Acta Mathematica Sinica, English Series Jun., 2019, Vol. 35, No. 6, pp. 1074–1084 Published online: May 15, 2019 https://doi.org/10.1007/s10114-019-8199-6 http://www.ActaMath.com

Acta Mathematica Sinica. *<u>English Series</u> English Series* © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019

Extrapolation for the *L^p* **Dirichlet Problem in Lipschitz Domains**

Zhongwei Shen

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506*, USA E-mail* : *zshen*2*@uky.edu*

Dedicated to Carlos E. Kenig on the Occasion of His 65th Birthday

Abstract Let \mathcal{L} be a second-order linear elliptic operator with complex coefficients. It is shown that if the L^p Dirichlet problem for the elliptic system $\mathcal{L}(u) = 0$ in a fixed Lipschitz domain Ω in \mathbb{R}^d is solvable for some $1 < p = p_0 < \frac{2(d-1)}{d-2}$, then it is solvable for all p satisfying

$$
p_0 < p < \frac{2(d-1)}{d-2} + \varepsilon.
$$

The proof is based on a real-variable argument. It only requires that local solutions of $\mathcal{L}(u) = 0$ satisfy a boundary Cacciopoli inequality.

Keywords Dirichlet problem, Lipschitz domain, extrapolation

MR(2010) Subject Classification 35J57

1 Introduction

In this paper we consider the L^p Dirichlet problem for an $m \times m$ second-order elliptic system,

$$
\begin{cases}\n\mathcal{L}(u) = 0 & \text{in } \Omega, \\
u = f \in L^p(\partial \Omega; \mathbb{C}^m) & \text{on } \partial \Omega, \\
N(u) \in L^p(\partial \Omega),\n\end{cases}
$$
\n(1.1)

where Ω is a bounded Lipschitz domain in \mathbb{R}^d and $N(u)$ denotes the (modified) nontangential maximal function of u. The operator $\mathcal L$ in (1.1) is a second-order linear elliptic operator with complex coefficients. It may contain lower order terms and needs not to be in divergence form. Instead we shall impose the following condition.

Let $r_0 = \text{diam}(\Omega)$. There exist constants $\kappa > 0$ and $c_0 > 0$ such that the boundary Cacciopoli inequality

$$
\int_{B(x_0,r)\cap\Omega} |\nabla u|^2 dx \le \frac{\kappa}{r^2} \int_{B(x_0,2r)\cap\Omega} |u|^2 dx \tag{1.2}
$$

holds, whenever $x_0 \in \partial \Omega$, $0 < r < c_0r_0$, and $u \in W^{1,2}(B(x_0, 2r) \cap \Omega; \mathbb{C}^m)$ is a weak solution to $\mathcal{L}(u) = 0$ in $B(x_0, 2r) \cap \Omega$ with $u = 0$ on $B(x_0, 2r) \cap \partial \Omega$.

Received May 10, 2018, accepted October 26, 2018

Supported in part by NSF (Grant No. DMS-1600520)

Theorem 1.1 *Let* Ω *be a* (*fixed*) *bounded Lipschitz domain in* \mathbb{R}^d *and* $1 < p_0 < \frac{2(d-1)}{d-2}$. Let L *be a second-order linear elliptic operator satisfying the condition* (1.2)*. Assume that for any* $f \in C_0^{\infty}(\mathbb{R}^d; \mathbb{C}^m)$, there exists a weak solution $u \in W^{1,2}(\Omega; \mathbb{C}^m)$ to $\mathcal{L}(u)=0$ in Ω such that $u = f$ *on* $\partial\Omega$ *in the sense of trace, and* $||N(u)||_{L^{p_0}(\partial\Omega)} \leq C_0 ||f||_{L^{p_0}(\partial\Omega)}$ *. Then the weak solution* u *satisfies the* L^p *estimate*

$$
||N(u)||_{L^{p}(\partial\Omega)} \leq C||f||_{L^{p}(\partial\Omega)}
$$
\n(1.3)

for any p *satisfying*

$$
p_0 < p < \frac{2(d-1)}{d-2} + \varepsilon,\tag{1.4}
$$

where $\varepsilon > 0$ *depends only on d, m, p₀,* κ *, c₀, C₀ <i>and the Lipschitz character of* Ω *. The constant* C in (1.3) depends on d, m, p₀, p, κ , c₀, C₀ and the Lipschitz character of Ω .

We remark that in the scalar case $m = 1$ with real coefficients, the maximum principle $||u||_{L^{\infty}(\Omega)} \leq ||u||_{L^{\infty}(\partial\Omega)}$ holds for weak solutions of $\mathcal{L}(u) = 0$ in Ω . It follows by interpolation that if the estimate (1.3) holds for $p = p_0$, then it holds for any $p_0 < p \leq \infty$. However, it is known that the maximum principle or its weak version $||u||_{L^{\infty}(\Omega)} \leq C||u||_{L^{\infty}(\partial\Omega)}$ is not available in Lipschitz domains for elliptic systems or scalar elliptic equations with complex coefficients. Theorem 1.1 provides a partial solution to this problem.

The analogous of Theorem 1.1 also holds if Ω is the region above a Lipschitz graph,

$$
\Omega = \{ (x', x_d) \in \mathbb{R}^d : x_d > \psi(x') \},\tag{1.5}
$$

where $\psi : \mathbb{R}^{d-1} \to \mathbb{R}$ is a Lipschitz function with $\|\nabla \psi\|_{\infty} \leq M$.

Theorem 1.2 *Let* Ω *be a* (*fixed*) *graph domain in* \mathbb{R}^d *, given by* (1.5)*,* and $1 < p_0 < \frac{2(d-1)}{d-2}$ *. Let* \mathcal{L} *be a second-order linear elliptic operator satisfying the condition* (1.2) *with* $r_0 = ∞$ *. Assume that for any* $f \in C_0^{\infty}(\mathbb{R}^d; \mathbb{C}^m)$, there exists a weak solution $u \in W^{1,2}_{loc}(\overline{\Omega}; \mathbb{C}^m)$ to $\mathcal{L}(u) = 0$ in Ω *such that* $u = f$ *on* $\partial\Omega$ *in the sense of trace, and* $||N(u)||_{L^{p_0}(\partial\Omega)} \leq C_0||f||_{L^{p_0}(\partial\Omega)}$ *. Then the weak solution u satisfies the estimate* (1.3) *for any* p *satisfying* (1.4)*, where* $\varepsilon > 0$ *depends only on* d, m, p_0 , κ , C_0 and M. The constant C in (1.3) depends on d, m, p_0 , p , κ , C_0 and M.

Remark 1.3 Regarding the boundary Cacciopoli inequality (1.2) in a graph domain Ω , consider the elliptic operator

$$
\left(\mathcal{L}(u)\right)^{\alpha} = -\frac{\partial}{\partial x_i} \left\{ a_{ij}^{\alpha\beta}(x) \frac{\partial u^{\beta}}{\partial x_j} \right\} + b_j^{\alpha\beta}(x) \frac{\partial u^{\beta}}{\partial x_j},\tag{1.6}
$$

where $1 \leq \alpha, \beta \leq m$ and $1 \leq i, j \leq d$ (the repeated indices are summed). Assume that the coefficients $a_{ij}^{\alpha\beta}(x)$ are complex-valued bounded functions satisfying $||a_{ij}^{\alpha\beta}||_{\infty} \leq \mu^{-1}$ and the ellipticity condition

$$
\operatorname{Re}(a_{ij}^{\alpha\beta}(x)\xi_j^{\beta}\overline{\xi_i^{\alpha}}) \ge \mu|\xi|^2 \tag{1.7}
$$

for any $\xi = (\xi_i^{\alpha}) \in \mathbb{C}^{m \times d}$, where $\mu > 0$. Also assume that there exists some $\nu > 0$ such that

$$
\delta(x)|b_j^{\alpha\beta}(x)| \le \nu \tag{1.8}
$$

for any $x \in \Omega$, where $\delta(x) = \text{dist}(x, \partial \Omega)$. Then there exists a constant $\nu_0 > 0$, depending only on d, m, μ and M, such that if $\nu \leq \nu_0$, the Cacciopoli inequality (1.2) holds for any $0 < r < \infty$. This may be proved by using Hardy's inequality. In the case of a bounded Lipschitz domain, one only needs to assume (1.8) with $\nu \leq \nu_0$ for x sufficiently close to $\partial\Omega$ ($\delta(x) \leq c_0 r_0$).

Remark 1.4 Let $d \geq 3$. If the Dirichlet problem (1.1) is solvable for $p = p_0 = \frac{2(d-1)}{d-2}$, our argument gives the solvability for $p_0 < p < p_0 + \varepsilon$.

The L^p boundary value problems for second-order elliptic equations and systems in Lipschitz domains have been studied extensively. We refer the reader to $[1, 2, 6, 11-14, 16]$ for references. In particular, the L^2 Dirichlet problem is solvable for elliptic systems with real constant coefficients satisfying the Legendre–Hadamard condition and the symmetry condition [5, 7, 8, 10]. It is also known that under the same assumption, the L^p Dirichlet problem is solvable for $2 - \varepsilon < p \le \infty$ if $d = 3$ [4], and for $2 - \varepsilon < p < \frac{2(d-1)}{d-3} + \varepsilon$ if $d \ge 4$ [16]. More recent work in this area focuses on operators with complex coefficients or real coefficients without the symmetry condition [1, 2, 11–13].

As in [16], the proof of Theorems 1.1 and 1.2 is based on a real-variable method, which may be regarded as a dual version of the celebrated Calder´on–Zygmund Lemma. The method was originated in [3] and was further developed in [15–17]. It reduces the L^p estimate (1.3) to the reverse Hölder inequality,

$$
\left(\int_{B(x_0,r)\cap\partial\Omega} |N(u)|^q \,d\sigma\right)^{1/q} \le C\bigg(\int_{B(x_0,2r)\cap\partial\Omega} |N(u)|^{p_0} \,d\sigma\bigg)^{1/p_0} \tag{1.9}
$$

for $q = \frac{2(d-1)}{d-2}$ (for any $2 < q < \infty$, if $d = 2$), where $x_0 \in \partial\Omega$, u is a weak solution to $\mathcal{L}(u) = 0$ in Ω with $u = 0$ in $B(x_0, 3r) \cap \partial \Omega$. To prove (1.9), we replace $N(u)$ by $N^r(u)$, a localized nontangential maximal function at height r (see Section 2 for definition), and use the observation

$$
\int_{B(x_0,r)\cap\partial\Omega} |N^r(u)|^q \, d\sigma \le C \int_{B(x_0,2r)\cap\Omega} |u(y)|^q \delta(y)^{-1} \, dy. \tag{1.10}
$$

The right-hand side of (1.10) is then handled by using Sobolev inequality and Hardy's inequality,

$$
\int_{B(x_0,2r)\cap\Omega} \frac{|u(y)|^2}{\delta(y)^2} dy \le C \int_{B(x_0,2r)\cap\Omega} |\nabla u|^2 dy. \tag{1.11}
$$

The exponent $q = \frac{2(d-1)}{d-2}$ arises in the use of Sobolev inequality

$$
||u||_{L^{2(q-1)}(B(x_0,2r)\cap\Omega)} \leq C||\nabla u||_{L^2(B(x_0,2r)\cap\Omega)}.
$$
\n(1.12)

It may be worthy to point out that q is also the exponent in the boundary Sobolev inequality $||u||_{L^q(\partial\Omega)} \leq C||u||_{H^{1/2}(\partial\Omega)}$.

2 Reverse H¨older Inequalities

Throughout this section we assume that Ω is the region above a Lipschitz graph in \mathbb{R}^d , given by (1.5) with $\|\nabla \psi\|_{\infty} \leq M$. A nontangential approach region at $z \in \partial \Omega$ is given by

$$
\Gamma_a(z) = \{ x \in \Omega : \ |x - z| < a \,\delta(x) \},\tag{2.1}
$$

where $\delta(x) = \text{dist}(x, \partial \Omega)$ and $a > 1+2M$. We also need a truncated version

$$
\Gamma_a^h(z) = \{ x \in \Omega : \ |x - z| < a\,\delta(x) \text{ and } \delta(x) < h \},\tag{2.2}
$$

where $h > 0$. For $u \in L^2_{loc}(\Omega)$, the modified nontangential maximal function of u is defined by

$$
N_a(u)(z) = \sup \left\{ \left(\int_{B(x,(1/4)\delta(x))} |u|^2 \right)^{1/2} : \ x \in \Gamma_a(z) \right\} \tag{2.3}
$$

Extrapolation for the L^p Dirichlet Problem in Lipschitz Domains 1077

for each $z \in \partial \Omega$. Similarly, we introduce

$$
N_a^h(u)(z) = \sup \left\{ \left(\int_{B(x,(1/4)\delta(x))} |u|^2 \right)^{1/2} : \ x \in \Gamma_a^h(z) \right\}.
$$
 (2.4)

The definitions of $N_a(u)$ and $N_a^h(u)$ are same if Ω is a bounded Lipschitz domain. We will drop the subscript a if there is no confusion.

Lemma 2.1 *Let* $2 \leq q < \infty$ *. Then*

$$
N_a^h(u)(z) \le C \bigg(\int_{\Gamma_{2a}^{2h}(z)} |u(y)|^q \delta(y)^{-d} dy \bigg)^{1/q} \tag{2.5}
$$

for any $z \in \partial\Omega$ *, where* C *depends only on d and q.*

Proof Fix $x \in \Gamma_a^h(z)$. Let $y \in B(x,(1/4)\delta(x))$. Note that

$$
\delta(y) \le \delta(x) + |x - y| < (5/4)\delta(x).
$$

Since $\delta(x) \leq \delta(y) + |x - y| < \delta(y) + (1/4)\delta(x)$, we obtain $(3/4)\delta(x) < \delta(y)$. It follows that

$$
|y - z| \le |x - z| + |x - y| < (a + (1/4))\delta(x)
$$
\n
$$
\le (4/3)(a + (1/4))\delta(y)
$$
\n
$$
\le 2a\delta(y),
$$

where we have used the fact $a > 1$. Also observe that $\delta(y) < (5/4)\delta(x) < (5/4)h$. Thus we have proved that $B(x, (1/4)\delta(x)) \subset \Gamma_{2a}^{2h}(z)$. This, together with Hölder's inequality, gives

$$
\left(\int_{B(x,(1/4)\delta(x))} |u(y)|^2 dy\right)^{1/2} \le \left(\int_{B(x,(1/4)\delta(x))} |u(y)|^q dy\right)^{1/q}
$$

$$
\le C\left(\int_{\Gamma_{2a}^{2h}(z)} |u(y)|^q \delta(y)^{-d} dy\right)^{1/q},
$$

where C depends only on d and q. The inequality (2.5) now follows by definition. \Box

Assume that $\psi(0) = 0$. For $r > 0$, define

$$
D_r = \{ (x', x_d) \in \mathbb{R}^d : |x'| < r \text{ and } \psi(x') < x_d < 2(M+1)r \},\
$$

$$
\Delta_r = \{ (x', \psi(x')) \in \mathbb{R}^d : |x'| < r \}. \tag{2.6}
$$

Lemma 2.2 *Suppose that* $u \in H^1(D_r)$ *and* $u = 0$ *on* Δ_r *. Then*

$$
\int_{D_r} \frac{|u(x)|^2}{\widetilde{\delta}(x)^2} dx \le 4 \int_{D_r} |\nabla u|^2 dx,
$$
\n(2.7)

where $\delta(x) = |x_d - \psi(x')|$.

Proof Using $u(x', \psi(x')) = 0$ and Fubini's Theorem, we obtain

$$
\int_{D_r} \frac{|u(x)|^2}{\tilde{\delta}(x)^2} dx = \int_{|x'| < r} \int_{\psi(x')}^{2(1+M)r} \frac{|u(x', x_d)|^2}{|x_d - \psi(x')|^2} dx_d dx'
$$

\n
$$
\leq 4 \int_{|x'| < r} \int_{\psi(x')}^{2(1+M)r} \left| \frac{\partial u}{\partial x_d} \right|^2 dx_d dx'
$$

\n
$$
\leq 4 \int_{D_r} |\nabla u|^2 dx,
$$

where we have used the Hardy inequality (see e.g. [18, p. 272]) for the first inequality. \Box

The following lemma is one of the main steps in our argument. **Lemma 2.3** *Let* $u \in H^1(B(0, 6kr) \cap \Omega; \mathbb{C}^m)$ *be a weak solution to* $\mathcal{L}(u) = 0$ *in* $B(0, 6kr) \cap \Omega$ *with* $u = 0$ *on* $B(0, 6kr) \cap \partial\Omega$ *for some* $0 < r < \infty$ *, where* $k = 10a(M + 2)$ *. Assume that*

$$
\int_{B(0,kr)\cap\Omega} |\nabla u|^2 dx \le \frac{C_0}{r^2} \int_{B(0,2kr)\cap\Omega} |u|^2 dx.
$$
\n(2.8)

Then

$$
\left(\int_{\Delta_r} |N_a^r(u)|^q \, d\sigma\right)^{1/q} \le C \left(\int_{\Delta_{2kr}} |N_a^{4kr}(u)|^2 \, d\sigma\right)^{1/2},\tag{2.9}
$$

where $q = \frac{2(d-1)}{d-2}$ for $d \geq 3$ and $2 < q < \infty$ for $d = 2$. The constant C depends only on d, m, *M*, C_0 *, and q (if d = 2).*

Proof We give the proof for the case $d \geq 3$. With minor modification, the same argument works for $d = 2$. It follows from (2.5) and Fubini's Theorem that

$$
\int_{\Delta_r} |N_a^r(u)|^q d\sigma \le C \int_{\Delta_r} \int_{\Gamma_{2a}^{2r}(z)} |u(y)|^q \delta(y)^{-d} dy d\sigma(z)
$$

$$
\le C \int_E |u(y)|^q \delta(y)^{-1} dy,
$$

where

$$
E = \bigcup_{z \in \Delta_r} \Gamma_{2a}^{2r}(z).
$$

Note that if $y \in E$, then $y \in \Gamma_{2a}^{2r}(z)$ for some $z \in \Delta_r$. Hence,

$$
|y| \le |y - z| + |z| < 2a\delta(y) + (1 + M)r
$$
\n
$$
\le (4a + 1 + M)r
$$
\n
$$
\le 5ar,
$$

where we have used the fact $a \geq 1 + M$. This shows that $|y'| \leq 5ar$ and $|y_d| < 5ar$. As a result, we obtain $E \subset D_{5ar}$. Thus,

$$
\int_{\Delta_r} |N_a^r(u)|^q \, d\sigma \le C \int_{D_{5ar}} |u(y)|^q \delta(y)^{-1} \, dy
$$
\n
$$
\le C \left(\int_{D_{5ar}} |u|^{2(q-1)} \, dy \right)^{1/2} \left(\int_{D_{5ar}} \frac{|u(y)|^2}{\delta(y)^2} \, dy \right)^{1/2},\tag{2.10}
$$

where we have used the Cauchy inequality for the last step.

To bound the right-hand side of (2.10), we first note that

$$
\frac{1}{\sqrt{2}(M+1)}|x_d - \psi(x')| \le \delta(x) \le |x_d - \psi(x')|.
$$

In view of Lemma 2.2 we obtain

$$
\int_{D_{5ar}} \frac{|u(y)|^2}{\delta(y)^2} \, dy \le C \int_{D_{5ar}} |\nabla u(y)|^2 \, dy,\tag{2.11}
$$

where C depends only on M. Recall that $q = \frac{2(d-1)}{d-2}$. Thus $2(q-1) = \frac{2d}{d-2}$. Since $u = 0$ on Δ_{5ar} , we may apply the Sobolev inequality to obtain

$$
\left(\int_{D_{5ar}} |u|^{2(q-1)} dy\right)^{1/(2(q-1))} \le C \left(\int_{D_{5ar}} |\nabla u|^2 dy\right)^{1/2}.
$$
\n(2.12)

This, together with (2.10) and (2.11), leads to

$$
\int_{\Delta_r} |N_a^r(u)|^q \, d\sigma \le C \bigg(\int_{D_{5ar}} |\nabla u|^2 \, dy \bigg)^{q/2} \le C \bigg(\int_{B(0, 10a(M+2)r) \cap \Omega} |\nabla u|^2 \, dy \bigg)^{q/2}, \tag{2.13}
$$

where we have used the observation $D_{5ar} \subset B(0, 10a(M + 2)r)$ for the last step. Hence,

$$
\left(\int_{\Delta_r} |N_a^r(u)|^q \, d\sigma\right)^{1/q} \le Cr^{\frac{d}{2} - \frac{d-1}{q}} \left(\int_{B(0,10a(M+2)r)\cap\Omega} |\nabla u|^2 \, dy\right)^{1/2}
$$
\n
$$
\le C \left(\int_{B(0,20a(M+2)r)\cap\Omega} |u|^2 \, dy\right)^{1/2},\tag{2.14}
$$

where we have used the assumption (2.8) for the last step.

Finally, we note that if $|x - y| < (1/5)\delta(y)$, then $|x - y| < (1/4)\delta(x)$. Thus, by Fubini's Theorem,

$$
\int_{B(0,R)\cap\Omega} |u|^2 dx \le C \int_{B(0,R)\cap\Omega} \left(\int_{B(x,(1/4)\delta(x))} |u|^2 dy \right) dx
$$
\n
$$
\le C \int_{\Delta_R} |N_a^{2R}(u)|^2 d\sigma
$$

for any $R > 0$. This, together with (2.14), yields the reverse Hölder inequality (2.9). \Box

We are now ready to prove the main result of this section.

Theorem 2.4 *Let* $u \in H^1(B(0, 9kR) \cap \Omega; \mathbb{C}^m)$ *be a weak solution to* $\mathcal{L}(u) = 0$ *in* $B(0, 9kR) \cap \Omega$ *with* $u = 0$ *on* $B(0, 9kR) \cap \partial\Omega$ *for some* $0 < R < \infty$ *, where* $k = 10a(M + 2)$ *. Assume that*

$$
\int_{B(z,r)\cap\Omega} |\nabla u|^2 dx \le \frac{C_0}{r^2} \int_{B(z,2r)\cap\Omega} |u|^2 dx \tag{2.15}
$$

for any $0 < r < 3kR$ *and any* $z \in B(0, 3kR) \cap \partial \Omega$ *. Then for any* $0 < r < R$,

$$
\left(\int_{\Delta_r} |N_a^{4kR}(u)|^q d\sigma\right)^{1/q} \le C \int_{\Delta_{2r}} N_a^{4kR}(u) d\sigma,\tag{2.16}
$$

where $q = \frac{2(d-1)}{d-2}$ for $d \geq 3$ and $2 < q < \infty$ for $d = 2$. The constant C depends only on d, m, $M, C_0, and q \text{ (if } d = 2).$

Proof We first show that for any $0 < r < R$,

$$
\left(\int_{\Delta_r} |N_a^{4kR}(u)|^q \, d\sigma\right)^{1/q} \le C \left(\int_{\Delta_{2kr}} |N_a^{4kR}(u)|^2 \, d\sigma\right)^{1/2}.\tag{2.17}
$$

Let $z \in \Delta_r$ and $x \in \Gamma_a^{4kR}(z)$. If $\delta(y) < r$, we have

$$
\left(\int_{B(x,(1/4)\delta(x))} |u|^2\right)^{1/2} \le N_a^r(u)(z).
$$

Suppose $\delta(x) > r$. It follows by a simple geometric observation that there exists a constant $c_0 \in (0, 1)$, depending only on d, M and a, such that

$$
|\{y\in \Delta_{\Delta_{2kr}}:\ x\in \Gamma_a^{4kR}(y)\}|\ge c_0r^{d-1}.
$$

This implies that

$$
\left(\int_{B(x,(1/4)\delta(x))} |u|^2\right)^{1/2} \le C \int_{\Delta_{2kr}} N_a^{4kR}(u) d\sigma.
$$

Hence, for any $z \in \Delta_r$,

$$
N_a^{4kR}(u)(z) \le N_a^r(u)(z) + C \int_{\Delta_{2kr}} N_a^{4kR}(u) d\sigma,
$$
\n(2.18)

which, together with (2.9), gives (2.17).

The fact that (2.17) implies (2.16) follows from a convexity argument, found in [9]. For $z = (z', \psi(z')) \in \partial\Omega$ and $r > 0$, define the surface ball $\Delta_r(z)$ on $\partial\Omega$ by

$$
\Delta_r(z) = \{ (x', \psi(x')) \in \mathbb{R}^d : |x' - z'| < r \}. \tag{2.19}
$$

Note that $\Delta_r = \Delta_r(0)$. By translation the inequality (2.17) continues to hold if Δ_r and Δ_{2kr} are replaced by $\Delta_r(z)$ and $\Delta_{2kr}(z)$, respectively. Let $0 < s < t < 1$. We may cover Δ_{sr} by a finite number of surface balls $\{\Delta_{c(t-s)r}(z_{\ell})\}$ with the property $\Delta_{2kc(t-s)r}(z_{\ell}) \subset \Delta_{tr}$. Note that

$$
\int_{\Delta_{sr}} |N_a^{4kR}(u)|^q d\sigma \le Cs^{1-d}(t-s)^{d-1} \sum_{\ell} \int_{\Delta_{c(t-s)r}(z_{\ell})} |N_a^{4kR}(u)|^q d\sigma
$$
\n
$$
\le Cs^{1-d}(t-s)^{d-1} \sum_{\ell} \left(\int_{\Delta_{2kc(t-s)r}(z_{\ell})} |N_a^{4kR}(u)|^2 d\sigma \right)^{q/2}
$$
\n
$$
\le Cs^{1-d}(t-s)^{d-1} \left(\sum_{\ell} \int_{\Delta_{2kc(t-s)r}(z_{\ell})} |N_a^{4kR}(u)|^2 d\sigma \right)^{q/2}
$$
\n
$$
\le Cs^{1-d}(t-s)^{d-1} t^{\frac{q}{2}(d-1)}(t-s)^{-\frac{q}{2}(d-1)} \left(\int_{\Delta_{tr}} |N_a^{4kR}(u)|^2 d\sigma \right)^{q/2}.
$$

It follows that for any $0 < s < t < 1$,

$$
\left(\oint_{\Delta_{sr}} |N_a^{4kR}(u)|^q \, d\sigma\right)^{1/q} \le C s^{\frac{1-d}{q}} t^{\frac{d-1}{2}} (t-s)^{(d-1)(\frac{1}{q}-\frac{1}{2})} \left(\oint_{\Delta_{tr}} |N_a^{4kR}(u)|^2 \, d\sigma\right)^{1/2}.\tag{2.20}
$$

Write $\frac{1}{2} = \frac{\theta}{q} + \frac{\theta}{1}$, where $\theta \in (0, 1)$. By Hölder's inequality,

$$
\left(\int_{\Delta_{tr}} |N_a^{4kR}(u)|^2 \, d\sigma\right)^{1/2} \le \left(\int_{\Delta_{tr}} |N_a^{4kR}(u)|^q \, d\sigma\right)^{(1-\theta)/q} \left(\int_{\Delta_{tr}} |N_a^{4kR}(u)| \, d\sigma\right)^{\theta}.\tag{2.21}
$$

Let

$$
I(t) = \left(\int_{\Delta_{tr}} |N_a^{4kR}(u)|^q d\sigma\right)^{1/q} / \int_{\Delta_r} N_a^{4kR}(u) d\sigma.
$$

By (2.20) and (2.21) we obtain

$$
I(s) \leq C s^{\frac{1-d}{q}} t^{(d-1)(\frac{1}{2}-\theta)} (t-s)^{(d-1)(\frac{1}{q}-\frac{1}{2})} [I(t)]^{1-\theta}.
$$

Hence,

$$
\log I(s) \le \log\left(Cs^{\frac{1-d}{q}} t^{(d-1)\left(\frac{1}{2}-\theta\right)}(t-s)^{(d-1)\left(\frac{1}{q}-\frac{1}{2}\right)} + (1-\theta)\log I(t).
$$

Let $s = t^b$, where $b > 1$ is chosen so that $b^{-1} > 1 - \theta$. We integrate the inequality above in t with respect to $t^{-1}dt$ over the interval $(1/2, 1)$. This gives

$$
\frac{1}{b} \int_{(1/2)^b}^1 \log I(t) \frac{dt}{t} \le C + (1 - \theta) \int_{1/2}^1 \log I(t) \frac{dt}{t}.
$$

Extrapolation for the L^p Dirichlet Problem in Lipschitz Domains 1081

It follows that

$$
\left(\frac{1}{b} - \theta\right) \int_{1/2}^{1} \log I(t) \frac{dt}{t} \le C.
$$

Since $I(t) \ge cI(1/2)$ for $t \in (1/2, 1)$, we obtain $I(1/2) \le C$, which gives (2.16) .

Remark 2.5 By translation the inequality (2.16) continues to hold if Δ_r and Δ_{2r} are replaced by surface balls $\Delta_r(z)$ and $\Delta_{2r}(z)$, respectively, where $z \in \Delta_R$. In the case $d \geq 3$, (2.16) in fact holds for some $\overline{q} = \frac{2(d-1)}{d-2} + \varepsilon$, where $\varepsilon > 0$ depends only on d, m, M and C_0 . This follows from the well known self-improving property of the reverse Hölder inequality.

3 Proof of Theorem 1.2

Throughout this section we assume that Ω is a graph domain, given by (1.5), with $\psi(0) = 0$ and $\|\nabla \psi\|_{\infty} \leq M$. Consider the map $\Phi : \partial \Omega \to \mathbb{R}^{d-1}$, defined by $\Phi(x', \psi(x')) = x'$. We say $Q \subset \partial\Omega$ is a surface cube of $\partial\Omega$ if $\Phi(Q)$ is a cube of \mathbb{R}^{d-1} (with sides parallel to the coordinate planes). A dilation of Q is defined by $\alpha Q = \Phi^{-1}(\alpha \Phi(Q))$. We call $z \in Q$ the center of Q if $\Phi(z)$ is the center of $\Phi(Q)$. Similarly, the side length of Q is defined to be the side length of $\Phi(Q)$.

Proofs of Theorems 1.1 and 1.2 are based on a real variable argument.

Theorem 3.1 *Let* $F \in L^{p_0}(2Q_0)$ *for some surface cube* Q_0 *of* $\partial\Omega$ *and* $1 \leq p_0 < \infty$ *. Let* $p_1 > p_0$ and $f \in L^p(2Q_0)$ for some $p_0 < p < p_1$. Suppose that for each surface cube $Q \subset Q_0$ *with* $|Q| \leq \beta |Q_0|$, there exist two integrable functions F_Q and R_Q such that

$$
|F| \le |F_Q| + |R_Q| \quad on \ 2Q,\tag{3.1}
$$

$$
\left(\oint_{2Q} |R_Q|^{p_1} d\sigma\right)^{1/p_1} \le C_1 \left\{ \left(\oint_{\alpha Q} |F|^{p_0} d\sigma\right)^{1/p_0} + \sup_{2Q_0 \supset Q' \supset Q} \left(\oint_{Q'} |f|^{p_0} d\sigma\right)^{1/p_0} \right\},\tag{3.2}
$$

$$
\left(\int_{2Q} |F_Q|^{p_0} d\sigma\right)^{1/p_0} \le C_2 \sup_{2Q_0 \supset Q' \supset Q} \left(\int_{Q'} |f|^{p_0} d\sigma\right)^{1/p_0},\tag{3.3}
$$

where $C_1, C_2 > 0$ *and* $0 < \beta < 1 < \alpha$ *. Then*

$$
\left(\oint_{Q_0} |F|^p \, d\sigma\right)^{1/p} \le C \left(\oint_{2Q_0} |F|^{p_0} \, d\sigma\right)^{1/p_0} + C \left(\oint_{2Q_0} |f|^p \, d\sigma\right)^{1/p},\tag{3.4}
$$

where $C > 0$ *depends at most on d, M, p₀, p₁, p, C₁, C₂,* α *<i>and* β *.*

Proof This theorem with $p_0 = 1$ was formulated and proved in [17, Theorem 3.2 and Remark 3.3]. Its proof was inspired by a paper of Caffarelli and Peral [3]. The case $p_0 > 1$ follows readily from the case $p_0 = 1$ by considering the functions $|F|^{p_0}$ and $|f|$ p_0 .

Assume $d \geq 3$. To prove Theorem 1.2, we fix $f \in C_0^{\infty}(\mathbb{R}^d; \mathbb{C}^m)$. By the assumption of the theorem, there exists a weak solution $u \in H^1_{loc}(\Omega; \mathbb{C}^m)$ to the elliptic system $\mathcal{L}(u)=0$ in Ω such that $u = f$ on $\partial\Omega$ in the sense of trace and $||N(u)||_{L^{p_0}(\partial\Omega)} \leq C_0||f||_{L^{p_0}(\partial\Omega)}$, where $1 < p_0 < \frac{2(d-1)}{d-2}$. We need to show that $||N(u)||_{L^p(\partial\Omega)} \leq C||f||_{L^p(\partial\Omega)}$ for $p_0 < p < \frac{2(d-1)}{d-2} + \varepsilon$, where $\varepsilon > 0$ depends only on d, m, p₀, p, M and C₀.

To this end we fix $Q_0 = Q(0, R)$, a surface cube centered at the origin with side length R. Let $Q = Q(z, r) \subset Q_0$ be a surface cube centered at z with side length $r \leq \beta R$, where $\beta \in (0, 1)$ is sufficiently small. Let $g = \varphi f$, where φ is a smooth cut-off function such that $0 \leq \varphi \leq 1$, $\varphi = 1$ in $\Delta_{\gamma^2 r}(z)$, and $\varphi = 0$ in $\partial\Omega \setminus \Delta_{2\gamma^2 r}(z)$, where

$$
2Q\subset \Delta_{\gamma r}\subset \Delta_{2\gamma^2r}(z)\subset 2Q_0
$$

and $\gamma = \gamma(M) > 1$ is large. By the assumption there exists a weak solution v to $\mathcal{L}(v) = 0$ in Ω such that $v = \varphi f$ on $\partial \Omega$ and

$$
||N(v)||_{L^{p_0}(\partial\Omega)} \le C_0 ||\varphi f||_{L^{p_0}(\partial\Omega)}.
$$
\n(3.5)

Let $w = u - v$ and define

$$
F = N(u)
$$
, $F_Q = N(v)$ and $R_Q = N(w)$. (3.6)

Using $N(u) \leq N(v) + N(w)$, we obtain (3.1). To verify (3.3), we use the estimate (3.5) to obtain

$$
\left(\oint_{2Q} |F_Q|^{p_0} d\sigma\right)^{1/p_0} \leq C \left(\frac{1}{|Q|} \int_{\partial\Omega} |N(v)|^{p_0} d\sigma\right)^{1/p_0}
$$
\n
$$
\leq C \left(\frac{1}{|Q|} \int_{\Delta_{2\gamma^2 r}(z)} |f|^{p_0} d\sigma\right)^{1/p_0}
$$
\n
$$
\leq C \sup_{2Q_0 \supset Q' \supset Q} \left(\oint_{Q'} |f|^{p_0} d\sigma\right)^{1/p_0}.
$$
\n(3.7)

To verify (3.2), we use Theorem 2.4. Observe that $\mathcal{L}(w) = 0$ in Ω and $w = 0$ on $\Delta_{\gamma^2 r}(z)$. By choosing $\gamma = \gamma(M) > 1$ sufficiently large, it follows from (2.16) as well as Remark 2.5 that

$$
\left(\int_{\Delta_{\gamma r}(z)} |N^{4k\gamma r}(w)|^{\overline{q}} d\sigma\right)^{1/\overline{q}} \le C \int_{\Delta_{2\gamma r}(z)} N^{4k\gamma r}(w) d\sigma,\tag{3.8}
$$

where $\overline{q} = \frac{2(d-1)}{d-2} + \varepsilon$ and $\varepsilon > 0$ depends only on d, m, M and C_0 . Note that for any $y \in \Delta_{\gamma r}(z)$,

$$
N(w)(y) \le N^{4k\gamma r}(w)(y) + C \int_{\Delta_{2\gamma r}(z)} N(w) d\sigma \tag{3.9}
$$

(see the proof of (2.18)). This, together with (3.8) , yields

$$
\left(\int_{\Delta_{\gamma r}(z)} |N(w)|^{\overline{q}} \, d\sigma\right)^{1/\overline{q}} \le C \int_{\Delta_{2\gamma r}(z)} N(w) \, d\sigma. \tag{3.10}
$$

Hence,

$$
\left(\oint_{2Q} |R_Q|^{\overline{q}} d\sigma\right)^{1/\overline{q}} \le C\left(\oint_{\Delta_{\gamma r}(z)} |N(w)|^{\overline{q}} d\sigma\right)^{1/\overline{q}}\n\le C\left(\oint_{\Delta_{2\gamma r}(z)} |N(w)|^{p_0} d\sigma\right)^{1/p_0}\n\le C\left(\oint_{\Delta_{2\gamma r}(z)} |N(u)|^{p_0} d\sigma\right)^{1/p_0} + C\left(\oint_{\Delta_{2\gamma r}(z)} |N(v)|^{p_0} d\sigma\right)^{1/p_0}\n\le C\left(\oint_{\alpha Q} |F|^{p_0} d\sigma\right)^{1/p_0} + C \sup_{2Q_0 \supset Q' \supset Q} \left(\oint_{Q'} |f|^{p_0} d\sigma\right)^{1/p_0},\n\tag{3.11}
$$

where $\alpha Q \supset \Delta_{2\gamma r}(z)$ and we have used (3.5) for the last inequality.

To summarize, we have verified the conditions in Theorem 3.1. As a result, we may conclude that

$$
\left(\int_{Q_0} |N(u)|^p \, d\sigma\right)^{1/p} \le C \left(\int_{2Q_0} |N(u)|^{p_0} \, d\sigma\right)^{1/p_0} + C \left(\int_{2Q_0} |f|^p \, d\sigma\right)^{1/p} \tag{3.12}
$$

for any $p_0 < p < \frac{2(d-1)}{d-2} + \varepsilon$. It follows that

$$
\left(\int_{Q_0} |N(u)|^p \, d\sigma\right)^{1/p} \leq C|Q_0|^{(d-1)(\frac{1}{p}-\frac{1}{p_0})} \left(\int_{2Q_0} |N(u)|^{p_0} \, d\sigma\right)^{1/p_0} + C\left(\int_{2Q_0} |f|^p \, d\sigma\right)^{1/p} \leq C|Q_0|^{(d-1)(\frac{1}{p}-\frac{1}{p_0})} \|f\|_{L^{p_0}(\partial\Omega)} + C \|f\|_{L^{p}(\partial\Omega)}.
$$

By letting the side length of Q_0 go to infinity in the inequalities above, we obtain the desired estimate $||N(u)||_{L^p(\partial\Omega)} \leq C||f||_{L^p(\partial\Omega)}$.

Finally, note that if $d = 2$, the same argument yields the estimate (1.3) for $p_0 < p < \infty$.

4 Proof of Theorem 1.1

Theorem 1.1 follows from the proof of Theorem 1.2 by a simple localization technique. Fix $z \in \partial \Omega$. Let $r_0 = \text{diam}(\Omega)$ and $r = c_0 r_0$, where $c_0 > 0$ is sufficiently small such that

$$
B(z,r) \cap \Omega = B(z,r) \cap \{(x',x_d) : x_d > \psi(x')\}
$$

in a new coordinate system, obtained from the standard system through translation and rotation. It follows from the estimate (3.12) that

$$
\left(\int_{B(z,c_1r)\cap\partial\Omega} |N(u)|^p \,d\sigma\right)^{1/p} \le Cr_0^{(d-1)(\frac{1}{p}-\frac{1}{p_0})} \|N(u)\|_{L^{p_0}(\partial\Omega)} + C\|f\|_{L^p(\partial\Omega)} \n\le Cr_0^{(d-1)(\frac{1}{p}-\frac{1}{p_0})} \|f\|_{L^{p_0}(\partial\Omega)} + C\|f\|_{L^p(\partial\Omega)} \n\le C\|f\|_{L^p(\partial\Omega)},
$$
\n(4.1)

where $c_1 = c_1(\Omega) > 0$ is small and we have used Hölder's inequality as well as the fact $|\partial\Omega| \leq$ Cr_0^{d-1} for the last step. By covering $\partial\Omega$ with a finite number of balls $\{B(z_\ell, c_1r)\}\$ we obtain the estimate (1.3).

References

- [1] Alfonseca, M. A., Auscher, P., Axelsson, A., et al.: Analyticity of layer potentials and *L*² solvability of boundary value problems for divergence form elliptic equations with complex *L*∞ coefficients. *Adv. Math.*, **226**(5), 4533–4606 (2011)
- [2] Auscher, P., Axelsson, A.: Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I. *Invent. Math.*, **184**(1), 47–115 (2011)
- [3] Caffarelli, L., Peral, I.: On *W*1*,p* estimates for elliptic equations in divergence form. *Comm. Pure Appl. Math.*, **51**, 1–21 (1998)
- [4] Dahlberg, B., Kenig, C.: *L^p* estimates for the three-dimensional system of elastostatics on Lipschitz domains, Lecture Notes in Pure and Applied Mathematics (Cora Sadoesky, ed.), vol. 122, Dekker, 1990, pp. 631–634
- [5] Dahlberg, B., Kenig, C., Verchota, G.: Boundary value problems for the system of elastostatics in Lipschitz domains. *Duke Math. J.*, **57**(3), 795–818 (1988)
- [6] Dindos, M., Pipher, J., Rule, D.: Boundary value problems for second-order elliptic operators satisfying a Carleson condition. *Comm. Pure Appl. Math.*, **70**(7), 1316–1365 (2017)
- [7] Fabes, E.: Layer potential methods for boundary value problems on Lipschitz domains. *Lecture Notes in Math.*, **1344**, 55–80 (1988)
- [8] Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. *Duke Math. J.*, **57**(3), 769–793 (1988)
- [9] Fefferman, C., Stein, E.: *H^p* spaces of several variables. *Acta Math.*, **129**(3–4), 137–193 (1972)
- [10] Gao, W.: Layer potentials and boundary value problems for elliptic systems in Lipschitz domains. *J. Funct. Anal.*, **95**, 377–399 (1991)
- [11] Hofmann, S., Kenig, C., Mayboroda, S., et al.: The regularity problem for second order elliptic operators with complex-valued bounded measurable coefficients. *Math. Ann.*, **361**(3–4), 863–907 (2015)
- [12] Hofmann, S., Kenig, C., Mayboroda, S., et al.: Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators. *J. Amer. Math. Soc.*, **28**(2), 483–529 (2015)
- [13] Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in *Lp*, Sobolev and Hardy spaces. *Ann. Sci. Ec. Norm. Super.* (4), **44**(5), 723–800 (2011)
- [14] Kenig, C.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Math., vol. 83, AMS, Providence, RI, 1994
- [15] Shen, Z.: Bounds of Riesz transforms on *L^p* spaces for second order elliptic operators. *Ann. Inst. Fourier* (*Grenoble*), **55**, 173–197 (2005)
- [16] Shen, Z.: Necessary and sufficient conditions for the solvability of the *L^p* Dirichlet problem on Lipschitz domains. *Math. Ann.*, **336**(3), 697–724 (2006)
- [17] Shen, Z.: The *L^p* boundary value problems on Lipschitz domains. *Adv. Math.*, **216**, 212–254 (2007)
- [18] Stein, E.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970