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Abstract This paper is devoted to studying Bergman spaces AL, (M) (1 < p < oo) induced by

wi1,2
regular-weight wy 2 on annulus M. We characterize the function f in LY, (M) for which the induced

wi1,2
Hankel operator Hy is bounded (or compact) from A%, , (M) to L, ,(M) with 1 < p,q < oo.
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1 Introduction

Let D denote the open unit disk in the complex plane C, and let M = {z € D : rg < |z| < 1}
be the annulus in D where 0 < o < 1. For convenience, let M; = {z € D: /0 < |z| < 1} and
My ={z€D:ry<|z[ < '}, then M = M; UM,.

Suppose p(a,z) = | -2 | is the pseudo-hyperbolic metric on D, then for any a € D and
r € (0,1) the pseudo-hyperbolic disk A(a,r) = {z € D|p(a,z) < r} with center ¢ and the
radius r.

Let {a;}52, be some (or any) r-lattice of M; under the pseudo-hyperbolic metric p(z, w),
and {Z;’ }32, be some (or any) r-lattice of M under the pseudo-hyperbolic metric p("?, 7).
For any z € My, z € U2, Alai,7), and for any z € My, "2 € U2, A2, r)

We use the notation A < B if there exists a positive constant C' such that A < C'B for two
quantites A and B. Moreover, write A < B if A < B and B < A.

Suppose w € L1[1,0) is a radial weight, we will denote w € D for the family of radial weights
such that ©(z) = flil w(s)ds is doubling, i.e., there exists some constants C = C(w) > 1 such

that &(r) < C&('3") for any 0 < r < 1. Futhermore, if w € D satisfies
f: w(s)ds
1—7

then we call w is regular, denoted by w € R.

W(T)X 0§r<1a

If w € R, then there exists a positive constant C' depending on r € (0,1), such that
C7lw(z) < w(¢) < Cw(z), whenever ¢ € A(z,7). In other words, w € R is equivalent to

Received August 12, 2019, accepted June 5, 2020
Supported by NNSF of China (Grant Nos. 11971125, 11471084)

1) Corresponding author



776 Yang L. H. et al.

w(z) < w(€) on A(z,1), see [16]. From [22], if £ € A(z,r), then 1 — [§] < 1 — |2|, and
|A(2z,7)] < (1 — |2]?)%. And several examples of weighs R are given by [13, (4.4)—(4.6)]. For
the study of the regular weighted Bergman spaces, we can see [5, 13-16].

Suppose w1 (z) and wa(z) are non-negative integrable functions on D, let

ora(:) =en(eon () + a7 (), €D,

For 0 < p < oo, define LF, (M) to be the space of all Lebesgue measurable functions f
satisfying the following condition

1f1l5 = /M |f(2)|Pwr,2(2)dA(2) < oo, (L.1)

where dA(z) = d‘ffy is the normalized Lebesgue area measure.
It is easy to know that L? (M) is a Banach space when 1 < p < oo. In particular,
L? (M) is a Hilbert space with the inner product

w1,2

o g)e = /M F(2)9(2)wra(2)dA(2).
LP

b, (M) is a Frechet space when 0 < p < 1. The weighted Bergman space Af, (M) is defined
by AP (M) =LP (M)NH(M), where H(M) is the set of all holomorphic functions on M.

wi,2 wi,2
2

wi,2

In the weighted Bergman space AZ, (M), if wy o is the radial weight, then the norm con-
vergence implies the uniform convergence on each compact subset of M, see [14]. It follows that
A2 (M) is the closed subspace of L2  (M). The orthogonal projection P,, , from L2 (M)

w12 w12 w1,2

onto Ail ,(M) is an integral operator given by

o f(2) = /M F(w) B (w)w 2(w)dA(w),

2
wi,2

where B;"?(w) is the reproducing kernel of A2 (M), and B:"*(w) is analytic with respect to
w, conjugate analytic with respect to z.
In this paper we will discuss the Hankel oprator induced by the orthogonal projection P,

Let f € L1 (M), the Hankel operator H; induced by f is defined as follow

Hf(g) = (Id - Pw1,2)(fg)7

1,2°

where I; is an identity operator.

Many researches of Hankel operators on Bergman spaces are in simply-connected domains,
see [1, 5, 10, 12, 17, 22]. Arazy, Fisher and Peetre [1] discussed the properties of Hankel operator
Hy on the standard weighted Bergman space, where H; was induced by an anti-analytic function
f onD. Given f € LP(D), Luecking [10] characterized the boundedness (or compactness) of
the Hnakel operator H; : A?(D) — L?(D) (1 < p < o). Notice that Luecking characterized
the boundedness by using the bounded distance from f to the analytic function space A%(DD)
instead of bounded distance to the constants (BMO). The distance from f to analytic function
space also plays an essential role in proving our main results. For a,3 > -1, 1 < p < ¢ <
and f € LY(B", (1 —|2|?)%dv(z)), Pau, Zhao and Zhu [12] characterized the symbol f such that
both the Hankel operators Hy, Hy : AP(B", (1 — |2|*)*dv(z)) — L(B", (1 — |212)Pdv(z)) were

simultaneously bounded (or compact), where B™ is the open unit ball in C". In particular, Hu
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and Lu [5] studied the Bergman space induced by regular weight w, and they considered the
characterization on f € L} (D) for which the Hankel operator Hy : AP (D) — L% (D) is bounded
(or compact) with 1 < p, ¢ < oo. For more informations about researches on Hankel operators,
one can refer to [4, 6, 17, 19, 20].

The researches of Bergman spaces on multi-connected domains can refer to [2, 7-9, 21].
Li [8] characterized the function f € L for which Hankel operator H; is compact on the
Bergman space A2 acting on the multi-connected domain Q. Furthermore, Li [9] generalized the
result of [4] to the multi-connected domain 2, and obtained the characterization on f € L*(Q2)
such that Hankel operators Hy and Hj are both bounded (or compact). Recently, for given
1 < p,g < oo and the positive Borel measure p on M, He, Xia and Wang [21] discussed
the boundedness (or compactness) of Toeplitz operator T}, from the weighted Bergman space
A (M) to the weighted Bergman space A%, (M).

Now, we are in the position to describe the boundedness (or compactness) of Hankel operator
Hy from one regular weighted Bergman space A?, . ,(M) to another regular weighted Lebesgue
space L, (M), where f € Li)LQ(M) and 1 < p,q < oco. Noticing that M in here is the
multi-connected domain, it is much more difficult than the simple-connected domain, because
of the great difference in the topological structure between them. Many methods and techniques
on the simple-connected domains didn’t effect on multi-connected domains any more. In this
paper, since there are two boundaries of an annulus M, we need to use two regular weights at
different boundaries. So the weight w; o € R in this paper is determined by regular weights w;
and ws.

The paper is organized as follows. In Section 2, we will give some estimates of reproducing
kernels in Bergman space with regular weight, and some important lemmas. In Section 3, we
will study some estimates of 9, which are used to prove the later part. Section 4 is about the

proofs of main theorems.

2 Preliminaries

Let 0D denote the boundary of D. If I is an arc of 9D, then the Carleson square S(I) is defined
as
S(I)={re? eD|e? € I,1 —m(I) <r <1},

where m(I) is the normalized Lebesgue measure of I. When w € D\{0}, define an arc I,, =
{e! € 9D | |arg(wel?)| < 1_2“”‘ }. We will denote S(I,,) as S(w) for convenience.
Lemma 2.1 ([21, Theorem 3.2]) Ifwi2 € R, 1<p<oo and0<r <1, then

1 3 1
wi(S(w)"" e (A,

1 1 .

I1Bot21l5 = = [w| — 7o

wa(SCNPT T wa(A( )P

w?

1Bl = lw| =17,

and

Lemma 2.2 ([21, Theorem 3.3]) Let w1 € D. Then there exists an r = r(wi,ws) € (0,1)
such that

|Bat?(z)| < B242(z), ze€ My, weMNA(z,r),
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and

|BY12(2)| = B2(z), z€ My, SGMOA<T;,T>.

Lemma 2.3 ([21, Theorem 2.4]) Ifwio € R, 1 < p < oo, then P, , is a bounded operator
from LY, (M) onto AL, (M).
The proof of [21, Theorem 2.4] implies

Br L (f)(z) = / F(w)| B (w) .o (1) dA(w) < 0.
M

If w € R, then we will write the reproducing kernel of A2 (D) as K% (w).
Lemma 2.4 ([21, Theorem 2.3]) Let wi,ws € R. Forrg < ro < 50 < ry < 1, write
Us={z€D:rg<|z|<re}, U1 ={z€D:r <|z| <1}. If (z,w) € (M x Uy) U (Uy x M),
then |BZ"?(w)| < |Ket(w)| + C(r1); if (z,w) € (M x Up) U (Uy x M), then |BZ"*(w)| <
(K5 ()] + C(ra).

ZFrom Lemma 2.1, Lemma 2.2, Lemma 2.4 and [5, Lemma 2.1], we can obtain the following
lemma.
Lemma 2.5 Letwio € R.

(1) For all v >0, if z € My, then

w1,2(A(z,7)) =wi(A(z,7)) = /A( )wldA = (1 —2])2wi(2) = @1 (2); (2.1)

if z € Ma, then

ety =a(o(2)) = [ ta= (= 1) (1) (7). e

(2) For 1 <p < oo, if £ € My, then

UJ112 -~ 1 .
BEO= 0 ehrwne)’
if £ € My, then .
B (€)=

- ey
By Lemma 2.2, Lemma 2.3, Lemma 2.5, and [5, Lemma 2.1], we can obtain the following
useful estimates: for some positive constant «, if £ € My, z € A(€, ), then
1 1
B2 = B2 (6) < = : 2.3

if§e M, € A(’g’,a), then

1 1
B¥12(€)| =< B2 (€) < = . )
| z (§)| 13 (f) CL)Q(?) WQ(TZO>
This shows that there are some a > 0 for z € M, & € A(z,) N M and 7? € A(",a) N M such
that B:"*(€) # 0.

w12
For 1 < p < oo, write by* = HBBﬁlﬂl\ , then ||by%||, = 1. By Lemma 2.5, if z € M, then
z P

(2.4)

sup |bjl? = inf |b¥%2 = 1(2) " 7 2.5
EeA(z,r)|p7 (§)| cen(zr) P (€)| 1(2) ( )
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if 2 € Ms, then
1
w . w v To ’
sup  [bpL2 ()] < inf |b 2(¢ )|xw2( ) . (2.6)
PN en(? ) z

From [21, Lemma 2.12], when |2| — 17 or |z| — r], we have by%* = 0.

Lemma 2.6 ([15, Proposition 14]) Let1 < p < oo,w € R, and {2;}32; C D\{0} be a separated
sequence. Then F =3 77, ciby ., € AL with || F|| az, < Cll{c; 1521 [l for all {c;};2, € IP.

Given r > 0, the local mean operator M, on L{  is defined as

M) = | oy o XA OFQIA®),  where = < Ay
1 T
MADE = gy [ xacon (E)£08A@).  where 2 €

Lemma 2.7 Let1l <p<oo. For anyr >0, M, is a bounded linear operator on L

Proof For feL
Therefore,

D12 (M).
), if z € My, € € A(z,7), then w1 (2) X wi(€) and |A(z,r)| < |AE, 7))

u.)12(

1M ()l = 1M (Pl 2, a)

w1 (z)
< [ ey TG [ xan @15 ©ldAE)
XA(SJ‘)(Z)
S [ r@ka@aace) [ 060 Daae)

M
= flley, )
< 00.
If 2 € My, "0 € A(?,7), then wa(7?) X wa("Y) and [A(?,7)[ =< (1—|2)? =< (1-[¢])? =
A7)l Therefore7

M (Pl = (1M (£l £, (v12)

<[ A“’f(m)”dA( ) [ xocon ()@l
< [ i@ (Y Jaseo [ Xfﬁ(forf)i;)dfuz)

</ (@ (’;f)dA(s)

= fllzy, (am)
< 00.
Obviously, if f € L ), then M,.(f) is bounded.

From the interpolation theorem, it is known that M, is a bounded linear operator on
Ly (M). O

w1,2

o2 (M

In the following sections, we use C to denote positive constants whose value may change

from line to line, but do not depend on functions being considered.
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3 Some 9-estimates

Given any 7 € (0, §]. Let {a;}32; be an r-lattice of My, {}°}22, be an r-lattice of M. Suppose
{¥i}2; and {p;}32, respectively are some unity partitions of {A(a;,7)}72; and {A(2, )},
with the following properties: ¢; € C (M), suppt; = {£ | £ € A(ai,r)}, ¥ >0, Y o b =1
and @; € C™(Mz), suppp; = {€ | ¢ € A7)}, i 20, 372, 9 = L.

Define the function G1(z,£) on M x M as

R N L I
Gl(zvf)_ (g_z)(1_|£‘); B;’;z(f) ’ h ( 7§)€M1XM17

Gi(2,§) =0, where (z,£) ¢ My x My;
define the function Ga(z,£) on M x M as

1 = By (2)¢i(€)
SR ORI RO
G2(z,€) =0, where (2,&) ¢ My x Ms.

Ga(z,8) = where (2,£) € My x My,

The integral operators T7 and T» are given by

HNE) = [ GO/ md TNE) = [ G 05(dA©).

Lemma 3.1 Letl <p < o0, w2 € R. Then T\ and Ty are bounded linear operators on
Lr (M).

w12

Proof For feL?
When z € My,

Ty(f)(2) = /M G (2, €) F(€)dA(E)

_ 1 0 "-’1 2( )1!17,(5)
R /Ml (€= =) - e ; B2 () FE)AA(E).-

Because B: " (w) is analytic with respect to w on M; and conjugate analytic with respect

M), we next prove that T is bounded on LP (M).

le( w1,2

to z on Mj, by Lemma 2.2 and the properties of {d)i}fil, we know

B (z m
Z' Z\Bm eba(€):

Since ;21 XA(as,r)(§) < C, combining with the properties of the unity partition, we get

B 1 1 I
; BO S B D M) gy B A

ie{kl¢eN(ak,r)}

1 1 w1
=B 1€ Jaean 7 1A
Write
Gi(2,6) = Lo / B2 (2)|dA(C), (2€) € My x Mi;
1€ —2[(1 = [€1)3B: 2 (§) Jage2r

GT(Z,E) = 0, (Z,f) ¢ Ml X Ml.
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Obviously, |G1(z,&)| < CGi(z,§).

For measureable function f and z € M7, write
e = [ cieoneie

and

= [ GO,
M\A(z,r)
Thus we have only to check that T{ and T#! are bounded on LP, Lo (M).

For T}, observe that SUD (2, ¢) e A (£,r) x A(€,2r) |szl'2 (2)| < C’Bg}l’2 (€). And 1— |z| < 1—[¢],
[Az,m)] = (1= |2]%)2 =< (1= [€])? < |A(E,7)], when § € A(z, 7).

For f € L®(M), by the definition of G{(z,€), we have |[T{(/)lloe = IITF(F)llz~) <
11l () - SUBscn, fos oy G (22 E)AA(E). Sinee

/ G, €)dA(E)
N(z,r)

1 .
fry w1 o B 1,2 dA dA
/AW) € — 2|(1— [¢])3 - BE2(€) /A(w)| ¢ (2)[dA(Q)dA(E)

1
> dA(¢)dA
- /Aw) € — 2|(1— |¢])3 /A(MT) (C)dA(E)

dA(£)

~
-~

/ 1
Az 16— 21 =€)
1 1

= dA
(1-J2) /AW) 6 — 24O
<C,

we get [T (f)lle < Cllfllz(ar) S 1flloo-
For f € L., (M), by the definition of G3(z,&), we have

I () = / T ()] (2)wra(2)dA(2)
M

= [ [T{(NI(z)wri(2)dA(2)
My

< /Ml / (G OISO (1A

i 1)
~f @0 [ e S O [, BN
L[ Ok B

= Jo e B ™0 [ O [T A

RO © -
= /Ml (- ey 4A© /A@,T) 6 — 224

< /Ml F(©)lwr (€)dA(E)

= Ifllzy, ar)

S -
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The interpolation theorem shows that T} is bounded on L? _(M).

wi,2
For T{!, observe that

17 Py |f( )l w12
OO [ e e e L, B
_ |f( )| Bwl,z 2 9 dA dA
/MI\AW) 6 B L O OAAQI A
- w12 2 |f( )|XA(§ 27")(5)
= o, 15 “'d"‘(o/Ml\A(z,r) € — 2|1 — g)? - B 6) M)

g 1B (2))] | £(E)]
/M1 (1—1¢h®-B*(¢) 44(0) /{Ml\A(z,r)}ﬁA((,Qr) € — Z|dA(€)

_ B ) FEla— )
/Ml (-l ““2<c>dA(O/{lemmm - A

And for ¢ € {M;\A(z,7)}, we have }~1¥l <1 and '17*8 < C. Lemma 2.5 shows that

\1 z¢| 1€ —2]
" B (@l (Q) FOI—leh - 28], ,
|T1 (f)(Z)‘ ~ \/Ml (1 - ‘CDQ I C {M\A(z,7)INA(E,2r) |£ - ZH1 - Zf‘ d (6)
w 1
C B2 dA dA
<o B E©aQ ) o [ iseiae
w1,2 1

S [ 1B @A) e [ xecan@15©1A)
= /., Mo (| FD(QIBE (2)]wi (O dA(Q)
:/NXM1(C)M2r(|f|)(C)\BZ“’2(Z)\wl,z(C)dA(C)
= PJ, ,lxan (2)Mar (1)) (2)
< 00.

Thus we know that T} is bounded on L%, ,(M). Therefore Ty is bounded on L, ,(M).

For Ty, there is a similar way to T;. Note that G5(z,&) should be written as

1 w
G B (z)|dA h My x Ma;
2(2 g) |r0 ) ‘(1 ‘TEO‘)?,BMI 2(5) /A(T50 2r) | ¢ (Z)‘ (C)7 where (275) € 2 X 2

z

G3(2,6) =0, where (2,&) ¢ My x M.

Observe that, when (z,£) € My x Mo,
1

GED = o g /Acg,m 1B @A
1 To w
- " B2 (2)|dA(C). 0
|rg_7;|(1 ‘?‘)3Bu112(§) ~/]\42XA(§12T)(<) ¢ (Z)| (g)

Lemma 3.2 Letl < p < oo and w12 € R. Suppose f satisfies f|y, = f1 € LP(Mq,(1 —
[[Pws(-)AA(-)) and flag, = f2 € LP(Ma, [(1 = T9) [ Pawn(7)dA(-)). Let u(z) = w1 (2)xan, (2)
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+ ua(2)x s, (2), where ui(2z) and ua(z) satisfy

wlg 1/)1(6)

() = u(a)lar, = ZB ) [ (e D MO (3.1)
w12 vi(§)

us(z) = u(2) s, = ZB 2l B ACT (32)

then u is weakly solution of the equation Ou = f on M, and there are some constants Cy,Cy
independent of f such that

lullp < Crll fill e (an. =1 pran(yaac ) + Coll fall Loa (1= 70) 70, 1Pwa(70)aa( )

I-12
Proof Since |lull, < |Ju1llp + |luz|lp, by Lemma 3.1, there exist constants Cy,C independent
of f such that

luilly < Cill(X = |- D)z, (any = CillfillLeas, (- rws (- )dA(-))s

(=7 e

thus [[ull, < Crllfilloan, - aac ) + Collfell oo (ana 1= 19) 7 170a(70)da(-))-
It is a directed consequence of [3, Theorem 2.1.2] that, for f € C*(M),

0 [ O e — e
o | I aae = ro. (33)

Then for any ¢ € C3°(M), Ba.* € H(M,), By"* € H(M,), (3.3) shows that
O bl

[[uzll, < C2

= Coll foll o ass (1= 79) 70 1Pwa(70)aa( )
L%, (M) '

w12, 1/’1(5) 6¢ )
(e [ AOUE. 50) =t dson

— B
(B0 [ ¢ S PO 50 ) =g iz
Since ¢ € C2° (M), SuDge s »esupps | Be * (2)| < 00, then
[ o) gf<z>\dA<z> < [ @y (z)‘dA(z) v [ a3 efaace
-/ i B [ DL o B o)

Soee [ 28 @) @)l

L.

= s (€~ 2)B5(9)
< [ e[ kg o)y e
o[ meeerf PO o e
</, i [ %0 @t
o[ B [ %0 e
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o 9
Let e1 = supssro gy [BE 2GS e2 = 5w sy o oy B (I ()], Lemma 25
shows that

[ e

)
<o [ 1REI - (6D ()dAE) / !
My

M, |€ — 2|

O MG R (Y EOY RS

—a [ In@la-lePa@aae [ 1 aae
My

M, 1§ — 2|

ro M2|f2(£)|< s|) (' >dA(g)/M2?Z_3?|dA(z>

= [ @i -lera@de [ L

" f2(§)|<1— |T§O|>2|2(|)2 ( )dA(f) /M2 e i rzo|dA(Z)

To To
< [, noln -t @aae + [ f2(§)|<1— ) ( )dA(ﬁ)

dA(z)

dA(z)

dA(z)

el ) 1e2?
< 0.
Hence,
ou (ol
‘<6z’¢>p -\ az>
¥i(§) o
=Y (B [ £ (€A
;< My (5 Z)Bliilvz(g) 0z L2(My)
= w1 9074(5) a(b
£y (B [ Dy FOHA).
; bi My (§—2)B,*(E) 0z [ 12(ny)
== (ivi, )20,y — Z<f2§0i,¢>L2(M2)
i=1 j=1
= —(fi+ f2,0) 12
Therefore, gg:f1+f2:f‘M1 +f‘Mz:f O
4 H wl 2(M) = Lg)l 2(M)
Let 1 be a finite positive Borel measure on M, p is called a g-Carleson measure of AP . , (M)
if and only if the identity operator I : AL, (M) — L9(M,dp) is bounded, and u is called a
vanishing g-Carleson measure of A%, (M) if and only if the identity operator Iy : A% (M) —

L(M,dp) is compact.

Lemma 4.1 Let w1y € R, 1 < p. Suppose f € L}UIQ(M) satisfies Of |ar, € LP(My, (1 —

| Pwr(VAA()) and Bflar, € LP(My, [(1— 19) T Peoa(")dA(-)). For g € H, let {a;}2,
be an r-lattice of My, {}°}721 be an r-lattice of Ma, and u(z) = u1(2)xa (2) + u2(2)xnm, (2),
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where uq(z), uz(2) respectively are

u1() = o, = ZB“” V[ e i w00, (a.1)
us(z) = u(2)lar, = ZB“” D[ D PIEA) (4.2
2 b;

then Hy(g) = u — P, ,(u).
Proof Forge H® = L>*®(M)NH(M), then fg € Lw1 ,(M). By Lemma 3.2, we get du = g0 f
< 0.

and
T T -
(=), ocarc
L1/ 11 L, (Ms)
Therefore, fg —u € Lijl 2(M) and O(fg —u) = g0f —Ou = 0. Hence fg —u € H(M), then we
obtain fg—u € Ail ,(M).
And for any f € AW1 (M), P, ,f = f, thus P, ,(fg —u) = fg — u. Furthermore, we get
Hf(g)_(u_Pw12( )) (fg_u)_ wl,z(fg_ )_07 thean(g):u_Pwl,z(u)' 0
Let 1 <gandr > 0. For f € L] , define G, ,(f) as

lull, < CLlI(X = Dg()Af()llzz, () + Co

loc?

Gq,r(f)(Z)Zinf{<|A(i’T)|/AZT)|f—h|qu>; ;heH(A(m))}, z € My;

Gq,r(f)(Z)Zinf{<|A o 1) / o If — hqu>1 heH(A(?,r))}, 2 € M.

Given wy,wy € R, (2.1) and (2.2) imply:

Gor(f)(2) = inf { (wl(:(w)) /AW) f - h|qw1dA> e H(A(z,r))}, s My (4.3)

: 1 a
GQ,T(f)(Z)Xlnf{<w2(A(7;’T)) /A(Tzo7r)|f_h|qw2dA)

heH(A(r;,r>)}, 2 € Ms. (4.4)

Now we discuss the boundedness and compactness of Hy : AY, (M) — L%, (M) when

l<p<g<ooorl<qg<p<oo.
Theorem 4.2 Letwis € R andl <p<g<oo. Sets= é — and fe Lw1 ,(M). Then the
following statements are equivalent:

(1) Hy : AL (M) — L, (M) is bounded:;

(2) for a>r>0, 0iGy,(f) € L>®(My) and 05Gq(f) € L (Ms);

(3) f admits a decomposition f = fI + fI1, where f! satisfies f1|n, € CH(My), f¥|u, €
CY(Ms) and

(1= [-Da&i()Iof" ()l € L= (M), (4.5)

(1= ) s () or o € 1= (16)
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for some r > 0,

M (1| € L (M), (4.7)
S (1)) € L(My). (48)
Moreover, for 0 <r < «,
[Hyllaz, ,on-rg, o) < NG (Pl ) + 103G ()l Lo (ar)- (4.9)
Proof For 1 < p < oo, the projection P,, , is well defined on M. Therefore, f € L}, L (M),

Hy is well defined on A%, (M).

(1)=(2) First we prove that w{G, ,(f) € L>°(M1) on M.

Fixing r € (0, o], (2.5) implies that infeca () [bps” (€)] = Clbp* (2)] = le(zf; for z € My,
then wlw P, ,(fbps®) € H(A(z,7)). And (2.5), (4.3) tell us

1H 7 (0552 11§ Z/M £ ()05 (€) = P, (f0552) () |"wr (§)dA(E)

1

1 q
w1,2 _ s OJ1Z,2 A
Z/A(z,r)“) ©F|7©) b;’;"‘(g)P 2 (f0577)(&)] wi(§)dA(E)
1 q
wa1,2 q _ ‘PW1 ) b;’122 dA
2O [ O~ ok Paa (0| (9440

Wi

SRS

X

(2)wi(A(z,7))Gqr(f)(2)
D (2) G (£)1(2). (4.10)
On the other hand, |[Hy(by2*)[d < [ Hyl%»

fore, when z € My, we get

X

B = A1 < oo. There-

q q
»—)L 1 »—>Lu1,2

WG1Gyr(f) < CllHylaz

DLl o (4.11)
then WGy, (f) € L (My).

For z € My, we also obtain w3G . (f) € L™ (M>).

(2)=(3) Let {a;}{2; be an j-lattice of My, {¢;}72, be a partition of unity subordinate
{A(ai, 5)}52, with the property that [(1 — |a;|)dv;| < C; let {30121 be an j-lattice of Mo,
{pi}§2; be a partition of unity subordinate to {A(}°,)}52; with the property that |(1 —
b)) pufe il < €

If z € M, first we have to prove that there exists some h; € H(A(a;,r)) such that

! 4 = U,
w1(A(ag,r)) /A(a”) |f = hil"wrdA = Gy () (ai) (4.12)

for each i. To prove, we can choose a sequence {h;;}7°, € H(A(a;,r1)) with the following
property:

1 1
— h; g |Tw1dA < Gy ()4 a;) + for k=1,2,... 4.13
Wl(A(ai,T‘)) /A(ai,r) |f J€| 1 q, (f) ( ) k ( )

We know {h;}7°, is a normal family by

1
hi k|lwidA
w1 (Das, ) /A(ai,r)' len
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1
r(lan ) g Bt £+ Thnda
1

| A

|h1‘7k — f|w1dA+ \f|w1dA

wr ),
wl(A(aiv T)) A(a;,r)

1
|hi,k — f|qW1dA} +

A(azﬂ")) / Aaq,r)

IN

w1 A Qo T / T
( ( iy )) A(ai, ) ‘ |

|flwidA < co.

{ A a”bv A(ai,r)

1
S Gor(DM) + 14 A anr) /ma,-,,r)

Without loss of generality, suppose there exists a subsequence of {h;;}72; that uniformly
converges to h; € H(A(a;,r)) as k — oo on any compact subset of A(a;, ). Hence, the control
convergence theorem and (4.3), (4.13) imply (4.12). Set f1(2)|ar, = D oo, hi(2)0i(2) € CH(My).
For z € My, set I, = {i:z € AN(aj, 5)}. Ifi € I, then 1 —|z| < 1 —|a;/, and

LI = Xa,p(2) <C.

Now we are going to show

10 (2 > Gorl(f)(ai), =€ M. (4.14)
| il
Reference [10, pp.254-255], set f/(z) = Y02 hi(2)vi(z) = Y;e; hi(2)wi(2) for z € M.
Without loss of generality, set 1 € I,, then

FH(2) = ((2) + hilz) — ha(2))i(2)

i€l
= hl (Z) Z 1/)1 Z )¢1( )
i€l icl,
)+ (s () (2)-

i€l
Therefore, [0f1(2)| = | > ier. (hi(2) — h1(2))0vi(2)|. We only have to check that |h; — hy| is
sup-bounded on A(a;, 7)NA(ag, ), where i,k € I, h; € H(A(a;, 7)), hi, € H(A(ag,r)). Using
the subharmonic of |h; — h|, Holder inequality, (2.1) and (4.12), we get

|hi — hil(2)

< { 1 |h; — h |qu}(12
= r i — Nk
|A(z, 2)| A(z,5)

1 2 1 a
= . hi_fqu} +{ . |h —fqu}
{m(ai, I a1 ! NS
1 / a 1 o
< hi — fliw dA} { / hi — fliw dA}
{m(A(ai,r)) st TN L G Aair) Sagay T
= Gyr(f)(ai) + Gy r(f)(ar).
Since |(1 — [a;i)0¢s| < C and 1 — |a;| < 1 — |z| for i € L, then [0f"(2)| = [ Y ;c; (hi(2) —

hi(2))0i(2)| < 13Z| Yier, [hi(2) = ha(2)] < 1_CIZ| > ier, Gar(f)(a;) for z € M. Thus (4.14)
holds.
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Therefore, (4.14) shows that

(1= [z))@f (2)[0f " (2)] < Cl@F Gy ()l zoe (a1 (4.15)
for z € M;.

Similarly, we get

(1-13) s (2 Joren <

for z € M. Note that when z € My, f1(2) = > 72, hi(2)pi(2) € CH(Ma), I, = {i : ' €

(4.16)

35(")Gur e

z

L= (M2)
i=1
A(3,5)} (4.15) and (4.16) imply (4.5) and (4.6).
Note that (4.7) does not depend on the value of r, so we only need to prove (4.7) holds for
some r > 0. For fI = f — fI, when z € My,

1 1 ;
Mr(|fII|q)q(z)={A(z . XA(z,r)|fH|qu}
1 0 q (11
- { Az 7)| S ;(f = hi)ts dA}

> (f = hi)tsi

i€l

¢ Ya
4]

|u—mmﬂW@q

1
B { ‘A(Z,?"” A(z,r)

1
|A(Z, T)| A(z,r)

1

] q
§ f—h qu}
el { A(er)| A(zr)NA(as,y) | |

Lo }
< f— hifdA
2\ 8] Jan

EIZ
If - hi|qw1dA}q. (4.17)

-

1

7 /
w (A(ai5 )) A(ai,r)
V\/hen S M]’ (412) implies

&3 ()M (| 7717 0 (2) < O3 G (Nl o (ay)- (4.18)

Similarly, when z € M, we also have

M) = g oo (€) |2

< q
—E:{A’br./rOQAor'f h‘“}

-

iel, b ' 9
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Notice that I, = {i: "7 € A(}?, })} for 2 € Ms. Therefore,

@3 <7;0>Mr(f”|")3 (2) < Cl|03Car(F) Lo (ata)- (4.19)

Therefore, (4.7) and (4.8) holds.
(3)=(1) Set duy = |f!!|9%w dA, (2.1) and the definition of f/ (or suppy;) imply

i(B(r)  agon P74 W (A fo . 1F7]7dA
WAz wi(Azr)r | Az, 7))
@B g, X704
Az, 7))
= " () M,(|f17]9)(2) < oo. (4.20)

Next we prove ju; is the g-Carleson measure on AP (M;). We only need to prove that for

), there exists a constant C, such that [, |g(2)[%dui(2) < C’||g||%51(Ml).

Let {a;}$2, be an r-lattice of My, then for any z € My, we have > . XA(a;r)(2) = N < 0.

every g € AP

£, (M

Hence,
/\ )odpn (2 <Z/ () S S (D) suwp g,
a.“r i=1 zEA(ai,r)
For g € AP, 2( ), there exists a constant C for all i = 1,2,3,..., such that
< o [ )
z€N(a;,r) |A alu ‘ (as, 2r)
= 91 (2)dA(2).
o Bl ) /AW,M' B4
Then
- Ml(A(%T))/
g(2)%du(2) < g(2)|Tw1(2)dA(2). 4.21
[, @) < S2IE [ el A (121)

Hoélder inequality implies

1 —
(800 ) gy I A

= {/A(ai,m«) (Wl(A(lai,T))> pqu(Z)dA(Z)}pp {/A(ai,%") ()l ez )dA(Z)}p

s+ [ - g<z>|pw1<z>dA<z>}g.

Hence, with (4.21) we get

/o Io(e) Zw” J} ))){ /. ol <z>|%1<:<:>01A<z>}Z
S s ‘“@‘Z’”l{ /. W)|g<z>|pw1<z>dA<z>}”

5 ze(ai2r) wi(A(z,7)) P
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) 3 Py z Z

SCszEuJ\I/;l wl(A( ; |:/A(a“27") )l 1( )dA( )

. m<<,>> SEVITAL
<oy MO ))z{/&am' ()P (2)dA( )}

u p(A(z 7)) 2)|Pwq (2 z '
<oN mp MO {/ l9(2) P (2)dA( )}
oy (BT
= s e 19l o

m(AE)

S,fe]&wl( Aoyt 1915 (4.22)

(4.20) and (4.22) imply
A(z,r o5
Malls, gy S S0Pz 0 = 1T M (1) ) < o
Similarly, set dug = |f1f|9wadA, (2.2) and the definition of fZI (or supp ;) imply

a-3) (o
pa(D(2 1)) Jaco [ %2dAwyn TAC ) a0y £ 17A

(AP )P WA A7)
_ AT g Xagw i (I 1AL)
|A<’“;nr>|
= o (T ) )
< 0.

We also obtain ps is a g-Carleson measure on AP (Ms), and

[[2all’

1oy 155 M (D) ety < 0.

For any ¢ € A%, ,(M),

VH 16l = (L = Pon ) F 76l < ClLF 6, = O{ / |f“|q|¢|qw1,2dA}q

< { /Ml |f”'J|¢qwldA}q ; { /M2 IfII|q|¢qw2dA}q

S Mallaz, — ragaun 19l Lz, () + [1allaz, o o) 191 2, (012)
vs 1 vs 1
S (@f M (1 £719) o (| o ary) + 105 M (1F19) 0| oo (a12) ) |11 - (4.23)
Hence,

s X !
1 porllag, s,y S UG 0 ooy + 165M (L7190 oot (4.24)

We know s < 0 and d)l(z)iv wi(A(z,7)) Swi (M), 02(") X wa(A(?,7)) < wa(My). (4.5)
zind (4.6) show that (1—|z|)|0f1(2)| € L‘”({Wl) and (1— ro )‘ B |0f1(2)| € L>°(M3). Therefore,
off € LP(My, (1 -] )Pwi(-)dA(+)) and Of" € LP(M2, [( ) e lPw2(")dA(-)). By (4.7)

w1,2
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and (4.20), we know fI € Li)m(M)- For g € H*, define u; and wugy respectively as (4.1)
and (4.2):

(@) =3B [ L e ©iA). e

(@) =) [ ‘”)](3’? ICIUGIV G A

Theorem 3.2 and Theorem 4.1 show that, for M,
Hyr(g) = w1 = Po, ,(w1) and  luallpg, (ary) < Clg()Of ()l naar (1—p-own (- yaa(-);
for Mo,
Hyi(g) = ug — P, ,(u2) and us|lLs_(ar,) < Cllg(-)f! (- )HL‘I(MQ,[(l—lTFi)‘TQ]qwg(T_O)dA(-))'
By the boundedness of P, , on LZ, (M), if z € M, then
IHpr(9)Lg, (ar) < (U4 [Pollza,as Mwllze, an) < CIA = 1209(2)0F" (2) g, (arr)3

if 2 € Ms, then

To To a
I @l < 04 Pyl ose gy < € (12 1) o205 )

L$2(M2)'
Meanwhile, set dvy(-) = (1 — |- )9|0f(-)|9w1(-)dA(-) and dvy(-) = [(1 — m)ﬂ’z]q@fl('”q
wa(™)dA(-). By (2.1) and (2.2), we obtain

n(A) _ Jaen L= D0 @) wi(w)dA(w) (1 - [2)90f! (2)[1(wi Az, 7))

~
-~ q

wi(A(z7))? w1 (B m)? w1 (A1)
— (1= )95 (2)|Bf (2)]7 < oc.

As the proof of y11, we know vy is a g-Carleson measure on A (M), and
Hall az, 2z, < CINA =1 D&i()AF ()llz=(an)-
We can also obtain v is g-Carleson measure on A? (Ms), and

T To osf T _
Mallag, s, < CH(l B |'o> | 7w< .0>8f1(.)

Then, for any ¢ € AP (M),

w1,2

Lo (Mz)

[Hyr(0)llq < Cllallaz, i raaw |9l Lz, (ary) + CllLall a2, La(avs) |91l Lz, (ar)
< (||<1 &I (e

(=) () o

Thus |[Hyl|az Ly, < | Hyillaz

w1’2»—>

) 161l (4.25)
Lo (M3)

LS, T HHf”HAﬁl,zHLgl,z' Hence, (1) holds.
(4.9) follows from (4.11), (4.15), (4.16), (4.18), (4.19), (4.24) and (4.25). O
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Theorem 4.3 Letwis € R and1l <p<qg<oo. Sets= 2 —
following statements are equivalent:
(1) Hy : AY, (M) — L2, (M) is compact,

wi,2

()fora2r>0,

lim &7 (2)Gy,r(f)(2) =0,

|z|—1—

lim &5 (TO)GW( fz)=0;

2| —rg z

LmdfeL

w1,2

Yang L. H. et al.

(M).

Then the

(3) f admits a decomposition f = fL + fII, where f! satisfies fl|y, € CH(My), f¥um, €

CY(My), and
lim (1 — |2 (2)|0f1(2)] =

z[—1~

() (2=

Jim_ S (M1 () =0,

and for some r > 0,

Proof (1)=(2) By [21, Lemma 2.12], we have by%*> = 0 as |z| — 1~

direct consequence of (4.10) that

lim+u“)§ (T)Mr(vqu)};(z) =0.

Wi (2)Gar(f)(2) < [Hp (0552 = 0, 2] =175

and

vsf To ()1 o
55 ("0 )Gur 1)) < 030y =0, 2] =

(2)=(3) (4.15) and (4.16) imply

(1= D@t (2)10f (2)] < C@(2)Gr (f)(2);

(1-19) B (7 )or @ < cas (7 ) Gurtr)o

and

By (4.18) and (4.19), we get

DI ()M (| f1]7) 2 (2) < C53 ()G (£)(2),

35 ("0 i) < (77 )G

(3)=>(1) The proof is similar to that in Theorem 4.2. Firstly, we set du; = |f!|9%w dA,
TBFT ()

pz = | [ wad A, din ()= (1=[- )20 f" (- )|9wi (- )dA(-) and dus(-) = [(1-T§

wa(™)dA(-). We next prove u; is a vanishing ¢-Carleson measure on AP

L, (M

)(

or |z| = r

+

(4.26)

(4.27)

(4.28)

(4.29)

. Itis a

1), then for any

z € My, we have > 7° | XA(a;r)(2) = N < oo. Moreover, |a;] — 17 when i — co. Suppose
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{gn}nZ1 is a bounded sequence in AP (M) with the property that g, — 0 uniformly on any
compact subset of M. (4.20) and (4.28) show that

NI(A(aivT))q = lim wgsq (a i)M,«(\fH‘q)(ai) = 0. (4.30)

i—00 w1(A(ai,7‘))p 1—00

Hence, for any € > 0, there exists Iy, if ¢ > Iy, then “l((AA((ai,’)“;)q < e. By (4.21), (4.22) and
w1 a;,r))P

gn € Aw1 , (M), for any n,

/’LIAGHT
qd
z/A 19 (2)|dps (= zwl

i=1Ig (ai,r)

/ 19 (2) % (2)dA(2)
A(ai,2r)

)
)

le
q

. ; { /A . |gn<z>Pw1<z>dA<z>}p

<en{ / gncz)|%1<z>dA<z>}'(i

< €N||gn|‘%£1(Ml)

< eN|ignll3- (4.31)

Since {gn }52 1 uniformly converges to 0 on any compact subset of M, we have
Io—1

lim Z/( lgn (2)|9dp1 (2) — 0. (4.32)

n—oo

(4.31) and (4.32) show that

Ip—1
tim [ 1gn(2) dua(z) < lim (Z [ b + > / 902011 (2))
n—oo Jor, n— A(ai,r) (ai,r)

<eN|gnll3-

Since € is arbitrary, we obtain

Jim [ Za(gn)ll%p, g = lim y |9n(2)|?dpa (2) = 0.

n—00

Then I; : Agl(Ml) — L1 (My) is compact, i.e., p1 is a vanishing ¢-Carleson measure on
AL, (My).

Similarly, po, v1 and v respectively are vanishing g-Carleson measures on AP, (My), AP, (M)
and AP (M).

For any bounded sequence {¢m, }77_; in AL, (M), which uniformly converges to 0 on any

compact subset of M, using (4.23), when m — oo,

VH ()l < { /M f”|q|¢mqw1dA}“ +{ /M |f”|q|¢m|qw2dA}°’

= Ma(@m)llaz, o rg, + 1La(ém)llaz, Ly, — 0

5% w2
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Hence, lim, oo [|[H 11 (¢m)||q — 0. Using (4.25), when m — oo,

1 H st (dm) g < {/M1 ¢m|qcly1(z)}é + { /M2 ¢quy2(z)}é

 La (Gl ers, + Malbm) Lz, z, — 0.
Hence lim,;, o0 [|[Hf1(¢m)|lg — 0. Then limy, oo [|Hf(dm)llq — 0. O

Theorem 4.4 Letwi2 € R and1 <qg<p<oo. Sets= é - Land f € Lwlz( ). Then the

followz'ng statements are equivalent:

(1) Hf : A (M) — L% (M) is bounded,

w12 w1,2
(2) H Af)w( )’_’Lw12(M) is compact,

( ) fOT’ 2 >r> 0; Gq,r(f) € Lus)l (Ml) and Gq,r(f) € Lus)Q(M2);
(4) f admits a decomposition f = fI + fI where f1 satisfies f1|a, € CH(My), flu, €
CY(My) and

(1= |- DIOST ()] € L, (M), (4.33)
(1-77) "o e than (.30
for some r > 0,
M, (|f7|%)5 € L, (My) (4.35)
and
M, (|f1119) s € Lé, (M), (4.36)

Moreover, for 0 <r <
gt et = WGar (3 IGr()

Proof Tt is clear that (2)=-(1) holds, we only have to prove (1)=-(3), (3)=-(4) and (4)=(2).

(1)=(3) Forr € (0,al, let {a;}32, be an j-lattice of My, {}° }72; be an }-lattice of M.
By Lemma 2.6, there exists {;}52,, {8;}52, € I7, such that Fy(z) = > .2, azb;’faf( ), Fo(z) =
Yoy Bibypi(2) € AL, (M), and

w1 2 wl 2
Zasz i Z@

As in [11], let the sequence {¢;}2; be the Rademacher functions on [0,1]. By Khintchine’s

inequality, we have

. 4.37
L&, (M2) ( )

1Ellp =

< Cl{aiyZillws  [[E2llp, =

< OB Ea -
P

3
(Zlcm b2 (2) > ,

(%)
§ Qg (bz bp laf

and
HI—If(ZO%gbZ b‘;laf Z)> = ”HfHAf’l 2Ll o Zaz¢l bwl 2 )
q P
< CllHqllag, 1, , o} 21l
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= C|[Hyllaz

“’12 “’12

[{]exi 172 1H“ -

Moreover, we have

q
0 (Zazqsz bwl 2 ) dt = / /];/[ Hf(;az¢z b;}af) ) w1,2(z)dA(Z)dt
q
:/Mm,z( z)dA(z /0 <ZO‘1¢1 bpm) 2)| dt
q
= H bw1z dt
| wraz)as / H(b22)(2)
= /M (Z |az'|2|Hf(b;‘:£ﬁ)(z)l2) Cw1 (2)dA(2).
i1
Then
q
”Hf”if;l2._>L312||{|ai|q}fi1||l§ > ; <ZO‘1¢1 bW12 > dt
| 7 q
> [ (S er) e

o0

(Z |ai|2|Hf<b;;f><z>2) w1 (2)dA(2)

j:1 Alazr) \j=1

> cZ / (o 1 Hy (512 (2)]) 01 (2)dA(2)

A(aj,r)

aj,r

>0 oyl / (52 (2) [%n (2)dA(2).
j=1 A
For z € My, (2.1), (2.5) and (4.3) imply that

/ [ (52)(2) T (2)dA(2) = / 32 (2) — P(FH2) () e (2)dA(2)
A(aj,r) A(ag,r)

> oyt [ Jrta =" b( ) cpaace)
> Oby i (a;) w1 (Aay, 1)) Gar(f) ()
> Cun(B(az,1)' 77 Gor(£)(a).
To sum up, we have
S lalen (D@, ) Gan1)(as) < CIH N, o Mol 2l -
j=1

From the duality theory, we get

prq
Zwl (a,7))Gqr(f)r=a(a;) < CllHllaz, —L8, -
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Then

WK

/qu(f)f—%(w)wl(w)dA(w)g / Gy (F) 7' (w)eon (w)dA(w)
My A(aj,r)

1

<.
Il

wi(D(aj,r))Gar(f) 7~ (a)

ST

<.
Il
—

CllHyllaz

LY .
“’12 “’12

(4.38)

Hence, G4 (f) € LE}1 (My).

Similarly, when z € Ms, we have G, ,.(f) € Lfl,2(M2).

(3)=(4) Similar to the proof of (2)=>(3) in Theorem 4.2. Let {}° }32; be an j-lattice of Mo,
{@i}{2; to be the unity partitions of {A(}°,5)}22, with the propety [(1 — |7l;(;\)\b |28gpz\ <C.
Set fl(z) = Z;’il hi(2)pi(z) € C®°(Ms),z € M,. Since ,0(’”O ") < 7, then G, 2(f)( i) <
CGyr(f)(w). Furthermore,

Gos (DB = |

G D ace.s)
1
SCla(p )l S 5y Cor DA
. 0,1
By (4.14), when z € My, we know |0f1(2)| < 1—6};0‘ ‘ ‘i(‘f’ Yier. Ga.p (f)(bi), where I, = {i :
TO S A(TO 'r)} Then

Gq,5 (f)(bi)dA(u)

b; 72
[(1—@)42'81” ] <02 Gas(f)= b)
iel,
<Y s |/ P (A ()
iel, b72

' o To
st(A(TZO’;)) /A(Z?,T)G%T(f)p (U)WQ(u)dA(u)

Integrate both sides on M5 against the measure wodA, and apply Fubini theorem to get

[0 ] e

s /M2 wz(A(lrfa 5)) /A(gg ) Gar(f) 70 () (Z(L))dA(u)wQ <r;)dA(Z)

S o wntoct 140 [, xocro (4 ) Gartn o twn () Yo
. Gq,r<f>é"—‘%<u>w2(r°)dA<u> / xacen(2eal) )

My u

&
)

< [ G0 a7 )

Mo

=[G (f )II .

2(M2)

< 0. (4.39)
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Thus (4.34) holds. We can also obtain (4.33) in the same way. For z € My, (4.17) and Hdlder
inequality show that

TAUZCHOED S (N - paa )’

INEROLVNCINS

iel.
1 " 1
. zezl { (Alai;r)) /A(amg) |f = hal 1dA}
< CGq,5(f)(2)
=CGq;5(f)(2)- (Al(z,r)) /A(“) w1 (€)dA(€)
1
= a6 /Aw Gar(F)(E)w1(§)dA(E)

<0{ it fo GorlD ©n(©140)}

Integrating both sides on M; against the measure widA, we have I, = {i: 7 € A(}?, 1)} and

/ M (| f11]9) s (2)] 2 w1 (2)dA(2)
My

1 1
<O [ oo o Gor(D (@A ()AC)
1 1
<L oy o XaEn OCu D Q@A (A
< ClGar (DI
< 0. (4.40)

Similarly, when z € M5, we have

ACLCHCED S ANESY

i€l )2

= C{wz(A(llfW)) /AU;J y Sorth) (f)a&( ;>dA(£)}S.

Integrating both sides on M, against the measure wodA, we have

/ M (177195 (2) o )dAG) < ClIG(DIF: < oo (4.41)
Mo z L

S (M2)

= fraa}”
)

(4.40) and (4.41) imply (4.35) and (4.36).
(4)=(2) First we prove H: is compact. For z € My, set dvo(z) =[(1— |TZ°‘ )(l ‘2)] |0fE(2)]a-
w2("")dA(z). Now we prove vy is a g-Carleson measure on AP (My). For vy, we have

1
q

va(A(77,7))

z
w2 (A7) nggq (My)

{J (A2, 7))

wa(A(77,7))

()]
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(=72 i&f( < }éc)jzm(f;,r)) o @)dA(z)}s
(1= 13) o] (2 )aacr}
0= i) ol (T )arn

0
(1= 15) flor'e 2 o

< 0.

Il
—— —— ——
:\:\:\

Ifge A ), when z € My, we get

w12(

1Ta(o)l%g, s, = /M lg(2)[%dva (=)
2

< [, 26 yn iy [ 000 (7 o) )atw)
<. 2 aone o

{ [ s (2 Joseo{ [, 20257

"o, o a ro P;q
wa ( w ) dA(w)}

WQ(A(:E’T))

ST et

L&, (M: T ’

2 2 (A(u‘;,’f)) sz_q(Mz)

Then I : AP, (My) — L%, (M,) is bounded and ||Ig4z,, s, < I\Z((ﬁ( T ’T)) II" < o0,

2 (MZ)

thus vy is a g-Carleson measure for A? (M>).
Next we are going to prove v; is a vanishing g-Carleson measure on A?, (M), we only need
to check that Iy : AL (My)+— L% (Mz) is compact. For any bounded sequence {g,};>; in

AP N , (M) with the property that uniformly converges to 0 on any compact subset of M, when

1
z € My, we know (1— /3 )\2|2 |0f1(2)| € Ls, (M), for any e > 0, there exists ro < rp < 170,
va(A(77,7))

such that
P
pP—aq 7'0
w dA(z)
/r'o<z|<r2 WQ(A(TZO’T)) 2( < >

:/ (1= 2 21910 F () wn(A (1))
ro<|z|<ra

wa (A0, 7))
B /r0<z<r2

Pq
When z € M,, we have

’I“O T‘O 501 r—q
1- of' (z
(1- 1) ppor'e
HId(gn)Hng (M>) :/ |gn(2)|qu2(z)
2 M,

< / g0 () 9dua(2) + /  gn(2) i)
ro<|z|<r2 T2§|Z\S1+{0

p

" (’";)dA(z)

wo (ZO)CZA(z) <e.
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q
< |gn|ng<M2>{ / o

va(A(77,7))
wa (A" ,7))

P

1 T a
. {/ gn<z>|wz( 0)dA<z>} .
L2, (My) \ o<z <0 z

+

Therefore,

nlirrgo IIId(gn)H%g2 (My)

q
< 5H9n||Lg2(M2)

va(A(77,7))
wa (A" ,7))

. lm {/ |gn(2)'l’w2<T0)dA(Z)}q ~0
L2y (My) T Uragz|< )0 <

It is clear that, Iy : AP (My)~— L% (M) is compact, when z € M. We also get Iy :
AP (My) — L3 (M) is compact, when z € My, diy(z) = (1 — |2])9|0f1(2)|%w1 (2)dA(z).

Finally, we are going to prove Hr is compact on My. For any bounded sequence {¢,, }5v_;
in Aﬁly ,(M) with the property that uniformly converges to 0 on any compact subset of M,
for each m take some t,, € (1,1+ '), such that ||¢,,(z) — Om(tm2)||e, () < L. Define
him(2) = ¢m(tmz) € H*®. Since wy € R, using variable replacement, we get

T T
Vol caryy = /M2 |hm(z)Pw2< ;)dA(z) - /Mz ¢m(tmz)|pw2< ;)dA(z) < Cllémly sy

Thus ||| e

w

L) < Cllomllz, (ary)- 1 2 € Mo, letting {7 }22, be the lattice of M, from (4.2),

we set

U (2) = 3 12 (4, #i(6) 1
nE =B [ D g @07 ()

Lemma 3.2 implies that Ou,, = h.,,0f' and

lumllzg, (as) < CllbmllLg, (aa)-
Since Ig : AP (My) — L% (M) is compact, then

li

Jim | g, ) < C W (bl g, ar) = 0.

On the other hand, by Mr(\f”|q)}1 € L52(M2), the proof of Lemma 2.7, Holder inequality, the

definition of f7 (or supp;), with dual number pf

/M2 () s (5 ) 2A(E)
ro 1

_ /M2 If”(f)l"wz< : >dA(€)| NG PR 7T)<7"20>d14(z>

- /M. |X(2T(0z7)~)| iy XA(":W)(?)If”(f)lqu(g)dA(z)

= [ s e (" )aace

Mo

and ?, for My, we have
q q

r—q aq

<{ / M e ("0 a7 /Mzwz(ﬁ)dw)}p
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<{ [ anrmi (" )aae )

1
= [IM(1 £ 1) o ]| s

LS, (Ms)

< 00.

If z € My, then f1(2) = f(2) — f1'(2) € LL,(Ms). Hence, hy,,(2)f1(2) € L}, (M>). It follows
from Lemma 4.1 that Hyr(hm) = Um — Po, ,(tm). For My, we have
n}iinoo HHfI(hm)”LgZ(MQ) <1+ ||Pw1,2||L£’,2»—>LZ,2)nPLnOO ||umHL3,2(M2) =0. (4.42)

Since

im ([ Hpr(Gm = h)lLg, (va) < 1Hprllaz,mrg, - Tm(lom = hmllLg, (a) = 0,

then

im ([H e (fm) g, vy < M [[Hpr(fm = )| Lg, vy + T ([H gz (hn) | 23, (4s2) = 0-

Therefore, Hy: is compact on M. Similarly, H: is compact on M;.

Now we are going to prove Hy:r is compact. For My, we set du; = | ]9wdA, similar to
the proof of vy, we also get y; is g-Carleson measure on A?, (M), Ig : AP, (M;) — L, (M) is
compact, and

[ H pr1(9)l s, a1y < CHngHLZl(Ml)
= ||Id(9)||Lgl(M1)

1
q

ity NP PP

WI(A(Z7T)) Ltglfq(Ml) wl( 1)

- IIg\:

=< IS0y sl on (4.43)

Then Hyir is compact on M. Similarly, we get Hyir is compact on My, where dus =
wodA. Hence, H;rr is compact.
TayydA. H Hyir i
To sum up, we know Hyr and Hjyir are compact. Since Hy = Hyr + Hyir, then Hy is
compact.
(4.39), (4.40), (4.41), (4.42) and (4.43) imply

1Hsllaz, i,y S 1G24 G D
Combining with (4.38), we get (4.37). O
The following theorems are applications of Theorems 4.2-4.4. First we introduce a new
natation.
For f € LY  and r > 0, set

1

MO, (f)(z) = {|A |f - Mr(f)(2)|pdA}p, where z € M,

(Z7T)| A(z,r)
1 >
MO (D = { gy o 1T~ MEOPAAL where = € My
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and
Osc,(f)(z) = sup [f(§) = f(2)], where z € M,
ISSANERY]
Osc (f)(z) = sup |f(§) — f(z)|, where z € Ms.
TO eEA(0,r)
Theorem 4.5 Let wip € R and 1 <p < q < co. Set f € L}, L(M). Then the following
statements are equivalent:
(1) Hy,Hp : AL, (M) — L, (M) are simultaneously bounded;
(2) for some r >0, MOy, (f) € L>®(M1) and O03MO, . (f) € L (Ms);
(3) f admits a decomposition f = f1 + fI1 where fI satisfies fI € C1(M), and for some
r >0,

G§0sc,(f1) € L™= (M), (4.44)
050sc,(f1) € L™= (M), (4.45)
GIM(|f1T|7) 0 € Lo(My), (4.46)
D3M,(|f17]7)0 € L= (My). (4.47)

Morover, for some r > 0,

[1H 5 az

w1,2

org,, TIHflaz, erg, , < NGTMOg . (F)l Lo an) + 193MOgr (f)llzoe(ar,  (448)

Proof (2)=(3) If z € My, set fI = M;(f) and f7 = f— fI. If p(z,§) < 7, then
A&, 5) C A(z,r). By Hélder inequality,

£z~ f f<§>|
<If'(z > DG+ M) - )]
1
< ’2 ' / MDA+ o [ 150 = M (AW
‘/ M (F)()]dA(w)
{lAN'/H) M, (£)(2)]dA(w >}
= MOy (F)(2)
< Q.
Therefore,

51(2)0se,(F1)(2) < C33(:)MO, 1 (f)(2) < ox. (4.49)
When 2z € M, observe that

M) - M ]

(2 3)l Iy
§C|A(2,7’)/A(Zm)'f_MT(f)(Z)ldA
=C- MO (f)(2),

X5 N = Mo (f)(2)|[dA
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then
ORIy BN IE U CIRO)
)9 2,5
1 . 2
o p Lo, OO - MR |
= MO, (/)(2).
If z € My,
My (111191 (2) = My (1f = 1197 (=)
~{ae ) [, xeen@l - rr@ade )
1 ot a
o o, FO @RI}
1 I 2) — I q Ll]
oo p L, 1o - rorao)
< MO, 5 (£)(2) + Oses (7))
<0 MO, (1))
< 0 MOL(1)(2)
Then

B ()M (711]9)1(2) < C& (5) MOy r(f)(2) < o0 (4.50)

When z € M; (it should be discussed at A("?,7)), we can also get
03(2)O0scr(f1)(2) < Ow3(2)MOqr(£)(2) < 00, (451)
B3(2)M; (1111]9)1(2) < C&3(2) MOy r(f)(2) < o0

(4.49), (4.50) and (4.51) show that (4.44)—(4.47) hold.
(3)=(2) For f,set f = fI + fI we have

VOO = { oy [ 10 = M PaA)
1 () Sy [FHEIAAE) |4 w a
aen sem | )| 400}
) faon P10 = P@laA@p
< i Lo A7) i)}
= ¢ Ose, (1)),
for z € My. Then w5 (2)MO,(f1)(2) < @{(2)Osc.(f1)(2). Since
MO = { ko =M A}
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1 . :
= {|A(Z,’I")| M, XA(Z,T)U'H| dA} +Mr(f11)(2)

M, (1170 (2),

then w$(2)MO,..(f11)(z) < C’J)f(z)Mr(|f”|q);(z). Therefore, for z € My, &;MO,.(f) €
L>(My). For z € Ms, we also get w3 MOq . (f) € L>(Ma).
(1)&(2) Let 0 <r < a, Hy and Hf are bounded. By (4.9), we have

‘Dquw(f) + ‘bquw(f) -~ HHfHA
‘:‘J)quw(.f) + ‘bquw(f) - HHfHA

Similar to [6, Proposition 2.4 and Proposition 2.5], we have

wy,2 w1,2’

wy,2 w1,2'

GSMOy () + WSMO,,(f) < O5Gyr(f) + @5 Gyr(f + 05G e+ (f)) + 035G (f)
= || Hypll az + ”HfHA : O

w1,2 =L “’12 “’12

w1,2
Theorem 4.6 Letwio € Randl <p < g <oo. Sets= q — , fe Lw12(M)- Then the
following statements are equivalent:

(1) Hy, Hy: AL, (M) — Li, (M) are simultaneously compact;

(2) for some r >0, lim|,|_,1- @M Oy (f) =0 and lim, | WSMOg.(f) =0;

(3) f admits a decomposition f = fI + fH where f! satisfies f1|a, € CH(My), flu, €
CY(Ms), and for some r > 0,

lim &;0sc, (f1) =0, lim @30sc,(f1) =0,

lz|—1~ |z]—=rg
o M (|| e =0, lim L O3M(If )a
z—>7‘0
Theorem 4.7 Letwj2 € Randl <qg<p<oo. Sets= (1] — -, then for f € Lw1 ,(M), the

following statements are equivalent:
(1) Hy, Hp : AL, (M) — L, (M) are bounded,
(2) Hy Hy: Agl 2(M) — Lgl 2(M) are compact;
1 1
(3) for somer >0, MOy, (f) € Ls, (M1) and MOy (f) € L, (Ma);
(4) f admits a decomposition f = fI 4+ fI1, where f! satisfies f1 € C1(M), and for some
r >0,

Osc,(f1) € La, (My),  Oscr(f') € Li, (M),
1 1
M (|f7|%) e € Ly (My),  M(|f17]9) € Lo, (Ma).
Moreover, for 0 <r < 3‘

1 Hpllaz

w1,2

« = |MO,, MO, ., L
maty, =IO (3 4 MO (D
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