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Abstract This paper studies the M0-shadowing property for the dynamics of diffeomorphisms defined

on closed manifolds. The C1 interior of the set of all two dimensional diffeomorphisms with the M0-

shadowing property is described by the set of all Anosov diffeomorphisms. The C1-stably M0-shadowing

property on a non-trivial transitive set implies the diffeomorphism has a dominated splitting.
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1 Introduction

In the classical theory of hyperbolic systems, the pseudo-orbits and the shadowing orbits play
very important roles. Inspired by the classical work of Anosov [1] and Sinai [22], Bowen [4,
5] applied the shadowing properties to study the hyperbolic invariant sets. The shadowing
properties are used in the proof of the Anosov closing lemma, spectral decomposition theorem,
Markov partitions for a hyperbolic invariant set and so on. Further, the existence of shadowing
orbits for pseudo-orbits for systems with hyperbolic invariant sets have different proofs (see
[6, 9, 15, 16]).

On the other hand, there exist various concepts of pseudo-orbits and the corresponding
shadowing properties as the development of the theories of topological dynamics [25]. For the
definitions of several pseudo-orbits and their corresponding shadowing properties, see Defini-
tions 2.3, 2.4, and 2.5 in the second section. Recently, Wu et al. [25] proved that for a dynamical
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system:

AASP =⇒ WAASP ⇐⇒ ASP ⇐⇒ Mα-shadowing (∀α ∈ [0, 1)) =⇒ d + d-shadowing.

The shadowing properties are closely related to the dynamics of the systems. Honary and
Bahabadi [11] proved that if a diffeomorphism on a two dimensional manifold M belongs to the
C1 interior of the set of all diffeomorphisms having the asymptotic average shadowing property,
then it is Anosov. Sakai [21] showed that the case of the average shadowing property as the result
of [11]. Then, Lee [12] verified that if a diffeomorphism has the C1 stable asymptotic average
shadowing property, then it admits a dominated splitting. For more results on shadowing
properties, one is referred to [17, 18, 23, 24, 27] and references therein.

The motivation for this paper is that whether it is possible that the weaker shadowing
properties can bring new dynamics or new understanding of the hyperbolic systems, the non-
uniformly hyperbolic systems, or partially hyperbolic systems and others. In this paper, we
investigate this problem for two kinds of diffeomorphisms with hyperbolic dynamics by using
M0-shadowing, since this is the weakest shadowing property as far as we know. First, we show
that the C1 interior of the set of all diffeomorphisms with M0-shadowing can be described
by the set of all Anosov diffeomorphisms, generalizing the main results in [21]. Second, we
verify that the M0-stably shadowing property on a non-trivial transitive set can ensure that
the diffeomorphism has a dominated splitting, improving the main results in [13]. For a linear
transformation A = Ax defined on C

n, we proved that A has the (asymptotic) average shad-
owing property is equivalent to that A is a non-singular hyperbolic matrix, however this linear
hyperbolic system does not have the d-shadowing property or the ergodic shadowing property
[26]. This, together with the results in our current work, implies that the linear and nonlinear
hyperbolic systems are different since they have different shadowing properties.

The rest of this work is organized as follows. In Section 2, several basic definitions are intro-
duced. In Section 3, the diffeomorphisms defined on two dimensional manifolds are considered.
In Section 4, the diffeomorphisms with non-trivial transitive sets are studied.

2 Preliminary

In this section, some basic concepts concerned with the dynamics and the shadowing properties
are introduced. Throughout this paper, denote by N = {1, 2, 3, . . .} and Z+ = {0, 1, 2, . . .}. A
dynamical system is a pair (X, f), where X is a compact metric space with a metric d and
f : X → X is a continuous map.

A (Furstenberg) family F is a collection of subsets of Z+ which is upwards hereditary, that
is, F1 ∈ F and F1 ⊂ F2 imply F2 ∈ F .

For any A ⊂ Z+, the upper density of A is defined by

dens(A) := lim sup
n→∞

1
n
|A ∩ {0, 1, . . . , n − 1}|. (2.1)

Replacing lim sup with lim inf in (2.1) gives the definition of d(A), the lower density of A.
If there exists a number dens(A) such that dens(A) = dens(A) = dens(A), then we say that
the set A has density dens(A). Fix any α ∈ [0, 1) and denote by Mα (resp. M α) the family
consisting of sets A ⊂ Z

+ with dens(A) > α (resp. dens(A) > α). Denote by M̂α the family of
sets with dens(A) ≥ α. Clearly, M̂1 consists of sets A with dens(A) = 1.
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Definition 2.1 ([20]) Assume that f is a C1 diffeomorphism defined on a compact manifold
M . A point x ∈ M is called a periodic point if fn(x) = x for some n ∈ N, the period of x,
denoted by π(x), is the minimal positive integer n with fn(x) = x, the set of periodic points is
denoted by Per(f). A point x is called ω-limit (α-limit point) if there exists y such that x is
an accumulation point of the forward (backwards) orbit of y. Denote the set of ω-limit points
(α-limit points) of x by ω(x) (α(x)), that is, the collection of all the accumulation points of
the forward (backwards) orbit of x. A point x is said to be non-wandering if for every open
neighborhood U of x, there exists some n ∈ N such that fn(U) ∩ U 
= Ø. The set of all non-
wandering points is denoted by Ω(f). A point x is called a chain recurrent point if for any ε > 0,
there exists a sequence of points x0 = x, x1, . . . , xn−1, xn = x such that d(f(xi), xi+1) < ε for
i = 0, 1, . . . , n − 1. Let R(f) be the set of chain recurrent points. The limit set is

L(f) = cl
( ⋃

p∈M

ω(p) ∪ α(p)
)

,

where cl(U) is the closure of the set U . So, Per(f) ⊂ L(f) ⊂ Ω(f) ⊂ R(f). If Ω(f) has a
hyperbolic structure and cl(Per(f)) = Ω(f), then we call f satisfies Axiom A.

Lemma 2.2 ([20, Anosov closing lemma]) Assume f is a C1 diffeomorphism defined on a
compact manifold. If f has hyperbolic structure on the chain recurrent set, then the periodic
orbits are dense in the chain recurrent set, and cl(Per(f)) = R(f) = L(f) = Ω(f).

Definition 2.3 ([25]) For a dynamical system (X, f), let δ > 0 and ξ = {xi}∞i=0 ⊂ X. We
say that ξ is

(1) a δ-ergodic pseudo-orbit (of f) if

dens({n ∈ Z
+ : d(f(xn), xn+1) ≥ δ}) = 0;

(2) a δ-average-pseudo-orbit (of f) if there exists N > 0 such that for all n ≥ N and any
k ∈ Z

+,
1
n

n−1∑
i=0

d(f(xi+k), xi+k+1) < δ;

(3) a δ-asymptotic-average-pseudo-orbit (of f) if

lim sup
n→∞

1
n

n−1∑
i=0

d(f(xi), xi+1) < δ;

(4) an asymptotic average pseudo-orbit (of f) if

lim
n→∞

1
n

n−1∑
i=0

d(f(xi), xi+1) = 0.

Definition 2.4 ([25]) A dynamical system (X, f) has (ergodic) F -shadowing property if for
any ε > 0, there exists δ > 0 such that every δ-ergodic pseudo-orbit ξ is F -ε-shadowed by some
point z ∈ X, i.e. {n ∈ Z+ : d(fn(z), xn) < ε} ∈ F .

In the special case of F = M̂1 (resp., F = M0 and M 1/2), we say that (X, f) has
the ergodic shadowing property (abbrev. ESP) (resp., d-shadowing property and d-shadowing
property) (see [7]).
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Definition 2.5 ([25]) A dynamical system (X, f) has
(1) the average shadowing property (abbrev. ASP) if for any ε > 0 there exists δ > 0 such

that every δ-average-pseudo-orbit {xi}∞i=0 is ε-shadowed on average by a point z ∈ X, i.e.

lim sup
n→∞

1
n

n−1∑
i=0

d(f i(z), xi) < ε;

(2) the asymptotic average shadowing property (abbrev. AASP) if every asymptotic average
pseudo-orbit {xi}∞i=0 is asymptotically shadowed on average by a point z ∈ X, i.e.

lim
n→∞

1
n

n−1∑
i=0

d(f i(z), xi) = 0;

(3) the weak asymptotic average shadowing property (abbrev. WAASP) if for any ε > 0 and
any asymptotic average pseudo-orbit {xi}∞i=0, there exists z ∈ X such that

lim sup
n→∞

1
n

n−1∑
i=0

d(f i(z), xi) < ε.

Remark 2.6 For a smooth manifold M , the metric is induced by the Riemannian metric. For
the shadowing properties, the pseudo-orbit {xi}∞i=−∞ and its corresponding shadowing property
can be studied similarly. For convenience, we only consider the pseudo-orbit {xi}∞i=0.

A subset M is a closed manifold if it is C∞ compact connected and the boundary is empty.
Throughout the following discussions, assume that M is a closed manifold. Let Diff1(M) be
the set of all C1 diffeomorphisms defined on M .

3 M 0-shadowing on Two Dimensional Closed Manifolds

In this section, the diffeomorphisms defined on two dimensional manifolds are considered.
Set

F 1(M) = {f ∈ Diff1(M) : there is a C1 neighborhood U(f) ⊂ Diff1(M)

such that for any g ∈ U(f), every p ∈ Per(g) is hyperbolic
}
.

Remark 3.1 It is proved that f ∈ F 1(M) if and only if f is an Axiom A system with no
cycles [8, 10].

Lemma 3.2 ([20]) Assume f : M → M is a C1 diffeomorphism for which the chain component
R(f) has a hyperbolic structure. By the spectral decomposition theorem R(f) = Ω(f) = Λ1 ∪
· · · ∪ Λl, there exists a filtration M = Ml ⊃ Ml−1 ⊃ · · · ⊃ M1 ⊃ M0 = Ø such that for any
1 ≤ j ≤ l,

(1) f(Mj) ⊂ int(Mj), so each Mj is a trapping region,
(2) Λj ⊂ int(Mj \ Mj−1),
(3) Λj =

⋂∞
k=−∞ fk(Mj \ Mj−1), and

(4)
⋂∞

k=0 fk(Mj) =
⋃

i≤j Wu(Λi) =
⋃

i≤j cl(Wu(Λi)).

Lemma 3.3 ([8, Lemma 1.1], [21, Lemma 2]) Let U(f) ⊂ Diff1(M) be a neighborhood of f

and fn(p) = p for some n > 0. Then, there exist two positive constants ε0 and δ0 such that if
Op : TpM → TpM is a linear isomorphism with ‖Op − I‖ < δ0, then there exists a g ∈ U(f)
satisfying
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(1) B4ε0(f
i(p)) ∩ B4ε0(f

j(p)) = Ø for 0 ≤ i 
= j ≤ n − 1;
(2) g(x) = f(x) for x ∈ {p, f(p), . . . , fn−1(p)} ∪ {M \ ⋃n−1

i=0 B4ε0(f
i(p))};

(3) g(x) = expfi+1(p) ◦Dfi(p)f ◦ exp−1
fi(p)(x) for x ∈ Bε0(f

i(p)), 0 ≤ i ≤ n − 2;
(4) g(x) = expp ◦Op ◦ Dfn−1(p)f ◦ exp−1

fn−1(p)(x) for x ∈ Bε0(f
n−1(p)),

where I : TpM → TpM is the identity map and Bε(x) = {y ∈ M : d(x, y) ≤ ε} for ε > 0.

Lemma 3.4 ([21, Lemma 2]) For any neighborhood U(f) ⊂ Diff1(M) of f and fn(p) = p

for some n > 0, let ε0 and δ0 be as in Lemma 3.3. If p is not hyperbolic, then there exists a
linear isomorphism Op : TpM → TpM with ‖Op − I‖ < δ0 such that for the diffeomorphism
g ∈ U(f), gn(p) = p given by Lemma 3.3 for this Op, there exists a Dpg

nL-invariant splitting
TpM = E⊕F with dim E = dimF = 1, satisfying Dpg

nL(v) = v for all v ∈ E and some L > 0.

Let M0S(M) = {f ∈ Diff1(M) : f has the M0-shadowing property}.
Lemma 3.5 Let M be a two dimensional closed manifold. Then, M0S(M) ⊂ F 1(M).

Proof We will show the statement by contradiction and apply Lemma 3.4. The notations of
Lemma 3.4 will be used.

Suppose p is a non-hyperbolic periodic point for f . Recall that the exponential map is
defined on a small neighborhood of the origin of the tangent bundle E ⊕ F and expp(0) = p,
where 0 is the origin. Then, choose 0 
= ζ ∈ E properly (note that ζ should be taken from
the domain of the exponential map), and denote by ζ0 = expp(−ζ) and ζ1 = expp(ζ). Take
ε1 := d(ζ0, ζ1). It is evident that ε1 > 0.

Let L0 = 0, L1 = L1 = 2 and define a sequence of positive integers inductively:

Ln = 2Ln−1 and Ln = Ln−1 + Ln, n ≥ 2.

Define a sequence ξ := {ξn}+∞
n=0 as following:

ξn =

⎧⎨
⎩

ζ0, n ∈ ⋃+∞
k=0[L2k, L2k+1),

ζ1, otherwise.

It can be verified that ξ is a δ-ergodic pseudo-orbit for any δ > 0 and that

dens
( +∞⋃

k=0

[L2k, L2k+1)
)

= dens
(

Z
+ \

+∞⋃
k=0

[L2k, L2k+1)
)

= 1.

The M0-shadowing property implies that there exists z ∈ M such that dens({n ∈ Z : d(gn(z), ξn)
< ε1

10}) > 0. We claim that z /∈ I := {x ∈ Bε1(p) : g(x) = x}. In fact, suppose on contrary that
z ∈ I, then d(gn(z), ζ0) ≥ ε1

2 or d(gn(z), ζ1) ≥ ε1
2 for all n ∈ Z. This implies that

+∞⋃
k=0

[L2k, L2k+1) ⊂ {n ∈ Z
+ : d(gn(z), ξn) ≥ ε1/10},

or

Z
+ \

+∞⋃
k=0

[L2k, L2k+1) ⊂ {n ∈ Z
+ : d(gn(z), ξn) ≥ ε1/10}.

Therefore,

dens({n ∈ Z
+ : d(gn(z), ξn) < ε1/10})

= 1 − dens({n ∈ Z
+ : d(gn(z), ξn) ≥ ε1/10})
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= 0,

which is a contradiction and thus z /∈ I.
Consider the following three cases:
(1) if μ = 1, then I = Bε1(p), which is a contradiction;
(2) if μ > 1, it follows from dim M = 2 and z /∈ I that there exists some m ∈ N such that

gn(z) /∈ Bε1(p) for all n ≥ m, implying that d(gn(z), ξn) ≥ ε1
5 , which is a contradiction;

(3) if μ < 1, let us choose m′ = min{n ∈ Z+ : gn(z) ∈ Bε1(p)}, i.e., m′ ∈ Z+ such that
gn(z) /∈ Bε1(p) for 0 ≤ n ≤ m′ and gm′+1(z) ∈ Bε1(p). Then, there exist N ∈ N and j ∈ {0, 1}
such that n ≥ N implies that d(gm′+n(z), ζj) ≥ 2ε1

5 . This implies that

dens({n ∈ Z
+ : d(gn(z), ξn) < ε1/10})

= 1 − dens({n ∈ Z
+ : d(gn(z), ξn) ≥ ε1/10})

= 0,

which is a contradiction. �

Theorem 3.6 M0S(M) is characterized by the set of all Anosov diffeomorphisms.

Proof As every Anosov diffeomorphism has the average shadowing property, which implies
the M0-shadowing property, it suffices to check that for any f ∈ M0S(M), f is Anosov.

It follows from Lemma 3.5 and [8, 10] that f satisfies Axiom A with no-cycles (see Re-
mark 3.1). Then, for spectral decomposition Ω(f) = Λ1 ∪Λ2 ∪ · · · ∪Λl, there exists a filtration
Ø 
= M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Ml = M . We claim that l = 1.

In fact, suppose on contrary that l ≥ 2. For simplicity, let l = 2. Take ε = 1
2 inf{d(x, y) :

x ∈ M1, y ∈ Λ2} > 0. From Ω(f) = cl(Per(f)), it follows that there exist p ∈ Λ1 ∩ Per(f) and
q ∈ Λ2 ∩ Per(f). Let l1, l2 ∈ N be the periods of p and q, respectively and choose L0 = 0,
L1 = L1 = l1 · l2, Ln = l1 · l2 · 2Ln−1 , and Ln = Ln−1 + Ln for n ≥ 2. Define a sequence
ξ := {ξn}+∞

n=0 as following:

ξn =

⎧⎨
⎩

fn(p), n ∈ ⋃+∞
k=0[L2k, L2k+1),

fn(q), otherwise.

It is not difficult to check that ξ is a δ-ergodic pseudo-orbit for any δ > 0 and that dens(Z+ \⋃+∞
k=0[L2k, L2k+1)) = dens(

⋃+∞
k=0[L2k, L2k+1)) = 1. For the above ε > 0, there exists some

z ∈ M such that
dens({n ∈ Z

+ : d(fn(z), ξn) < ε}) > 0.

Consider the following two cases:
(1) If z ∈ Λ2, then for any n ∈ ⋃+∞

k=0[L2k, L2k+1), d(fn(z), ξn) = d(fn(z), fn(p)) ≥
inf{d(x, y) : x ∈ M1, y ∈ Λ2} > ε. This implies that

dens({n ∈ Z
+ : d(fn(z), ξn) < ε})

= 1 − dens({n ∈ Z
+ : d(fn(z), ξn) ≥ ε})

= 0,

which is a contradiction;
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(2) If z /∈ Λ2, then there exists a neighborhood U2 of Λ2 with z /∈ U2. Applying a filtration
property yields that there exists N ∈ N such that for any n ≥ N , fn(z) ∈ M1. This implies that
for any n ∈ Z+ \ ⋃+∞

k=0 [L2k, L2k+1) with n ≥ N , d(fn(z), ξn) = d(fn(z), fn(q)) ≥ inf{d(x, y) :
x ∈ M1, y ∈ Λ2} > ε. Then,

dens({n ∈ Z
+ : d(fn(z), ξn) < ε})

= 1 − dens({n ∈ Z
+ : d(fn(z), ξn) ≥ ε})

= 0,

which is also a contradiction.
Therefore, l = 1, and thus f is Anosov. Actually, M = W s(Λ1) ∩ Wu(Λ1) = Λ1. �

4 C1-stably M 0-shadowing and Dominated Splitting

In this section, the diffeomorphisms with non-trivial transitive sets are studied.

Definition 4.1 ([20]) For f ∈ Diff1(M) and an invariant set Λ, if there exists a compact
neighborhood U of Λ satisfying

Λ =
⋂
n∈Z

fn(U),

then Λ is called locally maximal or isolated.

Definition 4.2 For f ∈ Diff1(M) and an invariant set Λ, we call f has a dominated splitting
if there exist a continuous Df-invariant splitting E ⊕ F of the tangent bundle TΛM , and two
constants C > 0 and 0 < λ < 1 such that

‖Dxfn|E(x)‖ · ‖Dxf−n|F (fn(x))‖ ≤ Cλn, ∀x ∈ Λ and n ∈ Z
+.

Definition 4.3 Let f ∈ Diff 1(M), and Λ be a closed f-invariant subset of M , U(f) be a C1

neighborhood of f .
• If Λ =

⋂
n∈Z

fn(U) is locally maximal, where U is a compact neighborhood;
• for any g ∈ U(f), Λg(U) =

⋂
g∈Z

gn(U) has the M0-shadowing property,
then it is said that f has the C1-stably M0-shadowing property on Λ.

Definition 4.4 A set Λ is called transitive if there exists a point x ∈ Λ such that ω(x) = Λ.

Definition 4.5 ([13]) Let M be a closed manifold with dimension N , GL(N) be the group of
linear isomorphisms of RN . A sequence {. . . , A−2, A−1, A0, A1, A2, . . .} of elements of GL(N),
satisfying Ajk+s = As for any j ∈ Z and s = 0, 1, . . . , k−1, denoted by A = {A0, A1, . . . , Ak−1},
A is said to be a periodic family with period k. Set MA := Ak−1Ak−2 · · ·A1A0. A periodic family
A = {A0, A1, . . . , An−1} is called to have an l-dominated splitting, if there exists a direct sum
RN = E ⊕ F satisfying

• E and F are MA invariant;
• for any k ∈ Z+,

‖Ak+l−1 · · ·Ak+1Ak‖
m(Ak+l−1 · · ·Ak+1Ak)

≤ 1
2
,

where Ek = Ak−1 · · ·A0(E), Fk = Ak−1 · · ·A0(F ), ‖A‖ = sup|v|�=0
|Av|
|v| , m(A) = inf |v|�=0

|Av|
|v| .
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Lemma 4.6 ([3]) Given any δ > 0 and K > 0, there exist positive integers n(δ, K) and
l(δ, K) satisfying: given a periodic family A = {A0, A1, . . . , An−1} with period n ≥ n(δ, K) and
max{‖Ai‖, ‖A−1

i ‖} ≤ K for any i = 0, 1, . . . , n − 1, if A does not admit any l(δ, K) dominated
splitting, then there exists a periodic family B = {B0, B1, . . . , Bn−1} such that

• max{‖Bi − Ai‖, ‖B−1
i − A−1

i ‖ : i = 0, 1, . . . , n − 1} < δ;
• det(MA) = det(MB);
• the eigenvalues of MB are all real and have the same modulus.

Definition 4.7 ([14]) For a periodic family A = {A0, A1, . . . , An−1}, if there exists a constant
δ > 0 such that any δ perturbation of A is a sink, that is, for any B = {B0, B1, . . . , Bn−1} with
‖Bi−Ai‖ < δ, the eigenvalues of MB have moduli less than 1, then A is said to be a δ-uniformly
contracting. Similarly, one can define the δ-uniformly expanding for a periodic family.

Definition 4.8 ([13]) Let f ∈ Diff1(M), and p ∈ Per(f) with period π(p). If Dfπ(p)(p) has a
multiplicity one eigenvalue with modulus one and the other eigenvalues have norm strictly less
(bigger) than one, then p is called pre-sink (pre-source).

Lemma 4.9 Suppose that f has the M0-stably shadowing property on a closed set Λ. Consider
U and U(f) as in the definition of M0-stably shadowing property. Then, for any g ∈ U(f), g

has neither pre-sink nor pre-source with the orbit staying in U .

Proof Suppose on contrary that there exists g ∈ U(f) such that g has a pre-sink with the
orbit staying in U . Similar arguments can be applied to show that g has no pre-source.

It follows from the classical Franks’ lemma [8, Lemma 1.1] that there exists a small per-
turbation g1 ∈ U(f) of g such that there exists ε1 > 0 with the properties Bε1(Orb(p)) ⊂ U

and

g1|Bε1 (gi(p)) = expgi+1(p) ◦Dgi(p)g ◦ exp−1
gi(p) |Bε1 (gi(p)), 0 ≤ i ≤ π(p) − 1,

where p is a periodic point of g1 with period π(p), and Orb(p) = {gk
1 (p) : k ∈ Z} = {gk

1 (p) :
k = 0, . . . , π(p) − 1}.

By the assumption that Dpg
π(p) has a multiplicity one eigenvalue λ with |λ| = 1 and

other eigenvalues of Dpg
π(p) have moduli less than 1. Denote by Ec

p and Es
p the eigenspaces

corresponding to λ and other eigenvalues with moduli less than 1, respectively. there exists a
direct decomposition of the tangent space TpM = Ec

p ⊕ Es
p. It is evident that dimEc

p = 1 for
λ ∈ R, and dimEc

p = 2 for λ ∈ C \ R.
Now, we study the case that dimEc

p = 1. Without loss of generality, assume that λ = 1.
Then, there exists a subset Ip of Bε1(p) ∩ expp(Ec

p(ε1)) centered at p such that the restriction
of g

π(p)
1 to Ip is identity. By hypothesis, there exists constant 0 < ε < ε1 such that for

any 0 ≤ j < π(p) and z ∈ B4ε(g
j
1(p)), there exists a g

π(p)
1 fixed point x ∈ gj

1(Ip) such that
limn→+∞ gnπ(p)(z) = x.

Let L0 = 0 and L1 = L1 = 2π(p), and define a sequence of positive integers inductively:

Ln = π(p) · 2Ln−1 and Ln = Ln−1 + Ln, n ≥ 2.

Fix two distinct points ξ−, ξ+ ∈ Ip with

max{d(gi
1(ξ−), gi

1(p)), d(gi
1(ξ+), gi

1(p)) : 0 ≤ i < π(p)} < ε
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and take a sequence ξ := {ξn}+∞
n=0 as follows:

ξn =

⎧⎨
⎩

gn
1 (ξ+), n ∈ ⋃+∞

k=0[L2k, L2k+1),

gn
1 (ξ−), otherwise.

From dens(Z+ \⋃+∞
k=0[L2k, L2k+1)) = dens(

⋃+∞
k=0[L2k, L2k+1)) = 1, it can be verified that ξ is

a δ-ergodic pseudo-orbit for any δ > 0.
Let ε∗ = min{ε, d(gi

1(ξ−),gi
1(ξ+))

4 : 0 ≤ i < π(p)}. The uniform continuity of g1 implies that
there exists 0 < η < ε∗ such that for any x, y ∈ M with d(x, y) < η and any 0 ≤ i < π(p),
d(gi

1(x), gi
1(y)) < ε∗. Since g1 has the M0-shadowing property on Λg1(U), there exists a point

z ∈ M such that ξ is M0-η-shadowed by z, i.e.,

dens({n ∈ Z
+ : d(gn

1 (z), ξn) < η}) > 0,

implying that there exists a time i0 such that gi0
1 (z) ∈ Bη(ξi0) ⊂ B4ε(gi0

1 (p)). Then, there
exists a point x ∈ gi0

1 (Ip) such that limn→+∞ g1
nπ(p)(z) = x. This implies that

lim
n→+∞ d(gn

1 (z), gn
1 (x)) = 0.

Thus,
dens({n ∈ Z

+ : d(gn
1 (x), ξn) < η}) > 0

From the choice of η, noting that x is a g
π(p)
1 fixed point, it follows that

• if there exists i ∈ ⋃+∞
k=0[L2k, L2k+1) such that d(gi

1(x), ξi) < η, then d(gn
1 (x), gn

1 (ξ+)) < ε∗

for all n ≥ 0, implying that {n ∈ Z+ : d(gn
1 (x), ξn) < η}) ⊂ ⋃+∞

k=0[L2k, L2k+1);
• if there exists i ∈ Z

+ \⋃+∞
k=0[L2k, L2k+1) such that d(gi

1(x), ξi) < η, then d(gn
1 (x), gn

1 (ξ−))
< ε∗ for all n ≥ 0, implying that {n ∈ Z

+ : d(gn
1 (x), ξn) < η}) ⊂ Z

+ \ ⋃+∞
k=0[L2k, L2k+1).

Therefore,

dens({n ∈ Z
+ : d(gn

1 (z), ξn) < η})

≤ max
{

dens
( +∞⋃

k=0

[L2k, L2k+1)
)

, dens
(

Z
+ \

+∞⋃
k=0

[L2k, L2k+1)
)}

= 0,

which is a contradiction.
For the case dim Ec

p = 2. The perturbation g1 of g such that there exists a disk contained in
Bε1(p)∩expp(Ec

p(ε1)) on which g
π(p)
1 is a rational rotation. As a consequence, this disk consists

of g
π(p)
1 -invariant circles. The two points ξ+ and ξ− can be taken from different circles. By

applying similar arguments as above, we could show the conclusion. �

Lemma 4.10 (1) For a non-trivial transitive set Λ, there exists a sequence of diffeomorphisms
{gn}n∈N and periodic orbits Pn of gn with period π(Pn) → ∞ as n → ∞ satisfying that Pn → Λ
and gn is convergent to f in the C1 topology.

(2) For pn ∈ Pn, there exists a periodic family

An = {Dpn
gn, Dgn(pn)gn, . . . , D

g
π(pn)−1
n (pn)

gn}.
For any δ > 0, there exists an integer n0(δ) > 0 such that for any n > n0(δ), An is neither
δ-uniformly contracting nor δ-uniformly expanding.
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(3) For any ε > 0, there exist n(ε), l(ε) > 0 such that for any n > n(ε), if Pn does not
admit an l(ε) dominated splitting, then there exists g′n such that Pn is pre-sink or pre-source
with respect to g′n, where g′n is ε close to gn in the C1 topology, and preserves the orbits of Pn.

Proof The first statement is derived by [19, Pugh’s closing lemma]. The second and third
statements are obtained by using the same arguments as in [13, Lemmas 3.4 and 3.5]. �

Lemma 4.11 ([2]) Suppose that gn is convergent to f in the C1 topology, Λn is a closed gn-
invariant set, and Λn is convergent to Λ in the Hausdorff metric. If Λn admits an l-dominated
splitting with respect to gn, then Λ admits an l-dominated splitting with respect to f .

Theorem 4.12 Let Λ be a non-trivial transitive set. If f has the M0-stably shadowing prop-
erty on Λ, then Λ admits a dominated splitting.

Proof It can be derived by combing the above lemmas. �
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