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Abstract In this paper, we define the generalized diffusion operator L = d
dM

d
dS

for two suitable

measures on the line, which includes the generators of the birth-death processes, the one-dimensional

diffusion and the gap diffusion among others. Via the standard resolvent approach, the associated

generalized diffusion processes are constructed.
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1 Introduction

Diffusion processes and birth-death processes are two important stochastic processes. Interest-
ingly, these two processes share similar analytical and probability properties [3]. Let us start
with the infinitesimal generator.

For birth-death processes with birth rates (bi)i∈N and death rates (ai)i∈N, Feller [7] proves
that the birth-death Q-matrix has the representation of Dμf+ with μ0 = 1, μn = b0b1···bn−1

a1a2···an
(n ≥

1) and for xn =
∑n

k=1
1

μkak
+ 1

a0
I{a0 �=0},

f+(xn) =
f(xn+1) − f(xn)

xn+1 − xn
, Dμg(xn) =

g(xn) − g(xn−1)
μn

.

For one dimensional diffusion operator L = a(x) d2

dx2 + b(x) d
dx with derivative of a, b contin-

uous and a > 0, Feller [6] establishes that L = DmDs with

s(x) =
∫ x

c

exp
[

−
∫ y

c

b(z)
a(z)

dz

]

dy, Dsf(x) =
f ′(x)
s′(x)

,
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m(x) =
∫ x

c

exp
[ ∫ y

c

b(z)
a(z)

dz

]
dy

a(y)
, Dmf(x) =

f ′(x)
m′(x)

.

It is obvious that both m and s are strictly increasing and continuous with respect to x.
There are many works in generalizing the diffusion operator DmDs. Feller [6] extends it to

D+
mDs, with m strictly increasing and right-continuous and D+

m in the sense of Radon–Nikodym.
Itô and Mckean [9] consider m being strictly increasing, right-continuous or left-continuous.
Kotani and Watanabe [11] generalizes m to be increasing and right-continuous by means of
Krein’s correspondence.

In the present paper, we proceed to define an operator so that it is not limited to the above
cases (also include Brownian motion on fractals, see Example 5.4 in Section 5). Furthermore,
we give the construction of the associated processes with the resolvent approach dating from
[5, 7, 8].

Now, we define the generalized diffusion operators.
Let M and S be increasing functions from R to R. Assume M is left-continuous and S is

right-continuous. We shall identify the functions M and S with the Borel measures M and S

as M((−∞, x)) := M(x) and S((−∞, x]) := S(x) for any x ∈ R. The support of measure μ is
given by

Eμ = {x : ∀r > 0, 0 < μ((x − r, x + r)) < +∞}.
Throughout this paper, we use the following assumptions.

Assumption (1) M � S, so that EM ⊂ ES =: E.
(2) −∞ < inf E =: l1 ∈ E, +∞ ≥ sup E =: l2 /∈ E.

Remark 1.1 Assumption (2) is not determined by the definition of the generalized diffusion
operators. However, when establishing the construction of the generalized diffusion processes,
we only consider the case of l1 ∈ E and l2 /∈ E in this paper.

Suppose the Borel (signed) measure μ̂ satisfies μ̂ � M . Define

f̂(x) = μ̂([l1, x)), f(x) =
∫

(l1,x]

f̂(y)S(dy), x ∈ R.

Then f̂ is left-continuous and f is right-continuous, and both with bounded variation. For any
x, y ∈ R, let μf ((x, y]) := f(y) − f(x) be the Borel (signed) measure induced by f . It is clear
that μf is absolutely continuous with respect to S. Define

DSf(x) :=
dμf

dS
= f̂(x), S-a.e..

Since μ̂ � M , define

DMDSf := DM f̂ :=
dμ̂

dM
, M -a.e..

Some examples of the generalized diffusion operators are given. Please see Section 5 for details.
In this paper, we use the resolvent approach in [5, 7, 8] to construct the generalized diffusion

processes corresponding to L = DMDS , which guarantees the Markov transition semi-group by
Hille–Yosida theorem. That is, our task is to solve the inhomogeneous equation (α−DMDS)g =
f for any (or all) α > 0. For this, we do some preparations.
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To obtain the monotone solutions of the homogeneous equation, we need Feller’s boundary
classification. For any x ∈ R, define

Σ(x) =
∫

(0,x]

S(dy)
∫

[0,y)

M(dz),

N(x) =
∫

[0,x)

M(dy)
∫

(0,y]

S(dz).

Analogy to [4], we call the boundary li (i = 1, 2) to be

regular, if Σ(li) < ∞, N(li) < ∞;

exit, if Σ(li) < ∞, N(li) = ∞;

entrance, if Σ(li) = ∞, N(li) < ∞;

natural, if Σ(li) = ∞, N(li) = ∞,

where Σ(l2) and N(l2) are the left limits of Σ and N at the point of l2 respectively. Please refer
to Proposition 3.3 for the detail boundary behaviours of M and S determined by boundary
classification.

Let (v1, v2) solve the following equations:
⎧
⎨

⎩

DMDSv1 = αv1, v1(0) = 1, DSv1(0) = 0,

DMDSv2 = αv2, v2(0) = 0, DSv2(0) = 1.
(1.1)

Now, we state the main theorems concerning the construction of generalized diffusion pro-
cesses. First, we present the monotone and positive solutions of the homogeneous equation.

Theorem 1.2 For each α > 0, the homogeneous equation

(α − DMDS)u = 0 (1.2)

has monotone and positive solutions which have the form of

u(x) = v1(x) − γv2(x), x ∈ E

up to a multiplicative positive constant, where γ is a constant to be determined. Moreover, the
above monotone and positive solutions u are increasing when

v1

v2
(l1) ≤ γ ≤

α
∫
[l1,0)

v1(y)M(dy)

1 + α
∫
[l1,0)

v2(y)M(dy)
,

and are decreasing when

lim
x↑l2

α
∫
[0,x)

v1(y)M(dy)

1 + α
∫
[0,x)

v2(y)M(dy)
≤ γ ≤ lim

x↑l2

v1

v2
(x).

Denote by u1 and u2 the increasing and decreasing positive solutions respectively. If li (i = 1, 2)
is regular, then there are infinite many ui; Otherwise, ui is unique.

Now for the general measures M and S, proving Theorem 1.2 depends heavily on the
measure theory, see Section 2 for instance.

To obtain the solutions of the inhomogeneous equation, we introduce the Wronskian of two
functions:

W (u, v)(x) = v(x) ·
(

DSu(0) + α

∫

[0,x)

u(t)M(dt)
)
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− u(x) ·
(

DSv(0) + α

∫

[0,x)

v(t)M(dt)
)

, ∀x ∈ E. (1.3)

Lemma 3.1 indicates that the Wronskian of solutions of homogeneous equation (1.2) is identi-
cally equal to a constant.

The following theorem establishes the solutions of the inhomogeneous equation.

Theorem 1.3 Suppose that u1 and u2 are given in Theorem 1.2. If the Wronskian of u1 and
u2 satisfies W (u1, u2) ≡ 1, then the solutions of the inhomogeneous equation

(α − DMDS)g = f (α > 0) (1.4)

are given by

g(x) = c1u1(x) + c2u2(x) + u1(x)
∫

[x,l2)

u2(y)f(y)M(dy)

+ u2(x)
∫

[l1,x)

u1(y)f(y)M(dy), x ∈ E, (1.5)

where c1 and c2 are arbitrary constants.

Denote by A the space of bounded right-continuous functions on E with the maximal
module ‖f‖ := supx∈E |f(x)|, and A + the non-negative functions in A .

The resolvent operators, which are determined by the minimal non-negative solution of
the inhomogeneous equation (α − DMDS)g = f (α > 0), give the construction of generalized
diffusion processes by Hille–Yosida theorem.

Theorem 1.4 Suppose that u1 and u2 are given in Theorem 1.2. Define

K(x, y) =

⎧
⎨

⎩

u1(x)u2(y), x ≤ y and x, y ∈ E,

u2(x)u1(y), y ≤ x and x, y ∈ E.

If f ∈ A +, then the minimal non-negative solution of the inhomogeneous equation (α −
DMDS)g = f (α > 0) is given by

Rαf(x) =
∫

[l1,l2)

K(x, y)f(y)M(dy), x ∈ E. (1.6)

Furthermore, Rα is a bounded linear operator on A which has the following properties:
(1) Norm condition. ‖αRα‖ ≤ 1.
(2) Resolvent equation. Rα − Rβ + (α − β)RαRβ = 0, α, β > 0.
(3) D = RαA (⊂ A ) is independent of α. Moreover, RαD is dense in D .

The rest of the paper is organized as follows. In Section 2, we present some formulas for
DM and DS , and in Sections 3–4, we prove the main results, Theorems 1.2–1.4. In Section 5,
some examples are considered, including the Brownian motion on Cantor set.

To conclude this section, we make the following conventions.
(1) If f is right-continuous (or left-continuous) with bounded variation, we regard the Borel

(signed) measure induced by f as μf ((a, b]) := f(b)− f(a) (or μf ([a, b)) := f(b)− f(a)) for any
a, b ∈ R.

(2) When taking (x, y] and [x, y) as the integration interval, we read them as (x, y]∩E and
[x, y) ∩ E respectively.



Construction of Generalized Diffusion Processes: the Resolvent Approach 695

(3) If x > y, we make a convention that the integrations
∫
(x,y]

and
∫
[x,y)

represent − ∫
(y,x]

and − ∫
[y,x)

respectively.

2 Preliminaries

To facilitate the computation behind, we need some formulas of DM and DS .

Proposition 2.1 For any x, y ∈ E and c ∈ R,
(1) if F is right-continuous, then

∫
(x,y]

DSF (z)S(dz) = F (y) − F (x);
(2) if G is left-continuous, then

∫
[x,y)

DMG(z)M(dz) = G(y) − G(x);
(3) suppose that F (x) =

∫
(c,x]

f(y)S(dy), then we have DSF (x) = f(x);
(4) suppose that G(x) =

∫
[c,x)

g(y)M(dy), then we have DMG(x) = g(x);
(5) DSF (x) = DS(F (·−))(x), DMG(x) = DM (G(·+))(x);
(6) if M � S, then DSF (x) = DSM(x) · DMF (x).

Proof (1)–(4) follows from Radon–Nikodym theorem, and (5) follows from Lemma 2.2 be-
low. (6) is clear since it is known that for any σ-finite signed measure ν and σ-finite measures
μ and ρ, if μ � ρ and ν � μ then

dν

dρ
=

dν

dμ

dμ

dρ
, μ-a.e. �

To obtain Proposition 2.1 (5), we prove the invariance of the measure by changing the
continuity of the corresponding cumulative distribution functions.

Lemma 2.2 Suppose h is right-continuous (or left-continuous). For any x ∈ R, let h̃(x) =
h(x−) (or h̃(x) = h(x+)). Then h and h̃ induce the same Borel (signed) measure.

Proof Assume h is right-continuous. For any a, b ∈ R, let μh and μh̃ be the Borel (signed)
measures induced by h and h̃ respectively. Then, for any [a, b) ⊂ B(R),

μh̃([a, b)) = h̃(b) − h̃(a) = h(b−) − h(a−) = μh([a, b)).

Hence μh = μh̃, by the measure extension theorem. �
The formulas of “D” acting on product and quotient are important, see the proof of Lem-

mas 3.1–3.2 for instance.

Proposition 2.3 Suppose that μ is a Borel measure, both f and g are right-continuous (or
left-continuous) with bounded variation. It holds μ-a.e. that

(1) Dμ(fg)(x) = f(x+)Dμg(x) + g(x−)Dμf(x).
(2) If 1/g is also of bounded variation, then

Dμ

(
f

g

)

(x) =
g(x+)Dμf(x) − f(x+)Dμg(x)

g(x+)g(x−)
.

To show Proposition 2.3, we need a representation of “D”, which follows immediately from
[1, Theorem 5.8.8].

Proposition 2.4 Let f be right-continuous (or left-continuous) with bounded variation, μ be
a Borel measure on R. If the Borel (signed) measure μf induced by f is absolutely continuous
with respect to μ, then

Dμf(x) = lim
r↓0

μf ([x − r, x + r])
μ([x − r, x + r])

< ∞, μ-a.e.
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Now, we can give a proof of Proposition 2.3 as follows.

Proof of Proposition 2.3 (1) Assume both f and g are right-continuous with bounded variation,
then so is f · g. It follows from Proposition 2.4 that

Dμ(f · g)(x) = lim
r↓0

μf ·g([x − r, x + r])
μ([x − r, x + r])

= lim
r↓0

limh↓0 μf ·g((x − r − h, x + r])
μ([x − r, x + r])

= lim
r↓0

lim
h↓0

f(x + r)g(x + r) − f(x − r − h)g(x − r − h)
μ([x − r, x + r])

= lim
r↓0

lim
h↓0

= f(x+) lim
r↓0

lim
h↓0

g(x + r) − g(x − r − h)
μ([x − r, x + r])

+ g(x−) lim
r↓0

lim
h↓0

f(x + r) − f(x − r − h)
μ([x − r, x + r])

= f(x+) lim
r↓0

lim
h↓0

μg((x − r − h, x + r])
μ([x − r, x + r])

+ g(x−) lim
r↓0

lim
h↓0

μf ((x − r − h, x + r])
μ([x − r, x + r])

= f(x+) lim
r↓0

μg([x − r, x + r])
μ([x − r, x + r])

+ g(x−) lim
r↓0

μf ([x − r, x + r])
μ([x − r, x + r])

= f(x+)Dμg(x) + g(x−)Dμf(x).

(2) Similarly, we have that

Dμ(1/g)(x) = lim
r↓0

μ1/g([x − r, x + r])
μ([x − r, x + r])

= lim
r↓0

limh↓0 μ1/g((x − r − h, x + r])
μ([x − r, x + r])

= lim
r↓0

lim
h↓0

1/g(x + r) − 1/g(x − r − h)
μ([x − r, x + r])

= − lim
r↓0

lim
h↓0

1
g(x + r)g(x − r − h)

· g(x + r) − g(x − r − h)
μ([x − r, x + r])

= − 1
g(x+)g(x−)

lim
r↓0

lim
h↓0

μg((x − r − h, x + r])
μ([x − r, x + r])

= − Dμg(x)
g(x+)g(x−)

.

Together with (1), we have thus proved (2). �

3 Proof of Theorem 1.2

Without loss of generality, we assume that 0 ∈ EM = ES = E and M(0) = S(0) = 0 in this
section. To prove Theorem 1.2, we first construct a system of the homogeneous equation, and
then obtain the monotone solutions by some lemmas.

Fix α > 0, integrating the homogeneous equation (α − DMDS)v = 0 with respect to the
measure M and from Proposition 2.1 (2), we derive that

DSv(y) = DSv(0) + α

∫

[0,y)

v(z)M(dz), y ∈ E. (3.1)
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Integrating it with respect to the measure S and from Proposition 2.1 (1), we have

v(x) = v(0) + DSv(0) · S(x) + α

∫

(0,x]

S(dy)
∫

[0,y)

v(z)M(dz), x ∈ E. (3.2)

Define
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v1(x) = 1 + α

∫

(0,x]

S(dy)
∫

[0,y)

v1(z)M(dz),

v2(x) = S(x) + α

∫

(0,x]

S(dy)
∫

[0,y)

v2(z)M(dz).
(3.3)

For any x ∈ E, take
⎧
⎪⎪⎨

⎪⎪⎩

v
(0)
1 (x) = 1,

v
(n+1)
1 (x) = α

∫

(0,x]

S(dy)
∫

[0,y)

v
(n)
1 (z)M(dz), n ≥ 0.

and
⎧
⎪⎪⎨

⎪⎪⎩

v
(0)
2 (x) = S(x),

v
(n+1)
2 (x) = α

∫

(0,x]

S(dy)
∫

[0,y)

v
(n)
2 (z)M(dz), n ≥ 0.

By the second iteration method (see [2, Theorem 2.9]), we have that

v1(x) =
∞∑

n=0

v
(n)
1 (x), v2(x) =

∞∑

n=0

v
(n)
2 (x),

solving (1.1). More specifically, {v1, v2} consists of a system of fundamental solutions of the
homogeneous equation (α − DMDS)v = 0 (α > 0).

Now, let us calculate the Wronskian of the solutions of the homogeneous equation.

Lemma 3.1 If u and v are two solutions of the homogeneous equation (α − DMDS)v =
0 (α > 0), then the Wronskian W (u, v)(x) is independent of x. In particular, W (v2, v1)|E(x)
= v1(x)DSv2(x) − v2(x)DSv1(x) ≡ 1 with v1 and v2 given by (3.3).

Proof We will verify that W (u, v)(x) = W (u, v)(y) for any x, y ∈ E. First, we do the following
transformation so that the sign “D” can work.

W (u, v)(z) = v(z−) ·
(

DSu(0) + α

∫

[0,z)

u(t)M(dt)
)

− u(z−) ·
(

DSv(0) + α

∫

[0,z)

v(t)M(dt)
)

+ (v(z) − v(z−)) ·
(

DSu(0) + α

∫

[0,z)

u(t)M(dt)
)

− (u(z) − u(z−)) ·
(

DSv(0) + α

∫

[0,z)

v(t)M(dt)
)

.

From (3.2), we have

v(z) − v(z−) = S({z})
(

DSv(0) + α

∫

[0,z)

v(t)M(dt)
)

,
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u(z) − u(z−) = S({z})
(

DSu(0) + α

∫

[0,z)

u(t)M(dt)
)

,

which yields to

(v(z) − v(z−)) ·
(

DSu(0) + α

∫

[0,z)

u(t)M(dt)
)

= S({z})
(

DSv(0) + α

∫

[0,z)

v(t)M(dt)
)(

DSu(0) + α

∫

[0,z)

u(t)M(dt)
)

= (u(z) − u(z−))DSv(z).

Consequently,

W (u, v)(z) = v(z−) ·
(

DSu(0) + α

∫

[0,z)

u(t)M(dt)
)

− u(z−) ·
(

DSv(0) + α

∫

[0,z)

v(t)M(dt)
)

.

From Proposition 2.3 (1) and Proposition 2.1 (5)–(6), it follows that, M -a.e.

DM

(

v(·−) ·
(

DSu(0) + α

∫

[0,·)
u(t)M(dt)

))

(z)

= DSu(0)DM (v(·−))(z) + v(z) · αu(z) + α

∫

[0,z)

u(t)M(dt) · DM (v(·−))(z)

= αu(z)v(z) +
(

DSu(0) + α

∫

[0,z)

u(t)M(dt)
)

DMv(z)

= αu(z)v(z) +
(

DSu(0) + α

∫

[0,z)

u(t)M(dt)
)

DMS(z)DSv(z)

= αu(z)v(z) + DSu(z)DSv(z)DMS(z)

= DM

(

u(·−) ·
(

DSv(0) + α

∫

[0,·)
v(t)M(dt)

))

(z),

which yields that (DMW )(z) = 0 for any z ∈ E. Hence, for any x, y ∈ E,

0 =
∫

[x,y)

DMW (z)M(dz) = W (y) − W (x).

In particular,

W (v2, v1)(x) = W (v2, v1)(0) = 1. �

The next lemma gives the monotonicity of v2/v1 and “DSv1/DSv2”.

Lemma 3.2 Let v1 and v2 be given by (3.3). Then both v2/v1 and

α
∫
[0,x)

v1(t)M(dt)

1 + α
∫
[0,x)

v2(t)M(dt)

are increasing on E.

Proof (i) Clearly, both v2 and 1/v1 are right-continuous with bounded variation. Then it
follows from Proposition 2.3 (2) and Lemma 3.1 that, for any z ∈ E,

DS

(
v2

v1

)

(z) =
v1(z+)DSv2(z) − v2(z+)DSv1(z)

v1(z+)v1(z−)
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=
v1(z)DSv2(z) − v2(z)DSv1(z)

v1(z)v1(z−)

=
1

v1(z)v1(z−)

> 0.

Thus, for any x, y ∈ E with x < y, Proposition 2.1 (1) implies that

0 ≤
∫

(x,y]

DS

(
v2

v1

)

(z)S(dz) =
v2(y)
v1(y)

− v2(x)
v1(x)

.

Hence, v2/v1 is increasing on E.
(ii) According to Proposition 2.3 (2), Proposition 2.1 (4) and Lemma 3.1, for any z ∈ E,

we have

DM

( α
∫
[0,·) v1(t)M(dt)

1 + α
∫
[0,·) v2(t)M(dt)

)

(z)

=
(1 + α

∫
[0,z]

v2(t)M(dt)) · αv1(z) − α
∫
[0,z]

v1(t)M(dt) · αv2(z)

(1 + α
∫
[0,z]

v2(t)M(dt))(1 + α
∫
[0,z)

v2(t)M(dt))

=
αW (v2, v1)(z) + αv2(z)M({z}) · αv1(z) − αv1(z)M({z}) · αv2(z)

(1 + α
∫
[0,z]

v2(t)M(dt))(1 + α
∫
[0,z)

v2(t)M(dt))

=
αW (v2, v1)(z)

(1 + α
∫
[0,z]

v2(t)M(dt))(1 + α
∫
[0,z)

v2(t)M(dt))

=
α

(1 + α
∫
[0,z]

v2(t)M(dt))(1 + α
∫
[0,z)

v2(t)M(dt))
.

The denominator of the last formula is positive because of the second iteration of v2. Thus, by
Proposition 2.1 (2), we have that for any x, y ∈ E with x < y,

0 ≤
∫

[x,y)

DM

( α
∫
[0,x)

v1(t)M(dt)

1 + α
∫
[0,x)

v2(t)M(dt)

)

(z)M(dz)

=
α

∫
[0,y)

v1(t)M(dt)

1 + α
∫
[0,y)

v2(t)M(dt)
−

α
∫
[0,x)

v1(t)M(dt)

1 + α
∫
[0,x)

v2(t)M(dt)
.

Hence,
α

∫
[0,x) v1(t)M(dt)

1+α
∫
[0,x) v2(t)M(dt)

is also increasing on E. �
Next, we present the relationships of boundary behaviours between M , S and Σ, N .

Proposition 3.3 For i = 1, 2,
(1) if li is regular, then |S(li)| < +∞ and |M(li)| < +∞;
(2) if li is exit, then |S(li)| < +∞ and |M(li)| = +∞;
(3) if li is entrance, then |S(li)| = +∞ and |M(li)| < +∞;
(4) if li is nature, then |S(li)| = +∞ and |M(li)| = +∞.

Proof First, we show that Σ(li) < +∞ implies |S(li)| < +∞. Take l1 < x0 < 0 such that
M(x0) < 0 and S(x0) > −∞. Since M(0) = 0, we have

Σ(l1) =
∫

(l1,0]

S(dy)
∫

[y,0)

M(dz)
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= −
∫

(l1,0]

M(y)S(dy)

≥ −
∫

(l1,x0]

M(y)S(dy)

≥ −M(x0)(S(x0) − S(l1)).

Thus Σ(l1) < +∞ implies S(l1) > −∞. Similarly, Σ(l2) < +∞ implies S(l2) < +∞.
Second, we show that N(li) < +∞ implies |M(li)| < +∞. Take 0 < x0 < l2 such that

S(x0) > 0 and M(x0) < +∞. Since S(0) = 0, we have

N(l2) =
∫

[0,l2)

M(dy)
∫

(0,y]

S(dz)

=
∫

[0,l2)

S(y)M(dy)

≥
∫

[x0,l2)

S(y)M(dy)

≥ S(x0)(M(l2) − M(x0)).

Thus, N(l2) < +∞ implies M(l2) < +∞. In the same way, N(l1) < +∞ implies M(l1) > −∞.
Third, we show that if N(li) = +∞ and |S(li)| < +∞, then |M(li)| = +∞. This is obtained

from

N(l2) =
∫

[0,l2)

M(dy)
∫

(0,y]

S(dz)

=
∫

[0,l2)

S(y)M(dy)

≤
∫

[0,l2)

S(l2)M(dy)

= S(l2)M(l2),

and similarly, N(l1) ≤ S(l1)M(l1).
Finally, if Σ(li) = +∞ and |M(li)| < +∞, then we have that |S(li)| = +∞ in the same

way. �
The following lemma is due to [12], which is an application of the integral transform theorem.

Lemma 3.4 Suppose that μ is a Borel measure. Define its “cumulative distribution function”
and “inverse cumulative distribution function” as:

ϕ(x) := μ((−∞, x]), ϕ−1(y) := inf{x : ϕ(x) ≥ y},
respectively. Then for any Borel set Γ and measurable function f ,

∫

Γ

fdμ =
∫

{y: ϕ−1(y)∈Γ}
f ◦ ϕ−1(y)dy.

The following lemma gives the estimates of v1 and v2.

Lemma 3.5 Let v1 and v2 be given by (3.3). Then for any x ∈ E,
(1) αΣ(x) ≤ v1(x) ≤ eαΣ(x);
(2) α

∫
(0,x]

S(dy)
∫
[0,y)

|S(z)|M(dz) ≤ |v2(x)| ≤ |S(x)|eαΣ(x).
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Proof (1) The first inequality is direct since

v1(x) ≥ v
(1)
1 (x) = αΣ(x), ∀x ∈ E.

For the second inequality, it suffices to show that

v
(n)
1 (x) ≤ (αΣ(x))n

n!
, ∀n ≥ 1. (3.4)

For this, we use the mathematical induction. The case of n = 1 is clear. Suppose (3.4) holds
for n = k. For n = k + 1, since Σ(z) ≤ Σ(y−) for z < y and DSΣ(y) =

∫
[0,y)

M(dz) for y ∈ E,
we have that

v
(k+1)
1 (x) ≤ α

∫

(0,x]

S(dy)
∫

[0,y)

(αΣ(z))k

k!
M(dz)

=
αk+1

k!

∫

(0,x]

S(dy)
∫

[0,y)∩E

Σ(z)kM(dz)

≤ αk+1

k!

∫

(0,x]

Σ(y−)kDSΣ(y)S(dy)

=
αk+1

k!

∫

(0,x]

Σ(y−)kΣ(dy).

Define Σ−1(y) = inf{x : Σ(x) ≥ y}. Take Γ = (0, x] and f(x) = Σ(x−)k (x ∈ E) in Lemma 3.4
to derive that

v
(k+1)
1 (x) ≤ αk+1

k!

∫

(0,x]

Σ(y−)kΣ(dy)

=
αk+1

k!

∫

(Σ(0),Σ(x)]

Σ(Σ−1(y)−)kdy

≤ αk+1

k!

∫

(0,Σ(x)]

ykdy

=
(αΣ(x))k+1

(k + 1)!
,

where the last inequality follows from Σ((Σ−1(y))−) ≤ y. Thus, (3.4) holds.
(2) The first inequality is clear since |v2(x)| ≥ |v(1)

2 (x)|. For the second inequality, it suffices
to show inductively that

v
(n)
2 (x) ≤ |S(x)| (αΣ(x))n

n!
, ∀n ≥ 1. (3.5)

When n = 1, we have

v
(1)
2 (x) = α

∫

(0,x]

S(dy)
∫

[0,y)

S(z)M(dz)

≤ α|S(x)|
∫

(0,x]

S(dy)
∫

[0,y)

M(dz)

= α|S(x)|Σ(x).

Suppose (3.5) holds for n = k. According to (1), we have

|v(k+1)
2 (x)| ≤ α

∫

(0,x]

S(dy)
∫

[0,y)

|S(z)| · (αΣ(z))k

k!
M(dz)
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≤ |S(x)| · αk+1

k!

∫

(0,x]

S(dy)
∫

[0,y)

Σ(z)kM(dz)

≤ |S(x)| (αΣ(x))k+1

(k + 1)!
,

which gives (3.5). �
The limits of v1

v2
− DSv1

DSv2
at the end points depend on the boundary classification.

Lemma 3.6 Let v1 and v2 given by (3.3). Then

v1

v2
(l1) −

α
∫
[l1,0)

v1(y)M(dy)

1 + α
∫
[l1,0)

v2(y)M(dy)
=

⎧
⎨

⎩

c1 < 0, l1 is regular,

0, otherwise;

and

lim
x↑l2

(
v1

v2
(x) −

α
∫
[0,x)

v1(t)M(dt)

1 + α
∫
[0,x)

v2(t)M(dt)

)

=

⎧
⎨

⎩

c2 > 0, l2 is regular,

0, otherwise.

Proof For x ∈ E big or small enough (so that v2(x) is not zero), since W (v2, v1)|E ≡ 1, we
have

v1

v2
(x) −

α
∫
[0,x)

v1(t)M(dt)

1 + α
∫
[0,x)

v2(t)M(dt)
=

1
v2(x) · (1 + α

∫
[0,x)

v2(t)M(dt))
.

When li is regular, from Proposition 3.3 we have |S(li)| < ∞, |M(li)| < ∞ and Σ(li) < ∞
for i = 1, 2. This, together with Lemma 3.5 and M(0) = 0, derives that

|v2(li)| ≤ |S(li)|eαΣ(li) < ∞,

1 + α

∫

[0,li)

v2(t)M(dt) ≤ 1 + α

∫

[0,li)

v2(li)M(dt) = 1 + |v2(li)M(li)| < +∞.

Hence,

v1

v2
(l1) −

α
∫
[l1,0)

−v1(t)M(dt)

1 + α
∫
[l1,0)

−v2(t)M(dt)
= c1 < 0,

lim
x↑l2

(
v1

v2
(x) −

α
∫
[0,x)

v1(t)M(dt)

1 + α
∫
[0,x)

v2(t)M(dt)

)

= c2 > 0.

When li is not regular, either |S(li)| or |M(li)| is infinity. If S(l1) = −∞, take l1 < x0 < 0
such that

∫
[x0,0)

|S(z)|M(dz) > 0 and |S(x0)| < +∞. Then we have from Lemma 3.5 that

|v2(l1)| ≥ α

∫

(l1,0]

S(dy)
∫

[y,0)

|S(z)|M(dz)

≥ α

∫

(l1,x0]

S(dy)
∫

[x0,0)

|S(z)|M(dz)

= α(S(x0) − S(l1))
∫

[x0,0)

|S(z)|M(dz)

= +∞.

Similarly, if S(l2) = +∞, then v2(l2) = +∞.
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When |M(li)| = ∞, take x0 such that |v2(x0)| > 0. We have

1 + α

∫

[0,li)

v2(t)M(dt) ≥ 1 + α

∫

[x0,li)

v2(t)M(dt)

≥ 1 + αv2(x0)(M(li) − M(x0))

= +∞.

This completes the proof. �
Now, it is ready to prove Theorem 1.2.

Proof of Theorem 1.2 Suppose that the positive solution u has the form of

u = v1 − γv2.

According to Lemma 3.2, we have

v1(l1)
v2(l1)

< γ ≤ lim
x↑l2

v1

v2
(x). (3.6)

Since u1 is increasing, it holds that S-a.e.

DSu1 = DSv1 − γDSv2 ≥ 0,

which yields that γ ≤ α
∫
[0,x) v1(t)M(dt)

1+α
∫
[0,x) v2(t)M(dt)

for any x ∈ R. By Lemma 3.2 again,

γ ≤
α

∫
[l1,0)

v1(t)M(dt)

1 + α
∫
[l1,0)

v2(t)M(dt)
≤ 0.

Combining with (3.6) and lim
x↑l2

v1
v2

(x) ≥ 0, we obtain that

v1(l1)
v2(l1)

≤ γ ≤ DSv1(l1)
DSv2(l1)

.

Since u2 is decreasing, it follows that S-a.e.

DSu2 = DSv1 − γDSv2 ≤ 0,

which yields that γ ≥ α
∫
[0,x) v1(t)M(dt)

1+α
∫
[0,x) v2(t)M(dt)

for any x ∈ R. Using Lemma 3.2 again, we have

γ ≥ lim
x↑l2

α
∫
[0,x)

v1(t)M(dt)

1 + α
∫
[0,x)

v2(t)M(dt)
≥ 0.

Combining with (3.6) and v1
v2

(l1) ≤ 0, we obtain that

lim
x↑l2

α
∫
[0,x)

v1(t)M(dt)

1 + α
∫
[0,x)

v2(t)M(dt)
≤ γ ≤ lim

x↑l2

v1

v2
(x). �

4 Proof of Theorems 1.3–1.4

First, we present the solutions of the inhomogeneous equation.

Proof of Theorem 1.3 Theorem 1.2 implies that u1 and u2 are linearly independent. Thus,
{u1, u2} consists of a system of fundamental solutions of the homogeneous equation (1.2).
Suppose that the inhomogeneous equation (1.4) has solutions with the form

g(x) = c1(x)u1(x) + c2(x)u2(x),
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where c1(x) and c2(x) are right-continuous functions to be determined later.
Proposition 2.3 (1) implies that for any x ∈ E,

DSg(x) = c1(x−)DSu1(x) + u1(x+)DSc1(x) + c2(x−)DSu2(x) + u2(x+)DSc2(x)

= c1(x−)DSu1(x) + c2(x−)DSu2(x) + u1(x)DSc1(x) + u2(x)DSc2(x).

By setting

u1(x)DSc1(x) + u2(x)DSc2(x) = 0, (4.1)

we have that

DSg(x) = c1(x−)DSu1(x) + c2(x−)DSu2(x).

Moreover, ∀ x ∈ E,

DMDSg(x) = c1(x)DMDSu1(x) + DSu1(x−)DM (c1(·−))(x)

+ c2(x)DMDSu2(x) + DSu2(x−)DM (c2(·−))(x)

= α(c1(x)u1(x) + c2(x)u2(x)) + DSu1(x)DMc1(x) + DSu2(x)DMc2(x)

= αg(x) + DSu1(x)DMc1(x) + DSu2(x)DMc2(x).

By setting

DSu1(x)DMc1(x) + DSu2(x)DMc2(x) = −f(x)

and multiplying both sides by DSM(x), we have that

DSu1(x)DSc1(x) + DSu2(x)DSc2(x) = −f(x)DSM(x). (4.2)

First, multiply (4.1) by DSu1(x), and multiply (4.2) by u1(x), then make difference to derive
that

DSc2(x) = W (u1, u2)DSc2(x) = u1(x)f(x)DSM(x),

where the last equality is due to W (u1, u2)|E = 1.
Integrating both sides with respect to S, since c2 is right-continuous, we have

c2(x) = c2(l1−) +
∫

[l1,x]

u1(y)f(y)M(dy).

Similarly,

c1(x) = c1(l2−) +
∫

(x,l2)

u2(y)f(y)M(dy).

By taking c1 = c1(l2−), c2 = c2(l1−),

u2

∫

{x}
u1(y)f(y)M(dy) = u1

∫

{x}
u2(y)f(y)M(dy)

implies (1.5). �
The proof of Theorem 1.4 (1) is due to the monotonicity of u1 and u2, the rest results of

Theorem 1.4 essentially come from [13, Lemmas 1.4–1.5], and we include here for completeness.

Proof of Theorem 1.4 (1) By the monotonicity of u1 and u2, we have

DSu1(0) + α

∫

[0,l1)

u1(y)M(dy) ≥ 0,



Construction of Generalized Diffusion Processes: the Resolvent Approach 705

DSu2(0) + α

∫

[0,l2)

u2(y)M(dy) ≤ 0,

which yields that

0 ≤ u2(x)
(

DSu1(0) + α

∫

[0,l1)

u1(y)M(dy)
)

− u1(x)
(

DSu2(0) + α

∫

[0,l2)

u2(y)M(dy)
)

= W (u1, u2)(x) + αu2(x)
∫

[x,l1)

u1(y)M(dy) − αu1(x)
∫

[x,l2)

u2(y)M(dy)

= 1 − αu2(x)
∫

[l1,x)

u1(y)M(dy) − αu1(x)
∫

[x,l2)

u2(y)M(dy)

= 1 − αRα1.

That is, αRα1 ≤ 1. Hence,

‖αRα‖ = sup
‖f‖≤1

‖αRαf‖ ≤ sup
‖f‖≤1

‖f‖ · ‖αRα1‖ ≤ 1.

(2) First, we show that Rα satisfies the resolvent equation on A +.
Since on A +

(α − DMDS)Rα = I,

for any α, β > 0, we have

(β − DMDS)Rα = (α − DMDS)Rα + (β − α)Rα = I + (β − α)Rα. (4.3)

Now that Rβf is the minimal non-negative solution of (β − DMDS)g = f (β > 0), we have

Rβ(β − DMDS) ≤ I. (4.4)

Combining (4.3) and (4.4), we obtain

Rα ≥ Rβ(β − DMDS)Rα = Rβ + (β − α)RβRα,

which implies that

Rα − Rβ + (α − β)RβRα ≥ 0.

Similarly, we have

Rβ − Rα + (β − α)RαRβ ≥ 0.

Thus, it suffices to show RβRα = RαRβ. Indeed, we have from (4.3) that

(α − DMDS)(β − DMDS)Rα = (α − DMDS)I + (β − α)(α − DMDS)Rα

= αI − DMDS + (β − α)I

= β − DMDS .

Furthermore,

(α − DMDS)(β − DMDS)RαRβ = (β − DMDS)Rβ = I.

Together with (4.4), we have that

RβRα = RβRα(α − DMDS)(β − DMDS)RαRβ
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= Rβ(Rα(α − DMDS))(β − DMDS)RαRβ

≤ (Rβ(β − DMDS))RαRβ

≤ RαRβ .

In the same way, we have RαRβ ≤ RβRα. Hence RβRα = RαRβ.
Next, we generalize R· to A . For any f ∈ A , we have f = f+ − f− with f+, f− ∈ A +.

So,

(Rα − Rβ + (α − β)RαRβ)f = (Rα − Rβ + (α − β)RαRβ)(f+ − f−)

= (Rα − Rβ + (α − β)RαRβ)f+ − (Rα − Rβ + (α − β)RαRβ)f−

= 0.

(3) According to the resolvent condition and RβRα = RαRβ ,

Rα = Rβ[I + (β − α)Rα],

Rβ = Rα[I + (α − β)Rβ],

which implies that RαA is independent of α.
To prove RαD is dense in D , for any h ∈ A ,

DMDSRα(Rαh) = αRαRαh − Rαh,

RαDMDS(Rαh) = Rα(αRαh − h) = αRαRαh − Rαh,

which yields to RαDMDS = DMDSRα on D . Then for any f ∈ D ,

f = (α − DMDS)Rαf = αRαf − RαDMDSf.

Consequently,

‖f − αRαf‖ = ‖RαDMDSf‖ ≤ 1
α
‖DMDSf‖ → 0 (α → +∞). �

5 Examples

We give several examples of generalized diffusion operators and establish the resolvents of
Brownian motion on fractals.

The first example is diffusion operator.

Example 5.1 (Diffusion operator) Let −∞ < l1 < l2 ≤ +∞. For any x ∈ [l1, l2), suppose
a(x) > 0 and the derivatives of a(x) and b(x) are continuous. Let (see for example [8])

M(x) =
∫ x

c

1
a(y)

exp
{∫ y

c

b(z)
a(z)

dz

}

dy, S(x) =
∫ x

c

exp
{

−
∫ y

c

b(z)
a(z)

dz

}

dy.

Since both M and S are absolutely continuous with respect to the Lebesgue measure, it follows
that

DM =
1

M ′(x)
· d

dx
, DS =

1
S′(x)

· d

dx
,

DMDS = a(x)
d2

dx2
+ b(x)

d

dx
.

The second example is Birth-death Q-matrix.
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Example 5.2 (Birth-death Q-matrix) Consider a birth-death Q-matrix with birth rates
(bi)i∈N and death rates (ai)i∈N. Take (please refer to [7])

M({0}) = 1, M({i}) =
b0b1 · · · bi−1

a1a2 · · · ai
, i ≥ 1.

S({0}) = 1/a0, S({i}) =
1

M({i})ai
, i ≥ 1.

Then for any i ∈ N,

DMDSf(i) = lim
r↓0

μDSf ([i − r, i + r])
M([i − r, i + r])

=
μDSf ({i})
M({i})

=
μDSf ([i, i + 1))

M({i})
=

DSf(i + 1) − DSf(i)
M({i})

= (M({i}))−1 lim
r↓0

[
μf ([i + 1 − r, i + 1 + r])
S([i + 1 − r, i + 1 + r])

− μf ([i − r, i + r])
S([i − r, i + r])

]

= (M({i}))−1

[
μf ({i + 1})
S({i + 1}) − μf ({i})

S({i})
]

= (M({i}))−1

[
μf ((i, i + 1])
S({i + 1}) − μf ((i − 1, i])

S({i})
]

= (M({i}))−1

[
f(i + 1) − f(i)

S({i + 1}) − f(i) − f(i − 1)
S({i})

]

= bi(f(i + 1) − f(i)) − ai(f(i) − f(i − 1)).

The third example is the so-called gap diffusion.

Example 5.3 (Gap diffusion [11]) Suppose that M : R → R is increasing, right-continuous
and M(∞) = ∞. Take l1 = inf{x : M(x) > −∞} and l2 = sup{x : M(x) < +∞}. Let
(Bt)t≥0 be a one-dimensional standard Brownian motion and l(t, x), t ≥ 0, x ∈ R, be its local
time. Set φ(t) =

∫
l(t, x)M(dx), φ−1 be the inverse of φ. Then {B(φ−1(t)) : t ≥ 0} is a time

homogeneous strong Markov process corresponding to the operator DMDx.

The last example is the Brownian motion on Cantor set. Since the “cumulative distri-
bution function” determined by Cantor measure is increasing and singularly continuous, the
corresponding operator DλDλ is different from those in [6, 7, 9, 11].

Example 5.4 (Brownian motion on Cantor set [10]) First, we recall the standard Bernoulli
measure on Cantor set in R. Let Ωi = {0, 1}, i = 0, 1, . . ., and ρm be the uniform probabil-
ity measure on Ωm :=

∏m
i=0 Ωi, that is, ρm({x}) = 2−(m+1) for any (x0, x1, . . . , xm) ∈ Ωm.

Consider the map J : Ωm → [0, 1],

J(x) := am
0 x0 + am

1 x1 + · · · + am
mxm, ∀x = (x0, x1, . . . , xm) ∈ Ωm,

where am
k = 3−mbk, b0 = 1, bk = 2 · 3k−1. Let Km = J(Ωm). Then the closure of

⋃+∞
m=0 Km

is Cantor set in [0, 1] and is denoted by K. Let λm = ρm ◦ J−1. Then λm({p}) = 2−(m+1),
∀p ∈ Km.
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Following [10], we know that there exists a unique probability measure λ on K such that
λm ⇒ λ, that is, ∀f ∈ C(K), limm→+∞

∫
Km

fdλm =
∫

K
fdλ. λ is called the standard Bernoulli

probability measure on K. Let K̃ =
⋃+∞

n=0(n + K) be Cantor set on [0, +∞) and denote again
by λ the extended Bernoulli measure on K̃.

We will give a system of fundamental solutions of the homogeneous equation

(α − DλDλ)v = 0 (α > 0) (5.1)

by Picard iteration.
Fix c ∈ K̃ and let Λ(x) = λ([0, x])−λ([0, c]), x ∈ [0, +∞). Then Λ is an increasing continuous

function and Λ(c) = 0. Define Λ−1(y) = inf{x : Λ(x) ≥ y}, it is clear that Λ(Λ−1(y)) = y.
Lemma 3.4 implies that for any Borel measurable function g and Borel set Γ,

∫

Γ

g(Λ(t))λ(dt) =
∫

{t:Λ−1(t)∈Γ}
g(Λ(Λ−1(t)))dt =

∫

{t:Λ−1(t)∈Γ}
g(t)dt. (5.2)

Define
⎧
⎪⎪⎨

⎪⎪⎩

v
(0)
1 (x) = 1,

v
(n+1)
1 (x) = α

∫

(c,x]

λ(dy)
∫

[c,y)

v
(n)
1 (z)λ(dz), n ≥ 0.

Suppose v
(n)
1 (x) = αn Λ(x)2n

(2n)! , it follows by (5.2) that for any n ≥ 0,

v
(n+1)
1 (x) = α

∫

(c,x]

λ(dy)
∫

[c,y)

αn Λ(z)2n

(2n)!
λ(dz)

=
αn+1

(2n)!

∫

(c,x]

λ(dy)
∫ Λ(y)

0

z2nλ(dz)

=
αn+1

(2n + 1)!

∫

(c,x]

Λ(y)2n+1λ(dy)

=
αn+1

(2n + 1)!

∫ Λ(x)

0

y2n+1dy

= αn+1 Λ(x)2n+2

(2n + 2)!
.

By induction, we have

v1(x) =
+∞∑

n=0

[
√

αΛ(x)]2n

(2n)!
= cosh(

√
αΛ(x)).

Define
⎧
⎪⎪⎨

⎪⎪⎩

v
(0)
2 (x) = Λ(x),

v
(n+1)
2 (x) = α

∫

(c,x]

λ(dy)
∫

[c,y)

v
(n)
2 (z)λ(dz), n ≥ 0,

In the same way, we obtain

v2(x) = α− 1
2

+∞∑

n=0

[
√

αΛ(x)]2n+1

(2n + 1)!
= α− 1

2 sinh(
√

αΛ(x)).
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Hence, {cosh(
√

αΛ(x)), α−1/2 sinh(
√

αΛ(x))} consists of a system of fundamental solutions of
the homogeneous equation (5.1). Moreover, we have

v1

v2
(0) = α

1
2
cosh(

√
αΛ(0))

sinh(
√

αΛ(0))
= α

1
2 coth(

√
αΛ(0)) =: γ1,

α
∫
[0,c)

v1(t)λ(dt)

1 + α
∫
[0,c)

v2(t)λ(dt)
= α · v2

v1
(0) = α

1
2 tanh(

√
αΛ(0)) =: γ2

with Λ(0) = −λ([0, x]) < 0. In addition,

lim
x↑+∞

v1

v2
(x) = α

1
2 lim

x↑+∞
e2

√
αΛ(x) + 1

e2
√

αΛ(x) − 1
= α

1
2 ,

lim
x↑+∞

α
∫
[c,x)

v1(t)λ(dt)

1 + α
∫
[c,x)

v2(t)λ(dt)
= α · lim

x↑+∞
v2

v1
(x) = α

1
2 .

Then W (v1−γv2, v1−α1/2v2) = α1/2−γ holds with γ1 ≤ γ ≤ γ2 < 0. By taking u1 = v1−γv2

and u2 = (v1 −α1/2v2)/(α1/2 − γ), we have W (u1, u2)|K̃ ≡ 1. According to Theorem 1.2, there
are infinitely many u1 and there is a unique u2 up to a multiplicative positive constant, which
indicates that 0 is regular while +∞ is not regular. In fact, from (5.2), we have

Σ(x) = N(x) =
Λ(x)2

2
.

Consequently,

Σ(0) = N(0) = λ([0, c])2 < +∞ and Σ(+∞) = N(+∞) = +∞.

Hence 0 is regular and +∞ is nature.
The Green function determined by u1 and u2 is

K(x, y)=

⎧
⎪⎪⎨

⎪⎪⎩

e
√

αΛ(y)[(1 − γα−1/2)e
√

αΛ(x) + (1 + γα−1/2)e−
√

αΛ(x)]
2(α1/2 − γ)

, x ≤ y and x, y ∈ K̃,

e
√

αΛ(x)[(1 − γα−1/2)e
√

αΛ(y) + (1 + γα−1/2)e−
√

αΛ(y)]
2(α1/2 − γ)

, y ≤ x and x, y ∈ K̃,

where γ1 ≤ γ ≤ γ2 < 0.
For the inhomogeneous equation

(α − DλDλ)g = f (α > 0), (5.3)

the minimal non-negative solution is

Rαf(x) :=
∫ +∞

0

K(x, y)f(y)λ(dy), x ∈ K̃,

which indicates that there are infinitely many resolvents.

Remark 5.5 When both M and S are the Lebesgue measure, the associated process is Brow-
nian motion and the solutions of the corresponding homogeneous equation and inhomogeneous
equation are well known (see for example [8]). When both M and S are the Cantor measure, we
use integral transform theorem (or Lemma 3.4) to deal with the integration and Picard iteration
to solve the corresponding homogeneous equation. Both the system of fundamental solutions of
the homogeneous equation (5.1) and the minimal non-negative solution of the inhomogeneous
equation (5.3) are novel as far as we know. When taking one measure as the Lebesgue measure
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and another as the Cantor measure, we have no idea to solve the corresponding homogeneous
equation.

References
[1] Bogachev, V. I.: Measure Theory I, Springer-Verlag, Berlin, 2007

[2] Chen, M. F.: From Markov Chains to Non-equilibrium Particle Systems, Second edition, World Scientific,

2004

[3] Chen, M. F.: Eigenvalues, Inequalities, and Ergodic Theory, Springer-Verlag, London, 2005

[4] Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann.

of Math., 55, 468–519 (1952)

[5] Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc., 77, 1–31 (1954)

[6] Feller, W.: Generalized second order differential operators and their lateral conditions. Illinois J. Math.,

1, 459–504 (1957)

[7] Feller, W.: The birth and death processes as diffusion processes. J. Math. Pures Appl., 38, 301–345 (1959)
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