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1 Introduction and Main Results

Let L be the following second order elliptic differential operator on Rd:

L =
1
2

∑

1≤i,j≤d

aij(x)∂i,j +
∑

1≤i≤d

bi(x)∂i,

where a(x) := (aij(x))1≤i,j≤d and b(x) := (bi(x))1≤i≤d are continuous on Rd, and there exists
a constant λ0 > 0 such that for any x, h ∈ Rd,

〈a(x)h, h〉 ≥ λ0|h|2. (1.1)

Suppose that the martingale problem for the operator (L,C2
b (Rd)) is well-posed. Equivalently,

the following stochastic differential equation (SDE) on Rd:

dXt = σ(Xt) dBt + b(Xt) dt, X0 = x ∈ Rd (1.2)

has a unique weak solution. Here, (Bt)t≥0 is a standard Brownian motion on Rd, and σ(x) :=
(σij(x))1≤i,j≤d satisfies a(x) = σ(x)σT (x), where σT (x) denotes the transpose of the matrix
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σ(x). See [7, 11] for more details. Denote by Px and Ex the probability and the expectation of
the process (Xt)t≥0 starting from x ∈ Rd, respectively. Let (Pt)t≥0 be the Markov semigroup
associated with the process (Xt)t≥0 (or the operator L). Then,

Ptf(x) = Exf(Xt), t ≥ 0, x ∈ Rd, f ∈ Bb(Rd).

There are lots of developments on gradient estimates for the diffusion semigroup (Pt)t≥0, see
[1–4, 6, 10, 12] and references therein. In particular, under the assumption that the coefficients
σ(x) and b(x) fulfill the one-sided Lipschitz condition (monotonicity condition), i.e., there is a
constant C > 0 such that for any x, y ∈ Rd,

‖σ(x) − σ(y)‖2 + 2〈b(x) − b(y), x− y〉 ≤ C|x− y|2. (1.3)

Priola and Wang in [10, Theorem 3.4] used the probabilistic coupling approach to obtain the
following uniform gradient estimates for (Pt)t≥0:

‖∇Ptf‖∞ ≤ C0√
t ∧ 1

‖f‖∞, t > 0, f ∈ Bb(Rd), (1.4)

where C0 > 0 is a constant independent of t > 0 and f ∈ Bb(Rd). Here and in what follows,

|∇Ptf(x)| = lim sup
y→x

|Ptf(y) − Ptf(x)|
|x− y| , x ∈ Rd.

Indeed, the setting of [10, Theorem 3.4] is more general than (1.3), and it was assumed that
there is a nonnegative continuous function g on (0,+∞) with

∫ 1

0
g(s) ds < ∞ so that for any

x, y ∈ Rd,

‖σ(x) − σ(y)‖2 + 2〈b(x) − b(y), x− y〉 ≤ g(|x− y|)|x− y|. (1.5)

In particular, when g(x) = Cx for some constant C > 0, (1.5) is reduced into the monotonicity
condition (1.3).

Motivated by [10, Theorem 3.4], in this paper we will study non-uniform gradient estimates
for the semigroup (Pt)t≥0 when the coefficients σ(x) and b(x) only satisfy local monotonicity
conditions. One of our contributions is as follows.

Theorem 1.1 Suppose that there exist a C2-function W : Rd → [1,∞) and a nonnegative
continuous function g on (0,+∞) with

∫ 1

0
g(s) ds < ∞ such that the following two conditions

hold:
(i) for any x, y ∈ Rd,

‖σ(x) − σ(y)‖2 + 2〈b(x) − b(y), x− y〉 ≤ (W (x) +W (y))g(|x− y|)|x− y|; (1.6)

(ii) there exist constants λ >
∫ 1

0
g(s) ds/(2λ0) and Cλ > 0 so that

LeλW ≤ CλeλW , (1.7)

where the constant λ0 is given in (1.1).
Then, there is a constant C > 0 such that for any x ∈ Rd, f ∈ Bb(Rd) and t > 0,

|∇Ptf(x)| ≤ C√
t ∧ 1

eλW (x)‖f‖∞. (1.8)
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In particular, when σ(x) and b(x) satisfy (1.3), we can takeW (x) to be the constant function
in (1.6). In this case, (1.7) holds trivially. Therefore, Theorem 1.1 extends [10, Theorem 3.4].
On the other hand, when lim|x|→∞W (x) = ∞, (1.7) can be regarded as the standard Lyapunov
drift condition on the generator L, which guarantees that the process (Xt)t≥0 is non-explosive.
This along with Condition (i) in turn yields that the SDE given by (1.2) indeed has a unique
strong solution.

It is natural to ask whether Theorem 1.1 still holds when (1.7) is replaced by a simpler
condition like LW ≤ C0W . The latter one is easy to verify and practical in applications. The
following statement will address this question in some especial settings.

Theorem 1.2 Suppose that there exist a C2-function W : Rd → [1,∞) with lim|x|→∞W (x) =
∞ and a nonnegative continuous function g on (0,+∞) such that

∫ 1

0
g(s) ds <∞. If Condition

(i) and the following condition hold:
(ii’) there exist constants C1, C2 > 0 and α ∈ (0, 1] such that for any x ∈ Rd,

LW 1/α(x) ≤ C1W
1/α(x) (1.9)

and
|σT (x)∇W (x)|2 ≤ C2W (x), (1.10)

then, for any λ >
∫ 1

0
g(s) ds/(2λ0) with the constant λ0 in (1.1), there exists a constant C > 0

such that (1.8) holds for any x ∈ Rd, f ∈ Bb(Rd) and t > 0.

To illustrate the power of Theorem 1.2, we consider the following example.

Example 1.3 Suppose that there exist α ∈ (0, 1], C0 > 0 and a continuous nonnegative
function g on (0,+∞) with

∫ 1

0
g(s) ds <∞ so that the following two conditions hold:

(i) for any x, y ∈ Rd,

‖σ(x) − σ(y)‖2 + 2〈b(x) − b(y), x− y〉 ≤ C0((1 + |x|2)α + (1 + |y|2)α)g(|x− y|)|x− y|2;
(ii) for any x ∈ Rd,

〈x, b(x)〉 ≤ C0(1 + |x|2), ‖σ(x)‖2 ≤ C0(1 + |x|2(1−α)).

Then there exist constants C, λ > 0 such that for any x ∈ Rd, f ∈ Bb(Rd) and t > 0,

|∇Ptf(x)| ≤ C√
t ∧ 1

eλ(1+|x|2)α‖f‖∞.

Recently, Prato and Priola in [5, Theorem 1.2] also considered gradient estimates for dif-
fusion semigroups under local monotonicity conditions. In details, by checking the proof of [5,
Theorem 1.2] (in particular, see the proofs of [5, Proposition 2.1 and Corollary 2.2]), Theo-
rem 1.2 was proved to hold true under the assumptions that both coefficients σ(x) and b(x) are
C1, and that there is a nonnegative measurable function W (x) such that

(i∗) for any x, y ∈ Rd,

‖σ(x) − σ(y)‖2 + 2〈b(x) − b(y), x− y〉 ≤ (W (x) +W (y))|x− y|2;
(i∗∗) there is a constant λ > 0 such that for any x ∈ Rd,

LW 4(x) ≤ λW 4(x).
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Since the additional condition (1.10) is not required, [5, Theorem 1.2] is better than Theorem 1.2
when α = 1/4. However, the approach of [5, Theorem 1.2] is based on the Bismut–Elworthy–Li
formula, and so it is crucial to assume that σ(x) and b(x) are C1 functions; while in the setting
of our paper, we only assume that both coefficients are continuous. Moreover, the idea for proofs
of Theorems 1.1 and 1.2 is completely different from that of [5, Theorem 1.2]. We mainly apply
the coupling technique and the localization argument. Our method is still efficient for gradient
estimates of SDEs with Lévy noises under local monotonicity conditions (see Section 3 for more
details), for which the approach of [5, Theorem 1.2] seems to be not easy to apply.

The remainder of the paper is arranged as follows. The next section is devoted to proofs
of Theorems 1.1 and 1.2 as well as that of Example 1.3. In Section 3, we will consider gra-
dient estimates for SDEs driven by additive pure jump Lévy noises under local monotonicity
conditions on the drift term.

2 Proofs of Theorems 1.1 and 1.2

In this section, we will prove Theorems 1.1 and 1.2. We first give the

Proof of Theorem 1.1 The proof is split into two parts.
(1) Let W be the function in Theorem 1.1. For any k ≥ 1, define

τk = inf{t > 0 : W (Xt) ≥ k},
where we set inf ∅ = ∞. Then, for any x ∈ Rd and t > 0,

Ex(e−Cλ(t∧τk)eλW (Xt∧τk
)) ≥ Ex(e−Cλ(t∧τk)eλW (Xt∧τk

)1{τk≤t}) ≥ e−CλteλkPx(τk ≤ t).

Furthermore, according to Condition (ii), we have

Px(τk ≤ t) ≤ eCλte−λkEx(e−Cλ(t∧τk)eλW (Xt∧τk
))

= eCλte−λk

[
eλW (x) + Ex

∫ t∧τk

0

e−Cλs(LeλW (Xs) − CλeλW (Xs)) ds
]

≤ eCλte−λkeλW (x). (2.1)

In particular, by (2.1), the process (Xt)t≥0 is non-explosive.
(2) Let (Xt, Yt)t≥0 be the Markov coupling constructed in [10, Section 3.1], and

T = inf{t > 0 : Xt = Yt}
be the coupling time of the process (Xt, Yt)t≥0. For any k ≥ 1, define

τ̃k = inf{t > 0 : W (Xt) +W (Yt) ≥ k},
τk,1 = inf{t > 0 : W (Xt) ≥ k},
τk,2 = inf{t > 0 : W (Yt) ≥ k}.

Denote by P(x,y) the probability of the process (Xt, Yt)t≥0 starting from (x, y). According
to (2.1),

P(x,y)(τ̃k ≤ t ≤ τ̃k+1) ≤ P(x,y)(τ̃k ≤ t)

≤ Px(τk/2,1 ≤ t) + Py(τk/2,2 ≤ t)

≤ eCλte−λk/2(eλW (x) + eλW (y)). (2.2)
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Next, we estimate P(x,y)(T > t|τ̃k+1 ≥ t ≥ τ̃k). Note that, under the event {τ̃k+1 ≥ t ≥ τ̃k},
the coupling process (Xt, Yt)t≥0 will stay in the region

{(x, y) ∈ R2d : W (x) +W (y) ≤ k + 1}
before time t. Then, thanks to Condition (i), without loss of generality we may and do assume
that the associated coefficients of the coupling process (Xt, Yt)t≥0 before time t satisfy the
following monotonicity condition

‖σ(x) − σ(y)‖2 + 2〈b(x) − b(y), x− y〉 ≤ (k + 1)g(|x− y|)|x− y|, x, y ∈ Rd.

According to [10, Theorem 3.4 (a)] and its proof (see [10, p. 254–255]), for any t > 0,

sup
x∈Rd

lim sup
y→x

P(x,y)(T > t|τ̃k ≤ t ≤ τ̃k+1)
|x− y|

≤ inf
r>0

{∫ r

0
exp[k+1

4λ0

∫ s

0
g(u) du] ds

2λ0t
+

1∫ r

0
exp[−k+1

4λ0

∫ s

0
g(u) du] ds

}

≤ exp
(

(k + 1)
∫ 1

0
g(u) du

4λ0

)(√
t ∧ 1

2λ0t
+

1√
t ∧ 1

)

≤
(

1 +
1

2λ0

)
exp

(
(k + 1)

∫ 1

0
g(u) du

4λ0

)
1√
t ∧ 1

. (2.3)

By (2.2) and (2.3), we find that for any λ >
∫ 1

0
g(s) ds/(2λ0), x ∈ Rd and t > 0,

lim sup
y→x

P(x,y)(T > t)
|x− y|

= lim sup
y→x

∑∞
k=1 P

(x,y)(T > t|τ̃k ≤ t ≤ τ̃k+1)P(x,y)(τ̃k ≤ t ≤ τ̃k+1)
|x− y|

≤ 2
(

1 +
1

2λ0

)
exp

(∫ 1

0
g(u) du
4λ0

)
eCλt

√
t ∧ 1

eλW (x)
∞∑

k=1

exp
(
k

∫ 1

0
g(u) du
4λ0

− λk

2

)

=
C0eCλt

√
t ∧ 1

eλW (x),

where

C0 := 2
(

1 +
1

2λ0

)
exp

(∫ 1

0
g(u)du
4λ0

) ∞∑

k=1

exp
[
k

(∫ 1

0
g(u) du
4λ0

− λ

2

)]
<∞,

thanks to the fact that λ >
∫ 1

0
g(s) ds/(2λ0). Therefore, for any x ∈ Rd, f ∈ Bb(Rd) and

t ∈ (0, 1],

lim sup
y→x

|Ptf(x) − Ptf(y)|
|x− y| ≤ ‖f‖∞ lim sup

y→x

P(x,y)(T > t)
|x− y|

≤ C0eCλt

√
t

eλW (x)‖f‖∞

≤ C0eCλ

√
t

eλW (x)‖f‖∞.

Now, for any x ∈ Rd, f ∈ Bb(Rd) and t > 1, by the property of the semigroup (Pt)t≥0,

lim sup
y→x

|Ptf(x) − Ptf(y)|
|x− y| = lim sup

y→x

|P1Pt−1f(x) − P1Pt−1f(y)|
|x− y|



Non-uniform Gradient Estimates for SDEs 463

≤ C0eCλeλW (x)‖Pt−1f‖∞
≤ C0eCλeλW (x)‖f‖∞.

Combining with both conclusions above, we prove Theorem 1.1. �
Next, we turn to the

Proof of Theorem 1.2 For simplicity, throughout the proof we will adopt the notations in the
proof of Theorem 1.1.

First, we claim that for any x ∈ Rd, k ≥ 1 and t > 0,

Px(τk ≤ t) ≤ C0 exp(−λe−αβtk)eλW (x),

where
τk = inf{t > 0 : W (Xt) ≥ k}.

Indeed, we set W (x) := W 1/α(x). By (1.9),

LW (x) ≤ C1W (x).

Since the function W ∈ C2(Rd), lim|x|→∞W (x) = ∞ and α ∈ (0, 1], we have W ∈ C2(Rd) and
lim|x|→∞W (x) = ∞. Furthermore, due to |σT (x)∇W (x)|2 ≤ C2W (x), it holds that

1
α2
W 2/α−2(x)|σT (x)∇W (x)|2 ≤ C2

α2
W 2/α−1(x);

that is,

|σT (x)∇W (x)|2 ≤ C2

α2
(W (x))2−α.

Hence, under Condition (ii’), the function W satisfies all the assumptions of [14, Lemma 2.2].
In particular, by [14, Lemma 2.2], for any λ > 0 and x ∈ Rd,

Ex
[
sup
t>0

exp(λe−αβtW (Xt))
]
≤ C0eλW (x), (2.4)

where
β := β(λ, α,C1, C2) = C1 + C2αλ/4 + 2/(αλ), C0 = 2(C2(αλ)2 + 1).

Therefore, for any x ∈ Rd and t > 0,

Ex(exp(λe−αβ(t∧τk)W (Xt∧τk
))) ≥ Ex(exp(λe−αβ(t∧τk)W (Xt∧τk

))1{τk≤t})

≥ exp(λe−αβtk)Px(τk ≤ t),

which along with (2.4) gives us that for any x ∈ Rd and t > 0,

Px(τk ≤ t) ≤ C0 exp(−λe−αβtk)eλW (x). (2.5)

In the following, we will make use of the coupling process (Xt, Yt)t≥0 as that in part (2) of
the proof for Theorem 1.1. By (2.5), for any x, y ∈ Rd and t > 0,

P(x,y)(τ̃k ≤ t ≤ τ̃k+1) ≤ Px(τk/2 ≤ t) + Py(τk/2 ≤ t)

≤ C0 exp(−λe−αβt(k/2))(eλW (x) + eλW (y)). (2.6)

On the other hand, using Condition (i), (2.3) and (2.6), and following the argument in part (2)
of the proof for Theorem 1.1, we then can get that for any λ > 0, x ∈ Rd and t > 0,

lim sup
y→x

P(x,y)(T > t)
|x− y|
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= lim sup
y→x

∑∞
k=1 P

(x,y)(T > t|τ̃k ≤ t ≤ τ̃k+1)P(τ̃k ≤ t ≤ τ̃k+1)
|x− y|

≤ 2
(

1 +
1

2λ0

)
exp

(∫ 1

0
g(u) du
4λ0

)
C0√
t
eλW (x)

∞∑

k=1

exp
(
k

∫ 1

0
g(u) du
4λ0

− k

2
λe−αβt

)
.

Now, let λ >
∫ 1

0
g(u) du/(2λ0). Then, we can choose t0 > 0 small enough (depending on

λ, α, β, λ0 and g) such that

λ > exp(αβt0)
∫ 1

0

g(u)du/(2λ0). (2.7)

Hence, for any x ∈ Rd and t ∈ (0, t0],

lim sup
y→x

P(x,y)(T > t)
|x− y|

≤ 2
(

1 +
1

2λ0

)
exp

(∫ 1

0
g(u) du
4λ0

)
C0√
t
eλW (x)

∞∑

k=1

exp
(
k

∫ 1

0
g(u) du
4λ0

− k

2
λe−αβt0

)

=:
C√
t
eλW (x)‖f‖∞,

where

C = 2C0

(
1 +

1
2λ0

)
exp

(∫ 1

0
g(u)du
4λ0

) ∞∑

k=1

exp
[
k

(∫ 1

0
g(u)du
4λ0

− λ

2
e−αβt0

)]
<∞,

thanks to (2.7). Therefore, for any x ∈ Rd, f ∈ Bb(Rd) and 0 < t ≤ t0,

lim sup
y→x

|Ptf(x) − Ptf(y)|
|x− y| ≤ ‖f‖∞ lim sup

y→x

P(x,y)(T > t)
|x− y|

≤ C√
t
eλW (x)‖f‖∞.

Combining the assertion above with the Markov property of the semigroup (Pt)t≥0, we
obtain that for any x ∈ Rd, f ∈ Bb(Rd) and t > 0,

|∇Ptf(x)| ≤ C√
t ∧ 1

eλW (x)‖f‖∞,

which yields the assertion of Theorem 1.2. �
Proof of Example 1.3 Let W (x) = (1 + |x|2)α. By (ii),

LW 1/α(x) = L(1 + |x|2) = ‖σ(x)‖2 + 2〈x, b(x)〉
≤ 2C0(1 + |x|2) + C0(1 + |x|2(1−α))

≤ C1W
1/α(x)

and

|σT (x)∇W (x)|2 = |σT (x)∇(1 + |x|2)α|2
= |2α(1 + |x|2)α−1σT (x)x|2
≤ 4C0α

2(1 + |x|2)2α−2(1 + |x|2(1−α))(1 + |x|2)
≤ C2(1 + |x|2)α,
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where C1, C2 > 0 are independent of x ∈ Rd. Therefore, the function W (x) satisfies Condition
(ii’) in Theorem 1.2. On the other hand, by (ii) we see that (i) in Theorem 1.2 holds with the
function W (x). Hence, the assertion of Example 1.3 follows from Theorem 1.2. �

3 Gradient Estimates for SDEs with Lévy Noises

In this section, we will consider the following SDE with Lévy noises

dXt = dZt + b(Xt) dt, X0 = x ∈ Rd, (3.1)

where b(x) : Rd → Rd is a Borel measurable function, and Z := (Zt)t≥0 is a pure jump Lévy
process on Rd. Throughout this section, we always assume that the SDE (3.1) has a unique
strong solution, which is denoted by X := (Xt)t≥0. Then, by the Itô formula, the generator of
the process X is given by

Lf(x) = 〈b(x),∇f(x)〉 +
∫

Rd

(f(x+ z) − f(x) − 〈∇f(x), z〉1{|z|≤1}) ν(dz)

acting on f ∈ C2
b (Rd), where ν is the Lévy measure of the process Z. We mention that under

Conditions (i) and (ii) in the main result Theorem 3.1 below, the SDE (3.1) indeed has a unique
strong solution.

There are several recent papers on uniform gradient estimates for the Markov semigroup
associated with the SDE (3.1). Zhang in [14, Theorem 1.1] used a time-change argument
combined with the Malliavin calculus to obtain a Bismut–Elworthy–Li’s derivative formula for
the semigroup when Z is a (rotationally invariant) symmetric α-stable process in (3.1). Later,
a new derivative formula of Bismut–Elworthy–Li’s type was established in [13, Theorem 1.1]
for the semigroup, based on the Malliavin calculus and a finite-jump approximation argument,
corresponding to a class of SDEs driven by multiplicative Lévy noises. Via the coupling method,
gradient estimates for the semigroup of the SDE (3.1) (driven by more general Lévy noises)
under monotonicity conditions on the drift term was given in [9, Theorem 5.1]. All gradient
estimates of the semigroup given in these quoted papers are uniform with the following form:

‖∇Ptf‖∞ ≤ ψ(t)‖f‖∞, t > 0, f ∈ Bb(Rd),

where ψ(t) is a nonnegative function on (0,∞).
The purpose of this section is to extend Theorem 1.1 to SDEs with Lévy noises, and to

study non-uniform gradient estimates for the associated semigroup. The main result of this
section is as follows.

Theorem 3.1 Suppose that there is a C2-function W : Rd → [1,∞) such that the following
three conditions hold:

(i) for any x, y ∈ Rd,

〈b(x) − b(y), x− y〉 ≤ (W (x) +W (y))|x− y|2;
(ii) there exist constants β, λ > 0 so that for any x ∈ Rd,

LW β(x) ≤ λW β(x);

(iii) there are a constant ε0 > 0 and φ ∈ C[0, ε0] ∩ C3(0, ε0] so that
(a) φ(0) = 0, φ′ ≥ 0, φ′′ ≤ 0 and φ′′′ ≥ 0 on (0, ε0];
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(b) both functions Φ1(r) := − 1
4J(r)r φ′′(2r)

φ′(r) and Φ2(r) := − 1
4J(r)r2φ′′(r) are non-increas-

ing on (0, ε0] with limr→0 Φ1(r) = +∞, and
∞∑

k=1

2−βk

φ(Φ−1
1 (a2k))

<∞

for some constant a ≥ 1 such that Φ−1
1 (2a) ≤ ε0/2, where J(r) is a nonnegative function on

(0,∞) such that

J(r) ≤ J0(r) := inf
|x|≤r

[ν ∧ (δx ∗ ν)](Rd), r ∈ (0, 1]

and

Φ−1
1 (r) = inf{s ∈ (0, ε0] : Φ1(s) ≤ r}.

Then, there exists a constant C > 0 such that for any x ∈ Rd, f ∈ Bb(Rd) and t > 0,

lim sup
y→x

|Ptf(x) − Ptf(y)|
φ(|x− y|) ≤ C

φ(Φ−1
3 (t ∧ 1))

W β(x)‖f‖∞,

where Φ3(r) = φ(r)/Φ2(r).

Proof The idea of the proof is similar to that of proofs for Theorems 1.1 and 1.2, but we
require much more delicate estimates due to the Lévy noises. By the property of the semigroup
(Pt)t≥0, we only need to consider the case that t ∈ (0, 1].

Let τk be the stopping time given in the proof of Theorem 1.1. Then, for any x ∈ Rd and
t > 0,

Ex(e−λ(t∧τk)W β(Xt∧τk
)) ≥ Ex(e−λ(t∧τk)W β(Xt∧τk

)1{τk≤t}) ≥ e−λtkβPx(τk ≤ t).

This along with Condition (ii) yields that

Px(τk ≤ t) ≤ eλtk−βEx(e−λ(t∧τk)W β(Xt∧τk
))

= eλtk−β

(
W β(x) + Ex

∫ t∧τk

0

e−λs(LW β(Xs) − λW β(Xs)) ds
)

≤ eλtk−βW β(x). (3.2)

Let (Xt, Yt)t≥0 be the coupling process given in the proof of [9, Theorem 5.1]. We still use the
notation in part (2) in the proof of Theorem 1.1. According to (3.2), we have

P(x,y)(τ̃2k ≤ t ≤ τ̃2k+1) ≤ 2βeλt2−βk(W β(x) +W β(y)). (3.3)

Under the event {τ̃2k ≤ t ≤ τ̃2k+1}, the coupling process (Xt, Yt)t≥0 will stay in the region
{(x, y) ∈ R2d : W (x) +W (y) ≤ 2k+1}. By (i), we can assume that in this case the coefficients
of the process (Xt, Yt)t≥0 satisfy that for any x, y ∈ Rd,

〈b(x) − b(y), x− y〉 ≤ 2k+1|x− y|2.
Then, according to [9, Theorem 5.1] and its proof (see [9, pp. 31–32]) for any x ∈ Rd, t > 0 and
k ≥ 1,

lim sup
y→x

P(x,y)(T > t|τ̃k ≤ t ≤ τ̃k+1)
φ(|x− y|) ≤ inf

0<ε≤ε∗
0

{
1

φ(ε)
+

1
tAk

ε(φ)

}
, (3.4)
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where ε∗0 > 0 is independent of x, t and k, and

Ak
ε(φ) = inf

0<r≤ε

{
1
2
J(r)(2φ(r)− φ(2r)) − 2k+1φ′(r)r

}
, ε > 0.

In the following, for simplicity we will assume that ε0 = ε∗0; otherwise, we will replace them by
ε0 ∧ ε∗0. Since φ′′′ ≥ 0 on (0, ε0] for some ε0 > 0,

2φ(r) − φ(2r) = −
∫ r

0

∫ r+s

s

φ′′(u) du ds ≥ −φ′′(2r)r2, 0 < r ≤ ε0/2.

Let a ≥ 1 large enough such that Φ−1
1 (2a) ≤ ε0/2. Thus, for any ε ∈ (0,Φ−1

1 (a2k+1)],

Ak
ε(φ) ≥ inf

0<r≤ε

{
− 1

2
J(r)r2φ′′(2r) − 2k+1φ′(r)r

}

= inf
0<r≤ε

{
− 1

4
J(r)r2φ′′(2r) − 1

4
J(r)r2φ′′(2r) − 2k+1φ′(r)r

}

≥ inf
0<r≤ε

{
− 1

4
J(r)r2φ′′(2r)

}
+ inf

0<r≤ε

{
φ′(r)r

(
− 1

4
J(r)rφ′′(2r)

φ′(r)
− 2k+1

)}

= inf
0<r≤ε

{
− 1

4
J(r)r2φ′′(2r)

}
+ inf

0<r≤ε
{φ′(r)r(Φ1(r) − 2k+1)}

≥ inf
0<r≤ε

{
− 1

4
J(r)r2φ′′(2r)

}

= −1
4
J(ε)ε2φ′′(2ε),

where in the last inequality we used the facts that Φ1(r) is non-increasing on (0, ε0] and φ′ ≥ 0
on (0, ε0], and the last equality follows from the non-increasing property of the function Φ2(r) =
− 1

4J(r)r2φ′′(2r) on (0, ε0].
Let εk = Φ−1

1 (a2k+1) for all k ≥ 1. By (b) in Condition (ii), limk→∞ εk = 0. Then, we can
simplify (3.4) as that for any x ∈ Rd, t ∈ (0, 1] and k ≥ 1,

lim sup
y→x

P(x,y)(T > t|τ̃k ≤ t ≤ τ̃k+1)
φ(|x− y|) ≤ inf

0<ε≤εk

{
1

φ(ε)
+

1
tΦ2(ε)

}

≤ c0

φ(εk ∧ Φ−1
3 (t))

≤ c1

φ(εk)φ(Φ−1
3 (t))

, (3.5)

where in the second inequality we used the facts that φ is non-decreasing and Φ2 is non-
increasing on (0, ε0], and the last inequality follows from limk→∞ εk = 0 and t ∈ (0, 1]. Here,
c0, c1 are independent of x and t.

Combining (3.3) with (3.5), we find that for any x ∈ Rd, f ∈ Bb(Rd) and t ∈ (0, 1],

lim sup
y→x

|Ptf(x) − Ptf(y)|
φ(|x− y|)

≤ 2‖f‖∞ lim sup
y→x

P(x,y)(T > t)
φ(|x− y|)

≤ 2‖f‖∞
∞∑

k=0

lim sup
y→x

P(x,y)(T > t|τ̃2k+1 ≥ t ≥ τ̃2k)P(x,y)(τ̃2k+1 ≥ t ≥ τ̃2k)
φ(|x− y|)
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≤ c2W
β(x)‖f‖∞

φ(Φ−1
3 (t))

[ ∞∑

k=0

2−βk

φ(εk)

]

≤ c3W
β(x)‖f‖∞

φ(Φ−1
3 (t))

,

where in the last inequality we used (b) in Condition (ii) again. The proof is completed. �
As a consequence of Theorem 3.1, we have the following corollary.

Corollary 3.2 Under the setting of Theorem 3.1, suppose that Conditions (i) and (ii) hold,
and that there are constants c0 > 0 and α ∈ (0, 2),

J0(r) ≥ c0r
−α, r ∈ (0, 1].

Then, the following statements hold.
(1) If α ∈ (0, 1], and the constant β in Condition (ii) satisfies that β > θ/α with some

θ ∈ (0, α), then there exists a constant C > 0 such that for any x ∈ Rd, f ∈ Bb(Rd) and t > 0,

lim sup
y→x

|Ptf(x) − Ptf(y)|
|x− y|θ ≤ CW β(x)(t ∧ 1)−θ/α‖f‖∞.

(2) If α ∈ (1, 2), and the constant β in Condition (ii) satisfies that β > 1/α, then for any
θ > 0, there is a constant C > 0 such that for all x ∈ Rd, f ∈ Bb(Rd) and t > 0,

lim sup
y→x

|Ptf(x) − Ptf(y)|
|x− y| ≤ CW β(x)

(
log1+θ(2/(t ∧ 1))

t ∧ 1

)1/α

‖f‖∞.

Proof We set J(r) = c0r
−α.

(1) Let φ(r) = rθ with θ ∈ (0, α). It is clear that (a) in Condition (ii) of Theorem 3.1 holds.
On the other hand, it is obvious that Φ1 and Φ2 satisfy the conditions in (b); moreover, in this
case, since β > θ/α, for any a > 1,

∞∑

k=1

2−βk

φ(Φ−1
1 (a2k))

≤ c1

∞∑

k=1

2k(−β+θ/α) <∞.

Hence, the desired assertion follows from Theorem 3.1.
(2) Let φ(r) = r(1 − log−θ(1/r)). By some elementary calculations, we can verify that φ

satisfies all the conditions in (a). On the other hand, we also can check that Φ1(r) and Φ2(r)
are non-increasing on (0, r0] for some r0 > 0 small enough. Let εk = Φ−1

1 (2k+1). Recall that

Φ1(r) � r−α log−θ−1

(
1
r

)
.

Then, there is a constant c1 > 0 such that

εk ≥ c1(2k+1)−1/α log−(θ+1)/α(2k+1).

Thus, for β > 1/α,
∞∑

k=1

2−βk

εk(1 − log−θ(1/εk))
≤ c2

∞∑

k=0

2−βk

(2k+1)−1/α log−(θ+1)/α(2k+1)
<∞.

With aid of all the estimates above, we can get the desired assertion by Theorem 3.1. �
We note that it is possible to extend the statements above to SDEs with multiplicative Lévy

noises by [8, Theorem 1.2] and its proof. The details are left to readers. To close this section,
we present the following example.
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Example 3.3 Consider the following SDE

dXt = b(Xt) dt+ dZt,

where (Zt)t≥0 is a pure jump Lévy process such that its Lévy measure
c1

|z|d+α
1{0<z1≤1}(dz) ≤ ν(dz) ≤ c2

|z|d+α
dz

for some c1, c2 > 0 and α ∈ (0, 2). Suppose that there is a constant C > 0 such that for all
x, y ∈ Rd,

〈b(x), x〉 ≤ C(1 + |x|)2

and
〈b(x) − b(y), x− y〉 ≤ C((1 + |x|)α + (1 + |y|)α)|x− y|2.

Then, we have
(1) for any α ∈ (0, 1] and 0 < θ1 < θ2 < α, there exists a constant C > 0 such that for any

x ∈ Rd, f ∈ Bb(Rd) and t > 0,

lim sup
y→x

|Ptf(x) − Ptf(y)|
|x− y|θ1

≤ C(1 + |x|)θ2(x)(t ∧ 1)−θ1/α‖f‖∞.

(2) for any α ∈ (1, 2), θ1 > 0 and θ2 > 1, there exists a constant C > 0 such that for any
x ∈ Rd, f ∈ Bb(Rd) and t > 0,

|∇Ptf(x)| ≤ C(1 + |x|)θ2

(
log1+θ1(2/(t ∧ 1))

t ∧ 1

)1/α

‖f‖∞.

Proof With the lower bound of Lévy measure ν, by [9, Example 1.2], we can take J(r) = c0r
−α.

Let W (x) = (1 + |x|)α.
(1) By taking θ = θ1 and β = θ2/α, we can get the desired assertion by Corollary 3.2 (1),

where we used the upper bound of Lévy measure ν and the assumptions on the drift term b(x).
(2) Similar to (1), the assertion follows from Corollary 3.2 (2) by setting θ = θ1 and

β = θ2/α. �
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