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1 Introduction

Let (E, d) be a metric space equipped with o-field B such that d(-, ) is B x B-measurable. Given
p > 1 and two probability measures p and v on E, define the LP-Wasserstein distance between

Woatnr) =int ([ [ XEd(x,ym(dx,dy))l/p,

where the infimum is taken over all probability measures m on the product space F x E with

wand v:

marginal distribution u and v. The relative entropy of v with respect to p is defined by

d
/ log —Vdu, if v <<
E dp

H(v|p) = (L1)

+00, otherwise.

We say that the probability p satisfies a W, H transportation cost-information inequality
on (E,d) if there exists a constant C' > 0 such that for any probability measure v € M;(E)

Received January 31, 2019, revised September 6, 2019, accepted October 23, 2019
The first author is supported by National Natural Science Foundation of China (Grant Nos. 11571043, 11431014

and 11871008); the second author is supported by National Natural Science Foundation of China (Grant Nos.

11871382 and 11671076)
1) Corresponding author



122 Ma Y. T. and Wang R.

(the space of all probability measures on E),

Wy.a(p.v) < V2CH(u ). (1.2)

Let « : [0,00) — [0, 00] be a non-decreasing left-continuous convex function, with a(0) = 0.
 is said to satisfy the o — W, H if for all probability measure v on E,

a(Wp.a(p,v)) < H(v|p). (1.3)

The inequality (1.2) is a particular case of (1.3) with a(t) = t*/?/(2C) for any t > 0.

The properties W,H,p = 1,2 are of particular interest. They have been brought into
relation with the phenomenon of measure concentration, functional inequalities, Hamilton—
Jacobi’s equation, optimal transport problem, large deviations, (e.g., [2, 3, 5, 10, 11, 14—
16, 28, 30, 31]) and references therein. For example, we give Gozlan—Léonard’s characterization
for a« — W1 H transportation cost inequality.

Theorem 1.1 (Gozlan-Léonard [15]) Let v : [0,00) — [0, 00] be a non-decreasing left contin-
uous convex function with a(0) = 0. The following properties are equivalent:
(i) The « — W1 H inequality below holds

a(Wra(v,p) < H(v|p), Yve Myi(E);

(ii) For every f: (E,d) — R bounded and Lipschitzian with | f||rip < 1,
/ A=y < @ D) A5, (1.4)
E

where a*(\) := sup,~o(rA — a(r)) is the semi-Legendre transformation;
(ili) Let (&x)r>1 be a sequence of independent and identically distributed random variables

taking values in E of common law p. For every f : E — R with || f|luip < 1,

1 n
<Z (k) — ><e”“(r), r>0, n>1.
n

The equivalence of (i) and (ii) is a generalization of Bobkov-Gdétze’s criterion [5] for quadratic
a, and (iii) gives a probability meaning to the & — Wi H inequality.

The W5 H inequalities on the path spaces of stochastic (partial) differential equations driven
by Gaussian noises have been investigated by many authors, for example, [4, 10, 12, 23] for
stochastic differential equations (SDEs) and [6, 26, 33] for stochastic partial differential equa-
tions (SPDEs).

The o« — W1 H inequalities on the path spaces of SDEs with jumps have also been investi-
gated, see [32] for SDEs driven by pure jump processes, [19] for SDEs driven by both Gaussian
and jump noises, and [27] for regime-switching diffusion processes.

The transportation inequalities for non-globally dissipative SDEs with jumps were studied
in Majka [21], by using the mirror coupling for the jump part and the reflection coupling for
the Brownian part, for bounding Malliavin derivatives of solutions of SDEs with both jump and
Gaussian noise. We would also like to mention the works of [18] and [20] for the exponential
convergence with respect to the L!-Wasserstein distance when the drift is dissipative outside a

compact set.
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The aim of this paper is to prove that the « — W1 H transportation cost inequalities hold for
stochastic reaction-diffusion equations driven by both Gaussian and Lévy noises under the L'
distance in the path space. The reaction term can be chosen to be Lipschitz continuous, or to
be a polynomial, for example f(x) = —z3 + Cyx for some C; € R. The main ingredient in our
study is the finite dimensional approximations, which is more or less standard in the literature
for the Lipschitz case, but it is difficult in the non-Lipschitz case.

This paper is organized as follows. In Section 2, we present the framework for the stochastic
reaction-diffusion equations with jumps and with Lipschitz reaction terms, and then prove the
transportation cost inequalities. In Section 3, we first establish some tightness results for
approximating processes of the system with non-Lipschitz reaction terms, and then prove the
transportation cost inequalities.

2 Transportation Cost Inequalities for SPDE with Lévy Noise and Lipschitz Re-
action Term

2.1 SPDE with Lévy Noise and Lipschitz Reaction Term

Let H := L?(0,1) be the space of square integrable real-valued functions on [0, 1]. The norm
and the inner product on H are denoted by | - ||z and (-, -)u, respectively. Let H*(0, 1) be the
Sobolev space of all functions in H whose derivatives up to order k also belong to H. H}(0,1) is
the subspace of H!(0, 1) of all functions whose values at 0 and 1 vanish. Let A be the Laplace
operator on H:

32
Az := 8—€2x(§), x € H3(0,1) NH(0,1).
It is well known that A is the infinitesimal generator of a strongly continuous semigroup S(t) :=
et t > 0. {ex(€) := v2sin(km€)}x>1 is an orthonormal basis of H consisting of the eigenvectors
of A, ie.,
Aek = —)\kek with >\k = ]f271'2.

For any 0 € R, let

Hy := {x = Zxkek C(zR)E>1 € R,Z/\Z|ack|2 < oo},

k>1 k>1
endowed with norm
1/2
lelles o= (3 Adlon?)
k>1
Then, for any 6 > 0, Hy is densely and compactly embedded in H. Particularly, denote
V :=H; = H}(0,1), whose dual space is V* = H_;. The norm and the inner product on V are
denoted by || - ||v and (-, -)y, respectively. If v« (-, -)v denotes the duality between V and its dual
space V*, we have
v+ {u,v)y = (u,v)g, forany ue H,veV.
Let (Q,F, (Fi)i>0,P) be a filtered probability space, (X, B(X)) be a measurable space, and
¥ a o-finite measure on it. Let N (dt, du) be a Poisson random measure on R x X with intensity

measure dtd(du), N(dt,du) = N(dt,du) — dt9(du) the compensated Poisson random measure,

and (B8%)>1 a sequence of independent and identically distributed one dimensional standard
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Brownian motions on the probability space (Q,F, (F;)i>0,P). Then g, := Zk21 Bey, is an
H-cylindrical Brownian motion.
Consider the following SPDE on the Hilbert space H:

dXt = AXtdt + f(Xt)dt + O'(Xt)dﬂt + /X G(Xt_, ’U)N(dt, d’l}), (2 1)

Xog=x € H,

where = is Fp-measurable. The coefficients f : H — H, o : H — Ly(H;H) (the space of all
Hilbert—Schmidt operators from H to H), G : Hx X — H are Fréchet continuously differentiable,
and they satisfy the following conditions:

(H1) The reaction term f is Lipschitz continuous, i.e., there exists a positive constant Cy > 0
such that

1f (@) = fW)lle < Crllz — ylla, Va,y € H.
(H2) o is Lipschitz continuous, i.e., there exists a positive constant C, > 0 such that
lo(z) —o(y)llus < Collz — yllu, Vz,y € H.

(H3) G satisfies the following conditions:
/ 1G(z,v) ) [E0(dv) < Celle = yllis (2.2)

/X 1G (e, ) [20(dv) < Ca(l + [l2]}3). (2.3)

Let D([0,T]; H) be the space of all right continuous with left limits H-valued functions on
[0, T, endowed with the Skorokhod topology. Recall the following results about equation (2.1)
from [25, Theorem 3.3] and [35, Lemma 3.13].
Theorem 2.1 ([25, 35]) Under Conditions (H1)—(H3), for any x € L?>(Q;H), there exists a
unique H-valued progressively measurable process {Xi}iepo,r7 € D([0,T7; H) N L2((0,T};V) for
any T > 0, and for any ¢ € V, it holds that a.s.
t

(X1, & = (. B + / (AKX, 6)vds + < [ otxas. ¢>H

/ / )uN (ds, dv). (2.4)

T
E[ sup |\Xt||]%1+/ ||Xt|%,dt} < 0. (2.5)
0<t<T 0

Furthermore, we have

Remark 2.2 Recall that A\; is the first eigenvalue of —A. Let
K =2\ — (2C; + C2 + Cg). (2.6)
By (H1)-(H3), we know that for all z1,z9 € H,
2(x1 — @9, Az1 — x2))m + 2(1 — @2, f(21) = f(z2))u + [lo(21) — o(2) |[fis

/ 1G(1,0) — G2, 0)|20(dv)
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< —K|21 — 22| (2.7)

When K > 0, (2.7) is the globally dissipative condition, which is used to guarantee the existence
of invariant measure and further to obtain the transportation cost inequality for this invariant
measure. For example, under the globally dissipative condition, the following results hold: the
Markov process {X;};>0 admits an invariant measure (e.g. [24, Chapter 16]); for the SPDE
driven by additive Gaussian noise (i.e., G = 0 and o is a constant matrix), Da Prato et
al. [9] obtained the log-Sobolev inequality for the invariant measure of {X;};>0, and Wu and
Zhang [33] obtained the log-Sobolev inequalities for the process-level law on the continuous
path space with respect to the L?-metric, which are stronger than the transportation cost
inequality WoH by [22]; for finite dimensional stochastic differential equations with jumps,
the transportation cost inequalities W71 H were obtained for their invariant probability measure
as well as for their process-level law on the right continuous paths space with respect to the
L'-metric, see [32] and [19].

2.2 Transportation Cost Inequalities for SPDE with Lévy Noise and Lipschitz Reaction Term
Recall the following result, which tells that the W, H-inequality is stable under the weak con-

vergence.

Lemma 2.3 ([10, Lemma 2.2]) Let (E,d) be a metric, separable and complete space and
(tn, W)nen a family of probability measures on E. Assume that p, € WpyH(C) for alln € N
and p, — p weakly. Then p € W,H(C).

The first named author [19] proved the transportation cost inequalities for SDE with Lévy
noises under the globally dissipative condition. Now, we use the finite dimensional approxima-
tion’s technique and Lemma 2.3 to prove the transportation cost inequalities for SPDE (2.1).
Theorem 2.4 Assume Conditions (H1)-(H3) hold, K > 0 in (2.6), |lo(z)|lus < & for any
x € H and there is some Borel-measurable function G(u) on X such that |G(z,v)| < G(v) for
all z €e H,v € X and

IS0 A = / (AF0) _ AG(v) — 1)9(dv) < oo (2.8)
X
The following properties hold:

(1) {Xi}e>0 admits a unique invariant probability measure p, and for any p € [1,2], t > 0,
v e M;(H),

Wp,a(WPi,p) < e W a(v, ), (2.9)

where d(z,y) = ||v — y||m.
(2) For each T > 0,z € H, the Markov transition probability Pr(x,dy) satisfies the following

o — W1 H transportation inequality:
ar(Wia(v, Pr(z,dy))) < H(v|Pr(z,dy)), Vv e Mi(H), (2.10)

where

T 5222
ar(r) := sup {r)\ — / A(e*Kt)\)dt _ (1— eQKT)}
A>0 0 4K

1 *
> E’h/z(K?"):
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with va(X) := A(X) + ad?A?/2 and 7} (r) := supys(rA —va(A)), r > 0. In particular, for the
invariant probability measure p,
L .
712 (EWia(v, 1)) < aco(Wialv, 1) < H(v|p), (2.11)
for all v € My (H).
(3) For each T > 0, the law P, of Xjo1), the solution of (2.1) with Xo = x being a fized
point in H, satisfies the W1 H on the space D([0,T]; H),

ar(Wia,, (Q,P,)) <H(@Q[P,), VQeM(D(0,T];H)) (2.12)
and
T 52)\2 T
al(r) = il;% (x\r — /o An(®)N)dt — 5 /0 nz(t)dt>
> Ty (rK/T), (2.13)
where n(t) := (1—e~ K /K and dr1 (y1,72) fo lv1 (t) =2 (¢) [|[mdt for any v1,v2 € D([0, T]; H).

According to the proof of [32, Corollary 2.7], we can apply part (3) of Theorem 2.4 to obtain

the following result.
Corollary 2.5 In the framework of Theorem 2.4, let A be a family of real Lipschitzian func-
tions f on B with || |1y = S, syest £ (2) — F(9)1/llz — gl < 1, and

1= sy (3 [ 00t =)

loglP(Zy > E[Zr] +7) < —af(Tr) < —T~; (Kr).

We have for all v, T > 0,

The same inequality holds for Zy = Wi q4(Lr, ), where Ly = %fOT 0x.ds is the empirical

measure.

Proof of Theorem 2.4  Recall that {ej, eq, ...} is an orthonormal basis of H. Let P, : V* — H,,
be defined by
P,y = ZV* (y,ei)vei, yeV™ (2.14)

i=1

Then P,|g is also the orthogonal projection onto H,, in H and we have
v+ (P Au, v)y = (PpyAu,v)g = v+ (Au,v)y, for allu eV v e H,,

and ||v|m, = ||v||x for all v € H,.
Let 6t(n) =", Bie;. Then for any x € H, we have

P,o(z)dB, = Poo(z)dp™.

Consider the following Galerkin approximations: X (") e H,, denotes the solution of the

following stochastic differential equation:
dx™ = p,Ax™dt + P f(X™)dt + Poo(X™)dp™

+ / P.G(X™ v)N(dt, dv), (2.15)
X
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with initial condition X(g") = P, Xy = P,z € H,,. By the Lipschitz continuity of f,o and G, we
know that Equation (2.15) admits a unique strong solution X,, € D([0, T]; H,,) N L2([0, T]; V,,).

Furthermore, we have

T
supE{ sup ||X,§">||§Hn+/ ||Xt(")||§,ndt] < 0. (2.16)
n>1  [0<t<T 0

Since A; is the first eigenvalue of —A, by (H1)—(H3), we have that for any xy, z € H,,
2(xq — x9, PoA(x1 — x2)) 4+ 2{x1 — T2, Prf(x1) — Pnf(22))
+1Pa(o(@1) = ow2)) s + /X [PaG (1, 0) = PuG (22, 0) |, (dv)
< K|y — 2] (2.17)

If K > 0, by [19, Theorem 2.2], we know that all the results in Theorem 2.4 replacing X by
X () hold. Hence, Proposition 2.6 below together with Lemma 2.3, implies that Theorem 2.4
holds. The proof is complete. O

Proposition 2.6 Under Conditions (H1)—-(H3), for any t > 0, we have
¢
lim E{ sup || X, — X3 +/ | X, — XM |2ds| = 0. (2.18)
n—oo 0<s<t 0

Proof Applying Itd’s formula to || X; — Xt(n)HHz_H, we obtain that

1X: — X1 +2 / 1, — X0 s
= 107 Pl +2 [ (X~ XU, (X = Puf (K
vz [ (X X0, 0(X,) — Pao(X0)]dB0)s
# [ 100 = Pao (X s
+ 2/t /X<XS_ — XM G(X,_,v) — PaG(X™ 0))uN(ds, dv)
0

t
+/ / |G(X,_,v) — PuG(X™ 0)|ZN(ds, dv). (2.19)
0 Jx
Taking the supremum up to ¢ in (2.19), and then taking the expectation, we have

t
[ sup X, — X([] + 28 [ )X, - X(V s
0<s<t 0

t
< E[|[(I - P,)e|3] + 2E / (Xe = X0, F(Xa) = Pof(X0))lds

|

/ / (X,_ = X" G(X,_,v) — P,G(X™ v))uN(dr, dv)
0 X

+ ZJE[ sup
0<s<t

/0 S<Xr - X" [0(X,) = Pyo(X™)]dB)u

t
+E [ o(X,) = Pao(X(") [rsds
0

+ 2E { sup
0<s<t

|
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[sup / 16 0) = PG )N . o)

0<s<t
= E[||(I - P.)z|2] + 1™ (1) + Ié") () + -+ IV (). (2.20)

For I 1(n), by the Lipschitz continuity of f and the elementary inequality 2ab < a? + b? for all
a,b > 0, we have

'(t) < 2B / t Xy — X, F(Xy) = Pof(Xs))ulds
0
L9 / (X, — X0, By(F(X0) — F(X())slds
0 t
<(1+20))E / I, - X{|fads

+IE/ (I = Po)f(X,)||4ds. (2.21)

By Burkholder-Davis-Gundy’s inequality and the Lipschitz continuity of o, we have

/08<Xr — X", Plo(X,) — o (X™M)]dB, )

Izn) (t) < 2IE[ sup
0<s<t

/ S<Xr — X", [0(X,) — Poo(X,)|dB,)u

0

+ 2]E[ sup

0<s<t

t
<aB| [ = X - o) s
0

1
2

t 2
46,8 [ 13- X las
0

t t
< oE / 1X, — X (| 2ds + 2E / (I = P)o(X) |sds
0

+4C’U]E{ sup || X5 — X || - (/ X5 — X<">||Hds> }

0<s<t
t
< oE / IX. — X |3ds + 2E / (I = P)o(X) s
0 0

1
+ 7E[ sup X, - X(|3]

0<s<t

+ 16C2E /t | X, — XM 2ds. (2.22)
0
For the third term Ién), by the Lipschitz continuity of o, we have
10 <& [ 10 - o Clfisds + B [ 1P~ Pao(X () fsds
< E/Ot I(I = Pa)o(Xs)llfsds + CIE /Ot 1Xs — X {2 ds. (2.23)
By Burkholder-Davis—Gundy’s inequality and the Lipschitz continuity of G, we have

Ii")(t)gﬂi{sup // (X,_ —x" (1 - P)G(Xr_,v)mﬁ(dr,dv)}

0<s<t
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+ QE[ sup
0<s<t

2

t
< 4E[ |- xenga - Pn>G<XS,v>||%ﬂz9<dv>ds]
0 X

t 2
+4EU / 1X: = XV 1PAG (X v) = PnG<X§”>,v>||%m(dv>dJ
0 X

t t
<48 [ X, - X 4B [ [ 10 - PG [Eo(d0)ds
0 0 X
t }
+4CGE| [ swp 1~ XOP - 1X, - X0 Ras]
0 0<r<s
t
<4 [ X, - X0ds
0
t
vaz [ [0 - PIGOG ) B9 s
0 X
1 (n) |2
+E| sup X, - x(V|I%
4 Llo<s<t
t
+ 160§;E/ [ Xs — XM 2ds.
0
For the last term, we have
t
) —E / / 1G(Xo_,v) — PaG(X™, 0)|ZN(ds, dov)
0 X
t
=E / / |G(Xs,v) — PoG(X™, 0)||Z9(dv)ds
0 X
t
<B [ [ 1= P)GCX o) Bo(dvds
0 X
t
+ CGE/ [ Xs — X™|2ds.
0
Putting the above inequalities together, we get
E[ sup ||X, - X{V|3]
0<s<t
t
+ 28 [, - X s
0
t
< (I = Pzl +2(7+2C; + 1702 + 17CG)IE/ X, — XM |2 ds
0
t
428 [0 = P)SCX) s
0

t
468 [ = P)o(X) isds
0

+10]E/0 /XH(I—Pn)G(XS,v)H%Hﬂ(dv)ds.

/ / (X, — X, PoG(X, ) — PaG(X™, o)) N (dr, dv)
0 X

1

129

|

(2.24)

(2.25)

(2.26)

By (2.5) and (2.16), we know that E[supg<s<, || Xs — Xs(n)”ﬁ] < oo. Hence, by Gronwall’s
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inequality, Fatou’s lemma and (2.26), we obtain the desired result (2.18). The proof is com-
plete. O

3 Transportation Cost Inequalities for SPDE with Lévy Noise and Non-Lipschitz

Reaction Term
3.1 SPDE with Lévy Noise and Non-Lipschitz Reaction Term
Let H, V,@a,ﬁ/’ be the same as those in precedent section. In this section, we extend the
reaction term f from the Lipschitz case to the non-Lipschitz case, for example, one can take
f(z) = —23 + Cyz for some C; € R.

Consider the following SPDE on the Hilbert space H:

dX, = AX,dt + f(X,)dt + o(X,)dB, + /XG(Xt_,v)N(dt,dv); 5.1)

Xo=x € H.

Suppose that
(H4) the reaction term f is a third degree polynomial with the negative leading coefficient,

f(z) = -2+ Cyz, Vo eH, (3.2)

where C7 € R.
(H5) G satisfies the following condition:

/X 1G (e, ) [80(dv) < Cls(1 + [12]1%). (3.3)

Definition 3.1  An H-valued right continuous with left limits (F;)-adapted process { Xt }iepo,m
is called a solution of (3.1), if for its dt x P-equivalent class X, we have X € D([0,T]; H) N
L?((0,T); V), P-a.s. and the following equality holds P-a.s.:

Xt—x—|—/ Ade+/ f(X ds—|—/ o(Xs)dg,
//G s, 0)N(ds,dv), tel0,T],

where X is any V-valued progressively measurable dt x P version of X.
Brzezniak et al. [8] proved the following result for the solution of Eq. (3.1).
Theorem 3.2 ([8, Theorem 1.2 and Example 2.2]) Under (H2)—(H5), for any = € L5(Q,

Fo,P;H), (3.1) admits a unique solution {Xi}iepo,r), and there exists a constant C' > 0 such
that

T

B( swp [X05) +E [ X103 < 00+ Bl (3.4)
t€[0,T) 0

Theorem 3.3 Assume (H2)-(H5) hold with 2C1 + C2 + Cg < 21, |lo(x)||lus < & for any

x € H and there is some Borel-measurable function G(u) on X such that |G(x,u)| < G(u)

for all z € H,u € X and (2.8) holds. Then the statements in Theorem 2.4 hold with K =

2\ —2C, — C2 - Cg.
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Remark 3.4 The condition 207 + C2? + Cg < 2\, guarantees the global dissipation for the
system (3.1), and we could apply finite dimensional SDE’s results in [19]. When C} is large, the
system (3.1) is dissipative outside a bounded set. By Majka’s work [21], one expects that the
transportation cost inequalities should hold. However, in [21], the non-degenerated conditions of
the noises are assumed to make the mirror coupling successful. Thus, to remove the restriction
of C7 in Theorem 3.3, we need some extra non-degenerated conditions of the noises. This is

not the task of this paper, and we hope to study it in future.

Proof of Theorem 3.3  Recall that P, is the projection mapping from V* into H,, defined
by (2.14). For any n > 1, consider the following stochastic differential equation on H,,:

dx™ = P,AXMdt + P, f(X™)dt + Po(X™)dB™ + / P.G(X™ v)N(dt,dv), (3.5)
X

n)

with initial condition X(() = P,x. According to [1, Theorem 3.1], (3.5) admits a unique strong

solution X (") satisfying that

t t t
X" = px+ / P,AX(™Mds + / P f(X™)ds + / Poo(X(M)dpm)
0 0

/ / PaG(X™ o) N(ds, dv), € [0,T]. (3.6)

Furthermore, using the same method in the proof of (3.4), we have
T
wa(sm>nX?J@n+/"nxﬁWﬁ,|XﬁHaﬁQfscu+WWx@» (3.7)
n>1  \t€[0,T] 0

According to [19, Theorem 2.2] and Lemma 2.3, Theorem 2.4 is established once the fol-
lowing statements are proved:

(C1) {X(™},,51 converges in distribution to X in L2([0,T]; H) as n — oc;

(C2) {X:(Fn)}nzl converges in distribution to {Xr} in H as n — oc.
In the sequel, we will prove Conditions (C1) and (C2). The proof is complete. O

Let (U, | - ||u) be a separable metric space. Given p > 1, a € (0, 1), let W*P(]0,T]; U) be
the Sobolev space of all u € LP([0,T]; U) such that

T u(t) = u(s)lIf
1JURt) — ULS )iy
/ / t—s|1+a1’ dtds < oo,
endowed with the norm

" u(t) — u(s)IIf
ey = [ Butotgans [ [ IO

Lemma 3.5 ([17, Sect.5, Ch.I], [29, Sect.13.3]) Let U C Y C U* be Banach spaces, U
and U* reflexive, with compact embedding of U in Y. For any p € (1,00) and a € (0,1), let
I'=LP([0,T]; U) n WP([0,T); U*) endowed with the natural norm. Then the embedding of T
in LP([0,T];Y) is compact.

We first give a priori estimates for X ().

Lemma 3.6 Under (H2)-(H5), we have

swEsw|XWm+/|nW@ﬂ<m, (3.8)

n>1 0<t<T
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and for any o € (0,1/2),
SliIIE[HX MNiwe2(o,77,5)] < o0. (3.9)

Proof Applying 1t6’s formula with p = 2 (instead of taking p = 5 + 2) in the proof of
[8, Lemma4.2]), one can obtain the estimate (3.8). The details are omitted here. Next, we
prove (3.9). Notice that

t t
XM =P+ / P, AXMds + / P f(X(M)ds

/ (XM + / / P,G(X N(ds, dv)

= Iy 5 () + J5 (1) + T () + Jé")< f). (3.10)
By the same arguments as in the proof of [13, Theorem 3.1], we have
sup B J{"V |l < o0, sup EILL" [0, riive) < o0 (3.11)

Since for t > s,

t
B0 - 17 =8| [ Psx

H
t 2
< CIE(/ V1 +]1x™) %dr)
S

<CE(1+ sup | XE) (- s),

rel0,T]
we have
T
B [ 17Ol < CE(1+ sup XOE) T2 (312)
0 rel0,T]
and
/ /T ||J3”) .]3" (s )”Hdtds < C(o, T)E (1 + sup ||X(n)||6) (3.13)
|t—8\1+2a refor] ") .

By (3.7), (3.12) and (3.13), we obtain

SL;II)EHJPEH)||2VV°"2([O,T];V*) < o0. (314)
Now for Jin), since for t > s,

t 2
EJLI (1) — ()] = EH [ Protxiase
H

< CIE(/ lo(X ||Hsdr>

< cczE( / 1+ |Xﬁ">||%{>dr)

S

< CCZE(1+ sup [ XE) (- ),
r€[0,T]
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similarly to (3.14), we have

supEHJin)||%,V0,2([O)T];V*) < 0. (3.15)
n>1

For Jén), we also have

B0 - 170 = / [ G 0 f @
H

<C’IE/ /HG ) |20(dv)dr

<CC<;]E(1+ sup | X ||H)(t—s).

2

rel0,T]
Similarly to (3.14), we have
supEHJén)||%,V0,2([O)T];V*) < 00. (3.16)
n>1
Putting above inequalities together, we get (3.9). The proof is complete. d

Proposition 3.7 Under (H2)-(H5), for any T > 0,

(a) {XM},51 converges in distribution to X in L*([0,T);H) as n — oo;

(b) {X(")}n>1 converges in distribution to {Xr} in H as n — oo.
Proof (a ) For any subsequence {X (™) };5; C {X(™},5;, by Lemmas 3.5 and 3.6, we know
that {X (")}, is tight in the space L?([0, T]; H). Hence, there exists a subsequence { X (")},
C {X()}; <, which converges in distribution as random variables in the space L([0,T7]; H).
By the uniqueness of the limit (see the proof of [8, Theorem 4.1]) and the arbitrariness of the sub-
sequence {X (™) };51, we know that {X (™}, 5, converges in distribution to X in L2([0, T)]; H)
as n — oo.

(b) Recall that {S(t)}+>0 is the analytic semigroup associated with A. Let S (t) = P,S(t).
According to [24, Chapter 9.3], the solution {X;};>¢ to (3.1) is equivalent to the following form:

¢

Xt—S(t):c—F/O S(t—s)f(Xs)ds—i-/ S(t— s)o(X)dSs

0
—1-/0 /XS(t—s)G(XS,,v)N(ds,dv), (3.17)

and the solution {Xt(n)}tzo to (3.5) is equivalent to following form:

t t
X = g0 (1) P + / SO (¢ — 5) F(X(M)ds + / S (t — 5)o (X ™) P,dB,
0 0

t
+ / / SM (¢ — 5)P,G(X™, v)N(ds, dv). (3.18)
0 Jx
Applying a generalized version of the Skorokhod representation theorem (e.g., [7, Theorem
C.1]), there exist a stochastic basis (Q, F, (F;)¢>0, P) and the random variables
{(*/Z.(n)>X(n)7SE7X7 87 N)}nZl

on this basis satisfying that (z("), X(™) z X 3, N) has the same law as (2™, X" z X, 3, N)
for any n > 1, 2™ — z in H, P-a.s., and X — X in L?([0,T];H), P-a.s.. Next, we prove
that X'(Tn) converges to X7 in probability under P.
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For any n > 1, M > 0, let
Qs = {@ sup XV (@)ll v 1 K@)l < M. (3.19)
te[0,T)

Then by (3.4), (3.8) and Fatou’s lemma, we know that
lim supP(Q 5/) =0, (3.20)

M—00 p>1
and for any M > 0, by the dominated convergence theorem, we have
Tim. E@(/OT I1X, — X)) 2t - 1QHTM) =0. (3.21)
Next, we will prove that
Jim B (X7 - XV 1a,,,) = 0 (3:22)

n,M)
This, together with (3.20), implies (b).
By (3.17) and (3.18), we have for any ¢ € [0, T,

1% — Xl < |1S(6)F — ST () Pzl

+ / [S(t — 5)f(X.) — §™)(t — 5) F(X™)]ds
0

H

i /t[S(t — 5)0(Xo) = ST (t — 5)o(X{")]d
0

H

t — X v) = St — s 7(")1) s, dv
+ / / [S(t — $)G(Xo_,v) — SOt — 5)P,G(X™ o) N (ds, dv)

H
=: Jlﬁn(t) + JQﬁn(t) + Jgﬁn(t) + J41n(t). (323)
By the dominated convergence theorem, we can prove that for k =1,...,4,¢t € [0, 7],
lim EF[J; . (t) - 1g, ] = 0. (3.24)
n— o0 b

Here, we will only prove (3.24) for k = 2 and the other term can be proved similarly but more
easily. Notice that

EP[JZ,n(t) : 1QV,L.M] < EP /t(I - Pn)S(t - S)f(Xs)ds : 1(2",1\4
, o ,

H

+E° /Ot St = 5)[f(X) = f(X)]ds - 1q,,, (3.25)
H
By (2.10) in [34] and the Sobolev embedding theorem, we have
1£ (@)l < CQA+ ll2lliy, ) < CA+ llzlF - llzllv)- (3.26)
Since P, — I as n — oo, by (3.4) and the dominated convergence theorem, we have
Ef / I = PS(E ) (5,) s
< CE /Ot I = Po)ll - (1 + 1 Xl - [ Xsllw)ds — 0, asn — oo. (3.27)

By (2.8) in [34] and the Sobolev embedding theorem, we have

1£(@) — F@)lla < CQA+[lelZ, , + lyliE,,)le - ylli
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S O [lzlle - =llv + lylle - [lzllv)llz — ylle- (3.28)

Then, by (3.4), (3.7) and (3.21), we have

H / Mt = 9)[f(Xo) = F(XI)]ds - 1g,

H
SCE(/ (L4 11Xl - 1 Xl + 12X - 1 XS ) 1K §")||Hds-1s'zn,M)

1
2

t
< C[E/ (L4 1Kl 1 Xl 4+ 1K - X (1) 19,,L,Md8]

3
[ [ 1= X 1,

0, asn— oo. (3.29)

The proof is complete. O
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