
j for all 1 ≤ j ≤ m, where x′′

j repeat n times.
Since (1−p−t)A(1−p−t) ∈ TAΩ, for F = {r4}, any ε′ > 0, with ε′ sufficiently small, there

exist a sub-C∗-algebra E of (1−p−t)A(1−p−t) and a nonzero projection t ∈ (1−p−t)A(1−p−t)
with E ∈ Ω and 1E = t′, such that

(1)′ ‖r2t
′ − t′r2‖ < ε′,

(2)′ t′r2t
′ ∈ε′ E,

(3)′ [1 − p − t′] ≤ [s].
By (1)′ and (2)′, there exist projections r5 ∈ E and r6 ∈ (1 − p − t)E(1 − p − t) such that

‖r4 − r5 − r6‖ < 4ε′.
Since r5 ∈ E and E ∈ Ω, there exist x′′′

1 , x′′′
2 , . . . , x′′′

m ∈ M∞(E)+ such that
⊕m

i=1 x′′′
i � r5,

r5 = (r5 − ε)+ � x′′′
j ⊕ x′′′

j ⊕ · · · ⊕ x′′′
j for all 1 ≤ j ≤ m, where x′′′

j repeat n times.
Therefore we have

m⊕

i=1

(x′
j ⊕ x′′

j ⊕ x′′′
j ) � r1 + r3 + r5 + r6 = r

� r1 + r3 + r5 ⊕ s

� (x′
j ⊕ x′′

j ⊕ x′′′
j ) ⊕ · · · ⊕ (x′

j ⊕ x′′
j ⊕ x′′′

j ),

for all 1 ≤ j ≤ m, where x′
j ⊕ x′′

j ⊕ x′′′
j repeat n times.

(II.II.III) If x′′
1 , x′′

2 , . . . , x′′
m ∈ M∞(B)+ are Cuntz equivalent to projections, and r3 < x′′

1 ⊕
x′′

1 ⊕ · · · ⊕ x′′
1 , r3 ∼ x′′

j ⊕ x′′
j ⊕ · · · ⊕ x′′

j for all 2 ≤ j ≤ m where x′′
j repeat n times. Then there

exists a nonzero projection s such that r3 ⊕ s′ � x′′
1 ⊕ x′′

1 ⊕ · · · ⊕ x′′
1 .

Since (1−p−t)A(1−p−t) ∈ TAΩ, for F = {r4}, any ε′ > 0, with ε′ sufficiently small, there
exist a sub-C∗-algebra D of (1−p−t)A(1−p−t) and a nonzero projection t′ ∈ (1−p−t)A(1−p−t)
with E ∈ Ω and 1E = t′, such that

(1)′ ‖r2t
′ − t′r2‖ < ε′,

(2)′ t′r2t
′ ∈ε′ D,

(3)′ [1 − p − t′] ≤ [s′].
By (1)′ and (2)′, there exist projections r5 ∈ E and r6 ∈ (1 − p − t)A(1 − p − t) such that

‖r4 − r5 − r6‖ < 4ε′.
Since r5 ∈ E and E ∈ Ω, there exist x′′′

1 , x′′′
2 , . . . , x′′′

m ∈ M∞(E)+ such that
⊕m

i=1 x′′′
i � r5,

r5 = (r5 − ε)+ � x′′′
j ⊕ x′′′

j ⊕ · · · ⊕ x′′′
j for all 1 ≤ j ≤ m, where x′′′

j repeat n times.
We repeat the steps (II.II.I), (II.II.II), (II.II.III) for x′′′

1 , x′′′
2 , . . . , x′′′

m ∈ M∞(E)+, and the
steps (II.II.I), (II.II.II), (II.II.III), there exist x′

1, x
′
2, . . . , x

′
m, x′′

1 , x′′
2 , . . . , x′′

m, . . . , x1
m, x2

m, . . . ,

xm
m and s, s′, . . . , sm, take g such that g � s, g � s′, . . . , g � sm, and we have

m⊕

i=1

x′
i

m⊕

i=1

x′′
i · · ·

m⊕

i=1

xi
m

� r1 + r3 + r5 + · · · + r2m = r
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� r1 + r3 + r5 + · · · + r2m−1 ⊕ g

� (x′
j ⊕ x′′

j · · · ⊕ xj
m) ⊕ (x′

j ⊕ x′′
j · · · ⊕ xj

m) ⊕ · · · ⊕ (x′
j ⊕ x′′

j · · · ⊕ xj
m),

for all 1 ≤ j ≤ m, where (x′
j ⊕ x′′

j · · · ⊕ xj
m) repeat n times.

(III) We assume that at least one of x′
1, x

′
2, . . . , x

′
m is not Cuntz equivalent to a projection.

(III.I) We may assume that all x′
1, x

′
2, . . . , x

′
m are not Cuntz equivalent to projections.

By Theorem 2.1, there exists a nonzero positive element d such that (x′
j − ε)+ + d � x′

j for
all 1 ≤ j ≤ m.

Since (1−p)A(1−p) ∈ TAΩ, for F = {r2}, any ε′ > 0, with ε′ sufficiently small, there exist
a sub-C∗-algebra D of (1− p)A(1− p) and a nonzero projection t ∈ (1− p)A(1− p) with D ∈ Ω
and 1D = t, such that

(1) ‖r2t − tr2‖ < ε′,
(2) tr2t ∈ε′ D,
(3) [1 − p − t] ≤ [s].
By (1) and (2), there exist projections r3 ∈ D and r4 ∈ (1 − p − t)A(1 − p − t) such that

‖r2 − r3 − r4‖ < 4ε′.
Since r3 ∈ D and D ∈ Ω, there exist x′′

1 , x′′
2 , . . . , x′′

k ∈ M∞(D)+ such that
⊕m

i=1 x′′
i � r3 and

and r3 = (r3 − ε)+ � x′′
j ⊕ x′′

j ⊕ · · · ⊕ x′′
j and for all 1 ≤ j ≤ n, where x′′

j repeat n times.
Therefore we have

(x′′
j ⊕ x′

j) ⊕ (x′′
j ⊕ x′

j) ⊕ · · · ⊕ (x′′
j ⊕ x′

j)

� r1 + r3 + r4 = r

� r1 ⊕ d ⊕ r3

�
m⊕

j=1

(x′
j − ε)+ ⊕ d

m⊕

j=1

x′′
j

�
m⊕

j=1

(x′′
j ⊕ x′

j).

(III.II) We may assume that there exists x′
j for some j such that r1 ∼ x′

j ⊕ x′
j ⊕ · · · ⊕ x′

j ,
where x′

j repeat n times.
Since (1−p)A(1−p) ∈ TAΩ, for F = {r2}, any ε′ > 0, with ε′ sufficiently small, there exist

a sub-C∗-algebra D of (1− p)A(1− p) and a nonzero projection t ∈ (1− p)A(1− p) with D ∈ Ω
and 1D = t, such that

(1) ‖r2t − tr2‖ < ε′,
(2) r2tr2 ∈ε′ D.
By (1) and (2), there exist projections r3 ∈ D and r4 ∈ (1 − p − t)A(1 − p − t) such that

‖r2 − r3 − r4‖ < 4ε′.
Since r3 ∈ D and D ∈ Ω, there exist x′′

1 , x′′
2 , . . . , x′′

k ∈ M∞(D)+ such that
⊕m

i=1 x′′
i � r3 and

and r3 = (r3 − ε)+ � x′′
j ⊕ x′′

j ⊕ · · · ⊕ x′′
j and for all 1 ≤ j ≤ n, where x′′

j repeat n times.
If all x′′

1 , x′′
2 , . . . , x′′

k ∈ M∞(D)+ are not purely positive elements. We repeat Step (II), and
get the result.

If there exists x′′′
1 which is not Cuntz equivalent to a projection. By Theorem 2.1, there

exists a nonzero positive element d such that (x′′′
1 − ε)+ + d � x′′′

1 .
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Since (1−p−t)A(1−p−t) ∈ TAΩ, for F = {r4}, any ε′ > 0, with ε′ sufficiently small, there
exist a sub-C∗-algebra E of (1−p−t)A(1−p−t) and a nonzero projection t′ ∈ (1−p−t)A(1−p−t)
with E ∈ Ω and 1E = t′, such that

(1)′ ‖r2t
′ − t′r2‖ < ε′,

(2)′ t′r2t
′ ∈ε′ E,

(3)′ [1 − p − t] ≤ [s].
By (1)′ and (2)′, there exist projections r5 ∈ E and r6 ∈ (1 − p − t − t′)A(1 − p − t − t′)

such that ‖r4 − r5 − r6‖ < 4ε′.
Since r5 ∈ E and E ∈ Ω, there exist x′′′

1 , x′′′
2 , . . . , x′′′

m ∈ M∞(E)+ such that
⊕m

i=1 x′′′
i � r5,

r5 = (r5 − ε)+ � x′′′
j ⊕ x′′′

j ⊕ · · · ⊕ x′′′
j for all 1 ≤ j ≤ m, where x′′′

j repeat n times.
If x′′′

1 , x′′′
2 , . . . , x′′′

m ∈ M∞(E)+ are not purely positive elements, and we repeat Step (II), and
one of x′′′

1 , x′′′
2 , . . . , x′′′

m ∈ M∞(E)+ is not Cuntz equivalent to a projection, we repeat Step (III.I).
Inductively, we repeat Step (II) and Step (III.I), there exist x′

1, x
′
2, . . . , x′

m, x′′
1 , x′′

2 , . . . , x′′
m, . . . ,

x1
m, x2

m, . . . , xm
m and d, d′, . . . , dm, take g such that g � d, g � d′ . . . , g � dm, and we have

m⊕

i=1

x′
i

m⊕

i=1

x′′
i · · ·

m⊕

i=1

xi
m

� r1 + r3 + r5 + · · · + r2m = r

� r1 + r3 + r5 + · · · + r2m−1 ⊕ g

� (x′
j ⊕ ((x′′

j − ε)+ + g) · · · ⊕ xj
m) ⊕ (((x′

j − ε)+ + g) ⊕ x′′
j · · · ⊕ xj

m)

⊕ · · · ⊕ (x′
j ⊕ x′′

j · · · ⊕ ((xj
m − ε)+ + g))

� (x′
i ⊕ x′′

j ⊕ · · · ⊕ xj
m) ⊕ (x′

i ⊕ x′′
j ⊕ · · · ⊕ xj

m) · · · ⊕ (x′
i ⊕ x′′

j ⊕ · · · ⊕ xj
m),

for all 1 ≤ j ≤ m, where (x′
j ⊕ x′′

j · · · ⊕ xj
m) repeat n times.

Case (II) We suppose that u is not Cuntz equivalent to a projection.
We need to show that for any u ∈ M∞(A)+, any ε > 0, there exist x1, x2, . . ., xn ∈ M∞(A)+

such that
⊕m

i=1 xi � u and (u − 20ε)+ � xj ⊕ xj ⊕ · · · ⊕ xj for all 1 ≤ j ≤ m, where xj repeat
m times.

By Theorem 2.1, for ε > 0, there is a non-zero positive element d such that (u−ε)+ +d � u.
For ε > 0, there exists δ′ > 0 with δ′ < ε such that (a − ε)+ + (b − ε)+ � (a + b − δ′)+ for

any a, b ∈ A+.
Since A ∈ TAΩ, with G = {(u−ε)+, d, u}, for ε′ > 0, with ε′ < δ′, there are a C∗-subalgebra

C of A and a non-zero projection r ∈ A with C ∈ Ω and 1C = r such that
(1) ‖xr − rx‖ < ε′/3 for any x ∈ G,

(2) rxr ∈ε′/3 C for any x ∈ G.
By (1) and (2), there are u1, d1 ∈ C and u2 ∈ (1 − r)A(1 − r) such that

‖u − u1 − u2‖ < 4ε′,

and

‖(u − ε)+ − (u1 − ε)+ − (u2 − ε)+‖ < 4ε′.

Therefore we have (u1 − 2ε)+ + (u2 − 2ε)+ � (u − ε)+.
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Since (u1−3ε)++(d1−ε)+ ∈ C and C ∈ Ω, for δ′ > 0, there exist x′
1, x

′
2, . . . , x

′
n ∈ M∞(B)+

such that
⊕m

i=1 x′
i � (u1 − 3ε)+ + (d1 − ε)+, and (u1 − 4ε)+ + (d− 2ε)+ � (((u1 − 3ε)+ + (d1 −

ε)+) − δ′)+ � x′
j ⊕ x′

j ⊕ · · · ⊕ x′
j for all 1 ≤ j ≤ m, where x′

j repeat m times.
Since (1 − r)A(1 − r) ∈ TAΩ, with F = {u2} and ε′ > 0, with ε′ < δ′, there are a C∗-

subalgebra E of (1− r)A(1− r) and a non-zero projection t ∈ (1− r)A(1− r) with E ∈ Ω and
1E = t such that

(1)′ ‖tu2 − u2t‖ < ε′,
(2)′ tu2t ∈ε′ E,

(3)′ [1 − r − t] ≤ [(d1 − 2ε)+].
By (1)′ and (2)′, there is u3 ∈ E and u4 ∈ (1 − r − t)A(1 − r − t) such that

‖u2 − u3 − u4‖ < 3ε′.

Then (u3 − 3ε)+ + (u4 − 3ε)+ � (u2 − 2ε)+.

Since (u3 − 3ε)+ ∈ E and E ∈ Ω, there exist x′′
1 , x′′

2 , . . . , x′′
n ∈ M∞(E)+ such that x′′

j ⊕x′′
j ⊕

· · · ⊕ x′′
j � (u3 − 3ε)+ where x′′

j repeat m times and (u3 − 4ε)+ �
⊕n

i=1 x′′
i .

Therefore,
k⊕

i=1

x′
i

k⊕

i=1

x′′
i � ((u1 − 3ε)+ + (d1 − ε)+) ⊕ ((u3 − 3ε)+ + (u4 − 3ε)+)

� (u1 − 3ε)+ + (d1 − ε)+ ⊕ (u2 − 2ε)+

� (u − ε)+ + (d1 − ε)+

� (u − ε)+ + d

� u,

and

(u − 20ε)+ � (u1 − 10ε)+ + (u2 − 10ε)+

� (u1 − 10ε)+ + (u3 − 4ε)+ + (u4 − 4ε)+

� (u1 − 4ε′)+ + (d1 − 2ε)+ + (u3 − 4ε)+

� x′
j ⊕ x′

j ⊕ · · · ⊕ x′
j ⊕ x′′

j ⊕ x′′
j ⊕ · · · ⊕ x′′

j . �

Corollary 3.5 Let A be a unital simple C∗-algebra such that A is (m, n)- decomposable.
Suppose that α : G → Aut(A) is an action of a finite group G on A which has the tracial
Rokhlin property. Then the crossed product C∗-algebra C∗(G, A, α) is (m, n)-decomposable.

Proof This follows from Theorems 3.2 and 3.4. �

Theorem 3.6 Let Ω be a class of unital C∗-algebras such that B has the weak Riesz inter-
polation for any unital C∗-algebra B ∈ Ω. Then A has the weak Riesz interpolation for any
simple unital C∗-algebra A ∈ TAΩ.

Proof By Lemma 2.3, enlarging the class Ω, we may suppose it is closed under passing to
matrix algebras and unital hereditary C∗-subalgebras (i.e., Morita equivalent C∗-algebras).

We need to show that there exists z ∈ M∞(A)+ such that (xi − 200ε)+ ≤ z ≤ yj for any
x1, x2, y1, y2 in M∞(A)+ with xi ≤ yj for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 and for any ε > 0.

We may assume that x1, x2, y1, y2 are all in A+.
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Since xi ≤ yj for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, there exist vi,j such that ‖v∗i,jyjvi,j − xi‖ < ε.
Since A ∈ TAΩ, for F = {xi, yj , vi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0 with ε′ sufficiently

small, there exist a projection p ∈ A and a C∗-subalgebra B ⊆ A with B ∈ Ω, 1B = p such
that

(1) ‖xp − px‖ < ε′ for all x ∈ F ,
(2) pxp ∈ ′

εB for all x ∈ F .
By (1) and (2) there exist positive elements x′

1, x′
2, y′

1, y′
2 ∈ B and x′′

1 , x′′
2 , y′′

1 , y′′
1 ∈

(1 − p)A(1 − p) such that

‖x1 − x′
1 − x′′

1‖ < ε, ‖y1 − y′
1 − y′′

1 ‖ < ε,

‖x2 − x′
2 − x′′

2‖ < ε, ‖y2 − y′
2 − y′′

2 ‖ < ε.

Since xi ≤ yj for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, therefore we have

(x′
i − 6ε)+ � (y′

j − 2ε)+, (x′′
i − 6ε)+ � (y′′

j − 2ε)+,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
Since B ∈ Ω and B has the weak Riesz interpolation, we may assume that there exists

z′ ∈ B+ such that (x′
i − 8ε)+ � z′ � (y′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
We divide the proof into two cases.
(1) We assume that z′ is not Cuntz equivalent to a projection. Since (x′

i − 8ε)+ � z′, By
Theorem 2.1, there exists δ > 0 such that (x′

i − 10ε)+ � (z′ − δ)+.
Also by Theorem 2.1, there is a non-zero positive element d such that (z′ − δ)+ + d � z′.
Since (x′′

i −6ε)+ � (y′′
j −2ε)+, there exist wi,j such that ‖w∗

i,j(y
′′
j −2ε)+wi,j−(x′′

i −6ε)+‖ < ε

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G,
(3)′ [1 − p − s] ≤ [d].
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 ∈ D and x4

1, x4
2, y4

1 , y4
2 ∈

(1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i − 12ε)+ � (y′′′

j − 4ε)+
and (x4

i − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 14ε)+ � z′′′ � (y′′′
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Therefore we have

(xi − 200ε)+ � (x′
i − 10ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ (x4
i − 14ε)+

� (x′
i − 10ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ d

� (z′ − δ)+ ⊕ d ⊕ z′′′
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� z′ ⊕ z′′′

� (y′
j − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y4
j − 12ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
(2) We assume that z′ is Cuntz equivalent to a projection.
(2.1) z′ is not equivalent to (y′

j − 2ε)+ for 1 ≤ j ≤ 2.
There is a non-zero positive element d such that z′ + d � (y′

j − 2ε)+.
Since (x′′

i − 6ε)+ � (y′′
j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that

‖w∗
i,j(y

′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G,
(3)′ [1 − p − s] ≤ [d].
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 ∈ D and x4

1, x4
2, y4

1 , y4
2 ∈

(1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i − 12ε)+ � (y′′′

j − 4ε)+
and (x4

i − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weakly Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 14ε)+ � z′′′ � (y′′′
j − 4ε)+ for all i, j.

Therefore we have

(xi − 200ε)+ � (x′
i − 8ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ (x4
i − 12ε)+

� (x′
i − 8ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ d

� z′ ⊕ z′′′ ⊕ d

� (y′
j − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y4
j − 12ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
(2.2) z′ is not equivalent to (y′

1 − 2ε)+ and z′ is equivalent to (y′
2 − 2ε)+.

There is a non-zero positive element d such that z′ + d � (y′
1 − 2ε)+.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that
‖w∗

i,j(y
′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G,
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(3)′ [1 − p − s] ≤ [d].
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 ∈ D and x4

1, x4
2, y4

1 , y4
2 ∈

(1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i − 12ε)+ � (y′′′

j − 4ε)+
and (x4

i − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 14ε)+ � z′′′ � (y′′′
j − 4ε)+ for all i, j.

Therefore we have

(xj − 200ε)+ � (x′
j − 8ε)+ ⊕ (x′′′

j − 14ε)+ ⊕ (x4
j − 12ε)+

� (x′
j − 8ε)+ ⊕ (x′′′

j − 14ε)+ ⊕ (y4
2 − 4ε)+

� z′ ⊕ (y4
2 − 12ε)+ ⊕ z′′′

� (y′
2 − 2ε)+ ⊕ (y′′′

2 − 4ε)+ ⊕ (y4
2 − 12ε)+

� y2,

for all 1 ≤ j ≤ 2.
We also have

(xj − 200ε)+ � (x′
j − 8ε)+ ⊕ (x′′′

j − 14ε)+ ⊕ (x4
j − 12ε)+

� (x′
j − 8ε)+ ⊕ (x′′′

j − 14ε)+ ⊕ (y4
2 − 4ε)+

� z′ ⊕ (y4
2 − 12ε)+ ⊕ z′′′

� z′ ⊕ d ⊕ z′′′

� (y′
1 − 2ε)+ ⊕ (y′′′

1 − 4ε)+ ⊕ (y4
1 − 12ε)+

� y1,

for all 1 ≤ j ≤ 2.
(2.3) z′ is equivalent to (y′

j − 2ε)+.
(2.3.1) (x′

i − 8ε)+ are not Cuntz equivalent to projections.
By Theorem 2.1, there is a non-zero positive element d such that (x′

i−10ε)++d � (x′
i−8ε)+.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that
‖w∗

i,j(y
′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G,
(3)′ [1 − p − s] ≤ [d].
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 ∈ D and x4

1, x4
2, y4

1 , y4
2 ∈

(1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,



354 Fan Q. Z.

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2. We have (x′′′
i − 12ε)+ � (y′′′

j − 4ε)+
and (x4

i − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 14ε)+ � z′′′ � (y′′′
j − 4ε)+ for all i, j.

Therefore we have

(xi − 200ε)+ � (x′
i − 10ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ (x4
i − 12ε)+

� (x′
i − 10ε)+ ⊕ (x′′′

i − 14ε) ⊕ d

� (x′
i − 8ε)+ ⊕ z′′′

� z′ ⊕ z′′′

� (y′
j − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y4
j − 12ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
(2.3.2) (x′

i − 8ε)+ are Cuntz equivalent to projections, and (x′
i − 8ε)+ are not equivalent to

z′. By Theorem 2.1, there is a non-zero positive element d such that (x′
i − 8ε)+ + d � z′.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that
‖w∗

i,j(y
′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G,
(3)′ [1 − p − s] ≤ [d].
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 ∈ D and x4

1, x4
2, y4

1 , y4
2 ∈

(1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i − 12ε)′ � (y′′′

j − 4ε)+
and (x4

i − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 14ε)+ � z′′′ � (y′′′
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Therefore we have

(xi − 200ε)+ � (x′
i − 8ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ (x4
i − 12ε)+

� (x′
i − 8ε)+ ⊕ (x′′′

i − 14ε) ⊕ d

� z′ ⊕ z′′′

� (y′
j − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y4
j − 12ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
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(2.3.3) (x′
1−8ε)+ is not Cuntz equivalent to a projection, and (x′

2−8ε)+ is Cuntz equivalent
to a projection and is not equivalent to z′.

By Theorem 2.1, there is a non-zero positive element d such that (x′
1 − 10ε)+ + d � (x′

1 −
8ε)+ � z′, and (x′

2 − 10ε)+ + d � z′.
Since (x′′

i − 6ε)+ � (y′′
j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that

‖w∗
i,j(y

′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G,
(3)′ [1 − p − s] ≤ [d].
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 ∈ D and x4

1, x4
2, y4

1 , y4
2 ∈

(1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i − 12ε)+ � (y′′′

j − 4ε)+
and (x4

i − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 14ε)+ � z′′′ � (y′′′
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Therefore we have

(xi − 200ε)+ � (x′
i − 10ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ (x4
i − 12ε)+

� (x′′
i − 10ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ d

� (x′′
i − 8ε)+ ⊕ (x′′′

i − 14ε)+

� z′ ⊕ z′′′

� (y′
j − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y4
j − 12ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
(2.3.4) (x′

1−8ε)+ is not Cuntz equivalent to a projection, and (x′
2−8ε)+ is Cuntz equivalent

to a projection and is equivalent to z′.
By Theorem 2.1, there is a non-zero positive element d such that (x′

1−10ε)++d � (x′
1−8ε)+.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that
‖w∗

i,j(y
′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G,
(3)′ [1 − p − s] ≤ [d].
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By (1)′ and (2)′ there exist positive elements x′′′
1 , x′′′

2 , y′′′
1 , y′′′

2 ∈ D and x4
1, x4

2, y4
1 , y4

2 ∈
(1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i −6ε)+ � (y′′

j −2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i −12ε)′ � (y′′′

j −4ε)+
and (x4

i − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 14ε)+ � z′′′ � (y′′′
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Therefore we have

(x1 − 200ε)+ � (x′
1 − 10ε)+ ⊕ (x′′′

1 − 14ε)+ ⊕ (x4
1 − 12ε)+ ⊕ (x4

2 − 12ε)+

� (x′
1 − 10ε)+ ⊕ (x′′′

1 − 14ε)+ ⊕ d ⊕ (x4
2 − 12ε)+

� (x′
1 − 8ε)+ ⊕ (x′′′

1 − 14ε)+ ⊕ (x4
2 − 12ε)+

� z′ ⊕ z′′′ ⊕ (x4
2 − 12ε)+

� (y′
j − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y4
j − 4ε)+

� yj ,

for all 1 ≤ j ≤ 2.
We also have

(x2 − 200ε)+ � (x′
2 − 8ε)+ ⊕ (x′′′

2 − 14ε)+ ⊕ (x4
2 − 12ε)+

� z′ ⊕ z′′′ ⊕ (x4
2 − 12ε)+

� (y′
j − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y4
j − 4ε)+

� yj ,

for all 1 ≤ j ≤ 2.
(2.3.5) (x′

i − 8ε)+ are Cuntz equivalent to projections and are equivalent to z′.
(2.3.5.1) (x′′

j − 6ε)+ are not Cuntz equivalent to projections. By Theorem 2.1, there is a
non-zero positive element d such that (x′′

j − 10ε)+ + d � (x′′
j − 6ε)+.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that
‖w∗

i,j(y
′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G.
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 , d′′′ ∈ D and x4

1, x4
2, y4

1 , y4
2 , d4

∈ (1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i − 10ε)+ + d � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i − 20ε)+ +

(d′′′ − ε)+ � (y′′′
j − 4ε)+ and (x4

i − 20ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
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Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 24ε)+ + (d′′′ − 4ε)+ � z′′′ � (y′′′
j − 4ε)+ for all 1 ≤ i ≤ 2,

1 ≤ j ≤ 2.
Since (x4

i − 20ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist zi,j such that

‖z∗i,j(y4
j − 4ε)+zi,j − (x4

i − 20ε)+‖ < ε.
Since (1− p− s)A(1− p− s) ∈ TAΩ, for H = {x4

i , y
4
j , zi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection t ∈ (1−p−s)A(1−p−s) and a C∗-subalgebra
E ⊆ (1 − p − s)A(1 − p − s) with E ∈ Ω, 1E = t such that

(1)′ ‖xt − tx‖ < ε′ for all x ∈ H,
(2)′ txt ∈ ′

εE for all x ∈ H,
(3)′ [1 − p − s − t] ≤ [(d′′′ − 4ε)+].
By (1)′ and (2)′ there exist positive elements x5

1, x5
2, y5

1 , y5
2 ∈ E and x6

1, x6
2, y6

1 , y6
2 ∈

(1 − p − s − t)A(1 − p − s − t) such that

‖x′4
1 − x5

1 − x6
1‖ < ε, ‖y4

1 − y5
1 − y6

1‖ < ε,

‖x′4
2 − x5

2 − x6
2‖ < ε, ‖y4

2 − y5
2 − y6

2‖ < ε.

Since (x4
i −20ε)+ � (y4

j −4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x5
i −24ε)′ � (y5

j −8ε)+
for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since E ∈ Ω and E has the weak Riesz interpolation, we may assume that there exists a
projection z4 ∈ E+ such that (x5

i − 26ε) � z4 � (y5
j − 8ε)+ for all i, j.

Therefore we have

(xi − 200ε)+ � (x′
i − 8ε)+ ⊕ (x′′′

j − 24ε)+ ⊕ (x5
i − 24ε)+ ⊕ (x6

i − 24ε)+

� (x′
i − 8ε)+ ⊕ (x′′′

j − 24ε)+ ⊕ (x5
i − 24ε)+ ⊕ (d′′′ − 4ε)+

� z′ ⊕ z′′′ ⊕ z4

� (y′
i − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y5
j − 8ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
(2.3.5.2) (x′′

1 − 6ε)+ is not Cuntz equivalent to a projection, (x′′
2 − 6ε)+ is Cuntz equivalent

to a projection and (x′′
2 − 6ε)+ is not equivalent to (y′′

j − 2ε)+.
By Theorem 2.1, there is a non-zero positive element d such that (x′′

1 − 10ε)+ + d � (x′′
1 −

8ε)+ � (y′′
j − 2ε)+ and (x′′

2 − 10ε)+ + d � (y′′
j − 2ε)+.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that
‖w∗

i,j(y
′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G.
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 , d′′′ ∈ D and x4

1, x4
2, y4

1 , y4
2 , d4

∈ (1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,
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‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i − 10ε)+ + d � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i − 20ε)+ +

(d′′′ − 2ε)+ � (y′′′
j − 4ε)+ and (x4

i − 20ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 24ε)+ + (d′′′ − 4ε)+ � z′′′ � (y′′′
j − 4ε)+ for all 1 ≤ i ≤ 2,

1 ≤ j ≤ 2.
Since (x4

i − 20ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist zi,j such that

‖z∗i,j(y4
j − 4ε)+zi,j − (x′′4

i − 20ε)+‖ < ε.
Since (1− p− s)A(1− p− s) ∈ TAΩ, for H = {x4

i , y
4
j , zi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection t ∈ (1−p−s)A(1−p−s) and a C∗-subalgebra
E ⊆ (1 − p − s)A(1 − p − s) with E ∈ Ω, 1E = t such that

(1)′ ‖xt − tx‖ < ε′ for all x ∈ H,
(2)′ txt ∈ ′

εE for all x ∈ H,
(3)′ [1 − p − s − t] ≤ [(d′′′ − 4ε)+].
By (1)′ and (2)′ there exist positive elements x5

1, x5
2, y5

1 , y5
2 ∈ E and x6

1, x6
2, y6

1 , y6
2 ∈

(1 − p − s − t)A(1 − p − s − t) such that

‖x4
1 − x5

1 − x6
1‖ < ε, ‖y4

1 − y5
1 − y6

1‖ < ε,

‖x4
2 − x5

2 − x6
2‖ < ε, ‖y4

2 − y5
2 − y6

2‖ < ε.

Since (x4
i −20ε)+ � (y4

j −4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x5
i −24ε)+ � (y5

j −8ε)+
and (x6

i − 24ε)+ � (y6
j − 8ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since E ∈ Ω and E has the weak Riesz interpolation, we may assume that there exists a
projection z4 ∈ E+ such that (x5

i − 26ε) � z4 � (y5
j − 8ε)+ for all i, j.

Therefore we have

(xi − 200ε)+ � (x′
i − 8ε)+ ⊕ (x′′′

i − 26ε)+ ⊕ (x5
i − 24ε)+ ⊕ (x6

i − 24ε)+

� (x′
i − 8ε)+ ⊕ (x′′′

i − 26ε)+ ⊕ (x5
i − 24ε)+ ⊕ (d′′′ − 4ε)+

� z′ ⊕ z′′′ ⊕ z4

� (y′
i − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y5
j − 8ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
(2.3.5.3) (x′′

j − 6ε)+ are Cuntz equivalent to projections and (x′′
j − 6ε)+ is not equivalent to

(y′′
j − 2ε)+.

By Theorem 2.1, there is a non-zero positive element d such that (x′′
i −6ε)++d � (y′′

j −2ε)+.
Since (x′′

i − 6ε)+ � (y′′
j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that

‖w∗
i,j(y

′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that

(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G.
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By (1)′ and (2)′ there exist positive elements x′′′
1 , x′′′

2 , y′′′
1 , y′′′

2 , d′′′ ∈ D and x4
1, x4

2, y4
1 , y4

2 , d4

∈ (1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
i −6ε)+ +d � (y′′

j −2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
i −12ε)+ +(d′′′−

2ε)+ � (y′′′
j − 4ε)+ and (x4

i − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weak Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

i − 14ε)+ + (d′′′ − 4ε)+ � z′′′ � (y′′′
j − 4ε)+ for all i, j.

Since (x4
i − 12ε)+ � (y4

j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist zi,j such that
‖z∗i,j(y4

j − 4ε)+zi,j − (x4
i − 12ε)+‖ < ε.

Since (1− p− s)A(1− p− s) ∈ TAΩ, for H = {x4
i , y

4
j , zi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection t ∈ (1−p−s)A(1−p−s) and a C∗-subalgebra
E ⊆ (1 − p − s)A(1 − p − s) with E ∈ Ω, 1E = t such that

(1)′′ ‖xt − tx‖ < ε′ for all x ∈ H,
(2)′′ txt ∈ ′

εE for all x ∈ H,
(3)′′ [1 − p − s − t] ≤ [(d′′′ − 4ε)+].
By (1)′′ and (2)′′ there exist positive elements x5

1, x5
2, y5

1 , y5
2 ∈ E and x6

1, x6
2, y6

1 , y6
2 ∈

(1 − p − s − t)A(1 − p − s − t) such that

‖x′4
1 − x5

1 − x6
1‖ < ε, ‖y4

1 − y5
1 − y6

1‖ < ε,

‖x′4
2 − x5

2 − x6
2‖ < ε, ‖y4

2 − y5
2 − y6

2‖ < ε.

Since (x4
i −12ε)+ � (y4

j −4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x5
i −24ε)+ � (y5

j −8ε)+
for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since E ∈ Ω and E has the weak Riesz interpolation, we may assume that there exists a
projection z4 ∈ E+ such that (x5

i − 26ε)+ � z4 � (y5
j − 8ε)+ for all i, j.

Therefore we have

(xi − 80ε)+ � (x′
i − 8ε)+ ⊕ (x′′′

i − 14ε)+ ⊕ (x5
i − 26ε)+ ⊕ (x6

i − 24ε)+

� (x′
i − 8ε)+ ⊕ (x′′′

j − 14ε)+ ⊕ (x5
i − 26ε)+ ⊕ (d′′′ − 4ε)+

� z′ ⊕ z′′′ ⊕ z4

� (y′
i − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y5
j − 8ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
(2.3.5.4) (x′′

1 − 6ε)+ is Cuntz equivalent to a projection, (x′′
2 − 6ε)+ is not Cuntz equivalent

to a projection and (x′′
1 − 6ε)+ is equivalent to (y′′

j − 2ε)+.
By Theorem 2.1, there is a non-zero positive element d such that (x′′

2−8ε)++d � (x′′
2−6ε)+.

Since (x′′
i − 6ε)+ � (y′′

j − 2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist wi,j such that
‖w∗

i,j(y
′′
j − 2ε)+wi,j − (x′′

i − 6ε)+‖ < ε.
Since (1 − p)A(1 − p) ∈ TAΩ, for G = {x′′

i , y′′
j , wi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection s ∈ (1 − p)A(1 − p) and a C∗-subalgebra
D ⊆ (1 − p)A(1 − p) with D ∈ Ω, 1D = s such that
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(1)′ ‖xs − sx‖ < ε′ for all x ∈ G,
(2)′ sxs ∈ ′

εD for all x ∈ G.
By (1)′ and (2)′ there exist positive elements x′′′

1 , x′′′
2 , y′′′

1 , y′′′
2 , d′′′ ∈ D and x4

1, x4
2, y4

1 , y4
2 , d4

∈ (1 − p − s)A(1 − p − s) such that

‖x′′
1 − x′′′

1 − x4
1‖ < ε, ‖y′′

1 − y′′′
1 − y4

1‖ < ε,

‖x′′
2 − x′′′

2 − x4
2‖ < ε, ‖y′′

2 − y′′′
2 − y4

2‖ < ε.

Since (x′′
2 −8ε)+ +d � (y′′

j −2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
2 −16ε)+ +(d′′′−

2ε)+ � (y′′′
j − 4ε)+ and (x4

2 − 16ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since (x′′
1−6ε)+ � (y′′

j −2ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x′′′
1 −12ε)+ � (y′′′

j −4ε)+
and (x4

1 − 12ε)+ � (y4
j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since D ∈ Ω and D has the weakly Riesz interpolation, we may assume that there exists a
projection z′′′ ∈ D+ such that (x′′′

2 − 18ε)+ + (d′′′ − 4ε)+ � z′′′ � (y′′′
j − 4ε)+ for all i, j.

Since (x4
i − 16ε)+ � (y4

j − 4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 there exist zi,j such that
‖z∗i,j(y4

j − 4ε)+zi,j − (x4
i − 16ε)+‖ < ε.

Since (1− p− s)A(1− p− s) ∈ TAΩ, for H = {x4
i , y

4
j , zi,j}, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, any ε′ > 0

with ε′ sufficiently small, there exist a projection t ∈ (1−p−s)A(1−p−s) and a C∗-subalgebra
E ⊆ (1 − p − s)A(1 − p − s) with E ∈ Ω, 1E = t such that

(1)′′ ‖xt − tx‖ < ε′ for all x ∈ H,
(2)′′ txt ∈ ′

εE for all x ∈ H,
(3)′′ [1 − p − s − t] ≤ [(d′′′ − 4ε)+].
By (1)′′ and (2)′′ there exist positive elements x5

1, x5
2, y5

1 , y5
2 ∈ E and x6

1, x6
2, y6

1 , y6
2 ∈

(1 − p − s − t)A(1 − p − s − t) such that

‖x′4
1 − x5

1 − x6
1‖ < ε, ‖y4

1 − y5
1 − y6

1‖ < ε,

‖x′4
2 − x5

2 − x6
2‖ < ε, ‖y4

2 − y5
2 − y6

2‖ < ε.

Since (x4
i −12ε)+ � (y4

j −4ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, we have (x5
i −24ε)+ � (y5

j −8ε)+
and (x6

i − 24ε)+ � (y6
j − 8ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Since E ∈ Ω and E has the weak Riesz interpolation, we may assume that there exists a
projection z4 ∈ E+ such that (x5

i − 26ε)+ � z4 � (y5
j − 8ε)+ for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

Therefore we have

(x2 − 200ε)+ � (x′
2 − 8ε)+ ⊕ (x′′′

2 − 18ε)+ ⊕ (x5
2 − 26ε)+ ⊕ (x6

2 − 24ε)+

� (x′
2 − 8ε)+ ⊕ (x′′′

2 − 18ε)+ ⊕ (x5
2 − 26ε)+ ⊕ (d′′′ − 4ε)+

� z′ ⊕ z′′′ ⊕ z4 ⊕ (x6
1 − 24ε)+

� (y′
i − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y5
j − 8ε)+ ⊕ (y6

j − 8ε)+

� yj ,

for all 1 ≤ j ≤ 2.
We also have

(x1 − 200ε)+ � (x′
1 − 8ε)+ ⊕ (x′′′

1 − 14ε)+ ⊕ (x5
1 − 26ε)+ ⊕ (x6

1 − 24ε)+

� z′ ⊕ z′′′ ⊕ z4 ⊕ (x6
1 − 24ε)+
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� (y′
i − 2ε)+ ⊕ (y′′′

j − 4ε)+ ⊕ (y5
j − 8ε)+ ⊕ (y6

j − 8ε)+

� yj ,

for all 1 ≤ j ≤ 2.
(2.3.5.5) (x′′

j − 6ε)+ are Cuntz equivalent to projections and (x′′
j − 6ε)+ are equivalent to

(y′′
j − 2ε)+.

Therefore we have

(xi − 200ε)+ � (x′
i − 8ε)+ ⊕ (x′′

i − 6ε)+

� z′ + (x′′
1 − 6ε)+

� (y′
i − 2ε)+ ⊕ (y′′

j − 2ε)+

� yj ,

for all 1 ≤ i ≤ 2, 1 ≤ j ≤ 2. �

Corollary 3.7 Let A be a unital simple C∗-algebra such that A has the weak Riesz interpo-
lation. Suppose that α : G → Aut(A) is an action of a finite group G on A which has the
tracial Rokhlin property. Then the crossed product C∗-algebra C∗(G, A, α) has the weak Riesz
interpolation.

Proof This follows from Theorems 3.2 and 3.6. �
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