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Abstract This paper mainly focuses on the entire solutions of a nonlocal dispersal equation with

asymmetric kernel and bistable nonlinearity. Compared with symmetric case, the asymmetry of the

dispersal kernel function makes more diverse types of entire solutions since it can affect the sign of the

wave speeds and the symmetry of the corresponding nonincreasing and nondecreasing traveling waves.

We divide the bistable case into two monostable cases by restricting the range of the variable, and

obtain some merging-front entire solutions which behave as the coupling of monostable and bistable

waves. Before this, we characterize the classification of the wave speeds so that the entire solutions can

be constructed more clearly. Especially, we investigate the influence of the asymmetry of the kernel on

the minimal and maximal wave speeds.
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1 Introduction and Main Results

In this paper, we concentrate on some new types of nontrivial entire solutions of the following
general nonlocal dispersal equation:

ut(x, t) = (J ∗ u)(x, t) − u(x, t) + f(u(x, t)), (x, t) ∈ R
2, (1.1)

here (J ∗ u)(x, t) − u(x, t) =
∫

R
J(y)[u(x − y, t) − u(x, t)]dy represents a nonlocal dispersal

mechanism. We impose the following assumptions for the kernel function J :
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(J1) J ∈ C(R), J(x) ≥ 0,
∫

R
J(x)dx = 1, ∃ a < 0 ≤ b such that J(a) > 0 and J(b) > 0,

∫
R
J(x)|x|dx <∞, and ∃ λ > 0 such that

∫
R
J(x)eλ|x|dx <∞.

(J2) J is completely supported.

We separate the above assumptions because some of discussions do not require (J2) in this
paper. The most common nonlinear function f in (1.1) usually considered in the literature are
such three types: monostable, ignition and bistable. In this paper, we are interested in bistable
case, more precisely, f satisfies

(FB) f ∈ C2(R), f(0) = f(1) = 0, ∃ρ ∈ (0, 1) such that f |(0,ρ) < 0, f(ρ) = 0, f |(ρ,1) > 0,
f ′(0) < 0, f ′(1) < 0 and f ′(s) ≤ f ′(ρ) < 1 for s ∈ (0, 1).

During the past decades, the equations and systems like (1.1) and variations of it, have
been widely introduced to analyze long range effects of the dispersion processes, for example,
in materials science [1], phase transitions [2], population dynamics [9], neuronal networks [38],
biology [22] and so on. As a special type of solutions and their significant applications in
transmission dynamics, traveling wave solutions have been studied extensively, especially their
qualitative properties. For the traveling wave solutions of (1.1) with symmetric kernel function
J , one can refer to Bates [1], Bates et al. [2], Carr and Chmaj [3], Chen [4], Coville and
Dupaigne [9], Pan et al. [23], Schumacher [24] and references therein.

Recently, besides traveling wave solutions, many researchers discovered some new types
of entire solutions which behave like the couplings of different traveling wave fronts. These
solutions can not only describe the interactions of traveling wave fronts but also characterize
new dynamics of diffusion equations. Whether from the viewpoint of dynamical systems or
biology or epidemiology, the study of these solutions are interesting and meaningful. About
the details, we refer to [5, 12–14, 16, 20, 29, 35] for scalar reaction-diffusion equations with
and without delays, [30, 31, 33] for lattice differential equations and systems, [10, 17, 19]
for reaction-advection-diffusion equations, [18, 21, 28, 34] for reaction-diffusion systems, and
[15, 18, 25, 32, 39] for nonlocal dispersal equations and systems.

Above mentioned researches are all based on the assumption that the kernel function J is
symmetric, which corresponds to the situation that the dispersal of individuals or populations
are isotropic. However, in the actual environment, the dispersal of individuals or populations
can be influenced by many factors (such as wind, sunlight, landscape, food, . . . ), which corre-
spond to asymmetric or anisotropic dispersal mechanism. Moreover, asymmetry arises widely
in applications, for instance, asymmetric effects appear in chemical reactions, flow of solvent in
chromatography, population dynamics, movement of insects in wind and predator-prey inter-
action, where the prey tries to evade the predator. Therefore, it is more practical to study the
asymmetric equation (1.1).

So far, when J is asymmetric, the researches on traveling wave solutions and entire solutions
of (1.1) are still very little. For traveling wave solutions, one can refer to Coville et al. [8],
Yagisita [36] and Sun et al. [26] for monostable case, Yagisita [37] and Coville [7] for bistable and
ignition case. However, to the best of our knowledge, there are only two papers to investigate the
entire solutions of asymmetric equation (1.1), which are our previous work [27] for monostable
nonlinearity and [40] for ignition nonlinearity. Based on the conclusion that the minimal wave
speed c∗ of nonincreasing traveling waves may be nonpositive (see [8]), in [27] we first proved
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that the minimal wave speed c∗ and ĉ∗ of nonincreasing and nondecreasing traveling waves can
not be negative at the same time, then by combining traveling waves with different speeds,
we constructed some new types of entire solutions. In [40], we studied a new entire solution
of asymmetric equation (1.1) with ignition nonlinearity. Due to the impact of degeneration,
the common method which mainly depends on the Ikehara theorem can not be used to study
the asymptotic rates of the traveling wave solutions. We adopted another method based on
the construction of appropriate barrier functions to investigate them. Moreover, we gave a
special asymmetric kernel function as an example to illustrate our conclusion is reasonable and
meaningful.

Consequently, based on the previous work, this paper mainly focuses on those entire so-
lutions which are different with symmetric case. For (1.1), the most common entire solutions
are equilibriums, traveling wave solutions, spatial independent solutions and steady-state so-
lutions. However, due to the interactions between these solutions, it might occur many other
entire solutions, which behave like traveling fronts or merging fronts as t→ −∞ and so on. In
bistable case, (1.1) has no spatial independent solution, but we can divide the bistable equation
into two monostable equations by restricting the range of the variable, and further establish
some merging-front entire solutions which are generated by the merger of different monostable
waves and bistable waves. In addition, compared with symmetric case, the indeterminacy of the
symbols of wave speeds and the asymmetry of corresponding nondecreasing and nonincreasing
traveling waves will take some difficulties for our research. Therefore we first depict the depen-
dence of wave speeds on the asymmetry of the kernel function, then by constructing different
auxiliary functions and super and subsolutions, we establish some new entire solutions.

Before stating the main results, we first introduce the traveling wave solutions of (1.1).
From now on, if there is no special explanation, we always assume the nonlinearity f satisfies
(FB), and call the traveling wave solutions of (1.1) with bistable nonlinearity as bistable waves,
and those with monostable nonlinearity as monostable waves for convenience. The existence
of bistable waves of (1.1) and the uniqueness of the wave speed under the condition (J1) have
been obtained by Coville [7]. In fact, in [7] the author considered not only the bistable case but
also the ignition case. Following from [7], (1.1) possesses a traveling front φ(x+ ct) with speed
c ∈ R such that

⎧
⎪⎪⎨

⎪⎪⎩

cφ′ = J ∗ φ− φ+ f(φ),

φ(−∞) = 0,

φ(+∞) = 1,

(1.2)

where φ(±∞) denotes the limit of φ(ξ) as ξ → ±∞. We know that if the kernel function J is
symmetric, the transformation x → −x produces a nonincreasing front φ̂ with speed −c from
a nondecreasing front φ with speed c, since

û(x, t) := φ̂(x+ (−c)t), φ̂(ξ) := φ(−ξ), ξ ∈ R (1.3)

solves (1.1) whenever u(x, t) := φ(x+ct) does. But when J is asymmetric, (1.3) no longer gives
a solution of (1.1). So we have to obtain the nonincreasing front φ̂(x+ ĉt) with speed ĉ ∈ R by
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a similar argument with [7], where φ̂ satisfies
⎧
⎪⎪⎨

⎪⎪⎩

ĉφ̂′ = J ∗ φ̂− φ̂+ f(φ̂),

φ̂(−∞) = 1,

φ̂(+∞) = 0.

(1.4)

Clearly, when the kernel function J is asymmetric and f is bistable, the speed ĉ of nonin-
creasing front is not, in general, −c, the negative of the speed of nondecreasing front, which
implies that there is no symmetry between φ(x+ ct) and φ̂(x+ ĉt).

Motivated by [20], we focus not only on the entire solutions which depict the interactions
between bistable waves, but also on other merging-front entire solutions depicting the interac-
tions between monostable waves and bistable waves. Particularly, under the premise of (FB), if
we further restrict f(u) to [0, ρ] and [ρ, 1] respectively, (1.1) can be regarded as two monostable
equations.

Consider (1.1) on [0, ρ]. By taking v(x, t) = ρ− u(x, t), (1.1) reduces to

vt(x, t) = (J ∗ v)(x, t) − v(x, t) + g(v(x, t)), (1.5)

where g(v) = −f(ρ − v). From the assumption (FB), we have g(0) = g(ρ) = 0, g(v) > 0
and g′(v) ≤ g′(0) for all v ∈ (0, ρ). Then according to [8] and [26], there exist ĉ∗1 ∈ R and
c̃∗1 ∈ R such that for any ĉ1 ≥ ĉ∗1 and c̃1 ≥ c̃∗1, (1.5) possesses a pair of traveling fronts
ϕ̂1(x+ ĉ1t) and ϕ̃1(x− c̃1t) satisfying ϕ̂1(−∞) = 0, ϕ̂1(+∞) = ρ and ϕ̃1(−∞) = ρ, ϕ̃1(+∞) = 0,
respectively. Let c1 = −c̃1, c∗1 = −c̃∗1, ψ1(x + c1t) = ρ − ϕ̃1(x − c̃1t) for any c̃1 ≥ c̃∗1, and
ψ̂1(x+ ĉ1t) = ρ− ϕ̂1(x+ ĉ1t) for any ĉ1 ≥ ĉ∗1. Then simple calculations show that ψ1(x+ c1t)
and ψ̂1(x+ ĉ1t) are a pair of nondecreasing and nonincreasing traveling wave solutions of (1.1)
with speeds c1 ≤ c∗1, ĉ1 ≥ ĉ∗1 and satisfying

⎧
⎨

⎩

(J ∗ ψ1)(x+ c1t) − ψ1(x+ c1t) − c1ψ
′
1(x+ c1t) + f(ψ1(x+ c1t)) = 0,

ψ1(−∞) = 0, ψ1(+∞) = ρ.
(1.6)

⎧
⎨

⎩

(J ∗ ψ̂1)(x+ ĉ1t) − ψ̂1(x+ ĉ1t) − ĉ1ψ̂
′
1(x+ ĉ1t) + f(ψ̂1(x+ ĉ1t)) = 0,

ψ̂1(−∞) = ρ, ψ̂1(+∞) = 0.
(1.7)

Similarly, on the interval [ρ, 1], by letting v(x, t) = u(x, t) − ρ, we obtain that there exist
c∗2 ∈ R and ĉ∗2 ∈ R such that for each c2 ≥ c∗2 and ĉ2 ≤ ĉ∗2, (1.1) admits a pair of nondecreasing
and nonincreasing traveling wave solutions ψ2(x + c2t) and ψ̂2(x + ĉ2t) satisfying ψ2(−∞) =
ρ, ψ2(+∞) = 1 and ψ̂2(−∞) = 1, ψ̂2(+∞) = ρ. In analogy to bistable waves, the critical speed
c∗i (i = 1, 2) is not in general −ĉ∗i . In other words, the corresponding profiles are not symmetric.

Now we are ready to state our main results. In following Theorems 1.2–1.5, we choose these
traveling waves with speeds c, ĉ, ci, ĉi (i = 1, 2) are not equal to zero, so we first explain that
such choices are desirable. We leave the case that at least one of these speeds is equal to zero
as a further study.

For monostable wave speeds ci and ĉi, i = 1, 2, since their range are semi-infinity regions,
such as c1 ≤ c∗1, ĉ1 ≥ ĉ∗1 and c2 ≥ c∗2, ĉ2 ≤ ĉ∗2, we only need to select those monostable waves
with non-zero speeds. For bistable wave speeds c and ĉ, we will give some easily satisfied
restrictive conditions on J and f , to ensure c 	= 0 and ĉ 	= 0.
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Next we will constantly use the translation transformation of the convolution operator,
precisely, for any z ∈ R

n, there is τz(f ∗ g) = (τzf) ∗ g = f ∗ (τzg), where τz is a translation
operator defined by τzf(x) = f(x − z). This property can be found in many books of real
analysis, such as [11, Chapter 8].

Multiply the first equation of (1.2) and (1.4) by φ′ and φ̂′ respectively, and then integrate
in R, one has

c

∫

R

(φ′(ξ))2dξ =
∫

R

φ′(ξ)
∫

R

J(y)[φ(ξ − y) − φ(ξ)]dydξ +
∫ 1

0

f(u)du, (1.8)

and

ĉ

∫

R

(φ̂′(ξ))2dξ =
∫

R

φ̂′(ξ)
∫

R

J(y)[φ̂(ξ − y) − φ̂(ξ)]dydξ −
∫ 1

0

f(u)du. (1.9)

If J is symmetric, we can prove
∫

R

φ′(ξ)
∫

R

J(y)[φ(ξ − y) − φ(ξ)]dydξ = 0,

and ∫

R

φ̂′(ξ)
∫

R

J(y)[φ̂(ξ − y) − φ̂(ξ)]dydξ = 0,

then

c =

∫ 1

0
f(u)du

∫
R
(φ′(ξ))2dξ

, ĉ = −
∫ 1

0
f(u)du

∫
R
(φ̂′(ξ))2dξ

, (1.10)

which yields the sign of c and ĉ is opposite and only depends on the sign of the integral
∫ 1

0
f(u)du. Thus if J is symmetric, as long as

∫ 1

0
f(u)du 	= 0, we obtain the results we desired,

namely c 	= 0 and ĉ 	= 0. However, if J is asymmetric, the sign of c and ĉ not only depends on
the integral

∫ 1

0
f(u)du, but also depends on the properties of the kernel function J .

From [6] and [7], we know φ′ > 0, φ̂′ < 0 on R and φ′(ξ) → 0 and φ̂′(ξ) → 0 as ξ → ±∞. By
using the translation transformation of the convolution operator, we compute (1.8) as follows,

c

∫

R

(φ′(ξ))2dξ =
∫ 0

−∞
J(y)

∫

R

φ′(ξ)[φ(ξ − y) − φ(ξ)]dξdy

+
∫ +∞

0

J(y)
∫

R

φ′(ξ)[φ(ξ − y) − φ(ξ)]dξdy +
∫ 1

0

f(u)du

=
∫ +∞

0

J(−y)
∫

R

φ′(ξ)[φ(ξ + y) − φ(ξ)]dξdy

−
∫ +∞

0

J(y)
∫

R

φ(ξ)[φ′(ξ − y) − φ′(ξ)]dξdy +
∫ 1

0

f(u)du

=
∫ +∞

0

J(−y)y
∫ 1

0

∫

R

φ′(ξ)φ′(ξ + θy)dξdθdy

+
∫ +∞

0

J(y)y
∫ 1

0

∫

R

φ(ξ)φ′′(ξ − θy)dξdθdy +
∫ 1

0

f(u)du

=
∫ +∞

0

J(−y)y
∫ 1

0

∫

R

φ′(ξ − θy)φ′(ξ)dξdθdy

−
∫ +∞

0

J(y)y
∫ 1

0

∫

R

φ′(ξ − θy)φ′(ξ)dξdθdy +
∫ 1

0

f(u)du
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=
∫ +∞

0

[J(−y) − J(y)]y
∫ 1

0

∫

R

φ′(ξ − θy)φ′(ξ)dξdθdy +
∫ 1

0

f(u)du. (1.11)

Similarly,

ĉ

∫

R

(φ̂′(ξ))2dξ =
∫ +∞

0

[J(−y) − J(y)]y
∫ 1

0

∫

R

φ̂′(ξ − θy)φ̂′(ξ)dξdθdy −
∫ 1

0

f(u)du. (1.12)

(1.11) and (1.12) imply that if
∫ 1

0
f(u)du = 0 and J(−y) > J(y) for y ∈ (0,+∞), then c 	= 0

and ĉ 	= 0, more precisely, such J and f make c > 0 and ĉ > 0. Now we give a special example
of J and f .

Example 1.1 Let f(u) = u(1 − u)(u− 1
2 ) on u ∈ [0, 1], and

J(y) =

⎧
⎪⎨

⎪⎩

a

a2 + 1
e−ay, y ≥ 0,

a

a2 + 1
e

1
a y, y < 0,

where a > 1. By simple calculations, we can show that J and f given above satisfy
∫ 1

0
f(u)du =

0 and J(−y) > J(y) for y ∈ (0,+∞) besides (J1) and (FB). Actually, as long as J and f make
the right side of (1.11) and (1.12) not equal to zero, the wave speeds c and ĉ will not equal to
zero.

Theorem 1.2 Assume that f satisfies (FB) and J satisfies (J1) (J2). Let ψi(x + cit) and
ψ̂i(x + ĉit) (i = 1, 2) be the monostable waves of (1.1) which are described as the foregoing
with c1 ≤ c∗1, ĉ1 ≥ ĉ∗1 and c2 ≥ c∗2, ĉ2 ≤ ĉ∗2, respectively. Then (1.1) has two entire solutions
U1(x, t), U2(x, t) : R

2 → [0, 1] satisfying ∂
∂xU1(x, t) > 0, ∂

∂xU2(x, t) < 0,

lim
t→−∞

{

sup
x≤− c1+c2

2 t

|U1(x, t) − ψ1(x+ c1t− ω1)|

+ sup
x≥− c1+c2

2 t

|U1(x, t) − ψ2(x+ c2t+ ω1)|
}

= 0, (1.13)

and

lim
t→−∞

{

sup
x≤− ĉ1+ĉ2

2 t

|U2(x, t) − ψ̂2(x+ ĉ2t− ω2)|

+ sup
x≥− ĉ1+ĉ2

2 t

|U2(x, t) − ψ̂1(x+ ĉ1t+ ω2)|
}

= 0, (1.14)

for some constants ω1 and ω2. Furthermore, according to the size of the critical speeds c∗1, c
∗
2,

ĉ∗1 and ĉ∗2 (see Lemma 2.5), the following asymptotics hold.
(i) When c2 > c1 > 0, the entire solution U1(x, t) behaves as two monostable waves ψ2

(x + c2t) and ψ1(x + c1t) propagating in the same direction from right to left of x-axis as
t→ −∞, and ψ2 will catch up ψ1 finally.

(ii) When 0 > c2 > c1, U1(x, t) behaves as two monostable waves ψ1 and ψ2 propagating in
the same direction from left to right of x-axis as t→ −∞, and ψ1 will catch up ψ2 finally.

(iii) When c2 > 0 > c1, U1(x, t) behaves as two monostable waves ψ1 and ψ2 coming from
the opposite sides of x-axis as t→ −∞, and ψ1 and ψ2 may emerge finally.

(iv) The similar corresponding properties hold for U2(x, t).



Entire Solutions for Nonlocal Equations 1777

Theorem 1.3 Let all assumptions of Theorem 1.2 be satisfied and φ(x+ ct), φ̂(x+ ĉt) be the
bistable waves of (1.1) which satisfy (1.2) and (1.4), respectively. If c > ĉ1 and ĉ > c2, then
for some constants ω3 and ω4, there exist two entire solutions V1(x, t), V2(x, t) : R

2 → [0, 1]
of (1.1) satisfying

lim
t→−∞

{

sup
x≤− c+ĉ1

2 t

|V1(x, t) − ψ̂1(x+ ĉ1t− ω3)|

+ sup
x≥− c+ĉ1

2 t

|V1(x, t) − φ(x+ ct+ ω3)|
}

= 0, (1.15)

and

lim
t→−∞

{

sup
x≤− ĉ+c2

2 t

|V2(x, t) − ψ2(x+ c2t− ω4)|

+ sup
x≥− ĉ+c2

2 t

|V2(x, t) − φ̂(x+ ĉt+ ω4)|
}

= 0. (1.16)

In addition, V1(x, t) and V2(x, t) have analogous properties as (i)–(iii) of Theorem 1.2 for U1

and U2 depending on the size of wave speeds.

Theorem 1.4 Assume (J1)–(J2) and (FB) hold. Let φ(x+ ct) and φ̂(x + ĉt) be the bistable
waves of (1.1). Suppose c 	= ĉ, then for some constants ω5 and ω6, (1.1) possesses an entire
solution W (x, t) : R

2 → [0, 1] such that the following statements hold.
(i) When c > ĉ,

lim
t→−∞

{
sup

x≤− c+ĉ
2 t

|W (x, t) − φ̂(x+ ĉt− ω5)| + sup
x≥− c+ĉ

2 t

|W (x, t) − φ(x+ ct+ ω5)|
}

= 0. (1.17)

Moreover, W (x, t) has the following properties:
(a) If c > 0 > ĉ, then ∂W

∂t > 0; However, if c > ĉ > 0 or 0 > c > ĉ, W (x, t) has no
monotonicity with respect to t;

(b) limt→−∞W (x, t) = 0 locally in x ∈ R;
(c) limt→+∞ |W (x, t) − 1| = 0 for (x, t) ∈ R

2.
(ii) When ĉ > c,

lim
t→−∞

{
sup

x≤− c+ĉ
2 t

|W (x, t) − φ(x+ ct− ω6)| + sup
x≥− c+ĉ

2 t

|W (x, t) − φ̂(x+ ĉt+ ω6)|
}

= 0. (1.18)

Correspondingly,
(a) If ĉ > 0 > c, then ∂W

∂t < 0; if ĉ > c > 0 or 0 > ĉ > c, W (x, t) has no monotonicity with
respect to t;

(b) limt→−∞W (x, t) = 1 locally in x ∈ R;
(c) limt→+∞W (x, t) = 0 for (x, t) ∈ R

2.

Theorem 1.5 Let Ui(x, t), Vi(x, t) (i = 1, 2) and W (x, t) be the entire solutions of (1.1) that
are established in Theorems 1.2–1.4. In order to simplify the statement, we denote all of them
by u(x, t). Then there exist some positive constants L1 and L2 such that

|u(x+ η, t) − u(x, t)| ≤ L1η,

∣
∣
∣
∣
∂u(x+ η, t)

∂t
− ∂u(x, t)

∂t

∣
∣
∣
∣ ≤ L2η

for any (x, t) ∈ R
2 and η ∈ (0,+∞).
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Remark 1.6 Combining Lemma 2.5 with Theorems 1.2–1.4, we find out that the asymmetry
of the kernel function has great influence on the sign, range and size of the wave speeds, which
further makes the types and properties of entire solutions more diverse.

2 Preliminaries

In the first part of this section, we give some valuable lemmas refer to the existence and a
priori estimate of solutions of the Cauchy problem of (1.1) since our main results are proved
by studying the solving sequence of Cauchy problem with suitable initial value. Afterwards, we
consider the sign and size of the speeds of monostable and bistable waves because they play an
important role in constructing different types of entire solutions.

2.1 Cauchy Problem

Definition 2.1 Let τ < T be any two real constants. A function U(x, t) is called a superso-
lution of (1.1) on (x, t) ∈ R × [τ, T ), if U(x, t) ∈ C0,1(R × [τ, T ),R) and satisfies

U t(x, t) ≥ (J ∗ U)(x, t) − U(x, t) + f(U(x, t)), ∀(x, t) ∈ R × [τ, T ). (2.1)

Furthermore, if for any τ < T , U(x, t) is a supersolution of (1.1) on (x, t) ∈ R × [τ, T ), then
U(x, t) is called a supersolution of (1.1) on (x, t) ∈ R × (−∞, T ). Similarly, a subsolution
U(x, t) can be defined by replacing U(x, t) by U(x, t) and reversing the inequality (2.1).

Lemma 2.2 Assume (J1) and (FB) hold. Then the following statements hold for the Cauchy
problem of (1.1):

⎧
⎨

⎩

∂u(x, t)
∂t

= (J ∗ u)(x, t) − u(x, t) + f(u(x, t)), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

(2.2)

(i) For any u0(x) ∈ C(R, [0, 1]), (2.2) admits a unique solution u(x, t;u0) ∈ C(R × [0,∞),
[0, 1]).

(ii) Suppose that U(x, t) and U(x, t) are a pair of supersolution and subsolution of (1.1) on
R × [0,+∞) with U(x, 0) ≤ U(x, 0) and 0 ≤ U(x, t), U(x, t) ≤ 1 for (x, t) ∈ R × [0,+∞), then
0 ≤ U(x, t) ≤ U(x, t) ≤ 1 for all (x, t) ∈ R × [0,+∞).

Lemma 2.3 Assume (J1)–(J2) and (FB) hold. Let u(x, t) be a solution of (2.2) with u0(x)
∈ [0, 1], then there exists a constant M1 > 0 independent of x, t and u0(x), such that

|ut(x, t)|, |utt(x, t)| ≤M1 for any x ∈ R, t > 0.

In addition, if there exists a positive constant L0 such that

|u0(x+ η) − u0(x)| ≤ L0η, (2.3)

then for any x ∈ R, t > 0 and η > 0, we have

|u(x+ η, t) − u(x, t)| ≤M2η,

∣
∣
∣
∣
∂u

∂t
(x+ η, t) − ∂u

∂t
(x, t)

∣
∣
∣
∣ ≤M2η, (2.4)

where M2 > 0 is some constant independent of u0 and η.

Remark 2.4 The proofs of Lemmas 2.2 and 2.3 can be found in many references, such as
[15, 27] and the references therein. Here what must be illustrated is that in order to prove
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Lemma 2.2, we need some proper maximum principles and comparison principles for asymmetric
kernel function established by Coville [6], that is why we assume ∃ a ≤ 0 ≤ b, a 	= b such that
J(a) > 0 and J(b) > 0 in assumption (J1).

2.2 Classification of the Traveling Wave Speeds

In this subsection, we mainly analyze the sign and size of the critical speeds of monostable
waves. Recalling [8, 26], by simple calculations and transformations, we get

c∗1 = ĉ∗2 := sup
λ>0

1
λ

(

−
∫

R

J(x)eλxdx+ 1 − f ′(ρ)
)

, (2.5)

ĉ∗1 = c∗2 := inf
λ>0

1
λ

( ∫

R

J(−x)eλxdx− 1 + f ′(ρ)
)

. (2.6)

Let h(λ) = 1
λ (−

∫
R
J(x)eλxdx+ 1 − f ′(ρ)). Since J(x) 	≡ 0 in R

+, we have

h(λ) → −∞ when λ→ −∞,

h(λ) → −∞ when λ→ 0.

Note that h(λ) is continuous, thus there exists λ∗1 > 0 such that c∗1 = ĉ∗2 = maxλ>0 h(λ) = h(λ∗1)
and h′(λ∗1) = 0. Note

h′(λ) =
−λ

∫
R
xJ(x)eλxdx− λh(λ)

λ2
,

we have h(λ∗1) = −
∫

R
xJ(x)eλ∗

1xdx which implies

c∗1 = ĉ∗2 = h(λ∗1) = −
∫ 0

−∞
xJ(x)eλ∗

1xdx−
∫ +∞

0

xJ(x)eλ∗
1xdx

< −
∫ 0

−∞
xJ(x)dx−

∫ +∞

0

xJ(x)dx

=
∫ +∞

0

x[J(−x) − J(x)]dx, (2.7)

then if J(−x) ≤ J(x) and J(−x) 	≡ J(x) in R
+, c∗1 = ĉ∗2 < 0. If J(−x) = J(x) in R

+,
c∗1 = ĉ∗2 < 0, which is consistent with the case that J is symmetric. If J(−x) ≥ J(x) and
J(−x) 	≡ J(x) in R

+, the sign of c∗1 and ĉ∗2 should be further study.
Similarly, let g(λ) = 1

λ(
∫

R
J(−x)eλxdx − 1 + f ′(ρ)). Since J(x) 	≡ 0 in R

−, we get ĉ∗1 = c∗2
= minλ>0 g(λ) = g(λ∗2) for some λ∗2 > 0, and

ĉ∗1 = c∗2 = g(λ∗2) =
∫ 0

−∞
xJ(−x)eλ∗

2xdx+
∫ +∞

0

xJ(−x)eλ∗
2xdx

>

∫ +∞

0

x[J(−x) − J(x)]dx

=
∫

R

xJ(−x)dx, (2.8)

which implies that if J(−x) ≥ J(x) and J(−x) 	≡ J(x) in R
+, ĉ∗1 = c∗2 > 0. If J(−x) ≡ J(x) in

R
+, ĉ∗1 = c∗2 > 0, which is consistent with the case that J is symmetric. If J(−x) ≤ J(x) and

J(−x) 	≡ J(x) in R
+, the sign of ĉ∗1 and c∗2 should be further study.

Moreover, (2.7) and (2.8) show that

ĉ∗1 − c∗1 >
∫ +∞

0

x[J(−x) − J(x)]dx−
∫ +∞

0

x[J(−x) − J(x)]dx = 0,



1780 Zhang L. et al.

So we obtain that

ĉ∗1 = c∗2 > c∗1 = ĉ∗2.

Actually, take J(x) = 1
εP (x

ε ) with ε > 0, where P (x) is a general mollification function
with support x ∈ [−1, 1]. Then for any smooth function u(x), by Taylor’s formula, we have the
following approximation

(J ∗ u)(x) − u(x) = ε2αu′′(x) + εβu′(x) + o(ε2) as ε→ 0, (2.9)

where α = 1
2

∫
R
P (−z)z2dz, β =

∫
R
P (−z)zdz. When J is symmetric, it is obvious that β = 0,

for general asymmetric kernel J , the monostable wave problem of (1.1) in the interval [ρ, 1] is
approximate to the following problem

α̃u′′ − (c− β̃)u′ + f(u) = 0, u(−∞) = ρ, u(+∞) = 1

for some α̃ ≥ 0 and β̃ ∈ R, thus the minimal speed is c∗ + β̃, where c∗ > 0 and β̃ depends on
∫

R
J(−z)zdz which is related to the asymmetry of J .
Based on the above discussion, we classify the sign and size of the critical speeds as follows.

Lemma 2.5 As for the size of critical speeds c∗i ∈ R and ĉ∗i ∈ R, there are only four
possibilities:

(i) ĉ∗1 = c∗2 > c∗1 = ĉ∗2 ≥ 0;
(ii) ĉ∗1 = c∗2 > 0 ≥ c∗1 = ĉ∗2;
(iii) ĉ∗1 = c∗2 ≥ 0 > c∗1 = ĉ∗2;
(iv) 0 ≥ ĉ∗1 = c∗2 > c∗1 = ĉ∗2.

3 Existence and Properties of Entire Solutions

3.1 Asymptotic Behaviors of Traveling Wave Solutions

Since we will frequent use the asymptotic behaviors and estimates of the monostable and bistable
waves to prove the existence and properties of the entire solutions, we present the results as
follows. The proofs are similar to those in [7, 8, 26], so we omit them.

For i = 1, 2, let ψi(x + cit) and ψ̂i(x + ĉit) be the monostable waves stated in Section 1.
Define characteristic functions as follows:

Γi(λ) =
∫

R

J((−1)i−1z)eλzdz − 1 + (−1)i−1ciλ+ f ′(αi),

Γi(μ) =
∫

R

J((−1)i−1z)eμzdz − 1 + (−1)i−1ciμ+ f ′(βi),

Γ̂i(λ̂) =
∫

R

J((−1)iz)eλ̂zdz − 1 + (−1)iĉiλ̂+ f ′(αi),

Γ̂i(μ̂) =
∫

R

J((−1)iz)eμ̂zdz − 1 + (−1)iĉiμ̂+ f ′(βi),

where λ, μ, λ̂, μ̂ ∈ C, (α1, β1) = (0, ρ), (α2, β2) = (ρ, 1) and i = 1, 2. Then the following lemma
holds.

Lemma 3.1 Assume that J satisfies (J1) and f satisfies (FB). Then ψi(x+cit) and ψ̂i(x+ĉit)
satisfying:
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(i) For c1 < c∗1 and c2 > c∗2,

lim
z→−∞(ψi(z) − αi)e−λiz = Ai, lim

z→−∞ψ′
i(z)e

−λiz = Aiλi,

For c1 = c∗1 and c2 = c∗2,

lim
z→−∞(ψi(z) − αi)|z|−1e−λiz = Ai, lim

z→−∞ψ′
i(z)|z|−1e−λiz = Aiλi.

(ii) For c1 ≤ c∗1 and c2 ≥ c∗2,

lim
z→+∞(βi − ψi(z))e−μiz = Bi, lim

z→+∞ψ′
i(z)e

−μiz = −Biμi.

(iii) For ĉ1 > ĉ∗1 and ĉ2 < ĉ∗2,

lim
z→+∞(ψ̂i(z) − αi)e−λ̂iz = Âi, lim

z→+∞ ψ̂′
i(z)e

−λ̂iz = Âiλ̂i.

For ĉ1 = ĉ∗1 and ĉ2 = ĉ∗2,

lim
z→+∞(ψ̂i(z) − αi)|z|−1e−λ̂iz = Âi, lim

z→+∞ ψ̂′
i(z)|z|−1e−λ̂iz = Âiλ̂i.

(iv) For ĉ1 ≥ ĉ∗1 and ĉ2 ≤ ĉ∗2,

lim
z→−∞(βi − ψ̂i(z))e−μ̂iz = B̂i, lim

z→−∞ ψ̂′
i(z)e

−μ̂iz = −B̂iμ̂i.

Here i = 1, 2, −λ1 < 0 and λ2 > 0 are the largest negative root of Γ1(λ) and the smallest
positive root of Γ2(λ), respectively. −μ1 > 0 and μ2 < 0 are the smallest positive root of Γ1(μ)
and the largest negative root of Γ2(μ), respectively. λ̂1 < 0 and −λ̂2 > 0 are the largest negative
root of Γ̂1(λ̂) and the smallest positive root of Γ̂2(λ̂), respectively. μ̂1 > 0 and −μ̂2 < 0 are the
smallest positive root of Γ̂1(μ̂) and the largest negative root of Γ̂2(μ̂), respectively. Ai, Bi, Âi

and B̂i are some positive constants.

For bistable waves φ(x+ ct) and φ̂(x+ ĉt) of (1.1), define four complex functions

Δ1(λ) =
∫

R

J(−z)eλzdz − 1 − cλ+ f ′(0),

Δ2(λ) =
∫

R

J(−z)eλzdz − 1 − cλ+ f ′(1),

Δ̂1(μ) =
∫

R

J(z)eμzdz − 1 + ĉμ+ f ′(0),

Δ̂2(μ) =
∫

R

J(z)eμzdz − 1 + ĉμ+ f ′(1),

where λ, μ ∈ C. Simple computations show that Δ1(0) = Δ̂1(0) = f ′(0) < 0, Δ2(0) = Δ̂2(0)
= f ′(1) < 0, and

∂

∂λ2
Δi(λ) =

∫

R

J(−z)z2eλzdz > 0,

∂

∂μ2
Δ̂i(μ) =

∫

R

J(z)z2eμzdz > 0,

with i = 1, 2. Moreover, the assumption (J1) yields that J(z) 	≡ 0 in R
−, then

Δ1(λ) =
∫ 0

−∞
J(−z)eλzdz +

∫ +∞

0

J(−z)eλzdz − 1 − cλ+ f ′(0) → +∞ as λ→ +∞.
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Similarly,

Δ1(λ) → +∞ as λ→ −∞, Δ2(λ) → +∞ as λ→ ±∞,

Δ̂1(μ) → +∞ as μ→ ±∞, Δ̂2(μ) → +∞ as μ→ ±∞.

Then we obtain the following lemmas.

Lemma 3.2 Assume J and f satisfy (J1) and (FB) respectively, then the equation Δi(λ) = 0
(Δ̂i(μ) = 0) (i = 1, 2) has two real roots λi1 < 0 (μi1 < 0) and λi2 > 0 (μi2 > 0) such that

Δi(λ) (Δ̂i(μ))

⎧
⎪⎪⎨

⎪⎪⎩

> 0 for λ < λi1 (μ < μi1),

< 0 for λ ∈ (λi1, λi2) (μ ∈ (μi1, μi2)),

> 0 for λ > λi2 (μ > μi2).

(3.1)

Lemma 3.3 Assume J satisfies (J1) and f satisfies (FB). Let φ(x+ ct) and φ̂(x+ ĉt) be the
nondecreasing and nonincreasing solutions of (1.2) and (1.4), respectively. Then there exist
some positive constants A,B, Â and B̂ such that

(i) limξ→−∞ φ(ξ)e−λ12ξ = A, limξ→−∞ φ′(ξ)e−λ12ξ = Aλ12;
limξ→+∞(1 − φ(ξ))e−λ21ξ = B, limξ→+∞ φ′(ξ)e−λ21ξ = −Bλ21.
(ii) limξ→+∞ φ̂(ξ)e−μ11ξ = Â, limξ→+∞ φ̂′(ξ)e−μ11ξ = Âμ11;
limξ→−∞(1 − φ̂(ξ))e−μ22ξ = B̂, limξ→−∞ φ̂′(ξ)e−μ22ξ = −B̂μ22.

Then the following estimate lemma can be derived from Lemmas 3.1 and 3.3.

Lemma 3.4 Assume J satisfies (J1) and (J2), then there exist some positive constants
C0, C1, C2, τ1, τ2 and δ which depend on c1, c2, ĉ1, ĉ2, c, ĉ, such that

(i) For ξ ≤ a0,

|ψ′
i(ξ)|, |ψ̂′

i(ξ)|, |φ′(ξ)|, |φ̂′(ξ)| ≤ C0eτ1ξ, (3.2)

C1eτ1ξ ≤ |φ(ξ)|, |1 − φ̂(ξ)|, |ψi(ξ) − αi|, |βi − ψ̂i(ξ)| ≤ C2eτ1ξ, (3.3)

|φ′(ξ)|
|φ(ξ)| ,

|φ̂′(ξ)|
|1 − φ̂(ξ)|

,
|ψ′

i(ξ)|
|ψi(ξ) − αi|

,
|ψ̂′

i(ξ)|
|βi − ψ̂i(ξ)|

≥ δ. (3.4)

(ii) For ξ ≥ −a0,

|ψ′
i(ξ)|, |ψ̂′

i(ξ)|, |φ′(ξ)|, |φ̂′(ξ)| ≤ C0e−τ2ξ, (3.5)

C1e−τ2ξ ≤ |1 − φ(ξ)|, |φ̂(ξ)|, |βi − ψi(ξ)|, |ψ̂i(ξ) − αi| ≤ C2e−τ2ξ, (3.6)

|φ′(ξ)|
|1 − φ(ξ)| ,

|φ̂′(ξ)|
|φ̂(ξ)|

,
|ψ′

i(ξ)|
|βi − ψi(ξ)|

,
|ψ̂′

i(ξ)|
|ψ̂i(ξ) − αi|

≥ δ, (3.7)

where a0 is the radius of the support set of kernel J , (α1, β1) = (0, ρ), α2, β2 = (ρ, 1) and
i = 1, 2.

3.2 Proof of Theorem 1.2

Before starting the main proofs, we consider the following ordinary differential equations which
play an elementary role in the construction of super and subsolutions later.

⎧
⎪⎨

⎪⎩

p′1(t) = c0 −Neσp1(t), t < 0,

p1(0) < min
{

0,
1
σ

ln
c0
2N

}

,

⎧
⎨

⎩

p′2(t) = c0 +Neσp2(t), t < 0,

p2(0) < 0,
(3.8)
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where c0, N, σ are positive constants and the initial value p1(0) ≤ p2(0). (3.8) can be explicitly
solved as

p1(t) = p1(0) + c0t−
1
σ

ln
{

1 − N

c0
eσp1(0)(1 − ec0σt)

}

,

p2(t) = p2(0) + c0t−
1
σ

ln
{

1 +
N

c0
eσp2(0)(1 − ec0σt)

}

.

If we further assume p2(0) = p1(0) − 1
σ ln(1 − 2N

c0
eσp1(0)), then

p1(t) − c0t− ω1 = − 1
σ

ln
{

1 − r1
1 + r1

ec0σt

}

, r1 = −N
c0

eσp1(0), (3.9)

p2(t) − c0t− ω1 = − 1
σ

ln
{

1 − r2
1 + r2

ec0σt

}

, r2 =
N

c0
eσp2(0), (3.10)

where

ω1 := p1(0) − 1
σ

ln
{

1 − N

c0
eσp1(0)

}

= p2(0) − 1
σ

ln
{

1 +
N

c0
eσp2(0)

}

.

Furthermore,
lim

t→−∞(p2(t) − p1(t)) = 0.

In addition, there exists a positive constant R0 such that

0 < p2(t) − p1(t) ≤ R0ec0σt, t ≤ 0, (3.11)

and
−R0

2
ec0σt ≤ p1(t) − c0t− ω1 < 0 < p2(t) − c0t− ω1 ≤ R0

2
ec0σt, t ≤ 0. (3.12)

Now define an auxiliary function as follows:

P (x, y) =
(1 − ρ)xy

x(y − ρ) + ρ(1 − y)
, (x, y) ∈ D1 := {[0, ρ] × [ρ, 1]} \ {(0, 1)}. (3.13)

Rewrite P (x, y) as

P (x, y) = x+ x(y − ρ)
{

1 − x

x(y − ρ) + ρ(1 − y)

}

= y + (x− ρ)(y − 1)
{

−y
x(y − ρ) + ρ(1 − y)

}

, for (x, y) ∈ D1.

Simple calculations imply the following lemma.

Lemma 3.5 The functions P (x, y) defined by (3.13) satisfying

Px(x, ρ) = Py(ρ, y) = 1, Px(x, 1) = Py(0, y) = 0, (x, y) ∈ D1,

and

Pxx(x, ρ) = Pxx(x, 1) = Pyy(0, y) = Pyy(ρ, y) = 0, (x, y) ∈ D1.

Moreover, there exist functions P̃11j , P̃22j ∈ C1(D1), j = 1, 2 such that

Pxx(x, y) = (y − ρ)P̃111(x, y) = (y − 1)P̃112(x, y),

Pyy(x, y) = xP̃221(x, y) = (x− ρ)P̃222(x, y), (x, y) ∈ D1.
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Now combining above discussions on pi(t) with Lemmas 3.4 and 3.5, we are ready to con-
struct a pair of supersolution and subsolution of (1.1).

Lemma 3.6 Let all assumptions of Theorem 1.2 be satisfied. Set c̄ = (c1 + c2)/2 and c0 =
(c2 − c1)/2. Let (p1(t), c0) and (p2(t), c0) be the solutions of (3.8). Then the functions defined
by ⎧

⎨

⎩

U(x, t) := P (ψ1(x+ c̄t− p1(t)), ψ2(x+ c̄t+ p2(t))),

U(x, t) := P (ψ1(x+ c̄t− p2(t)), ψ2(x+ c̄t+ p1(t))),

are a pair of supersolution and subsolution of (1.1) for t ≤ 0. Moreover, there are

U(x, t) ≤ U(x, t), sup
x∈R

(U(x, t) − U(x, t)) ≤ Cec0σt, t ≤ 0 (3.14)

for some positive constant C and σ as in (3.8).

Proof From Lemma 2.5, we know c2 ≥ c∗2 > c∗1 ≥ c1, thus c0 > 0. Denote

F(u) = ut − (J ∗ u− u) − f(u). (3.15)

To prove this lemma, it suffices to show that

F(U) ≥ 0 and F(U) ≤ 0, for (x, t) ∈ R × (−∞, 0].

By using the above prepared results, direct calculations give that

F(U) = Pxψ
′
1(−p′1 + c̄) + Pyψ

′
2(p

′
2 + c̄) − f(P ) − (J ∗ P − P )

= Pxψ
′
1(−p′1 + c̄− c1) + Pyψ

′
2(p

′
2 + c̄− c2) + Pxf(ψ1) + Pyf(ψ2) − f(P )

+ Px(J ∗ ψ1 − ψ1) + Py(J ∗ ψ2 − ψ2) − (J ∗ P − P )

= Pxψ
′
1Neσp1 + Pyψ

′
2Neσp2 − F (ψ1, ψ2) −H(ψ1, ψ2), (3.16)

where P = P (ψ1, ψ2), and

F (ψ1, ψ2) = f(P ) − Pxf(ψ1) − Pyf(ψ2),

H(ψ1, ψ2) = (J ∗ P − P ) − Px(J ∗ ψ1 − ψ1) − Py(J ∗ ψ2 − ψ2).

By virtue of (3.11), we have eσp2(t) ≥ eσp1(t) for t ≤ 0. Then it follows from (3.16) that

F(U) ≥ A(ψ1, ψ2)[Neσp1(t) −G(ψ1, ψ2)], (3.17)

where

A(ψ1, ψ2) := Pxψ
′
1 + Pyψ

′
2, G(ψ1, ψ2) :=

F (ψ1, ψ2) +H(ψ1, ψ2)
A(ψ1, ψ2)

.

Indeed, following from (3.13), we have

Px(x, y) =
ρ(1 − ρ)y(1 − y)

[x(y − ρ) + ρ(1 − y)]2
, Py(x, y) =

ρ(1 − ρ)x(1 − x)
[x(y − ρ) + ρ(1 − y)]2

.

Since 0 < ψ1 < ρ, ρ < ψ2 < 1 and ψ′
i > 0 (i = 1, 2) for all (x, t) ∈ R

2, we have A(ψ1, ψ2) > 0
for (x, t) ∈ R × (−∞, 0].

Next we verify F(U(x, t)) ≥ 0 for (x, t) ∈ R × (−∞, 0]. The remainder of the proof is
divided into three steps.
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Step 1 We give some estimates for the function P (ψ1(x+ c̄t− p1(t)), ψ2(x+ c̄t+ p2(t))). If
p2(0) � −1, then p2(t) can be small enough. And it follows from (3.3) of Lemma 3.4 that

0 < ψ2(x+ c̄t+p2(t))−ρ ≤ C2eτ1(x+c̄t+p2) ≤ C2eτ1p2 ≤ 1 − ρ

2
for x+ c̄t ≤ 0, t ≤ 0. (3.18)

Thus, there exists a constant γ1 > 0 such that

Px(ψ1, ψ2) =
ρ(1 − ρ)ψ2(1 − ψ2)

[ψ1(ψ2 − ρ) + ρ(1 − ψ2)]2

≥ ρ2(1 − ρ)(1 − ψ2)
[2ρ(1 − ρ)]2

≥ γ1 for x+ c̄t ≤ 0, t ≤ 0. (3.19)

By a similar argument, if p1(0) � −1, (3.6) shows that

0 < ρ− ψ1(x+ c̄t− p1(t)) ≤ C2e−τ2(x+c̄t−p1(t))

≤ C2eτ2p1(t)

≤ ρ

2
for x+ c̄t ≥ 0, t ≤ 0. (3.20)

Therefore, there exists γ2 > 0 such that

Py(ψ1, ψ2) =
ρ(1 − ρ)ψ1(1 − ψ1)

[ψ1(ψ2 − ρ) + ρ(1 − ψ2)]2
≥ ρ(1 − ρ)2ψ1

[2ρ(1 − ρ)]2
≥ γ2 (3.21)

for x+ c̄t ≥ 0 and t ≤ 0.
Next, we estimate the second derivative of P (ψ1, ψ2).

Pxx(ψ1, ψ2) = (ψ2 − ρ)(ψ2 − 1)
2ρ(1 − ρ)ψ2

[ψ1(ψ2 − ρ) + ρ(1 − ψ2)]3
, (3.22)

Pxy(ψ1, ψ2) = ρ(1 − ρ)
(2ρ− 1)ψ1ψ2 + ρ(1 − ψ1 − ψ2)

[ψ1(ψ2 − ρ) + ρ(1 − ψ2)]3
, (3.23)

Pyy(ψ1, ψ2) = ψ1(ψ1 − ρ)
2ρ(1 − ρ)(ψ1 − 1)

[ψ1(ψ2 − ρ) + ρ(1 − ψ2)]3
. (3.24)

From (3.20), we have ψ1(x+ c̄t− p1(t)) ≥ ρ/2 for x+ c̄t ≥ 0 and t ≤ 0. Thus

ψ1(ψ2 − ρ) + ρ(1 − ψ2) ≥
ρ

2
[ψ2(x+ c̄t+ p2(t)) − ρ] + ρ[1 − ψ2(x+ c̄t+ p2(t))]

=
ρ

2
[2 − ρ− ψ2(x+ c̄t+ p2(t))]

≥ ρ(1 − ρ)
2

for x+ c̄t ≥ 0 and t ≤ 0. Similarly, from (3.18), we can obtain

ψ1(ψ2 − ρ) + ρ(1 − ψ2) ≥
ρ(1 − ρ)

2
for x+ c̄t ≤ 0, t ≤ 0.

Thus, there exists a constant C̃ such that

|Pxx(ψ1, ψ2)|, |Pxy(ψ1, ψ2)|, |Pyy(ψ1, ψ2)| ≤ C̃

uniformly in (x, t) ∈ R × (−∞, 0]. (3.25)

Step 2 In this step, we prove the following estimations:

F (ψ1, ψ2)
A(ψ1, ψ2)

≤ L1eτ1p2(t) for x+ c̄t ≤ 0, t ≤ 0, (3.26)
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F (ψ1, ψ2)
A(ψ1, ψ2)

≤ L1eτ2p1(t) for x+ c̄t ≥ 0, t ≤ 0, (3.27)

for some constant L1 > 0. From the definition of P (ψ1, ψ2) and Lemma 3.5, we have

F (ψ1, ρ) = f(P (ψ1, ρ)) − Px(ψ1, ρ)f(ψ1) − Py(ψ1, ρ)f(ρ) = f(ψ1) − f(ψ1) = 0.

Analogously, one has

F (ψ1, 1) = F (ψ1, ρ) = F (0, ψ2) = F (ρ, ψ2) = 0.

Thus, there exist functions F1, F2, F3 ∈ C(D1) such that for x+c̄t ≤ p1(t), we have the following
expression

F (ψ1, ψ2) = ψ1(ψ2 − ρ)F1(ψ1, ψ2).

Similarly, we have
F (ψ1, ψ2) = (ψ1 − ρ)(ψ2 − 1)F2(ψ1, ψ2)

for x+ c̄t ≥ −p2(t), and

F (ψ1, ψ2) = (ψ1 − ρ)(ψ2 − ρ)F3(ψ1, ψ2)

for p1(t) ≤ x + c̄t ≤ −p2(t), where ψ1 = ψ1(x + c̄t − p1(t)) and ψ2 = ψ2(x + c̄t + p2(t)). It is
easy to see that there exists a positive constant C3 such that |(F1, F2, F3)(ψ1, ψ2)| ≤ C3.

Next we consider two cases: x+ c̄t ∈ (−∞, p1(t)]∪ [−p2(t),+∞) and x+ c̄t ∈ [p1(t),−p2(t)],
respectively.

Case I x + c̄t ∈ (−∞, p1(t)] ∪ [−p2(t),+∞). By using Lemma 3.4, (3.19) and the above
prepared results, for x+ c̄t ≤ p1(t) and t ≤ 0, we have

F (ψ1, ψ2)
A(ψ1, ψ2)

=
ψ1(ψ2 − ρ)F1(ψ1, ψ2)

Pxψ′
1 + Pyψ′

2

≤ (ψ2 − ρ)|F1(ψ1, ψ2)|
Px(ψ′

1/ψ1)

≤ C2C3eτ1(x+c̄t+p2(t))

γ1δ

≤ L2eτ1p2(t) (3.28)

with some constant L2 > 0. Similarly, we can prove that there exists a constant L3 > 0 such
that

F (ψ1, ψ2)
A(ψ1, ψ2)

=
(ψ1 − ρ)(ψ2 − 1)F2(ψ1, ψ2)

Pxψ′
1 + Pyψ′

2

≤ L3eτ2p1(t) for x+ c̄t ≥ −p2(t), t ≤ 0. (3.29)

Case II z ∈ [p1(t),−p2(t)]. Firstly, for p1(t) ≤ x+ c̄t ≤ 0 and t ≤ 0, there is

F (ψ1, ψ2)
A(ψ1, ψ2)

=
(ψ1 − ρ)(ψ2 − ρ)F3(ψ1, ψ2)

Pxψ′
1 + Pyψ′

2

≤ |ψ2 − ρ||F3|
Pxψ′

1/(ρ− ψ1)

≤ L4eτ1p2(t). (3.30)
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For 0 ≤ x+ c̄t ≤ −p2(t) and t ≤ 0, we also have

F (ψ1, ψ2)
A(ψ1, ψ2)

≤ L5eτ2p1(t). (3.31)

Then taking L1 = max{Li, i = 2, 3, 4, 5} and combining (3.28)–(3.31), we conclude that (3.26)
and (3.27) hold.

Step 3 Next, we prove that there exists a positive constant L̃1 such that

H(ψ1, ψ2)
A(ψ1, ψ2)

≤ L̃1eτ1p2(t) for x+ c̄t ≤ 0, t ≤ 0, (3.32)

H(ψ1, ψ2)
A(ψ1, ψ2)

≤ L̃1eτ2p1(t) for x+ c̄t ≥ 0, t ≤ 0. (3.33)

In order to simplify the complex expressions, we denote

ψ̃1(θ) = ψ1(x+ c̄t− p1(t) − θr) and ψ̃2(θ) = ψ2(x+ c̄t+ p2(t) − θr),

where θ ∈ [0, 1] and r ∈ supp(J). Note that

H(ψ1(x+ c̄t− p1(t)), ψ2(x+ c̄t+ p2(t)))

=
∫

R

J(r)[P (ψ̃1(1), ψ̃2(1)) − P (ψ̃1(0), ψ̃2(0))]dr

− Px

∫

R

J(r)[ψ̃1(1) − ψ̃1(0)]dr − Py

∫

R

J(r)[ψ̃2(1) − ψ̃2(0)]dr

=
∫

R

J(r)Px(θ1ψ̃1(1) + (1 − θ1)ψ̃1(0), ψ̃2(1))[ψ̃1(1) − ψ̃1(0)]dr

+
∫

R

J(r)Py(ψ̃1(0), θ2ψ̃2(1) + (1 − θ2)ψ̃2(0))[ψ̃2(1) − ψ̃2(0)]dr

−
∫

R

J(r)Px(ψ̃1(0), ψ̃2(0))[ψ̃1(1) − ψ̃1(0)]dr

−
∫

R

J(r)Py(ψ̃1(0), ψ̃2(0))[ψ̃2(1) − ψ̃2(0)]dr

=
∫

R

J(r){[Px(θ1ψ̃1(1) + (1 − θ1)ψ̃1(0), ψ̃2(1)) − Px(ψ̃1(0), ψ̃2(0))][ψ̃1(1) − ψ̃1(0)]

+ [Py(ψ̃1(0), θ2ψ̃2(1) + (1 − θ2)ψ̃2(0)) − Py(ψ̃1(0), ψ̃2(0))][ψ̃2(1) − ψ̃2(0)]}dr

=
∫

R

J(r){Pxx(θ3θ1ψ̃1(1) + (1 − θ3θ1)ψ̃1(0), ψ̃2(1))θ1[ψ̃1(1) − ψ̃1(0)]2

+ Pxy(ψ̃1(0), θ4ψ̃2(1) + (1 − θ4)ψ̃2(0))[ψ̃1(1) − ψ̃1(0)][ψ̃2(1) − ψ̃2(0)]

+ Pyy(ψ̃1(0), θ5θ2ψ̃2(1) + (1 − θ5θ2)ψ̃2(0))θ2[ψ̃2(1) − ψ̃2(0)]2}dr,

where θi ∈ (0, 1) (i = 1, . . . , 5). According to (3.22)–(3.25), there exists a positive constant Ĉ
such that

|Pxx(θ3ψ̃1(1) + (1 − θ3)ψ̃1(0), ψ̃2(1))| ≤ Ĉ(ψ̃2(1) − ρ),

|Pyy(ψ̃1(0), θ5ψ̃2(1) + (1 − θ5)ψ̃2(0))| ≤ Ĉψ̃1(0),

|Pxy(ψ̃1(0), θ4ψ̃2(1) + (1 − θ4)ψ̃2(0))| ≤ Ĉ.
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Therefore, we have

H(ψ1, ψ2)
A(ψ1, ψ2)

≤ Ĉ

∫

R

J(r)
{

[ψ̃1(1) − ψ̃1(0)]2[ψ̃2(1) − ρ]
Pxψ′

1(x+ c̄t− p1) + Pyψ′
2(x+ c̄t+ p2)

+
[ψ̃1(1) − ψ̃1(0)][ψ̃2(1) − ψ̃2(0)] + [ψ̃2(1) − ψ̃2(0)]2ψ̃1(0)

Pxψ′
1(x+ c̄t− p1) + Pyψ′

2(x+ c̄t+ p2)

}

dr.

Let

B(ψ1, ψ2) = r2[ψ′
1(x+ c̄t− p1 − θ6r)]2[ψ2(x+ c̄t+ p2 − r) − ρ],

C(ψ1, ψ2) = r2ψ′
1(x+ c̄t− p1 − θ7r)ψ′

2(x+ c̄t+ p2 − θ8r),

D(ψ1, ψ2) = r2[ψ′
2(x+ c̄t+ p2 − θ9r)]2ψ1(x+ c̄t− p1),

where θi ∈ (0, 1) (i = 6, . . . , 9) and r ∈ [−a0, a0], a0 is defined as in Lemma 3.4.
For t ≤ 0 and x+ c̄t ≤ p1(t) < 0, we have x+ c̄t−p1(t)−θ6r ≤ a0 and x+ c̄t+p2(t)−r ≤ a0.

Then by (3.2), (3.3), (3.4) and (3.19), we get

B(ψ1, ψ2)
A(ψ1, ψ2)

≤ r2[ψ′
1(x+ c̄t− p1 − θ6r)]2[ψ2(x+ c̄t+ p2 − r) − ρ]

Pxψ′
1(x+ c̄t− p1)

≤ a2
0C

2
0e2τ1(x+c̄t−p1−θ6r)

γ1δψ1(x+ c̄t− p1)
[ψ2(x+ c̄t+ p2 − r) − ρ]

≤ a2
0C

2
0e2τ1(x+c̄t−p1−θ6r)

γ1δC1eτ1(x+c̄t−p1)
C2eτ1(x+c̄t+p2−r)

≤ L̃2eτ1p2(t)

for some constant L̃2 > 0. Similarly, for t ≤ 0 and p1(t) ≤ x + c̄t ≤ 0, there also exists a
constant L̃3 > 0 such that

B(ψ1, ψ2)
A(ψ1, ψ2)

≤ L̃3eτ1p2(t).

By a similar argument as above, we obtain that there exist positive constants L̃4 and L̃5 such
that

C(ψ1, ψ2)
A(ψ1, ψ2)

,
D(ψ1, ψ2)
A(ψ1, ψ2)

≤ L̃4eτ1p2(t) for x+ c̄t ≤ 0, t ≤ 0,

B(ψ1, ψ2)
A(ψ1, ψ2)

,
C(ψ1, ψ2)
A(ψ1, ψ2)

,
D(ψ1, ψ2)
A(ψ1, ψ2)

≤ L̃5eτ2p1(t) for x+ c̄t ≥ 0, t ≤ 0.

Then by setting L̃1 = Ĉmax{3L̃5,max{L̃2 + L̃3} + 2L̃4}, we get

H(ψ1, ψ2)
A(ψ1, ψ2)

≤ Ĉ

∫

R

J(r)
{
B(ψ1, ψ2)
A(ψ1, ψ2)

+
C(ψ1, ψ2)
A(ψ1, ψ2)

+
D(ψ1, ψ2)
A(ψ1, ψ2)

}

dr

≤ L̃1eτ1p2(t) for x+ c̄t ≤ 0, t ≤ 0,

and
H(ψ1, ψ2)
A(ψ1, ψ2)

≤ L̃1eτ2p1(t) for x+ c̄t ≥ 0, t ≤ 0.

Choosing 0 < τ3 < min{τ1, (p2(0)τ1)/p1(0)} and letting g(t) := τ1p2(t) − τ3p1(t), it follows
from (3.8) that g(0) = τ1p2(0) − τ3p1(0) < 0 and

g′(t) = c0(τ1 − τ3) +N(τ1eσp2 + τ3eσp1) > 0,
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which implies that τ1p2(t) ≤ τ3p1(t) < 0 for t ≤ 0. Applying (3.26), (3.27), (3.32) and (3.33),
letting N ≥ L1 + L̃1 and σ ≤ min{τ2, τ3}, we have

F(U) ≥ A(ψ1, ψ2)[Neσp1(t) − (L1 + L̃1)eτ1p2(t)]

≥ A(ψ1, ψ2)[Neσp1(t) − (L1 + L̃1)eτ3p1(t)]

≥ 0

uniformly in (x+ c̄t, t) ∈ (−∞, 0] × (−∞, 0]. And

F(U) ≥ A(ψ1, ψ2)[Neσp1(t) − (L1 + L̃1)eτ2p1(t)] ≥ 0

uniformly in (x+ c̄t, t) ∈ [0,+∞) × (−∞, 0]. Thus, F(U) ≥ 0 for all (x, t) ∈ R × (−∞, 0], and
U is a supersolution of (1.1) for t ≤ 0. By a similar argument, we can prove F(U) ≤ 0 for all
(x, t) ∈ R × (−∞, 0].

Finally, we show (3.14). From the definition of U(x, t) and U(x, t), one has

U(x, t) − U(x, t) = Px(θ1ψ1(x+ c̄t− p1) + (1 − θ1)ψ1(x+ c̄t− p2), ψ2(x+ c̄t+ p2))

· [ψ1(x+ c̄t− p1) − ψ1(x+ c̄t− p2)]

+ Py(ψ1(x+ c̄t− p2), θ2ψ2(x+ c̄t+ p2) + (1 − θ2)ψ2(x+ c̄t+ p1))

· [ψ2(x+ c̄t+ p2) − ψ2(x+ c̄t+ p1)].

Since Px ≥ 0 and Py ≥ 0 on D1 and ψ′
i > 0 (i = 1, 2), from (3.11) we know that ψ1(x + c̄t −

p1) − ψ1(x + c̄t − p2) ≥ 0 and ψ2(x + c̄t + p2) − ψ2(x + c̄t + p1) ≥ 0. Consequently, we have
U(x, t) ≥ U(x, t) and

sup
x∈R

(
U(x, t) − U(x, t)

)
≤ |Px||ψ′

1|(p2(t) − p1(t)) + |Py||ψ′
2|(p2(t) − p1(t)) ≤ Cec0σt.

The proof is complete. �

Proof of Theorem 1.2 Now we are ready to prove the existence of entire solutions of (1.1)
described as in Theorem 1.2. We only prove the existence and properties of U1(x, t) since those
for U2(x, t) can be proved by similar processes. Given any n ∈ N, consider the following Cauchy
problem ⎧

⎪⎪⎨

⎪⎪⎩

un
t (x, t) = (J ∗ un − un)(x, t) + f(un(x, t)), x ∈ R, t > −n,
un(x,−n) := U(x,−n) = P (ψ1(x− c̄n− p2(−n)),

ψ2(x− c̄n+ p1(−n))), x ∈ R.

(3.34)

Lemma 2.2 shows that (3.34) has a unique solution un(x, t) which satisfies 0 ≤ un(x, t) ≤ 1 for
(x, t) ∈ R × [−n,+∞). In addition, by Lemmas 2.2 and 3.6, we have

0 ≤ U(x, t) ≤ un(x, t) ≤ un+1(x, t) ≤ min{1, U(x, t)} for x ∈ R,−(n+ 1) ≤ t < 0. (3.35)

In other words, the solution sequence {un(x, t)}n∈N is bounded and non-decreasing about n for
any (x, t) ∈ R × (−n,+∞).

Moreover, note that ψ1(x + c1t) and ψ2(x + c2t) are monotone monostable waves of (1.1)
which satisfy (1.6), and c1 ≤ c∗1, c2 ≥ c∗2 with c1, c2 	= 0. Lemma 2.5 implies three cases for
the size of c1 and c2: (1) c2 > c1 > 0; (2) c2 > 0 > c1; (3) 0 > c2 > c1. In either case,
we always have 0 < ψ′

1 ≤ 2ρ+M1
|c1| and 0 < ψ′

2 ≤ 2+M2
|c2| , where M1 = maxs∈[0,ρ] |f(s)| and
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M2 = maxs∈[ρ,1] |f(s)|. In addition, it is easy to see that there exists a constant M3 > 0
such that |Px(x, y)| ≤ M3 for any (x, y) ∈ D1. Therefore, the initial functions un(x,−n) =
P (ψ1(x − c̄n − p2(−n)), ψ2(x − c̄n + p1(−n))) of (3.34) satisfy (2.3) in Lemma 2.3. Thus,
Lemma 2.3 implies that the solutions un(x, t) of (3.34) and ∂

∂tu
n(x, t) are globally Lipschitz in

x. Then by using Arzela–Ascoli Theorem and the diagonal extraction process, there exists a
subsequence {uni}i∈N of {un}n∈N such that uni(x, t) converge uniformly to a function U1(x, t)
in T , which means for any compact set S ⊂ R

2, the sequences uni(x, t) and ∂
∂tu

ni(x, t) converge
uniformly in (x, t) ∈ S to U1(x, t) and ∂

∂tU1(x, t) as i→ ∞, respectively. Obviously, U1(x, t) is
an entire solution of (1.1). And (3.35) implies that

U(x, t) ≤ U1(x, t) ≤ U(x, t) for any x ∈ R and t ≤ 0. (3.36)

Next, we study the asymptotic behavior (1.13). Assume x ≤ −c̄t = − c1+c2
2 t, then from

(3.36) we have

|U1(x, t) − ψ1(x+ c1t− ω1)| ≤ |U(x, t) − U(x, t)| + |U(x, t) − ψ1(x+ c̄t− p2(t))|
+ |ψ1(x+ c̄t− p2(t)) − ψ1(x+ c1t− ω1)|

≤ Cec0σt +
R0

2
ec0σt sup

ξ∈R

ψ′
1(ξ)

+ |U(x, t) − ψ1(x+ c̄t− p2(t))| . (3.37)

The last inequality is ensured by (3.14) and (3.12). Now we estimate the last term of (3.37).

|U(x, t) − ψ1(x+ c̄t− p2(t))|
= |P (ψ1(x+ c̄t− p2(t)), ψ2(x+ c̄t+ p1(t))) − ψ1(x+ c̄t− p2(t))|

=
ψ1(x+ c̄t− p2(t))[1 − ψ1(x+ c̄t− p2(t))][ψ2(x+ c̄t+ p1(t)) − ρ]

ψ1(x+ c̄t− p2(t))[ψ2(x+ c̄t+ p1(t)) − ρ] + ρ[1 − ψ2(x+ c̄t+ p1(t))]
.

Note that for x ≤ −c̄t and t� −1,

ψ1(x+ c̄t− p2(t))[ψ2(x+ c̄t+ p1(t)) − ρ] + ρ[1 − ψ2(x+ c̄t+ p1(t))] ≥ ρ(1 − ψ2(0)).

Since ρ ≤ ψ2(x+ c̄t+ p1(t)) ≤ ψ2(p1(t)) → ρ as t→ −∞ for x ≤ −c̄t, we have

lim
t→−∞ sup

x≤−c̄t
|U(x, t) − ψ1(x+ c̄t− p2(t))| = 0.

Therefore from (3.37),

lim
t→−∞ sup

x≤−c̄t
|U1(x, t) − ψ1(x+ c1t− ω1)| = 0.

Similarly, we can prove that

lim
t→−∞ sup

x≥−c̄t
|U1(x, t) − ψ2(x+ c2t+ ω1)| = 0.

Thus (1.13) holds. (1.14) can be proved similarly and (i)–(iv) are straightforward.

3.3 Proofs of Theorems 1.3 and 1.4

To prove Theorems 1.3 and 1.4, we recommend another auxiliary function:

Q(x, y) =
ρ(x+ y) − (1 + ρ)xy

ρ− xy
, (x, y) ∈ D2 := {[0, ρ] × [ρ, 1]} \ {(ρ, 1)}. (3.38)
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Simple calculations show that Q(x, y) has the similar properties with P (x, y). And by using
analogous arguments with the proof of Lemma 3.6, we can get the following two lemmas.

Lemma 3.7 Let all assumptions of Theorem 1.3 be satisfied. Set c̄ = (c+ĉ1)/2, c0 = (c−ĉ1)/2,
and (pi(t), c0) (i = 1, 2) be the solutions of (3.8). If c > ĉ1, then the functions defined by

⎧
⎨

⎩

V (x, t) := Q(ψ̂1(x+ c̄t− p2(t)), φ(x+ c̄t+ p2(t)))

V (x, t) := Q(ψ̂1(x+ c̄t− p1(t)), φ(x+ c̄t+ p1(t)))

are a pair of supersolution and subsolution of (1.1) for (x, t) ∈ R × (−∞, 0]. Moreover, (3.14)
holds for V (x, t) and V (x, t).

Lemma 3.8 Let all assumptions of Theorem 1.4 be satisfied and c > ĉ. Set c̄ = c+ĉ
2 , c0 = c−ĉ

2

and (pi(t), c0) (i = 1, 2) be the solutions of (3.8). Then the functions defined by
⎧
⎨

⎩

W (x, t) := Q(φ(x+ c̄t− p2(t)), φ̂(x+ c̄t+ p2(t)))

W (x, t) := Q(φ(x+ c̄t− p1(t)), φ̂(x+ c̄t+ p1(t)))

constitute a pair of supersolution and subsolution of (1.1) for (x, t) ∈ R × (−∞, 0]. In addi-
tion, (3.14) also holds for W (x, t) and W (x, t).

Afterwards, following the similar processes with Theorem 1.2, we obtain the conclusions of
Theorems 1.3 and 1.4. In particular, for the case ĉ > c in Theorem 1.4, we prove it just by
exchanging the roles of (φ, c) and (φ̂, ĉ). In addition, since the proof of Theorem 1.5 is standard
and common by using Lemma 2.3, we omit the details here.

Remark 3.9 In Theorems 1.2 and 1.3, we do not get the asymptotic properties of the entire
solutions as t → +∞ since the subsolutions we constructed here just hold for t < 0. However,
in Theorem 1.4, we obtained the asymptotic behavior and monotonicity of W (x, t) with respect
to t, because under the conditions of Theorem 1.4, the function

W (x, t) := max{φ(x+ ct+ θ1), φ̂(x+ ct+ θ2)}

is also a subsolution of (1.1) which holds for t ∈ R.

4 The Effects of Asymmetry of J on the Wave Speeds

For a general kernel function, to consider the influence of the asymmetry of the kernel is very
difficult, so we take J as a translation of the Gauss kernel, i.e. J(x) = 1√

4πr
e−

(x−a)2

4r , where a is
some constant (not necessarily positive). Obviously, J ∈ C∞,

∫
R
J(x)dx = 1 and J(x) 	= J(−x).

Section 2.2 shows that there exists a positive constant λ∗2 such that

c∗2 = ĉ∗1 =

∫
R

1√
4πr

e−
(−x−a)2

4r eλ∗
2xdx− 1 + f ′(ρ)

λ∗2
.

dc∗2
da

=
1

λ∗2
√

4πr

∫

R

2(−x− a)
4r

eλ∗
2x− (−x−a)2

4r dx

= − 1
2rλ∗2

√
4πr

∫

R

(x+ a)eλ∗
2(x+a)− (x+a)2

4r e−aλ∗
2dx

= − 1
2rλ∗2

√
4πr

e−aλ∗
2

∫

R

yeλ∗
2y− y2

4r dy
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= − 1
2rλ∗2

√
4πr

e−aλ∗
2erλ∗2

2

∫

R

ye−
(y−2rλ∗

2)2

4r dy

= − 1
2rλ∗2

√
4πr

e−aλ∗
2erλ∗2

2

∫

R

ze−
z2
4r dz − 1

2rλ∗2
√

4πr
e−aλ∗

2erλ∗2
2

∫

R

2rλ∗2e
− z2

4r dz

= − 1
λ∗2

√
4πr

e−aλ∗
2erλ∗2

2

∫ +∞

0

e−sds− 1√
π

e−aλ∗
2erλ∗2

2

∫

R

e−t2dt

= − 1
λ∗2

√
4πr

e−aλ∗
2erλ∗2

2 − e−aλ∗
2erλ∗2

2

< 0.

In above calculations, we frequently use variable substitution, such as y = x+ a, z = y− 2rλ∗2,
s = ( z√

4r
)2 and t = z√

4r
, and the special integral

∫
R

e−x2
dx =

√
π. Thus we obtain that c∗2 is

decreased with respect to a, which means that the symmetry axis of the kernel J is more right
(a >> 1), the smaller the minimal wave speed is, and the symmetry of the kernel J is more left
(a << −1), the larger the minimal wave speed is.

Similarly, we obtain
dĉ∗2
da

=
dc∗1
da

< 0

which implies that ĉ∗2 is also decreased with respect to a, namely, the symmetry axis of the
kernel J is more right (a >> 1), the smaller the maximal wave speed is, and the symmetry of
the kernel J is more left (a << −1), the larger the maximal wave speed is. When a = 0, it is
obviously that c∗2 > 0 and ĉ∗2 < 0. Combining with the above derivative relations, it it natural
to know that the case of c∗2 < 0 and ĉ∗2 > 0 is impossible.
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