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Abstract A path factor of G is a spanning subgraph of G such that its each component is a path.

A path factor is called a P≥n-factor if its each component admits at least n vertices. A graph G is

called P≥n-factor covered if G admits a P≥n-factor containing e for any e ∈ E(G), which is defined by

[Discrete Mathematics, 309, 2067–2076 (2009)]. We first define the concept of a (P≥n, k)-factor-critical

covered graph, namely, a graph G is called (P≥n, k)-factor-critical covered if G-D is P≥n-factor covered

for any D ⊆ V (G) with |D| = k. In this paper, we verify that (i) a graph G with κ(G) ≥ k + 1 is

(P≥2, k)-factor-critical covered if bind(G) > 2+k
3

; (ii) a graph G with |V (G)| ≥ k + 3 and κ(G) ≥ k + 1

is (P≥3, k)-factor-critical covered if bind(G) ≥ 4+k
3

.

Keywords Graph, binding number, P≥2-factor, P≥3-factor, (P≥2, k)-factor-critical covered graph,

(P≥3, k)-factor-critical covered graph
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1 Introduction

All graphs discussed here are finite simple graphs. Let G be a graph with vertex set V (G)
and edge set E(G). For each x ∈ V (G), we use dG(x) to denote the degree of x in G. For a
vertex subset X of G, we denote by G[X] the subgraph of G induced by X, and write G − X

for G[V (G) \ X]. For any E′ ⊆ E(G), we use G − E′ to denote the graph which is obtained
from G by deleting edges of E′. A vertex subset X of G is called independent if G[X] has no
edges. Let i(G) and ω(G) denote the number of isolated vertices and connected components in
G, respectively. We write κ(G) for the vertex connectivity of G.

The path with n vertices is denoted by Pn, where n ≥ 2 is an integer. A path factor of G

is a spanning subgraph of G such that its each component is a path. A path factor is called a
P≥n-factor if its each component admits at least n vertices.

The path factors of graphs were studied by Kawarabayashi et al. [11], Asratian and Cas-
selgren [2], Kano et al. [9], Johnson et al. [6], Zhou [21], Zhou et al. [27], Kano et al. [10],
Matsubara et al. [14]. For some other results on graph factors, see [3–5, 20, 22, 24, 26].
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Next, we list some of the known results concerning a P≥n-factor. Akiyama et al. [1]
demonstrated the following classical result.

Theorem 1.1 ([1]) A graph G possesses a P≥2-factor if and only if

i(G − X) ≤ 2|X|
holds for any vertex subset X of G.

In order to characterize a graph possessing a P≥3-factor, Kaneko [7] put forward the concept
of a sun. A graph R is factor-critical if R−{x} possesses a perfect matching for any x ∈ V (R).
Let R be a factor-critical graph with vertex set V (R) = {x1, x2, . . . , xn}. By adding new vertices
y1, y2, . . . , yn together with new edges x1y1, x2y2, . . . , xnyn to R, a new graph is derived. Then
the resulting graph is defined as a sun. In terms of Kaneko, K1 and K2 are also suns. A sun
with at least six vertices is said to be a big sun. A component of a graph G is called a sun
component if it is isomorphic to a sun. We write sun(G) for the number of sun components of
G.

Kaneko [7] showed a characterization for a graph possessing a P≥3-factor. Kano et al. [8]
posed a shorter proof.

Theorem 1.2 ([7, 8]) A graph G contains a P≥3-factor if and only if

sun(G − X) ≤ 2|X|
holds for any vertex subset X of G.

A graph G is called P≥n-factor covered if G admits a P≥n-factor containing e for any
e ∈ E(G), which is first defined by Zhang and Zhou [17]. Furthermore, they acquired two
necessary and sufficient conditions for the existence of a P≥2-factor covered graph and a P≥3-
factor covered graph.

Theorem 1.3 ([17]) A connected graph G is P≥2-factor covered if and only if

i(G − X) ≤ 2|X| − ε1(X)

for any vertex subset X of G, where ε1(X) is defined by

ε1(X) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2, if X is not an independent set;

1, if X is a nonempty independent set and

G − X possesses a nontrivial component;

0, otherwise.

Theorem 1.4 ([17]) A connected graph G is P≥3-factor covered if and only if

sun(G − X) ≤ 2|X| − ε2(X)

for any vertex subset X of G, where ε2(X) is defined by

ε2(X) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2, if X is not an independent set;

1, if X is a nonempty independent set and

G − X possesses a non-sun component;

0, otherwise.
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The binding number was first introduced by Woodall [16]. We denote by NG(x) the set
of vertices adjacent to a vertex x in G, and write NG(X) for

⋃
x∈X NG(x). The binding

number of G is the minimum value of |NG(X)|
|X| taken over all nonempty subsets X of V (G) with

NG(X) �= V (G), and is denoted by bind(G), that is,

bind(G) = min
{ |NG(X)|

|X| : ∅ �= X ⊆ V (G), NG(X) �= V (G)
}

.

The relationships between binding numbers and graph factors were studied by Katerinis
and Woodall [12], Zhou [18, 19], Plummer and Saito [15]. Zhou et al. [25] posed three suffi-
cient conditions for graphs to be P≥3-factor covered. Zhou [23] acquired two binding number
conditions for a graph to be P≥2-factor covered and P≥3-factor covered, which are shown in the
following.

Theorem 1.5 ([23]) Let G be a connected graph. Then G is P≥2-factor covered if

bind(G) >
2
3
.

Theorem 1.6 ([23]) Let G be a connected graph. Then G is P≥3-factor covered if

bind(G) ≥ 3
2
.

We generalize the concept of a P≥n-factor covered graph, and define first the concept of
a (P≥n, k)-factor-critical covered graph. A graph G is called (P≥n, k)-factor-critical covered
if G − D is P≥n-factor covered for any D ⊆ V (G) with |D| = k. In this paper, we show two
sufficient conditions for a graph to be (P≥2, k)-factor-critical covered and (P≥3, k)-factor-critical
covered, which are given in Sections 2 and 3.

2 Binding Number and (P≥2, k)-factor-critical Covered Graphs

Next, we give a binding number condition for a graph being (P≥2, k)-factor-critical covered,
which is a generalization of Theorem 1.5.

Theorem 2.1 Let k be an integer with k ≥ 0, and let G be a graph with κ(G) ≥ k + 1. Then
G is (P≥2, k)-factor-critical covered if bind(G) > 2+k

3 .

Proof Theorem 2.1 holds for k = 0 by Theorem 1.5. Next, we consider k ≥ 1. Set H = G−D

for any D ⊆ V (G) with |D| = k. It is obvious that H is connected. In order to demonstrate
Theorem 2.1, it suffices to show that H is P≥2-factor covered. On the contrary, we assume that
H is not P≥2-factor covered. Then it follows from Theorem 1.3 that

i(H − X) ≥ 2|X| − ε1(X) + 1 (2.1)

for some vertex subset X of H.
We shall consider three cases by the value of |X|.

Case 1 |X| = 0.
Obviously, ε1(X) = 0. In terms of (2.1), we get

i(H) ≥ 1. (2.2)

Note that H is connected, which implies i(H) = 0, contradicting (2.2).

Case 2 |X| = 1.
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We write Y = {x : dH−X(x) = 0, x ∈ V (H) \ X}.
Subcase 2.1 H − X does not possess a nontrivial component.

Clearly, ε1(X) = 0. According to (2.1), we derive

i(H − X) ≥ 2|X| − ε1(X) + 1 = 2|X| + 1 = 3. (2.3)

Obviously, |Y | = i(H − X) ≥ 2|X| + 1 = 3 by (2.3). We easily see that Y �= ∅ and
|NG(Y )| ≤ |D ∪ X| = |D| + |X| = k + 1. Combining these with the definition of bind(G), we
have

bind(G) ≤ |NG(Y )|
|Y | ≤ 1 + k

3
,

which conflicts that bind(G) > 2+k
3 .

Subcase 2.2 H − X possesses a nontrivial component Q.
In this case, ε1(X) = 1. From (2.1), we acquire

i(H − X) ≥ 2|X| − ε1(X) + 1 = 2|X| = 2.

Note that |Y | = i(H −X) ≥ 2 and |V (Q)| ≥ 2. Then we easily see that |NG(Y ∪ V (Q))| ≤
|D| + |X| + |V (Q)| = k + 1 + |V (Q)|. By the definition of bind(G), we get

bind(G) ≤ |NG(Y ∪ V (Q))|
|Y ∪ V (Q)|

≤ k + 1 + |V (Q)|
|Y | + |V (Q)|

≤ k + 1 + |V (Q)|
2 + |V (Q)|

= 1 +
k − 1

2 + |V (Q)|
≤ 1 +

k − 1
4

=
3 + k

4
,

which contradicts that bind(G) > 2+k
3 by k ≥ 1.

Case 3 |X| ≥ 2.
Note that ε1(X) ≤ 2. From (2.1), we get

i(H − X) ≥ 2|X| − ε1(X) + 1 = 2|X| − 1 = 3. (2.4)

Let W = {x : dH−X(x) = 0, x ∈ V (H) \ X}. It follows from (2.4) that W �= ∅ and
|NG(W )| ≤ |D ∪ X| = |D| + |X| = k + |X|. In light of (2.4) and the definition of bind(G), we
derive

bind(G) ≤ |NG(W )|
|W |

=
|NG(W )|
i(H − X)

≤ k + |X|
2|X| − 1
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=
1
2

(

1 +
2k + 1

2|X| − 1

)

≤ 1
2

(

1 +
2k + 1
4 − 1

)

=
2 + k

3
,

which contradicts that bind(G) > 2+k
3 . Theorem 2.1 is verified. �

Remark 2.2 Now, we claim that the condition bind(G) > 2+k
3 in Theorem 2.1 is sharp.

Set G = Kk+2 ∨ (3K1), where k is a nonnegative integer, and ∨ denotes “join”. It is easily
seen that bind(G) = 2+k

3 and κ(G) = k + 2 > k + 1. For any D ⊆ V (Kk+2) with |D| = k, let
H = G − D. We select X = V (Kk+2) \ D ⊆ V (H), and so |X| = 2. Note that X is not an
independent set. Then we admit ε1(X) = 2. Thus, we acquire

i(H − X) = 3 > 2 = 2|X| − ε1(X).

Using Theorem 1.3, H is not P≥2-factor covered, that is, G is not (P≥2, k)-factor-critical covered.

Remark 2.3 Now, we claim that the condition κ(G) ≥ k + 1 in Theorem 2.1 cannot be
replaced by κ(G) ≥ k.

Let G = Kk ∨ (2K1), where k is an integer with k ≥ 5. Obviously, κ(G) = k and bind(G) =
k
2 = 3k

6 ≥ 2k+5
6 > 2k+4

6 = 2+k
3 . For D = V (Kk), let H = G−D. Obviously, H is not P≥2-factor

covered, and so G is not (P≥2, k)-factor-critical covered.

3 Binding Number and (P≥3, k)-factor-critical Covered Graphs

In this section, we pose a binding number condition for a graph to be (P≥3, k)-factor-critical
covered, which is an extension of Theorem 1.6.

Theorem 3.1 Let k be an integer with k ≥ 1, and let G be a graph with κ(G) ≥ k + 1 and
|V (G)| ≥ k + 3. If bind(G) ≥ 4+k

3 , then G is (P≥3, k)-factor-critical covered.

Proof For any D ⊆ V (G) with |D| = k, we write H = G − D. Clearly, H is connected. To
justify Theorem 3.1, it suffices to verify that H is (P≥3, k)-factor covered. Next, we assume
that H is not (P≥3, k)-factor covered. Then by Theorem 1.4, we acquire

sun(H − X) ≥ 2|X| − ε2(X) + 1 (3.1)

for some vertex subset X of H.

Claim 1 X �= ∅.
Proof Let X = ∅. Then ε2(X) = 0. Using (3.1), we admit

sun(H) = sun(H − X) ≥ 2|X| − ε2(X) + 1 ≥ 1. (3.2)

Note that H is connected. Combining this with (3.2),

1 ≤ sun(H) ≤ ω(H) = 1,

that is,

sun(H) = ω(H) = 1. (3.3)
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It follows from (3.3), H = G − D and |V (G)| ≥ k + 3 that H is a big sun (otherwise,
H = K1 or K2. Then |V (H)| ≤ 2. Thus, we possess that |V (G)| = |V (H)| + |D| ≤ 2 + k,
which contradicts that |V (G)| ≥ k + 3). We write R for the factor-critical subgraph of H, and
so |V (H) \ V (R)| = |V (R)| ≥ 3. Thus, we acquire

bind(G) ≤ |NG(V (H) \ V (R))|
|V (H) \ V (R)|

=
|NG(V (G) \ (D ∪ V (R)))|

|V (R)|
≤ |D ∪ V (R)|

|V (R)|
=

|D| + |V (R)|
|V (R)|

= 1 +
k

|V (R)|
≤ 1 +

k

3
,

which contradicts that bind(G) ≥ 4+k
3 . Claim 1 is verified. �

Assume that there exist a isolated vertices, b K2’s and c big sun components Q1, Q2, . . . , Qc,
where |V (Qi)| ≥ 6 for 1 ≤ i ≤ c, in H − X. By (3.1), we get

sun(H − X) = a + b + c ≥ 2|X| − ε2(X) + 1. (3.4)

Case 1 |X| = 1.

Subcase 1.1 H − X admits a non-sun component Y .
We easily see that ε2(X) = 1 and |V (Y )| ≥ 3 (otherwise, Y = K1 or K2, which is a sun

component, a contradiction). Then from (3.4), we obtain

sun(H − X) = a + b + c ≥ 2|X| − ε2(X) + 1 = 2|X| = 2. (3.5)

Subcase 1.1.1 a ≥ 1.
Let W = V (Y ) ∪ V (aK1) ∪ V (bK2) ∪ V (Q1) ∪ · · · ∪ V (Qc). Then

|NG(W )| ≤ |D| + |X| + |V (Y )| + 2b +
c∑

i=1

|V (Qi)|

= k + 1 + |V (Y )| + 2b +
c∑

i=1

|V (Qi)|

and

|W | = |V (Y )| + a + 2b +
c∑

i=1

|V (Qi)| ≥ 3 + a + 2b + 6c.

Combining these with (3.5) and the definition of bind(G),

bind(G) ≤ |NG(W )|
|W |

≤ k + 1 + |V (Y )| + 2b +
∑c

i=1 |V (Qi)|
|V (Y )| + a + 2b +

∑c
i=1 |V (Qi)|
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= 1 +
k + 1 − a

|V (Y )| + a + 2b +
∑c

i=1 |V (Qi)|
≤ 1 +

k

3 + a + 2b + 6c

≤ 1 +
k

3 + a + b + c

≤ 1 +
k

5
,

which contradicts that bind(G) ≥ 4+k
3 since k ≥ 1.

Subcase 1.1.2 a = 0.
Clearly, b + c ≥ 2 by (3.5). Setting M = Y ∪ (bK2) ∪ Q1 ∪ · · · ∪ Qc. Then there exist

u, v ∈ V (M) with dM (u) = 1 and uv ∈ E(M). Thus, we derive

|NG(V (M) \ {v})| ≤ |D| + |X| + |V (Y )| + 2b +
c∑

i=1

|V (Qi)| − 1

= k + 1 + |V (Y )| + 2b +
c∑

i=1

|V (Qi)| − 1

= k + |V (Y )| + 2b +
c∑

i=1

|V (Qi)|

and

|V (M) \ {v}| = |V (Y )| + 2b +
c∑

i=1

|V (Qi)| − 1 ≥ 3 + 2b + 6c − 1 = 2 + 2b + 6c.

Combining these with b + c ≥ 2, bind(G) ≥ 4+k
3 and the definition of bind(G),

4 + k

3
≤ bind(G)

≤ |NG(V (M) \ {v})|
|V (M) \ {v}|

≤ k + |V (Y )| + 2b +
∑c

i=1 |V (Qi)|
|V (Y )| + 2b +

∑c
i=1 |V (Qi)| − 1

= 1 +
k + 1

|V (Y )| + 2b +
∑c

i=1 |V (Qi)| − 1

≤ 1 +
k + 1

2 + 2b + 6c

≤ 1 +
k + 1

2 + 2b + 2c

≤ 1 +
k + 1

6
,

which implies
1
3
≤ 1

6
,

it is a contradiction.

Subcase 1.2 H − X does not admit a non-sun component.
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Clearly, ε2(X) = 0 by the definition of ε2(X). It follows from (3.4) that

sun(H − X) = a + b + c ≥ 2|X| − ε2(X) + 1 = 2|X| + 1 = 3. (3.6)

Subcase 1.2.1 a ≥ 1.
We write Z = (aK1) ∪ (bK2) ∪ Q1 ∪ · · · ∪ Qc. In light of bind(G) ≥ 4+k

3 and the definition
of bind(G), we have

4 + k

3
≤ bind(G)

≤ |NG(V (Z))|
|V (Z)|

≤ |D| + |X| + 2b +
∑c

i=1 |V (Qi)|
a + 2b +

∑c
i=1 |V (Qi)|

=
k + 1 + 2b +

∑c
i=1 |V (Qi)|

a + 2b +
∑c

i=1 |V (Qi)|

≤ k + a + 2b +
∑c

i=1 |V (Qi)|
a + 2b +

∑c
i=1 |V (Qi)|

= 1 +
k

a + 2b +
∑c

i=1 |V (Qi)| ,

that is,

0 ≥ (k + 1)
(

a + 2b +
c∑

i=1

|V (Qi)|
)

− 3k. (3.7)

Using (3.6), (3.7) and |V (Qi)| ≥ 6, we get

0 ≥ (k + 1)
(

a + 2b +
c∑

i=1

|V (Qi)|
)

− 3k

≥ (k + 1)(a + 2b + 6c) − 3k

≥ (k + 1)(a + b + c) − 3k

≥ 3(k + 1) − 3k

= 3,

which is a confliction.

Subcase 1.2.2 a = 0.
Let T = (bK2)∪Q1∪· · ·∪Qc. Then there exist x, y ∈ V (T ) with dT (x) = 1 and xy ∈ E(T ).

By bind(G) ≥ 4+k
3 and the definition of bind(G),

4 + k

3
≤ bind(G)

≤ |NG(V (T ) \ {y})|
|V (T ) \ {y}|

≤ |D| + |X| + 2b +
∑c

i=1 |V (Qi)| − 1
2b +

∑c
i=1 |V (Qi)| − 1

=
k + 2b +

∑c
i=1 |V (Qi)|

2b +
∑c

i=1 |V (Qi)| − 1
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= 1 +
k + 1

2b +
∑c

i=1 |V (Qi)| − 1
,

which implies

0 ≥ 2b +
c∑

i=1

|V (Qi)| − 4. (3.8)

According to (3.6), (3.8), a = 0 and |V (Qi)| ≥ 6, we obtain

0 ≥ 2b +
c∑

i=1

|V (Qi)| − 4

≥ 2b + 6c − 4

≥ 2b + 2c − 4

= 2(a + b + c) − 4

≥ 6 − 4

= 2,

a contradiction.

Case 2 |X| ≥ 2.
It is obvious that ε2(X) ≤ 2. It follows from (3.4) that

sun(H − X) = a + b + c ≥ 2|X| − ε2(X) + 1 ≥ 2|X| − 1 ≥ 3. (3.9)

Subcase 2.1 b + c = 0.
In this case, we have a ≥ 3 by (3.9). Thus, we derive by (3.9) and the definition of bind(G)

bind(G) ≤ |NG(V (aK1))|
|V (aK1)|

≤ |D| + |X|
a

=
2k + 2|X|

2a

≤ 2k + a + b + c + 1
2a

=
2k + a + 1

2a

<
2k + 2a

2a

= 1 +
k

a

≤ 1 +
k

3
,

which conflicts that bind(G) ≥ 4+k
3 .

Subcase 2.2 b + c ≥ 1.
Let N = (bK2)∪Q1∪· · ·∪Qc. It is easily seen that there exist u, v ∈ V (N) with dN (u) = 1

and uv ∈ E(N). In terms of bind(G) ≥ 4+k
3 and the definition of bind(G), we acquire

4 + k

3
≤ bind(G)
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≤ |NG(V (aK1) ∪ (V (N) \ {v}))|
|V (aK1) ∪ (V (N) \ {v})|

≤ |D| + |X| + 2b +
∑c

i=1 |V (Qi)| − 1
a + 2b +

∑c
i=1 |V (Qi)| − 1

=
k + |X| + 2b +

∑c
i=1 |V (Qi)| − 1

a + 2b +
∑c

i=1 |V (Qi)| − 1

= 1 +
k + |X| − a

a + 2b +
∑c

i=1 |V (Qi)| − 1

≤ 1 +
k + |X| − a

a + 2b + 6c − 1
,

which implies
3|X| ≥ 4a + 2b + 6c − 1 + k(a + 2b + 6c − 4).

Combining this with (3.9), b + c ≥ 1 and k ≥ 1, we admit

3|X| ≥ 4a + 2b + 6c − 1 + k(a + 2b + 6c − 4)

≥ 4a + 2b + 6c − 1 + (a + 2b + 6c − 4)

= 5a + 4b + 12c − 5

≥ 4(a + b + c) − 5

= 4sun(H − X) − 5

≥ 4(2|X| − 1) − 5

= 8|X| − 9,

that is,

|X| ≤ 9
5

< 2,

which contradicts that |X| ≥ 2. Theorem 3.1 is demonstrated. �
We immediately derive the following result when setting k = 1 in Theorem 3.1.

Corollary 3.2 Let G be a graph with κ(G) ≥ 2 and |V (G)| ≥ 4. If bind(G) ≥ 5
3 , then G−{x}

is P≥3-factor covered for any x ∈ V (G).

A claw is a graph isomorphic to K1,3. A graph is said to be claw-free if it does not include
induced claw. The following result on the existence of {P3}-factors in vertex deleted graphs is
known, which is similar to Corollary 3.2.

Theorem 3.3 ([13]) Let G be a 2-connected claw-free graph of order n. If n ≡ 1 (mod 3),
then G − {x} has a {P3}-factor for any x ∈ V (G).

Remark 3.4 Next, we claim that the assumption on binding number in Theorem 3.1 is
best possible, that is, the condition bind(G) ≥ 4+k

3 in Theorem 3.1 cannot be replaced by
bind(G) ≥ 4+k

4 .
Let k ≥ 1 be an integer. We construct a graph G = Kk+2 ∨ (2K1 ∪ K2), where ∨ denotes

“join”. Obviously, bind(G) = 4+k
4 and κ(G) = k + 2 > k + 1. Set H = G − D, where

D ⊆ V (Kk+2) with |D| = k. Select X = V (Kk+2) \ D ⊆ V (H), and so |X| = 2. Note that X

is not an independent set, and so ε2(X) = 2. Therefore, we have

sun(H − X) = 3 > 2 = 2|X| − ε2(X).
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In light of Theorem 1.4, H is not P≥3-factor covered, and so G is not (P≥3, k)-factor-critical
covered.

Remark 3.5 Next, we claim that the condition κ(G) ≥ k + 1 in Theorem 3.1 cannot be
replaced by κ(G) ≥ k.

We construct a graph G = Kk ∨ (2K1), where k is an integer with k ≥ 8. Apparently,
κ(G) = k and bind(G) = k

2 = 3k
6 ≥ 8+2k

6 = 4+k
3 . For D = V (Kk), set H = G−D. It is obvious

that H is not P≥3-factor covered, and so G is not (P≥3, k)-factor-critical covered.
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