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Abstract In this paper, we investigate the complete moment convergence for dependent linear pro-

cesses with random coefficients to form Xt =
∑∞

j=−∞ Ajεt−j , where {εn, n ∈ Z} is a sequence of END

stochastically dominated random variables and {An, n ∈ Z} is a sequence of random varibles. As ap-

plications, the convergence rate, Marcinkiewicz–Zygmund strong law and strong law of large numbers

for this linear process are established.

Keywords Complete moment convergence, extended negatively dependent random variables, linear

processes, random coefficients

MR(2010) Subject Classification 60F15

1 Introduction

Suppose that {εn, n ∈ Z} is a sequence of independent and identically distributed random
variables and {an, n ∈ Z} is a sequence of real numbers. Therefore, {Xt, t > 0} is defined as

Xt =
∞∑

j=−∞
ajεt−j ,

a linear process or an infinite order moving average process.
Linear processes are one of the most important topics in different applications such as elec-

tronic, financial mathematical and time series. The asymptotic behavior of these processes
have been considered by many researchers. For example, McLeish [17, 18] verified asymptotic
convergence for time series including the linear processes and the checked limit theorems for the
dependent random variables of different cases. Ko [10] studied the asymptotic convergence and
the limit theorems for the linear processes in Hilbert space. Wang and Wu [27] investigated
the central limit theorem for the linear processes generating by the dependent random vari-
able. Philips and Solo [19] established the asymptotic convergence for different cases of linear
processes.

A finite collection of random variables ε1, . . . , εn is called extended negatively dependent
(END) if there exists a positive constant M independent of n such that both

P(ε1 > ε1, ε2 > ε2, . . . , εn > εn) ≤ M

n∏

i=1

P(εi > εi),
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and

P(ε1 ≤ ε1, ε2 ≤ ε2, . . . , εn ≤ εn) ≤ M
n∏

i=1

P(εi ≤ εi).

An infinity family of random variables {εn, n ≥ 1} is END, if every finite subfamily is END.
In the case of M = 1, the notion of END random variables reduces to the well-known notion
of so-called negatively dependent (ND, in short) random variables which was introduced by
Lehmann [14]. The notion of END seems to be a straightforward generalization of the notion
of negative dependence. The extended negative dependence structure is substantially more
comprehensive. For the limit theorems of END random variables, one can be referred to other
references [21, 23, 28, 31, 36, 37].

The first study in complete moment convergence was performed by Chow [3], where com-
plete moment convergence is a more general expression than complete convergence. Thus, the
complete moment convergence is one of the most important problems in the probability theory.
Chow [3] obtained the following result.

Theorem 1.1 (Chow [3]) Supposed that {X, Xn, n ≥ 1} is a sequence of independent and
identically distributed random variables with EX = 0. Let p ≥ 1, α > 1/2, αp > 1, E|X|p < ∞
and E[|X| log(1 + |X|)] < ∞. Then for all ε > 0, we have

∞∑

n=1

nαp−2−αE
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣ − εnα

)+

< ∞.

Researchers have extended Theorem 1.1 into the moving average processes. For example,
Zhou [38] studied the case of NA random variables. Also Kim and Ko [8] studied the case of
ϕ-mixing random variables. Kim et al. [9] generalized the result of Kim and Ko [8]. Ko et
al. [11] investigated the case of ρ�-mixing random variables, while Kim [7] investigated the
independent case. Sung [25] extended previous many results such as Kim and Ko [8], Kim
et al. [9] and Kim [7] to random variables satisfying some suitable conditions. Yang et al.
[33] and Yang and Hu [35] investigated the dependent cases of AANA random variables and
pairwise NQD random variables, respectively. For more information about complete moment
convergence results, there are multiple studies including Sung [24, 26], Wang et al. [29, 30],
Guo [13], Wu et al. [32], Qiu and Chen [20], Yang et al. [34], Guo et al. [5] and so on.

In the following, we review the definition of the linear processes with the random coefficients.

Definition 1.2 Let {εn, n ∈ Z} and {An, n ∈ Z} be two sequences of the random variables
and

Xt =
∞∑

j=−∞
Ajεt−j .

Then {Xt, t > 0} is a linear process with the random coefficients.

Recently, study on the properties of linear processes with random coefficients has attracted
much attention. For example, Saavedre et al. [22] established the estimataion of population
spectrum for linear processes with random coefficients. Kulik [12] obtained the limit theorems
for moving averages with random coefficients and heavy tailed noise. Hosseini and Nezakati [6]
demonstrated the convergence rates in the law of large numbers for END linear processes with
random coefficients. The results are as following.
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Theorem 1.3 (Hosseini and Nezakati [6]) Suppose r > 1, 1 ≤ p < 2, 1 < rp < 2 and Xt =
∑∞

j=−∞ Ajεt−j be a linear process with random coefficients, {εn, n ∈ Z} is a sequence of END
random variable with mean zero and stochastically dominated by a nonnegative random variable
ε. Moreover, suppose {An, n ∈ Z} be a sequence of END random variables with zero mean,
∑∞

j=−∞ E|Aj |p < ∞, and for some rp < q ≤ 2,
∑∞

j=−∞ E|Aj |q < ∞. Further, {εn, n ∈ Z} is
independent of {An, n ∈ Z}, then for all ε > 0, if Eεrp < ∞,

∞∑

n=1

nr−2P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ > n1/pε

)

< ∞,

and for r = 1, if E[εp log(1 + ε)] < ∞,
∞∑

n=1

n−1P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ > n1/pε

)

< ∞.

In this paper, we investigate complete moment convergence and with using that, we prove
strong laws and the Marcinkiewicz–Zygmund for dependent linear processes with random coef-
ficients, where the {εn, n ∈ Z} is a sequence of END stochastically dominated by a nonnegative
random variable ε. Some results of this paper are similar to Hosseini and Nezakati [6] . Also,
we extend and improve the result of Philips and Solo [19] and Louhichi and Soulier [16] for
non-randomly coefficients cases to the case of randomly coefficients. For the details, one can
refer to the main results presented in Section 3. Some lemmas are presented in Section 2.

2 Some Lemmas

For the theorems and lemmas that have been presented in the following, we consider C as a
positive constant, which may change line by line.

Lemma 2.1 (Sung [24]) Suppose that {Xn, n ≥ 1} and {Yn, n ≥ 1} be two sequences of
random variables. Then for any n ≥ 1, q > 1, ε > 0 and a > 0, we have

E
(∣

∣
∣
∣

n∑

t=1

(Xt + Yt)
∣
∣
∣
∣ − εa

)+

≤
(

1
εq

+
1

q − 1

)
1

aq−1
E

∣
∣
∣
∣

n∑

t=1

Xn

∣
∣
∣
∣

q

+ E
∣
∣
∣
∣

n∑

t=1

Yt

∣
∣
∣
∣,

and

E
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

(Xt + Yt)
∣
∣
∣
∣ − εa

)+

≤
(

1
εq

+
1

q − 1

)
1

aq−1
E

(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣

q)

+ E
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Yt

∣
∣
∣
∣

)

.

Lemma 2.2 (Adler and Rosalsky [1] and Adler et al. [2]) Suppose that {εn, n ≥ 1} is a
sequence of random variables stochastically dominated by a nonnegative random variable ε, i.e.
supn≥1 P(|εn| > t) ≤ CP(ε > t) for all t ≥ 0. Then, for all n ≥ 1, a > 0 and b > 0, the
following conditions hold

E[|εn|aI{|εn|≤b}] ≤ C(E[εaI{ε≤b}] + baP(ε > b)),

and
E[|εn|aI{|εn|>b}] ≤ CE[εaI{ε>b}].

Consequently, one has E[|εn|a] ≤ CE[εa] for all n ≥ 1.
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Lemma 2.3 (Liu [15]) Let {εn, n ≥ 1} be a sequence of END random variables and {fn(.), n ≥
1} are all nondecreasing (or nonincreasing) functions, then {fn(εn), n ≥ 1} are END random
variables.

Lemma 2.4 (Ding et al. [4]) Let 1 < p ≤ 2 and {εn, n ≥ 1} be a sequence of END random
variables with some concrete constant M > 0. Assume further that Eεn = 0 and E|εn|p < ∞.
Then there exists a positive constant C(M ; p) depending only on M and p such that

E
∣
∣
∣
∣

n∑

i=1

εi

∣
∣
∣
∣

p

≤ C(M ; p)
n∑

i=1

E|εi|p, (2.1)

and

E max
1<k≤n

∣
∣
∣
∣

k∑

i=1

εi

∣
∣
∣
∣

p

≤ C(M ; p)(log n)p
n∑

i=1

E|εi|p. (2.2)

Lemma 2.5 (Hosseini and Nezakati [6]) Suppose that for 1 ≤ p ≤ 2, the {εn, n ∈ Z} be
a sequence of END random variables with zero mean and E|εn|p < ∞, the {An, n ∈ Z} be
a sequence of random variables with E|An|p < ∞. Further, {εn, n ∈ Z} is independent of
{An, n ∈ Z}. Then for fixed n ≥ 1, if

∑∞
i=−∞(

∑n−i
j=1−i Aj)εi < ∞ a.s., then

E
∣
∣
∣
∣

∞∑

i=−∞

( n−i∑

j=1−i

Aj

)

εi

∣
∣
∣
∣

p

≤ C(M ; p)
∞∑

i=−∞
E

∣
∣
∣
∣

n−i∑

j=1−i

Aj

∣
∣
∣
∣

p

E|εi|p.

Lemma 2.6 Suppose that for 1 < p ≤ 2, the {εn, n ∈ Z} be a sequence of END random
variables with zero mean and E|εn|p < ∞, the {An, n ∈ Z} be a sequence of random variables
with E(

∑∞
j=−∞ |Aj |)p < ∞. Further, {εn, n ∈ Z} is independent of {An, n ∈ Z}. Then

E max
1<k≤n

∣
∣
∣
∣

∞∑

i=−∞

( k−i∑

j=1−i

Aj

)

εi

∣
∣
∣
∣

p

≤ C(M ; p)(log n)p sup
j∈Z

n−j∑

i=1−j

E|εi|p.

Proof Using of the Hölder’s inequality and (2.2), we obtain

E max
1<k≤n

∣
∣
∣
∣

∞∑

i=−∞

( k−i∑

j=1−i

Aj

)

εi

∣
∣
∣
∣

p

= E max
1<k≤n

∣
∣
∣
∣

∞∑

j=−∞

( k−j∑

i=1−j

εi

)

Aj

∣
∣
∣
∣

p

≤ E
∣
∣
∣
∣

∞∑

j=−∞
|Aj | max

1<k≤n

∣
∣
∣
∣

k−j∑

i=1−j

εi

∣
∣
∣
∣

∣
∣
∣
∣

p

= E
∣
∣
∣
∣

∞∑

j=−∞
|Aj |1− 1

p |Aj | 1p max
1<k≤n

∣
∣
∣
∣

k−j∑

i=1−j

εi

∣
∣
∣
∣

∣
∣
∣
∣

p

≤ E
∣
∣
∣
∣

( ∞∑

j=−∞
|Aj |

)1− 1
p
( ∞∑

j=−∞
|Aj | max

1<k≤n

∣
∣
∣
∣

k−j∑

i=1−j

εi

∣
∣
∣
∣

p) 1
p
∣
∣
∣
∣

p

=
∞∑

m=1

E
[( ∞∑

j=−∞
|Aj |

)p−1( ∞∑

j=−∞
|Aj | max

1<k≤n

∣
∣
∣
∣

k−j∑

i=1−j

εi

∣
∣
∣
∣

p)

I{m−1≤∑∞
j=−∞ |Aj |<m}

]
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≤
∞∑

m=1

∞∑

j=−∞
mp−1E[|Aj |I{m−1≤∑∞

j=−∞ |Aj |<m}]E max
1<k≤n

∣
∣
∣
∣

k−j∑

i=1−j

εi

∣
∣
∣
∣

p

≤ C(M ; p)(log n)p
∞∑

m=1

∞∑

j=−∞
mp−1E[|Aj |I{m−1≤∑∞

j=−∞ |Aj |<m}]
n−j∑

i=1−j

E|εi|p

≤ C(M ; p)(log n)p

(

sup
j∈Z

n−j∑

i=1−j

E|εi|p
)(

1 + 2p
∞∑

m=2

E
[( ∞∑

j=−∞
|Aj |

)p

I{m−1≤∑∞
j=−∞ |Aj |<m}

])

≤ C(M ; p)(log n)p

(

sup
j∈Z

n−j∑

i=1−j

E|εi|p
)(

1 + 2pE
( ∞∑

j=−∞
|Aj |

)p)

≤ C(M ; p)(log n)p sup
j∈Z

n−j∑

i=1−j

E|εi|p.

Thus, the proof completes. �

Remark 2.7 In Lemma 2.6, for p = 1, we have

E max
1<k≤n

∣
∣
∣
∣

∞∑

i=−∞

( k−i∑

j=1−i

Aj

)

εi

∣
∣
∣
∣ ≤ C sup

j∈Z

n−j∑

i=1−j

E|εi|.

3 Main Results

In the following, we prove the theorem of the complete moment convergence for the linear
processes with random coefficients.

Theorem 3.1 Suppose α > 0, 1 < p < 2 and Xt =
∑∞

j=−∞ Ajεt−j be a linear process with
random coefficients and the {εn, n ∈ Z} be a sequence of END random variable with mean zero
and stochastically dominated by a nonnegative random variable ε with Eεp < ∞. Moreover,
suppose {An, n ∈ Z} be a sequence of END random variables with zero mean,

∞∑

j=−∞
E|Aj | < ∞, (3.1)

and for some p < q ≤ 2,
∞∑

j=−∞
E|Aj |q < ∞. (3.2)

Further, {εn, n ∈ Z} is independent of {An, n ∈ Z}, then for all ε > 0,
∞∑

n=1

nαp−2−αE
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ − εnα

)+

< ∞. (3.3)

Proof Since Eεi = 0, for all i ∈ Z and for each n ≥ 1, we define

εi = ε′ni − Eε′ni + ε”ni − Eε′′ni, (3.4)

where

ε′ni = εiI{|εi|≤nα} + nαI{εi>nα} − nαI{εi<−nα} ,

ε′′ni = εi − ε′ni = (εi − nα)I{εi>nα} + (εi + nα)I{εi<−nα} .
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Using Lemma 2.3, {ε′ni − Eε′ni, i ∈ Z} and {ε′′ni − Eε′′ni, i ∈ Z} are END random variables
with zero mean. It can be easily seen that

|ε′ni| = |εi|I{|εi|≤nα} + nαI{|εi|>nα} , (3.5)

|ε′′ni| = (εi − nα)I{εi>nα} − (εi + nα)I{εi<−nα}

≤ |εi|I{|εi|>nα}. (3.6)

Therefore, for each n ≥ 1, we get
n∑

t=1

Xt =
n∑

t=1

∞∑

j=−∞
Ajεt−j

=
∞∑

i=−∞

n−i∑

j=1−i

Ajεi

=
∞∑

i=−∞

n−i∑

j=1−i

Aj(ε′ni − Eε′ni) +
∞∑

i=−∞

n−i∑

j=1−i

Aj(ε′′ni − Eε′′ni).

Hence, by Lemma 2.1 we obtain
∞∑

n=1

nαp−2−αE
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ − εnα

)+

≤
∞∑

n=1

nαp−2−α

(
1
εq

+
1

q − 1

)
1

nα(q−1)
E

∣
∣
∣
∣

∞∑

i=−∞

n−i∑

j=1−i

Aj(ε′ni − Eε′ni)
∣
∣
∣
∣

q

+
∞∑

n=1

nαp−2−αE
∣
∣
∣
∣

∞∑

i=−∞

n−i∑

j=1−i

Aj(ε′′ni − Eε′′ni)
∣
∣
∣
∣

≤ C

∞∑

n=1

nαp−αq−2E
∣
∣
∣
∣

∞∑

i=−∞

n−i∑

j=1−i

Aj(ε′ni − Eε′ni)
∣
∣
∣
∣

q

+
∞∑

n=1

nαp−2−αE
∣
∣
∣
∣

∞∑

i=−∞

n−i∑

j=1−i

Aj(ε′′ni − Eε′′ni)
∣
∣
∣
∣

= H1 + H2. (3.7)

First, to prove H1, with respect to the Markov’s inequality, cr-inequality, Lemmas 2.2 and 2.5,
(3.2) and (3.5), we have

H1 ≤ C

∞∑

n=1

nαp−αq−2
∞∑

i=−∞
E

∣
∣
∣
∣

n−i∑

j=1−i

Aj

∣
∣
∣
∣

q

E|ε′ni − Eε′ni|q

≤ C

∞∑

n=1

nαp−αq−2
∞∑

i=−∞
E|ε′ni − Eε′ni|q

n−i∑

j=1−i

E|Aj |q

≤ C
∞∑

n=1

nαp−αq−2
∞∑

i=−∞
E|ε′ni|q

n−i∑

j=1−i

E|Aj |q

≤ C

∞∑

n=1

nαp−αq−2
∞∑

j=−∞

n−j∑

i=1−j

E|Aj |qE[|εi|qI{|εi|≤nα}]
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+ C
∞∑

n=1

nαp−2
∞∑

j=−∞

n−j∑

i=1−j

E|Aj |qP(|εi| > nα)

≤ C
∞∑

n=1

nαp−αq−1{E[εqI{ε≤nα}] + nαqP(ε > nα)}
∞∑

j=−∞
E|Aj |q

+ C

∞∑

n=1

nαp−α−2
∞∑

j=−∞

n−j∑

i=1−j

E|Aj |qE[|εi|I{|εi|>nα}]

≤ C
∞∑

n=1

nαp−αq−1E[εqI{ε≤nα}] + C
∞∑

n=1

nαp−1P(ε > nα)

+ C
∞∑

n=1

nαp−α−1E[εI{ε>nα}]
∞∑

j=−∞
E|Aj |q

≤ C
∞∑

n=1

nαp−αq−1E[εqI{ε≤nα}] + C
∞∑

n=1

nαp−α−1E[εI{ε>nα}]

= H11 + H12. (3.8)

For H11, since p < q, we have thus

H11 = C
∞∑

n=1

nαp−αq−1
n∑

i=1

E[εqI{(i−1)α<ε≤iα}]

= C
∞∑

i=1

E[εqI{(i−1)α<ε≤iα}]
∞∑

n=i

nαp−αq−1

≤ C

∞∑

i=1

iαp−αqE[εqI{(i−1)α<ε≤iα}]

≤ CEεp < ∞. (3.9)

Next, for H12, with p > 1, we obtain

H12 = C

∞∑

n=1

nαp−α−1
∞∑

m=n

E[εI{mα<ε≤(m+1)α}]

= C

∞∑

m=1

E[εI{mα<ε≤(m+1)α}]
m∑

n=1

nαp−α−1

≤ C

∞∑

m=1

mαp−αE[εI{mα<ε≤(m+1)α}]

≤ CEεp < ∞. (3.10)

Thus, the conclusion from (3.9) and (3.10) is H1 < ∞.
For H2, similar to H1, we have

H2 ≤
∞∑

n=1

nαp−α−2
∞∑

i=−∞
E|

n−i∑

j=1−i

Aj |E|ε′′ni − Eε′′ni|

≤ C

∞∑

n=1

nαp−α−2
∞∑

j=−∞

n−j∑

i=1−j

E|Aj |E|ε′′ni|
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≤ C
∞∑

n=1

nαp−α−2
∞∑

j=−∞

n−j∑

i=1−j

E|Aj |E[|εi|I{|εi|>nα}]

≤ C

∞∑

n=1

nαp−α−2E[εI{ε>nα}]
∞∑

j=−∞

n−j∑

i=1−j

E|Aj |

≤ C

∞∑

n=1

nαp−α−1E[εI{ε>nα}]

= C

∞∑

m=1

E[εI{mα<ε≤(m+1)α}]
m∑

n=1

nαp−α−1 (3.11)

≤ C

∞∑

m=1

mαp−αE[εI{mα<ε≤(m+1)α}] ≤ CEεp < ∞. (3.12)

Therefore, (3.3) comes out immediately by (3.7)–(3.12). �

Remark 3.2 Let the conditions in Theorem 3.1 hold. Then for all ε > 0,
∞∑

n=1

nαp−2P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ > εnα

)

< ∞. (3.13)

In fact, for all ε > 0,
∞∑

n=1

nαp−2−αE
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ − εnα

)+

=
∞∑

n=1

nαp−2−α

∫ ∞

0

P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ − εnα > t

)

dt

≥
∞∑

n=1

nαp−2−α

∫ εnα

0

P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ − εnα > t

)

dt

≥ ε

∞∑

n=1

nαp−2P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ > 2εnα

)

.

Thus (3.3) implies (3.13).
If α = 1/p, then for all ε > 0, by using (3.13), we obtain

∞∑

n=1

n−1P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ > εn1/p

)

< ∞.

Theorem 3.3 For some α > 0 and 1 < p < q ≤ 2, suppose Xt =
∑∞

j=−∞ Ajεt−j be a
linear process with random coefficients and the {εn, n ∈ Z} be a sequence of END random
variable with mean zero and stochastically dominated by a nonnegative random variable ε with
E[εp logq(1 + ε)] < ∞. Moreover, suppose {An, n ∈ Z} be a sequence of random variables with

E
( ∞∑

j=−∞
|Aj |

)q

< ∞. (3.14)

Further, {εn, n ∈ Z} is independent of {An, n ∈ Z}, then for all ε > 0,
∞∑

n=1

nαp−2−αE
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣ − εnα

)+

< ∞.

Proof Similar to the proof of Theorem 3.1, by Lemma 2.1 we have
∞∑

n=1

nαp−2−αE
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣ − εnα

)+
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≤ C
∞∑

n=1

nαp−αq−2E
(

max
1≤k≤n

∣
∣
∣
∣

∞∑

i=−∞

k−i∑

j=1−i

Aj(ε′ni − Eε′ni)
∣
∣
∣
∣

q)

+
∞∑

n=1

nαp−2−αE
(

max
1≤k≤n

∣
∣
∣
∣

∞∑

i=−∞

k−i∑

j=1−i

Aj(ε′′ni − Eε′′ni)
∣
∣
∣
∣

)

= H∗
1 + H∗

2 .

To prove H∗
1 , with respect to the cr-inequality, Lemma 2.6 and (3.14), we obtain

H∗
1 ≤ C

∞∑

n=1

nαp−αq−2(log n)q sup
j∈Z

n−j∑

i=1−j

E|ε′ni − Eε′ni|q

≤ C

∞∑

n=1

nαp−αq−1(log n)qE[εqI{ε≤nα}]

+ C
∞∑

n=1

nαp−α−1(log n)qE[εI{ε>nα}]

= H∗
11 + H∗

12.

For H∗
11, we have thus

H∗
11 ≤ C

∞∑

i=1

E[εqI{(i−1)α<ε≤iα}]
∞∑

n=i

nαp−αq−1(log n)q

≤ C
∞∑

i=1

iαp−αq(log i)qE[εqI{(i−1)α<ε≤iα}]

≤ CE[εp logq(1 + ε)] < ∞.

Next, for H∗
12, with p > 1, we obtain

H∗
12 ≤ C

∞∑

n=1

nαp−α−1(log n)q
∞∑

m=n

E[εI{mα<ε≤(m+1)α}]

≤ C
∞∑

m=1

mαp−α(log m)qE[εI{mα<ε≤(m+1)α}]

≤ CE[εp logq(1 + ε)] < ∞.

Finally, for H∗
2 , noting that

∑∞
j=−∞ E|Aj | < ∞ by (3.14). Therefore, by using Remark 2.7

we get

H∗
2 ≤

∞∑

n=1

nαp−α−2 sup
j∈Z

n−j∑

i=1−j

E|ε′′ni − Eε′′ni|

≤ C

∞∑

n=1

nαp−α−1E[εI{ε>nα}]

≤ C

∞∑

m=1

E[εI{mα<ε≤(m+1)α}]
m∑

n=1

nαp−α−1

≤ CE[εp] < ∞.

Therefore, the proof completes. �
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Remark 3.4 Under the conditions in Theorem 3.3, for every ε > 0, it can be concluded that
∞∑

n=1

nαp−2P
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣ > εnα

)

< ∞.

If α = 1/p, then for all ε > 0,

∞∑

n=1

n−1P
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣ > εn1/p

)

< ∞. (3.15)

In the following results, by using (3.15), we show the Marcinkiewicz–Zygmund strong law
for linear processes with random coefficients.

Corollary 3.5 Suppose the conditions in Theorem 3.3 hold for 1 < p < 2. Then

1
n1/p

n∑

t=1

Xt
a.s.−→ 0 as n → ∞.

Theorem 3.6 Suppose α > 0 and Xt =
∑∞

j=−∞ Ajεt−j be a linear process with random
coefficients and the {εn, n ∈ Z} be a sequence of END random variable with mean zero and
stochastically dominated by a nonnegative random variable ε with E[ε log(1+ε)] < ∞. Moreover,
suppose {An, n ∈ Z} be a sequence of END random variables with zero mean,

∞∑

j=−∞
E|Aj | < ∞,

and for some 1 < q ≤ 2,
∞∑

j=−∞
E|Aj |q < ∞.

Further, {εn, n ∈ Z} is independent of {An, n ∈ Z}, then for all ε > 0,
∞∑

n=1

n−2E
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ − εnα

)+

< ∞. (3.16)

Proof Similar to the proof of Theorem 3.1, from (3.7), for H11, in (3.8), since 1 < q ≤ 2, we
have thus

H11 = C
∞∑

n=1

nα−αq−1
n∑

i=1

E[εqI{(i−1)α<ε≤iα}]

= C
∞∑

i=1

E[εqI{(i−1)α<ε≤iα}]
∞∑

n=i

nα−αq−1

≤ C

∞∑

i=1

iα−αqE[εqI{(i−1)α<ε≤iα}]

≤ CEε < ∞. (3.17)

Next, for H12, we obtain

H12 = C
∞∑

n=1

n−1
∞∑

m=n

E[εI{mα<ε≤(m+1)α}]

= C
∞∑

m=1

E[εI{mα<ε≤(m+1)α}]
m∑

n=1

n−1
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≤ C

∞∑

m=1

log(1 + m)E[εI{mα<ε≤(m+1)α}]

≤ CE[ε log(1 + ε)] < ∞. (3.18)

Finally, for H2, in (3.11) with p = 1, we have

H2 ≤ C
∞∑

m=1

E[εI{m1/p<ε≤(m+1)1/p}]
m∑

n=1

n−1

≤ C
∞∑

m=1

log(1 + m)E[εI{m1/p<ε≤(m+1)1/p}]

= CE[ε log(1 + ε)] < ∞. (3.19)

Consequently, by (3.17)–(3.19), we obtain (3.16). Therefore, the proof is completed. �

Remark 3.7 Suppose the conditions in Theorem 3.6 hold. Then for all ε > 0,
∞∑

n=1

nα−2P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ > εnα

)

< ∞.

If α = 1, then for all ε > 0,
∞∑

n=1

n−1P
(∣

∣
∣
∣

n∑

t=1

Xt

∣
∣
∣
∣ > εn

)

< ∞.

Theorem 3.8 Suppose Xt =
∑∞

j=−∞ Ajεt−j be a linear process with random coefficients
and the {εn, n ∈ Z} be a sequence of END random variable with mean zero and stochastically
dominated by a nonnegative random variable ε with E[ε log3(1 + ε)] < ∞. Moreover, suppose
{An, n ∈ Z} be a sequence of random variables with

E
( ∞∑

j=−∞
|Aj |

)2

< ∞.

Further, {εn, n ∈ Z} is independent of {An, n ∈ Z}, then for all ε > 0,
∞∑

n=1

n−2E
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣ − εn

)+

< ∞.

Proof Similar to the proof of Theorem 3.3, we have thus
∞∑

n=1

n−2E
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣ − εn

)+

≤ C

∞∑

n=1

n−3E
(

max
1≤k≤n

( ∞∑

i=−∞

k−i∑

j=1−i

Aj(ε′ni − Eε′ni)
)2)

+
∞∑

n=1

n−2E
(

max
1≤k≤n

∣
∣
∣
∣

∞∑

i=−∞

k−i∑

j=1−i

Aj(ε′′ni − Eε′′ni)
∣
∣
∣
∣

)

≤ C
∞∑

n=1

n−2 log2 nE[ε2I{ε≤n}] + C
∞∑

n=1

n−1 log2 nE[εI{ε>n}] + C
∞∑

n=1

n−1E[εI{ε>n}]

≤ C
∞∑

m=1

m−1(log2 m + 2 log m + 2)E[ε2I{m−1<ε≤m}] + C
∞∑

m=1

log3 mE[εI{m<ε≤(m+1)}]
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+ C

∞∑

m=1

log mE[εI{m<ε≤(m+1)}] ≤ CE[ε log3(1 + ε)] < ∞.

Therefore, the proof is completed. �

Remark 3.9 Suppose the conditions in Theorem 3.8 hold. Then for all ε > 0,

∞∑

n=1

n−1P
(

max
1≤k≤n

∣
∣
∣
∣

k∑

t=1

Xt

∣
∣
∣
∣ > εn

)

< ∞. (3.20)

In the following results, by using (3.20), we show the strong law of large numbers for linear
processes with random coefficients.

Corollary 3.10 Let the conditions in Theorem 3.8 hold. Then

1
n

n∑

t=1

Xt
a.s.−→ 0 as n → ∞.

Remark 3.11 If {An = an, n ∈ Z} is a non-random sequence (the case of constant coef-
ficients), then, with the condition

∑∞
j=−∞ |aj | < ∞, we can get results of Theorem 3.3 and

Theorem 3.8 for the linear processes with constant coefficients. These results improve and
extend the corresponding results of Philips and Solo [19] and Louhichi and Soulier [16], respec-
tively.
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