
Acta Mathematica Sinica, English Series

Jun., 2019, Vol. 35, No. 6, pp. 749–770

Published online: May 15, 2019

https://doi.org/10.1007/s10114-019-8214-y

http://www.ActaMath.com

Acta Mathematica Sinica, 
English Series
© Springer-Verlag GmbH Germany & 
      The Editorial Office of  AMS  2019

Perturbation Theory for Solutions to Second Order Elliptic

Operators with Complex Coefficients and the Lp Dirichlet Problem

Martin DINDOŠ
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Abstract We establish a Dahlberg-type perturbation theorem for second order divergence form el-

liptic operators with complex coefficients. In our previous paper, we showed the following result: If

L0 = divA0(x)∇+B0(x) ·∇ is a p-elliptic operator satisfying the assumptions of Theorem 1.1 then the

Lp Dirichlet problem for the operator L0 is solvable in the upper half-space R
n
+. In this paper we prove

that the Lp solvability is stable under small perturbations of L0. That is if L1 is another divergence

form elliptic operator with complex coefficients and the coefficients of the operators L0 and L1 are

sufficiently close in the sense of Carleson measures, then the Lp Dirichlet problem for the operator L1

is solvable for the same value of p. As a corollary we obtain a new result on Lp solvability of the Dirich-

let problem for operators of the form L = divA(x)∇ + B(x) · ∇ where the matrix A satisfies weaker

Carleson condition (expressed in term of oscillation of coefficients). In particular the coefficients of A

need no longer be differentiable and instead satisfy a Carleson condition that controls the oscillation

of the matrix A over Whitney boxes. This result in the real case has been established by Dindoš,

Petermichl and Pipher.

Keywords Complex coefficients elliptic PDEs, perturbation theory, boundary value problems
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1 Introduction

It is natural to ask when behavior of solutions to, or other properties of, certain partial dif-
ferential equations are preserved under small perturbations of the coefficients. In the case of
second order elliptic and parabolic operators, this is a well-studied question, at least when the
coefficients are real valued. In 1986, Dahlberg [7] studied this question in the context of the
solvability of the Lp Dirichlet problem, and gave a criterion for smallness of the perturbation
in terms of Carleson measures. We refer to this, and a variety of similar conditions that have
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750 Dindoš M. and Pipher J.

arisen over the years, as “Dahlberg-type” perturbation criteria. The results of [7] were sharp-
ened in [13], to include consequences of both smallness and simply finiteness of the Carleson
measure condition on the perturbation. Subsequent work enlarged the class of domains in
which these results hold, as well as the class of operators. In [12], Escauriaza showed that the
small Carleson condition preserved a refined property of the density of elliptic measure, namely
that the logarithm of the density belongs to the Sarason space of Vanishing Mean Oscillation
(VMO). Dahlberg’s theorem and Escauriaza’s theorem were both extended to chord-arc do-
mains in [17] and [18]. The theory has also been extended to parabolic operators; see [20] for
non-cylindrical domains. For equations in non-divergence form, Rios [19] showed that the A∞
property of elliptic measure is preserved under finiteness of the Carleson measure condition, and
Dindoš–Wall [9] gave the sharp result assuming the small Carleson condition. All of this was
done, however, in the case of real coefficients. Perturbation theory in the complex coefficient
case is far less developed; we will mention a few examples momentarily.

In the paper [11] we established a new theory of interior regularity for solutions to complex
coefficient second order divergence form operators, which can be viewed as a weaker substitute
for the De Giorgi–Nash–Moser regularity theory for real elliptic PDEs. Specifically, we con-
sidered operators of the form L = divA(x)∇ + B(x) · ∇, with certain algebraic conditions on
the matrix A (called p-ellipticity) and a natural minimal scaling condition on B. No additional
smoothness of the coefficients is assumed. When the coefficients of A are real, or when p = 2,
the p-ellipticity condition is just the usual uniform ellipticity condition.

We then applied this regularity theory to the question of solvability of the Lp Dirichlet
problem for operators with complex coefficients. We always assume that the matrices are in
canonical form, as defined below, and [11] contains a discussion of how to put an operator with
lower terms in canonical form. In particular, we established the following result.

Theorem 1.1 Let 1 < p < ∞, and let Ω be the upper half-space R
n
+ = {(x0, x

′) : x0 > 0
and x′ ∈ R

n−1}. Consider the operator

Lu = ∂i(Aij(x)∂ju) + Bi(x)∂iu

and assume that the matrix A in canonical form is p-elliptic with constants λp, Λ. Canonical
forms mean that A00 = 1 and I m A0j = 0 for all 1 ≤ j ≤ n − 1. Assume that

dμ(x) = sup
Bδ(x)/2(x)

[|∇A|2 + |B|2]δ(x) dx (1.1)

is a Carleson measure in Ω. Let us also denote

dμ′(x) = sup
Bδ(x)/2(x)

[
∑

j |∂0A0j |2 + |∑j ∂jA0j |2 + |B|2]δ(x) dx. (1.2)

Then there exist K = K(λp, Λ, ‖μ‖C , n, p) > 0 and C(λp, Λ, ‖μ‖C , n, p) > 0 such that if

‖μ′‖C < K (1.3)

then the Lp-Dirichlet problem
⎧
⎪⎪⎨

⎪⎪⎩

Lu = 0 in Ω,

u = f for σ-a.e. x ∈ ∂Ω,

Ñp,a(u) ∈ Lp(∂Ω),

(1.4)
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is solvable and the estimate

‖Ñp,a(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω;C) (1.5)

holds for all energy solutions u with datum f .

We now aim to replace the criteria ((1.1) and (1.2)) under which solvability can be deduced
by a weaker condition, which previously was established in [10] only for real valued elliptic
operators. The Carleson conditions (1.1) and (1.2) in the theorem above require the matrix
A to be differentiable while in [10], it was shown that a condition on the oscillation of the
coefficients of A suffices. Namely, it was proven that in the real variable case Theorem 1.1 holds
when

dμ =
(
δ(x)−1(oscBδ(x)/2(x)A)2 + sup

Bδ(x)/2(x)

|B|2δ(x)
)
dx (1.6)

is a small Carleson measure. Here we define

oscKA = sup
i,j

{|Aij(x) − Aij(y)| : for x, y ∈ K|}.

The proof of solvability in [10] under this weaker assumption on the coefficients used a
perturbation result of Dahlberg type, which states that if L0 and L1 are two divergence form
elliptic operators whose coefficients are close in the sense that

dm(x) = sup
Bδ(x)/2(x)

[|A0 − A1|2δ−1(x) + |B0 − B1|2δ(x)] dx (1.7)

is a small Carleson measure, then the Lp solvability of L0 implies the Lp solvability of L1.
An analogous result was not known in the complex coefficient case. In fact, all known proofs

of the Dahlberg’s perturbation theorem rely heavily on properties of solutions that only hold
in the real variable case, such as the maximum principle or the A∞ property of the elliptic
measure.

In general the literature on solvability of boundary value problems for complex coefficient
operators in R

n has been fairly limited, except when the matrix A is of block form. When
the matrix A in L = divA(x)∇ has block form, there are numerous results on Lp-solvability
of the Dirichlet, regularity and Neumann problems, starting with the solution of the Kato
problem, where the coefficients of the block matrix are also assumed to be independent of the
transverse variable. This assumption on the transverse variable is usually referred in literature
as “t-independent” — in our notation it is the x0 variable — referring to the situation when the
domain is the upper half space. See [4] and [15] and the references therein. For matrices that are
not of block form, there are solvability results in a few special cases, under the assumption that
the solutions satisfy De Giorgi–Nash–Moser estimates. This latter assumption is not generally
verifiable or, as far as we know, linked to any specific structural assumption on the matrix. For
examples of results obtained under this assumption, see [1] and [14]; the latter paper is also
concerned with operators that are t-independent.

Finally, there are perturbation results in a variety of special cases, such as [3] and [2]; the
first paper shows that solvability in L2 implies solvability in Lp for p near 2, and the second
paper has L2-solvability results for small L∞ perturbations of real elliptic operators when the
complex matrix is t-independent.
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In this paper we show that Dahlberg’s perturbation theory applies to the class of complex
coefficient elliptic operators L0 satisfying the assumptions of Theorem 1.1 under only the struc-
tural, or algebraic, assumption of p-ellipticity. We do not assume t-independence, nor do we
assume that solutions satisfy De Giorgi–Nash–Moser estimates. The perturbation criteria is
the same as that for real coefficient operators, although here it should be observed that the
“smallness” of the Carleson measure will also be a function of the p in p-ellipticity.

Theorem 1.2 Let L0 satisfy the conditions of Theorem 1.1. Let L1 = divA1(x)∇+B1(x) ·∇
be a perturbation of L0 in the following sense:

dm(x) = sup
Bδ(x)/2(x)

[|A0 − A1|2δ−1(x) + |B0 − B1|2δ(x)] dx (1.8)

is a Carleson measure in Ω.
Then there exist K = K(λp, Λ, ‖μ‖C , n, p) > 0 and C(λp, Λ, ‖μ‖C , n, p) > 0 such that if

‖m‖C < K (1.9)

then the matrix A1 is p-elliptic and the Lp-Dirichlet problem is also solvable for the operator
L1. That is,

⎧
⎪⎪⎨

⎪⎪⎩

L1u = 0 in Ω,

u = f for σ-a.e. x ∈ ∂Ω,

Ñp,a(u) ∈ Lp(∂Ω),

(1.10)

is solvable and the estimate

‖Ñp,a(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω;C) (1.11)

holds for all energy solutions u of L1u = 0 with datum f .

This perturbation result is sufficient to establish a new criterion for solvability of the Lp

Dirichlet problem for operators with complex coefficients, analogous to the one in [10] in the
real case.

Theorem 1.3 Let 1 < p < ∞, and let Ω be the upper half-space R
n
+ = {(x0, x

′) : x0 > 0
and x′ ∈ R

n−1}. Consider the operator

Lu = ∂i(Aij(x)∂ju) + Bi(x)∂iu

and assume that the matrix A is p-elliptic with constants λp, Λ, A00 = 1 and I m A0j = 0 for
all 1 ≤ j ≤ n − 1. Assume that

dμ =
(
δ(x)−1(oscBδ(x)/2(x)A)2 + sup

Bδ(x)/2(x)

|B|2δ(x)
)
dx (1.12)

is a Carleson measure in Ω. Let

dμ′ =
(

δ(x)−1
n−1∑

j=0

(oscBδ(x)/2(x)A0j)2 + sup
Bδ(x)/2(x)

|B|2δ(x)
)

dx. (1.13)

Then there exist K = K(λp, Λ, ‖μ‖C , n, p) > 0 and C(λp, Λ, ‖μ‖C , n, p) > 0 such that if

‖μ′‖C < K (1.14)
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then the Lp-Dirichlet problem
⎧
⎪⎪⎨

⎪⎪⎩

Lu = 0 in Ω,

u = f for σ-a.e. x ∈ ∂Ω,

Ñp,a(u) ∈ Lp(∂Ω),

(1.15)

is solvable and the estimate

‖Ñp,a(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω;C) (1.16)

holds for all energy solutions u with datum f .

Corollary 1.4 Suppose the operator L on R
n
+ has the form

Lu = ∂2
0u +

n−1∑

i,j=1

∂i(Aij∂ju)

where the matrix A has coefficients satisfying the Carleson condition (1.12).
Then for all 1 < p < ∞ for which A is p-elliptic, the Lp-Dirichlet problem (2.26) is solvable

for L and the estimate
‖Ñp,au‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω;C) (1.17)

holds for all energy solutions u with datum f .

In the statements of the two theorems above, we have used some notation that will be
precisely defined in the following section. In Section 3 we prove bounds for the square function
in terms of the boundary data and the nontangential maximal function. Section 4 contains the
converse estimates. Finally, in Section 5 we give proofs of Theorems 1.2 and 1.3.

2 Basic Notions and Definitions

2.1 p-ellipticity

The concept of p-ellipticity was introduced in [6], where the authors investigated the Lp-
dissipativity of second order divergence complex coefficient operators. Later, Carbonaro and
Dragičević [5] gave an equivalent definition and coined the term “p-ellipticity”. It is this defi-
nition that was most useful for the results of [11]. To introduce this, we define, for p > 1, the
R-linear map Jp : C

n → C
n by

Jp(α + iβ) =
α

p
+ i

β

p′

where p′ = p/(p − 1) and α, β ∈ R
n.

Definition 2.1 Let Ω ⊂ R
n. Let A : Ω → Mn(C), where Mn(C) is the space of n×n complex

valued matrices. We say that A is p-elliptic if for a.e. x ∈ Ω

Re 〈A(x)ξ,Jpξ〉 ≥ λp|ξ|2, ∀ξ ∈ C
n (2.1)

for some λp > 0 and there exists Λ > 0 such that

|〈A(x)ξ, η〉| ≤ Λ|ξ||η|, ∀ξ, η ∈ C
n. (2.2)

It is now easy to observe that the notion of 2-ellipticity coincides with the usual ellipticity
condition for complex matrices. As shown in [5] if A is elliptic, then there exists μ(A) > 0 such
that A is p-elliptic if and only if |1− 2

p | < μ(A). Also μ(A) = ∞ if and only if A is real valued.
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2.2 Nontangential Maximal and Square Functions

On a domain of the form

Ω = {(x0, x
′) ∈ R×Rn−1 : x0 > φ(x′)}, (2.3)

where φ : Rn−1 → R is a Lipschitz function with Lipschitz constant given by

L := ‖∇φ‖L∞(Rn−1),

define for each point x = (x0, x
′) ∈ Ω

δ(x) := x0 − φ(x′) ≈ dist(x, ∂Ω). (2.4)

In other words, δ(x) is comparable to the distance of the point x from the boundary of Ω.

Definition 2.2 A cone of aperture a > 0 is a non-tangential approach region to the point
Q = (x0, x

′) ∈ ∂Ω defined as

Γa(Q) = {(y0, y
′) ∈ Ω : a|x0 − y0| > |x′ − y′|}. (2.5)

We require 1/a > L, otherwise the aperture of the cone is too large and might not lie inside
Ω. When Ω = Rn

+ all parameters a > 0 may be considered. Sometimes it is necessary to
truncate Γ(Q) at height h, in which case we write

Γh
a(Q) := Γa(Q) ∩ {x ∈ Ω : δ(x) ≤ h}. (2.6)

‖Sa(u)‖2
L2(∂Ω) ≈

∫

Ω

|∇u(x)|2δ(x) dx. (2.7)

In [DPP], a “p-adapted” square function was introduced. The usual square function is the
p-adapted square function when p = 2. In the following definition, when p < 2 we use the
convention that the expression |∇u(x)|2|u(x)|p−2 is zero whenever ∇u(x) vanishes.

Definition 2.3 For Ω ⊂ R
n, the p-adapted square function of u ∈ W 1,2

loc (Ω; C) at Q ∈ ∂Ω
relative to the cone Γa(Q) is defined by

Sp,a(u)(Q) :=
( ∫

Γa(Q)

|∇u(x)|2|u(x)|p−2δ(x)2−n dx

)1/2

(2.8)

and, for each h > 0, its truncated version is given by

Sh
p,a(u)(Q) :=

( ∫

Γh
a(Q)

|∇u(x)|2|u(x)|p−2δ(x)2−n dx

)1/2

. (2.9)

It is not immediately clear that the integrals appearing in (2.8) are well-defined. However,
in [11], it was shown that the expressions of the form |∇u(x)|2|u(x)|p−2, when u is a solution of
Lu = 0, are locally integrable and hence the definition of Sp(u) makes sense for such p whenever
p-ellipticity holds.

A simple application of Fubini’s theorem gives

‖Sp,a(u)‖p
Lp(∂Ω) ≈

∫

Ω

|∇u(x)|2|u(x)|p−2δ(x) dx. (2.10)

Definition 2.4 For Ω ⊂ R
n as above, and for a continuous u : Ω → C, the nontangential

maximal function (h-truncated nontangential maximal function) of u at Q ∈ ∂Ω relative to the
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cone Γa(Q), is defined by

Na(u)(Q) := sup
x∈Γa(Q)

|u(x)| and Nh
a (u)(Q) := sup

x∈Γh
a(Q)

|u(x)|. (2.11)

Moreover, we shall also consider a related version of the above nontangential maximal function.
This is denoted by Ñp,a and is defined using Lp averages over balls in the domain Ω. Specifically,
given u ∈ Lp

loc(Ω; C) we set

Ñp,a(u)(Q) := sup
x∈Γa(Q)

w(x) and Ñh
p,a(u)(Q) := sup

x∈Γh
a(Q)

w(x) (2.12)

for each Q ∈ ∂Ω and h > 0 where, at each x ∈ Ω,

w(x) :=
(

−
∫

Bδ(x)/2(x)

|u(z)|p dz

)1/p

. (2.13)

Above and elsewhere, a barred integral indicates an averaging operation. Observe that, given
u ∈ Lp

loc(Ω; C), the function w associated with u as in (2.13) is continuous and Ñp,a(u) = Na(w)
everywhere on ∂Ω.

The L2-averaged nontangential maximal function was introduced in [16] in connection with
the Neuman and regularity problem value problems. In the context of p-ellipticity, Proposi-
tion 3.5 of [11] shows that there is no difference between L2 averages and Lp averages and that
Ñp,a(u) and Ñ2,a′(u) are comparable in Lr norms for all r > 0 and all allowable apertures a, a′.

2.3 Carleson Measures

We begin by recalling the definition of a Carleson measure in a domain Ω as in (2.3). For
P ∈ Rn, define the ball centered at P with the radius r > 0 as

Br(P ) := {x ∈ Rn : |x − P | < r}. (2.14)

Next, given Q ∈ ∂Ω, by Δ = Δr(Q) we denote the surface ball ∂Ω ∩ Br(Q). The Carleson
region T (Δr) is then defined by

T (Δr) := Ω ∩ Br(Q). (2.15)

Definition 2.5 A Borel measure μ in Ω is said to be Carleson if there exists a constant
C ∈ (0,∞) such that for all Q ∈ ∂Ω and r > 0

μ (T (Δr)) ≤ Cσ(Δr), (2.16)

where σ is the surface measure on ∂Ω. The best possible constant C in the above estimate is
called the Carleson norm and is denoted by ‖μ‖C.

In all that follows we now assume that the coefficients of the matrix A and B of the elliptic
operator L = divA(x)∇ + B(x) · ∇ satisfies the following natural conditions. First, we assume
that the entries Aij of A are in Liploc(Ω) and the entries of B are L∞

loc(Ω). Second, we assume
that

dμ(x) = sup
Bδ(x)/2(x)

[|∇A|2 + |B|2]δ(x) dx (2.17)

is a Carleson measure in Ω. Sometimes, and for certain coefficients of A, we will assume that
their Carleson norm ‖μ‖C is sufficiently small. The fact that μ is a Carleson allows one to relate
integrals in Ω with respect to μ to boundary integrals involving the nontangential maximal
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function. We will often use the following result for our averaged nontangential maximal function,
which is Theorem 3.7 of [11].

Theorem 2.6 Suppose that dν = f dx and dμ(x) = [supBδ(x)/2(x) |f |]dx. Assume that μ is
a Carleson measure. Then there exists a finite constant C = C(L, a) > 0 such that for every
u ∈ Lp

loc(Ω; C) one has
∫

Ω

|u(x)|p dν(x) ≤ C‖μ‖C
∫

∂Ω

(Ñp,a(u))p dσ. (2.18)

Furthermore, consider Ω = R
n
+ where μ and ν are measures as above supported in Ω and

δ(x0, x
′) = x0. Let h : R

n−1 → R
+ be a Lipschitz function with Lipschitz norm L and

Ωh = {(x0, x
′) : x0 > h(x′)}.

Then for any Δ ⊂ R
n−1 with supΔ h ≤ diam(Δ)/2 we have

∫

Ωh∩T (Δ)

|u(x)|p dν(x) ≤ C‖μ‖C
∫

∂Ωh∩T (Δ)

(Ñp,a,h(u))p dσ. (2.19)

Here for a point Q = (h(x′), x′) ∈ ∂Ωh we define

Ñp,a,h(u)(Q) = sup
Γa(Q)

w, (2.20)

where
Γa(Q) = Γa((h(x′), x′)) = {y = (y0, y

′) ∈ Ω : a|h(x′) − y0| > |x′ − y′|} (2.21)

and the Lp averages w are defined by (2.13) where the distance δ is taken with respect to the
domain Ω = R

n
+.

2.4 Pullback Transformation

The Carleson measure conditions on the coefficients of L given in (2.17) are compatible with a
useful change of variables described in this subsection.

For a domain Ω as in (2.3), consider the mapping ρ : R
n
+ → Ω appearing in works of

Dahlberg, Nečas, Kenig-Stein and others, defined by

ρ(x0, x
′) := (x0 + Pγx0 ∗ φ(x′), x′), ∀ (x0, x

′) ∈ R
n
+, (2.22)

for some positive constant γ. Here P is a nonnegative function P ∈ C∞
0 (Rn−1) and, for each

λ > 0,
Pλ(x′) := λ−n+1P (x′/λ), ∀x′ ∈ R

n−1. (2.23)

Finally, Pλ ∗ φ(x′) is the convolution

Pλ ∗ φ(x′) :=
∫

Rn−1
Pλ(x′ − y′)φ(y′) dy′. (2.24)

Observe that ρ extends up to the boundary of Rn
+ and maps one-to-one from ∂Rn

+ onto ∂Ω.
Also for sufficiently small γ � L the map ρ is a bijection from R

n
+ onto Ω and, hence, invertible.

For a solution u ∈ W 1,2
loc (Ω; C) to Lu = 0 in Ω with Dirichlet datum f , consider v := u◦ρ and

f̃ := f ◦ ρ. The change of variables via the map ρ just described implies that v ∈ W 1,2
loc (Rn

+; C)
solves a new elliptic PDE of the form

0 = div(Ã(x)∇v) + B̃(x) · ∇v, (2.25)
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with boundary datum f̃ on ∂R
n
+. Hence, solving a boundary value problem for u in Ω is

equivalent to solving a related boundary value problem for v in R
n
+. Crucially, if the coefficients

of the original system are such that (2.17) is a Carleson measure, then the coefficients of Ã and
B̃ satisfy an analogous Carleson condition in the upper-half space. If, in addition, the Carleson
norm of (2.17) is small and L (the Lipschitz constant for the domain Ω) is also small, then the
Carleson norm for the new coefficients Ã and B̃ will be correspondingly small. Moreover, this
transformation preserves p-ellipticity. Hence the map ρ allows us to assume that the domain is
Ω = Rn

+.

2.5 The Lp-Dirichlet Problem

We recall the definition of Lp solvability of the Dirichlet problem. When an operator L is as in
Theorem 1.1 is uniformly elliptic (i.e., 2-elliptic) the Lax–Milgram lemma can be applied and
guarantees the existence of weak solutions. That is, given any f ∈ Ḃ2,2

1/2(∂Ω; C), the homogenous
space of traces of functions in Ẇ 1,2(Ω; C), there exists a unique (up to a constant) u ∈ Ẇ 1,2(Ω; C)
such that Lu = 0 in Ω and Tr u = f on ∂Ω. We call these solutions “energy solutions” and use
them to define the notion of solvability of the Lp Dirichlet problem.

Definition 2.7 Let Ω be the Lipschitz domain introduced in (2.3) and fix an integrability
exponent p ∈ (1,∞). Also, fix an aperture parameter a > 0. Consider the following Dirichlet
problem for a complex valued function u : Ω → C :

⎧
⎪⎪⎨

⎪⎪⎩

0 = ∂i(Aij(x)∂ju) + Bi(x)∂iu in Ω,

u(x) = f(x) for σ-a.e. x ∈ ∂Ω,

Ñ2,a(u) ∈ Lp(∂Ω),

(2.26)

where the usual Einstein summation convention over repeated indices (i, j in this case) is em-
ployed.

We say the Dirichlet problem (2.26) is solvable for a given p ∈ (1,∞) if there exists a
C = C(p, Ω) > 0 such that for all boundary data f ∈ Lp(∂Ω; C)∩B2,2

1/2(∂Ω; C) the unique energy
solution satisfies the estimate

‖Ñ2,a(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω;C). (2.27)

Remark 2.8 Given f ∈ Ḃ2,2
1/2(∂Ω; C) ∩ Lp(∂Ω; C) the corresponding energy solution con-

structed above is unique (since the decay implied by the Lp estimates eliminates constant
solutions). As the space Ḃ2,2

1/2(∂Ω; C) ∩ Lp(∂Ω; C) is dense in Lp(∂Ω; C) for each p ∈ (1,∞),
it follows that there exists a unique continuous extension of the solution operator f �→ u to
the whole space Lp(∂Ω; C), with u such that Ñ2,a(u) ∈ Lp(∂Ω) and the accompanying es-
timate ‖Ñ2,a(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω;C) being valid. Furthermore, as shown in [11] for any
f ∈ Lp(∂Ω; C) the corresponding solution u constructed by the continuous extension attains
the datum f as its boundary values in the following sense. Consider the average ũ : Ω → C

defined by

ũ(x) = −
∫

Bδ(x)/2(x)

u(y) dy, ∀x ∈ Ω.

Then
f(Q) = lim

x→Q, x∈Γ(Q)
ũ(x), for a.e. Q ∈ ∂Ω, (2.28)
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where the a.e. convergence is taken with respect to the Hn−1 Hausdorff measure on ∂Ω.

As we introduced in [11], the solutions to the Dirichlet problem in the infinite domain Rn
+ will

be obtained as a limit of solutions in infinite strips Ωh = {x = (x0, x
′) ∈ R×Rn−1 : 0 < x0 < h}.

These are defined as follows.

Definition 2.9 Let Ω = Rn
+, and let Ωh be the infinite strip

Ωh = {x = (x0, x
′) ∈ R×Rn−1 : 0 < x0 < h},

and let p ∈ (1,∞). Also, fix an aperture parameter a > 0. Let u be a complex valued function
u : Ω → C such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = ∂i(Aij(x)∂ju) + Bi(x)∂iu in Ωh,

u(x0, x
′) = 0, for all x0 ≥ h,

u(x) = f(x) for σ-a.e. x ∈ ∂Ω,

Ñ2,a(u) ∈ Lp(∂Ω),

(2.29)

where the usual Einstein summation convention over repeated indices (i, j in this case) is em-
ployed.

We say the Dirichlet problem (2.29) is solvable for a given p ∈ (1,∞) if there exists a
C = C(p, Ω) > 0 such that for all boundary data f ∈ Lp(∂Ω; C)∩B2,2

1/2(∂Ω; C) we have that u|Ωh

is the unique “energy solution” to
⎧
⎪⎪⎨

⎪⎪⎩

0 = ∂i (Aij(x)∂ju) + Bi(x)∂iu in Ωh,

u(x0, x
′) = 0, for x0 = h,

u(x) = f(x) for σ-a.e. x ∈ ∂Ω,

(2.30)

and satisfies the estimate

‖Ñ2,a(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω;C). (2.31)

3 Estimates for a p-adapted Square Function Sp(u)

In this section we establish some relationships between square functions and nontangential max-
imal functions that are key to the proof of Theorem 1.2. Let L0 and L1 satisfy the hypotheses
of Theorem 1.2; that is, L1 is the perturbation of an operator L0 whose coefficients satisfy a
Carleson measure condition.

We fix an h > 1, and an infinite strip Ωh defined in the previous section. Let us assume
that u is an energy solution to (2.30) in the strip for the operator L1 and extended to be zero
above height h. In this section we establish an estimate of the p-adapted square function of u

in terms of boundary data and its nontangential maximal function. The constants appearing
in the estimate will be independent of the height h.

Lemma 3.1 Let Ω = Rn
+ and L0 and L1 are as in Theorem 1.2. Let u : Ω → C be as

above, with the Dirichlet boundary datum f ∈ Ḃ2,2
1/2(∂Ω; C) ∩ Lp(∂Ω; C). Then there exists

K = K(λp, Λ, n, p) > 0 such that if

‖m‖C < K
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then for all r > 0

p
λp

4

∫∫

[0,r/2]×∂Ω

|u|p−2|∇u|2x0 dx′ dx0 +
2
r

∫∫

[0,r]×∂Ω

|u(x0, x
′)|p dx′ dx0

≤
∫

∂Ω

|u(0, x′)|p dx′ +
∫

∂Ω

|u(r, x′)|p dx′ + C(‖μ′‖C + ‖m‖1/2
C )

∫

∂Ω

[Ñr
p,a(u)]p dx′. (3.1)

Here the constant on the righthand side C = C(λp, Λ, n, p) > 0 is independent of r.

Proof We extend the methods of Lemma 5.1 of [11] to the case of an inhomogeneous equation.
Fix an arbitrary y′ ∈ ∂Ω ≡ R

n−1, and consider first the case r ≤ h. Choose a smooth cutoff
function ζ which is x0-independent and satisfies

ζ =

⎧
⎨

⎩

1 in Br(y′),

0 outside B2r(y′).
(3.2)

Moreover, assume that r|∇ζ| ≤ c for some positive constant c independent of y′. Because the
coefficients of operator L0 are differentiable, while the coefficients of L1 are not, we rewrite the
solution of L1u = 0 as follows:

L0u = divF + β · ∇u, (3.3)

where Fi = εij∂ju and εij = A0
ij − A1

ij and βj = B0
j − B1

j .
We begin by considering the integral quantity

I := Re

∫∫

[0,r]×B2r(y′)
A0

ij∂ju∂i(|u|p−2u)x0ζ dx′ dx0 (3.4)

with the usual summation convention understood. With χ = x0ζ we have, by p-ellipticity ([11,
Theorem 2.4]), for some λp > 0

I ≥ λp

∫∫

[0,r]×B2r

|u|p−2|∇u|2x0ζ dx′ dx0, (3.5)

where we use the abbreviation B2r := B2r(y′) whenever convenient.
We integrate by parts the formula for I in order to relocate the ∂i derivative. This gives

I = Re

∫

∂[(0,r)×B2r]

A0
ij∂ju|u|p−2ux0ζνxi

dσ

− Re

∫∫

[0,r]×B2r

∂i(A0
ij∂ju)|u|p−2ux0ζ dx′ dx0

− Re

∫∫

[0,r]×B2r

A0
ij∂ju|u|p−2u∂ix0ζ dx′ dx0

− Re

∫∫

[0,r]×B2r

A0
ij∂ju|u|p−2ux0∂iζ dx′ dx0

=: I + II + III + IV, (3.6)

where ν is the outer unit normal vector to the domain (0, r) × B2r. The boundary term I

vanishes except on the set {r} × B2r, and only when i = 0. This gives

I = Re

∫

{r}×B2r

A0
0j∂ju|u|p−2ux0ζ dσ. (3.7)



760 Dindoš M. and Pipher J.

As u is a weak solution of (3.3) in Ω, we use the equation to transform II into

II = Re

∫∫

[0,r]×B2r

(B0
i − βi)(∂iu)|u|p−2ux0ζ dx′ dx0

− Re

∫∫

[0,r]×B2r

∂i(εij∂ju)|u|p−2ux0ζ dx′ dx0 =: II1 + II2. (3.8)

To estimate the first term on the right hand side, we use Hölder’s inequality, the Carleson
condition of Theorem 1.1 for the term B0, the Carleson condition (1.8) and Theorem 2.6 to see
that

|II1| ≤
( ∫∫

[0,r]×B2r

(|B0|2 + |β|2)|u|px0ζ dx′ dx0

)1/2

×
( ∫∫

[0,r]×B2r

|u|p−2|∂ju|2x0ζ dx′ dx0

)1/2

≤ C(λp, Λ, N)
(

(‖μ′‖C + ‖m‖C)
∫

B2r

[Ñr
p,a(u)]p dx′

)1/2

· I1/2. (3.9)

We integrate term II2 by parts, obtaining a boundary term when i = 0:

II2 = −Re

∫∫

[0,r]×B2r

∂i(εij∂ju)|u|p−2ux0ζ dx′ dx0

= −Re

∫∫

[0,r]×B2r

εij∂ju∂i(|u|p−2ux0ζ)dx′ dx0

+ Re

∫

B2r

rε0j∂ju(x′, r)|u(x′, r)|p−2u(x, r)ζ dx′

= −Re

∫∫

[0,r]×B2r

εij∂ju∂i(|u|p−2u)x0ζ dx′ dx0

− Re

∫∫

[0,r]×B2r

ε0j∂ju|u|p−2uζ dx′ dx0

− Re

∫∫

[0,r]×B2r

εij∂ju|u|p−2ux0∂iζ dx′ dx0

+ Re

∫

B2r

rε0j∂ju(x′, r)|u(x′, r)|p−2u(x, r)ζ dx′

= II21 + II22 + II23 + II24. (3.10)

For the term II21 we have the estimate

|II21| �
∫∫

[0,r]×B2r

|εij ||∂ju||∂iu||u|p−2x0ζ dx′ dx0

≤ sup
i,j

‖εij‖L∞ I

� ‖m‖1/2
C I, (3.11)

the last estimate is a consequence of (1.8), since the Carleson condition implies L∞ bounds on
εij . Similarly, for term II22 we have by Cauchy–Schwarz and the Carleson condition (1.8)

|II22| �
( ∫∫

[0,r]×B2r

|∂ju|2|u|p−2x0ζ dx′ dx0

)1/2( ∫∫

[0,r]×B2r

|εij |2
x0

|u|pζ dx′ dx0

)1/2
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≤ C(λp, Λ, p, n)
(

‖m‖C
∫

B2r

[Ñr
p,a(u)]p dx′

)1/2

· I1/2. (3.12)

We shall deal with the last two terms II23 and II24 later.
As ∂ix0 = 0 for i > 0 the term III is non-vanishing only for i = 0. We further split this

term by separately considering the cases when j = 0 and j > 0. This yields, since A00 = 1,

III{j=0} = −Re

∫∫

[0,r]×B2r

∂0u|u|p−2uζ dx′ dx0

= −1
p

∫∫

[0,r]×B2r

∂0(|u|p)ζ dx′ dx0

= −1
p

∫

B2r

|u|p(r, x′)ζ dx′ +
1
p

∫

B2r

|u|p(0, x′)ζ dx′. (3.13)

When j > 0 we first use the fact that A0
0j is real and hence the expression Re [A0

0j (∂ju)|u|p−2u]
= p−1A0

0j∂j(|u|p). Then we reintroduce 1 = ∂0x0 and integrate by parts moving the ∂0 deriva-
tive

III{j �=0} = −Re

∫∫

[0,r]×B2r

A0
0j ∂ju|u|p−2 u ζ dx′ dx0

− p−1

∫∫

[0,r]×B2r

A0
0j ∂j(|u|p)(∂0x0)ζ dx′ dx0

= p−1

∫

B2r

A0
0j∂j(|u|p)(r, x′)rζ dx′ + p−1

∫∫

[0,r]×B2r

∂0A
0
0j∂j(|u|p)x0ζ dx′ dx0

+ p−1

∫∫

[0,r]×B2r

A0
0j∂

2
0j(|u|p)x0ζ dx′ dx0

= III1 + III2 + III3.

We note that III1 = −I{j �=0}.
In the third term III3 we switch the order of derivatives ∂2

0j = ∂2
j0 and make a further

integration by parts with respect to ∂j .

III3 = −p−1

∫∫

[0,r]×B2r

∂jA
0
0j∂0(|u|p)x0ζ dx′ dx0

− p−1

∫∫

[0,r]×B2r

A0
0j∂0(|u|p)x0(∂jζ) dx′ dx0

= III31 + III32.

The terms III2 and III31 are of similar type as II1 we have handled earlier and hence have
the same estimate

III2 + III31 ≤ C(λp, Λ, p, n)
(

‖μ′‖C
∫

B2r

[Ñr
p,a(u)]p dx′

)1/2

· I1/2

We add up all terms we have so far to obtain

I ≤ p−1

∫

B2r

∂0(|u|p)(r, x′)rζ dx′

− p−1

∫

B2r

|u|p(r, x′)ζ dx′ + p−1

∫

B2r

|u|p(0, x′)ζ dx′
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+ C(λp, Λ, p, n)(‖μ′‖C + ‖m‖C)
∫

B2r

[Ñr
p,a(u)]p(u) dx′

+
(

1
4

+ C ′(λp, Λ, p, n)‖m‖1/2
C

)

I

+ II23 + II24 + III32 + IV. (3.14)

We have used the arithmetic-geometric inequality for the expression bounding the terms II1,
II22 as well as for similar terms III2 and III31. Observe that if C ′(λp, Λ, p, n)‖m‖1/2 < 1/4
the term containing I can be absorbed by the lefthand side of (3.14).

To obtain a global version of (3.14), consider a sequence of disjoint boundary balls
(Br(y′

k))k∈N such that
⋃

k B2r(y′
k) covers ∂Ω = Rn−1 and consider a partition of unity (ζk)k∈N

subordinate to this cover. That is, assume
∑

k ζk = 1 on Rn−1 and each ζk is supported in
B2r(y′

k). Write IVk for each term as the last expression in (3.6) corresponding to B2r = B2r(y′
k).

Given that
∑

k ∂iζk = 0 for each i, by summing (3.14) over all k’s gives
∑

k IVk = 0. The same
observation applies to the terms arising in II23 and III32. It follows that

∫∫

[0,r]×Rn−1
|∇u|2|u|p−2 x0 dx′ dx0

� p−1

∫

Rn−1
∂0(|u|p)(r, x′)r dx′

− p−1

∫

Rn−1
|u|p(r, x′) dx′ + p−1

∫

Rn−1
|u|p(0, x′) dx′

+ C(‖μ′‖C + ‖m‖C)
∫

Rn−1
[Ñr

p,a(u)]p dx′

+ Re

∫

Rn−1
rε0j∂ju(x′, r)|u(x′, r)|p−2u(x, r) dx′. (3.15)

We have established (3.15) for r ≤ h, but just as in [11], Section 5, we can see that (3.15)
holds also for r > h since u = 0 when r ≥ h.

Then, (3.1) follows by integrating (3.15) in r over [0, r′] and dividing by r′. The estimate
for the last term of (3.15) requires the Carleson condition on the difference of the coefficients
and we argue as follows. After the integration and averaging we obtain the quantity

∣
∣
∣
∣Re

1
r′

∫∫

Rn−1×[0,r′]
ε0j∂ju(x′, x0)|u(x′, r)|p−2u(x, x0)x0 dx′ dx0

∣
∣
∣
∣

≤
( ∫∫

Rn−1×[0,r′]

|ε0j |2
x0

|u|p dx′ dx0

)1/2( ∫∫

Rn−1×[0,r′]
|∂ju|2|u|p−2x0 dx′ dx0

)1/2

≤ C(λp, Λ, p, n)
(

‖m‖C
∫

B2r

[Ñr
p,a(u)]p dx′

)1/2

×
( ∫∫

Rn−1×[0,r′]
|∂ju|2|u|p−2x0 dx′ dx0

)1/2

. (3.16)

The last term of (3.16) can be split as a sum of two terms: an integral over R
n−1× [0, r′/2] and

an integral over R
n−1 × [r′/2, r′]. The integral over R

n−1 × [0, r′/2] appears on the righthand
side of (3.1) and hence can be absorbed by it. For the second integral we use Theorem 1.1 and
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Proposition 3.5 from [11] to obtain
∫∫

Rn−1×[r′/2,r′]
|∂ju|2|u|p−2x0 dx′ dx0 �

∫

Rn−1
[Ñr

p,a(u)]p dx′. (3.17)

From this the claim follows. �
Lemma 3.1 has two important corollaries. Their proofs are not short, but do not differ in

any respect from the corresponding proofs of Corollaries 5.2 and 5.5 of [11], except that certain
constants now depend on ‖m‖1/2

C .

Corollary 3.2 Under the assumptions of Lemma 3.1 we have for such u :

λ′
p

∫∫

Rn
+

|∇u|2|u|p−2x0 dx′ dx0 ≤
∫

Rn−1
|u(0, x′)|p dx′

+ C(‖μ′‖C + ‖m‖1/2
C )

∫

Rn−1
[Ñp,a(u)]p dx′. (3.18)

Furthermore, under the same assumptions, if g : R
n−1 → R

+ is a Lipschitz function with
small Lipschitz norm for any Δ ⊂ R

n−1 such that supΔ g ≤ d/2 where d = diam(Δ) we also
have the following local estimate

∫∫

Ωg∩T (Δ)

|∇u|2|u|p−2δg(x) dx ≤ C

∫

2Δ

|u(g(x′), x′)|p

+ C(1 + ‖μ‖C + ‖m‖1/2
C )

∫

2Δ

[Ñ2d
p,a,g(u)]p dx′. (3.19)

Here Ñ2d
p,a,g is the truncated version of the nontangential maximal function defined in (2.20)

with respect to the domain Ωg = {x0 > g(x′)} and δg measures the distance of a point to the
boundary of Ωg.

Corollary 3.3 Under the assumption of Lemma 3.1, for any q ≥ p > 1 and a > 0 there exists
a finite constant C = C(λp, Λ, p, q, a, ‖μ‖C, n) > 0 such that

‖Sp,a(u)‖Lq(Rn−1) ≤ C‖Ñp,a(u)‖Lq(Rn−1). (3.20)

The statement also holds for any q > 0, provided we know a priori that ‖Sp,a(u)‖Lq(Rn−1) <∞.

4 Bounds for the Nontangential Maximal Function by the p-adapted Square Func-
tion

The following proposition is the analog of Corollary 6.2 of [11]. That corollary was, in turn,
a consequence of an estimate on the Lq norm of the nontangential maximal functions, Ñ2,
by the Lq norm of the square function, S2, proved in [8] for non-symmetric systems whose
coefficients satisfied Carleson measure conditions. Our perturbed operator L1 doesn’t satisfy
these conditions, and we will not have recourse to this fact, namely Proposition 5.8 of [8].
Therefore, we have to prove that Proposition 5.8 of [8] holds under perturbations of the type
we are considering.

Proposition 4.1 Let 1 < p < ∞, Ω = Rn
+ and L0 and L1 be as in Theorem 1.2. Assume that

u is an energy solution to (2.30) in the strip for the operator L1, with the Dirichlet boundary
datum f ∈ Ḃ2,2

1/2(∂Ω; C) ∩ Lp(∂Ω; C) and extended to be zero above height h. Assume that the
measures μ defined by (1.1) and the measure m defined by (1.7) are Carleson with finite norms.
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There exists K = K(λp, Λ, n, p) > 0 such that if ‖m‖C < K then for any q > 0 and a > 0 there
exists a positive constant C = C(λp, Λ, p, q, a, n, ‖μ‖C) such that

‖Ñp,a(u)‖Lq(Rn−1) ≤ C‖Sp,a(u)‖Lq(Rn−1), (4.1)

provided that a priori ‖Ñp,a(u)‖Lq(Rn−1) < ∞. If the dual exponent p′ > q we also have to
assume that ‖Sp′,a(u)‖Lq(Rn−1) < ∞.

The only missing ingredient is the following analogue of Lemma 5.4 of [8].

Lemma 4.2 Let Ω = Rn
+ and L0 and L1 be as in Theorem 1.2. Assume u is as in Propo-

sition 4.1. Then there exists a > 0 with the following significance. For any θ ∈ [1/6, 6] if
φ : R

n−1 → R is a Lipschitz function with Lipschitz constant 1/a we consider the domain
O = {(x0, x

′) ∈ Ω : x0 > θφ(x′)} with boundary ∂O = {(x0, x
′) ∈ Ω : x0 = θφ(x′)}. In this

context, for any surface ball Δr = Br(Q)∩∂Ω, with Q ∈ ∂Ω and r > 0 chosen such that φ ≤ 2r

pointwise on Δ2r, one has
∫

Δr

|u(θφ(·), ·)|2 dx′ ≤ C(1 + ‖μ‖1/2
C + ‖m‖1/2

C )[‖S2,b(u)‖L2(Δ2r)‖Ñ2,a(u)‖L2(Δ2r)

+ ‖S2,b(u)‖2
L2(Δ2r)] +

c

r

∫∫

K
|u|2 dX. (4.2)

Here C = C(Λ, n) ∈ (0,∞) and K is a region inside O with diameter, distance to the boundary
∂O, and distance to Q, all comparable to r. Also, the parameter b > a is as in Lemma 5.2
of [8], and the cones used to define the square and nontangential maximal functions in this
lemma have vertices on ∂Ω.

Moreover, the term
∫∫

K |u|2 dX appearing in (4.2) may be replaced by the quantity

Crn−1|ũ(Ar)|2 + C

∫

Δ2r

S2
2,b(u) dσ, (4.3)

where Ar is any point inside K (usually referred to as a corkscrew point of Δr) and

ũ(X) := −
∫

Bδ(X)/2(X)

u(Z) dZ. (4.4)

Proof Fix θ ∈ [1/6, 6]. We first consider the case when r is small, i.e., r ≤ 2h. Consider
the pullback transformation ρ : Rn

+ → O defined as in Subsection 2.4 relative to the Lipschitz
function φ. Let v be given by v := u◦ρ in Rn

+. If u satisfies (2.30), then the function v : Rn
+ → R

will satisfy a PDE similar to that of u. Specifically, we will have

∂i(Āij(x)∂jv) + B̄i(x)∂iv = 0, (4.5)

where Ā is p-elliptic if the original A was p-elliptic. Consider such pullback for solutions of
both operators L0 and L1. Under the assumptions of Theorem 1.1 for L0 we have that the
coefficients Ā0 and B̄0 are such that

dμ(x) =
[(

sup
Bδ(x)/2(x)

|∇Ā0|
)2

+
(

sup
Bδ(x)/2(x)

|B̄0|
)2]

δ(x) dx (4.6)

is a Carleson measure in R
n
+. In virtue of the Carleson condition on the difference of the

coefficients of L0 and L1, the coefficients Ā1 and B̄1 of the pullback of L1 satisfy

dm̄(x) = sup
Bδ(x)/2(x)

[|Ā0 − Ā1|2δ−1(x) + |B̄0 − B̄1|2δ(x)] dx (4.7)
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is a Carleson measure in R
n
+ with Carleson norm

‖m̄‖C ≤ C(‖m‖C, a), and C(‖m‖C, a) → ‖m‖C as a → ∞.

Similarly, the Carleson norm ‖μ‖C also only depends on the Carleson norm of the original
coefficients and a (the aperture of nontangential cones). In particular, we can choose the
parameter a > 0 large enough such that ‖m̄‖C and ‖μ̄‖C are at most twice that of ‖m‖C and
‖μ‖C , respectively.

We may also assume that the coefficient Ā00 = 1. This follows from a change of variables
that modifies the lower order terms; see the discussion following Definition 4.1 of [11].

Having fixed a scale r > 0, we localize to a ball Br(y′) in Rn−1. Let ζ be a smooth cutoff
function of the form ζ(x0, x

′) = ζ0(x0)ζ1(x′) where

ζ0 =

⎧
⎨

⎩

1 in [0, r],

0 in [2r,∞),
ζ1 =

⎧
⎨

⎩

1 in Br(y′),

0 in R
n \ B2r(y′)

(4.8)

and

r|∂0ζ0| + r|∇x′ζ1| ≤ c (4.9)

for some constant c ∈ (0,∞) independent of r.

Let L1u = 0. Our goal is to control the Lp norm of u
(
θh(·), ·). Since after the pullback

under the mapping ρ the latter is comparable with the Lp norm of v(0, ·), we proceed to estimate
∫

B2r(y′)
|v|2(0, x′)ζ(0, x′) dx′

= −
∫∫

[0,2r]×B2r(y′)
∂0[|v|2ζ](x0, x

′) dx0 dx′

= −p

∫∫

[0,2r]×B2r(y′)
Re 〈v, ∂0v〉ζ dx0 dx′

−
∫∫

[0,2r]×B2r(y′)
|v|2(x0, x

′)∂0ζ dx0 dx′

=: A + IV. (4.10)

We further expand the term A as a sum of four terms obtained via integration by parts with
respect to x0 as follows:

A = −2
∫∫

[0,2r]×B2r(y′)
Re 〈v, ∂0v〉ζ(∂0x0) dx0 dx′

= 2
∫∫

[0,2r]×B2r(y′)
|∂0v|2x0ζ dx0 dx′

+ 2
∫∫

[0,2r]×B2r(y′)
Re 〈v, ∂2

00v〉x0ζ dx0 dx′

+ 2
∫∫

[0,2r]×B2r(y′)
Re 〈v, ∂0v〉x0∂0ζ dx0 dx′

=: I + II + III. (4.11)
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We start by analyzing the term II. In view of the fact that Ā0
00 = 1, we can rewrite the

equation for v following (3.3)

∂2
00v = −

∑

(i,j) �=(0,0)

∂i(Ā0
ij∂jv) − (B̄0

i − β̄0
i )∂iv + ∂i(ε̄ij∂jv), (4.12)

where ε̄ij = Ā0
ij − Ā1

ij and β̄j = B̄0
j − B̄1

j . In turn, this permits us to express

II = −2 Re
∑

(i,j) �=(0,0)

∫∫

[0,2r]×B2r

(∂iĀ
0
ij)v∂jvx0ζ dx0 dx′

− 2 Re

∫∫

[0,2r]×B2r

(B̄0
i − β̄0

i )v∂ivx0ζ dx0 dx′

− 2 Re
∑

(i,j) �=(0,0)

∫∫

[0,2r]×B2r

Ā0
ijv∂2

ijvx0ζ dx0 dx′

+ 2 Re

∫∫

[0,2r]×B2r

∂i (ε̄ij∂jv) vx0ζ dx0 dx′

=: II1 + II2 + II3 + II4. (4.13)

The third term above requires some further work. Let us temporarily fix i, j and denote by
IIij

3 the corresponding term in II3. Since in the present context we have (i, j) �= (0, 0), at least
one of the two indices involved is not zero, say i > 0. Integrating by parts with respect to the
variable xi then yields (in what follows we do not sum over indices i and j)

IIij
3 = 2 Re

∫∫

[0,2r]×B2r

(∂iĀ
0
ij)v∂jvx0ζ dx0 dx′

+ 2 Re

∫∫

[0,2r]×B2r

Ā0
ij∂i(v)∂jvx0ζ dx0 dx′

+ 2 Re

∫∫

[0,2r]×B2r

Ā0
ijv∂jvx0∂iζ dx0 dx′

= J ij
1 + J ij

2 + J ij
3 . (4.14)

The treatment of IIij
3 in the case when i = 0 proceeds along the same lines, except that we

now integrate in the variable xj . Since the resulting terms are of a similar nature as above, we
omit writing them explicitly.

It remain to deal with the term II4. We integrate by parts in the variable i. Due to the
presence of the cutoff function there are no boundary terms. We obtain:

II4 = −2 Re

∫∫

[0,2r]×B2r

ε̄ij∂jv∂i(v)x0ζ dx0 dx′

− 2 Re

∫∫

[0,2r]×B2r

ε̄0j∂jvvζ dx0 dx′

− 2 Re

∫∫

[0,2r]×B2r

ε̄ij∂jvvx0∂iζ dx0 dx′

= II41 + II42 + II43. (4.15)

We now group together terms that are of the same type. Firstly, we have

I + J2 ≤ C(Λ, n)‖S2,b(u)‖2
L2(B2r). (4.16)



Perturbation Theory for Complex Coefficients PDEs 767

Similarly, as ‖εij‖L∞ � ‖m‖1/2
C we have for II41

II41 ≤ C(n)‖m‖1/2
C ‖S2,b(u)‖2

Lp(B2r). (4.17)

Secondly, the Carleson condition (4.6) and the Cauchy–Schwarz inequality imply

II1 + II2 + II42 + J1 ≤ C(n)(1 + ‖μ‖1/2
C + ‖m‖1/2

C )‖S2,b(u)‖L2(B2r)‖Ñ2,a(u)‖L2(B2r).

Next, corresponding to the case when the derivative falls on the cutoff function ζ we have

J3 + II43 + III ≤ C(Λ, n)(1 + ‖m‖1/2
C )

∫∫

[0,2r]×B2r

|∇v||v|x0

r
dx0 dx′

≤ C

( ∫∫

[0,2r]×B2r

|v|2 x0

r2
dx0 dx′

)1/2

‖S2r
2,b(v)‖L2(B2r)

≤ C‖S2,b(u)‖L2(B2r)‖Ñ2,a(u)‖L2(B2r). (4.18)

Finally, the interior term IV , which arises from the fact that ∂0ζ vanishes on the set (0, r) ∪
(2r,∞) may be estimated as follows:

IV ≤ c

r

∫∫

[r,2r]×B2r

|v|2 dx0 dx′. (4.19)

Summing up all terms, the above analysis ultimately yields
∫

Br(y′)
|v(0, x′)|2 dx′

≤ C(Λ, n)(1 + ‖μ‖1/2
C + ‖m‖1/2

C )‖S2,b(u)‖L2(B2r)‖Ña(u)‖L2(B2r)

+ C(Λ, p, n)(1 + ‖m‖1/2
C )‖S2,b(u)‖2

L2(B2r) +
c

r

∫∫

[r,2r]×B2r

|v|2 dx0 dx′. (4.20)

With this in hand, the estimate in (4.2) follows (by passing from v back to u via the map ρ).
The case r >> h requires some extra care. However we can observe that for θφ(x′) ≥ h we

have u(θφ(x′), x′) = 0 and hence for such points the lefthand side of (4.2) vanishes. It follows
that without loss of generality we may modify our function φ assume that θφ ≤ h in Δr without
changing the value of the lefthand side of (4.2). What this implies is that the estimate (4.2) for
Δr can be deduced from adding up estimates (4.2) for smaller balls Δr′ ⊂ Δr where r′ ≈ h and
hence we still have φ ≤ 2r′. However, the estimate for such small balls was established above
and hence we can conclude that (4.2) holds for balls of all sizes.

Finally, the fact that (4.3) can replace the integral over K in (4.2) is a consequence of the
Poincaré inequality. �

From inequality (4.2) of Lemma 4.2, one can derive the global, and local, domination of
the nontangential maximal function by the square function, S2, in the L2 norm exactly as in
Proposition 5.8 of [8]. The passage from S2 to the p-adapted square function, Sp is carried out
in [11].

5 Proofs of the Main Results

We briefly discuss the proof of Theorem 1.2, since the calculations of (4.8–4.10) in [11], and the
arguments that follow, carry over verbatim. The only difference is the presence of another con-
stant ‖m‖1/2

C which must be sufficiently small. The argument is carried out for solutions in the
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infinite strip of height h, which implies finiteness of certain square functions and nontangential
maximal functions. We also do need to assume that the coefficients of the equations are smooth,
again in order to have finiteness of the appropriate quantities (to apply Proposition 4.1); an
approximation and limiting argument removes this assumption in the end. The cases p ≥ 2
and p < 2 are argued separately, primarily because the finiteness assumptions are established
differently.

Next we establish Theorem 1.3.
Proof With the perturbation result in hand, we may now introduce a mollification of the
coefficients, as in [10]. Let L1 := L be an operator whose coefficients satisfy assumptions of
Theorem 1.3. Denote these coefficients by A1, B1 so that we have than

dμ1 =
(
δ(x)−1(oscBδ(x)/2(x)A

1)2 + sup
Bδ(x)/2(x)

|B1|2δ(x)
)
dx (5.1)

is a Carleson measure with norm ‖μ1‖C and A1 is p-elliptic.
Consider a new operator L0 whose coefficients are defined as follows. Set

A0(x0, x
′) =

∫∫

Rn
+

A1(s, u)φt(s − t, x′ − u)dsdu,

where φ is a smooth real, nonnegative bump function on R
n supported in the ball B1/2(0) such

that
∫∫

φ = 1 and φt(s, y) = t−nφ(s/t, y/t). We also set B0 = B1.
The Carleson norms of

dμ0(x) = sup
Bδ(x)/2(x)

[|∇A0|2 + |B0|2]δ(x) dx (5.2)

and
dm(x) = sup

Bδ(x)/2(x)

[|A0 − A1|2δ−1(x) + |B0 − B1|2δ(x)] dx (5.3)

satisfy, by the same arguments of [10, Corollary 2.3], the following bounds:

‖μ0‖C + ‖m‖C ≤ C‖μ1‖C ,

for some C = C(n, φ) ≥ 1.
In the complex coefficient setting, there are a couple of new points to check. First, p-

ellipticity is preserved by the mollification, hence if L1 is p-elliptic then so is L0. Second, the
conditions A0

00 = 1 and I m A0
0j = 0 for all 1 ≤ j ≤ n − 1 are preserved as well, provided the

operator L1 is in canonical form.
It follows that Proposition 4.1 applies to L0 and L1 and we have for any energy solution

L1u = 0 the inequality
∫

Rn−1
[Ñp,a(u)]p dx′ ≤ C

∫

Rn−1
[Sp,a(u)]p dx′. (5.4)

Observe that in Lemma 3.1 we only require that μ′ is a Carleson measure. Hence to apply this
lemma we do not have to mollify all coefficients of L1, only those in the row A1

0j . Define a
second operator L̄0 whose coefficients are:

Ā0
ij(x0, x

′) =

⎧
⎪⎨

⎪⎩

A1
ij(x0, x

′), for i > 0,
∫∫

Rn
+

A1
ij(s, u)φt(s − t, x′ − u)dsdu, for i = 0,
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B̄0
i (x0, x

′) = B1
i (x0, x

′). (5.5)

Clearly, if
dm̄(x) = sup

Bδ(x)/2(x)

[|Ā0 − A1|2δ−1(x) + |B̄0 − B1|2δ(x)] dx (5.6)

and
dμ̄′(x) = sup

Bδ(x)/2(x)

[
∑

j |∂0Ā
0
0j |2 + |∑j ∂jĀ

0
0j |2 + |B̄0|2]δ(x) dx. (5.7)

Then ‖m̄‖C , |μ̄′‖C � ‖μ′
1‖C , where

dμ′
1 =

(

δ(x)−1
n−1∑

j=0

(oscBδ(x)/2(x)A
1
0j)

2 + sup
Bδ(x)/2(x)

|B1|2δ(x)
)

dx. (5.8)

It follows that Lemma 3.1 applies to L̄0 and L1 and gives us
∫

Rn−1
[Sp,a(u)]p dx′ ≤ C1

∫

Rn−1
|u(0, x′)|p dx′

+ C2‖μ′
1‖1/2

C

∫

Rn−1
[Ñp,a(u)]p dx′. (5.9)

This combined with (5.4) implies the estimate (1.11) and hence solvability of the Lp Dirichlet
problem for the operator L = L1, provided ‖μ′

1‖C is sufficiently small.
In particular, when the operator L has the block form (i.e., A1

0j = A1
j0 = δ0j and B1

j = 0)
then μ′

1 = 0 and hence Corollary 1.4 holds. �
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