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Abstract Let L be a second-order linear elliptic operator with complex coefficients. It is shown that

if the Lp Dirichlet problem for the elliptic system L(u) = 0 in a fixed Lipschitz domain Ω in R
d is

solvable for some 1 < p = p0 < 2(d−1)
d−2

, then it is solvable for all p satisfying

p0 < p <
2(d − 1)

d − 2
+ ε.

The proof is based on a real-variable argument. It only requires that local solutions of L(u) = 0 satisfy

a boundary Cacciopoli inequality.
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1 Introduction

In this paper we consider the Lp Dirichlet problem for an m×m second-order elliptic system,
⎧
⎪⎪⎨

⎪⎪⎩

L(u) = 0 in Ω,

u = f ∈ Lp(∂Ω; Cm) on ∂Ω,

N(u) ∈ Lp(∂Ω),

(1.1)

where Ω is a bounded Lipschitz domain in R
d and N(u) denotes the (modified) nontangential

maximal function of u. The operator L in (1.1) is a second-order linear elliptic operator with
complex coefficients. It may contain lower order terms and needs not to be in divergence form.
Instead we shall impose the following condition.

Let r0 = diam(Ω). There exist constants κ > 0 and c0 > 0 such that the boundary
Cacciopoli inequality �

B(x0,r)∩Ω

|∇u|2 dx ≤ κ

r2

�
B(x0,2r)∩Ω

|u|2 dx (1.2)

holds, whenever x0 ∈ ∂Ω, 0 < r < c0r0, and u ∈W 1,2(B(x0, 2r) ∩ Ω; Cm) is a weak solution to
L(u) = 0 in B(x0, 2r) ∩ Ω with u = 0 on B(x0, 2r) ∩ ∂Ω.
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Theorem 1.1 Let Ω be a (fixed) bounded Lipschitz domain in R
d and 1 < p0 <

2(d−1)
d−2 . Let

L be a second-order linear elliptic operator satisfying the condition (1.2). Assume that for any
f ∈ C∞

0 (Rd; Cm), there exists a weak solution u ∈ W 1,2(Ω; Cm) to L(u) = 0 in Ω such that
u = f on ∂Ω in the sense of trace, and ‖N(u)‖Lp0 (∂Ω) ≤ C0‖f‖Lp0 (∂Ω). Then the weak solution
u satisfies the Lp estimate

‖N(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω) (1.3)

for any p satisfying

p0 < p <
2(d− 1)
d− 2

+ ε, (1.4)

where ε > 0 depends only on d, m, p0, κ, c0, C0 and the Lipschitz character of Ω. The constant
C in (1.3) depends on d, m, p0, p, κ, c0, C0 and the Lipschitz character of Ω.

We remark that in the scalar case m = 1 with real coefficients, the maximum principle
‖u‖L∞(Ω) ≤ ‖u‖L∞(∂Ω) holds for weak solutions of L(u) = 0 in Ω. It follows by interpolation
that if the estimate (1.3) holds for p = p0, then it holds for any p0 < p ≤ ∞. However, it is
known that the maximum principle or its weak version ‖u‖L∞(Ω) ≤ C‖u‖L∞(∂Ω) is not available
in Lipschitz domains for elliptic systems or scalar elliptic equations with complex coefficients.
Theorem 1.1 provides a partial solution to this problem.

The analogous of Theorem 1.1 also holds if Ω is the region above a Lipschitz graph,

Ω = {(x′, xd) ∈ R
d : xd > ψ(x′)}, (1.5)

where ψ : R
d−1 → R is a Lipschitz function with ‖∇ψ‖∞ ≤M .

Theorem 1.2 Let Ω be a (fixed) graph domain in R
d, given by (1.5), and 1 < p0 <

2(d−1)
d−2 . Let

L be a second-order linear elliptic operator satisfying the condition (1.2) with r0 = ∞. Assume
that for any f ∈ C∞

0 (Rd; Cm), there exists a weak solution u ∈ W 1,2
loc (Ω; Cm) to L(u) = 0 in Ω

such that u = f on ∂Ω in the sense of trace, and ‖N(u)‖Lp0 (∂Ω) ≤ C0‖f‖Lp0 (∂Ω). Then the
weak solution u satisfies the estimate (1.3) for any p satisfying (1.4), where ε > 0 depends only
on d, m, p0, κ, C0 and M . The constant C in (1.3) depends on d, m, p0, p, κ, C0 and M .

Remark 1.3 Regarding the boundary Cacciopoli inequality (1.2) in a graph domain Ω, con-
sider the elliptic operator

(L(u))α = − ∂

∂xi

{

aαβij (x)
∂uβ

∂xj

}

+ bαβj (x)
∂uβ

∂xj
, (1.6)

where 1 ≤ α, β ≤ m and 1 ≤ i, j ≤ d (the repeated indices are summed). Assume that the
coefficients aαβij (x) are complex-valued bounded functions satisfying ‖aαβij ‖∞ ≤ μ−1 and the
ellipticity condition

Re(aαβij (x)ξβj ξ
α
i ) ≥ μ|ξ|2 (1.7)

for any ξ = (ξαi ) ∈ C
m×d, where μ > 0. Also assume that there exists some ν > 0 such that

δ(x)|bαβj (x)| ≤ ν (1.8)

for any x ∈ Ω, where δ(x) = dist(x, ∂Ω). Then there exists a constant ν0 > 0, depending only
on d, m, μ and M , such that if ν ≤ ν0, the Cacciopoli inequality (1.2) holds for any 0 < r <∞.
This may be proved by using Hardy’s inequality. In the case of a bounded Lipschitz domain,
one only needs to assume (1.8) with ν ≤ ν0 for x sufficiently close to ∂Ω (δ(x) ≤ c0r0).
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Remark 1.4 Let d ≥ 3. If the Dirichlet problem (1.1) is solvable for p = p0 = 2(d−1)
d−2 , our

argument gives the solvability for p0 < p < p0 + ε.

The Lp boundary value problems for second-order elliptic equations and systems in Lip-
schitz domains have been studied extensively. We refer the reader to [1, 2, 6, 11–14, 16] for
references. In particular, the L2 Dirichlet problem is solvable for elliptic systems with real
constant coefficients satisfying the Legendre–Hadamard condition and the symmetry condition
[5, 7, 8, 10]. It is also known that under the same assumption, the Lp Dirichlet problem is
solvable for 2− ε < p ≤ ∞ if d = 3 [4], and for 2− ε < p < 2(d−1)

d−3 + ε if d ≥ 4 [16]. More recent
work in this area focuses on operators with complex coefficients or real coefficients without the
symmetry condition [1, 2, 11–13].

As in [16], the proof of Theorems 1.1 and 1.2 is based on a real-variable method, which may
be regarded as a dual version of the celebrated Calderón–Zygmund Lemma. The method was
originated in [3] and was further developed in [15–17]. It reduces the Lp estimate (1.3) to the
reverse Hölder inequality,

( �
B(x0,r)∩∂Ω

|N(u)|q dσ
)1/q

≤ C

( �
B(x0,2r)∩∂Ω

|N(u)|p0 dσ
)1/p0

(1.9)

for q = 2(d−1)
d−2 (for any 2 < q < ∞, if d = 2), where x0 ∈ ∂Ω, u is a weak solution to

L(u) = 0 in Ω with u = 0 in B(x0, 3r) ∩ ∂Ω. To prove (1.9), we replace N(u) by Nr(u), a
localized nontangential maximal function at height r (see Section 2 for definition), and use the
observation �

B(x0,r)∩∂Ω

|Nr(u)|q dσ ≤ C

�
B(x0,2r)∩Ω

|u(y)|qδ(y)−1 dy. (1.10)

The right-hand side of (1.10) is then handled by using Sobolev inequality and Hardy’s inequality,�
B(x0,2r)∩Ω

|u(y)|2
δ(y)2

dy ≤ C

�
B(x0,2r)∩Ω

|∇u|2 dy. (1.11)

The exponent q = 2(d−1)
d−2 arises in the use of Sobolev inequality

‖u‖L2(q−1)(B(x0,2r)∩Ω) ≤ C‖∇u‖L2(B(x0,2r)∩Ω). (1.12)

It may be worthy to point out that q is also the exponent in the boundary Sobolev inequality
‖u‖Lq(∂Ω) ≤ C‖u‖H1/2(∂Ω).

2 Reverse Hölder Inequalities

Throughout this section we assume that Ω is the region above a Lipschitz graph in R
d, given

by (1.5) with ‖∇ψ‖∞ ≤M . A nontangential approach region at z ∈ ∂Ω is given by

Γa(z) = {x ∈ Ω : |x− z| < a δ(x)}, (2.1)

where δ(x) = dist(x, ∂Ω) and a > 1 + 2M . We also need a truncated version

Γha(z) = {x ∈ Ω : |x− z| < a δ(x) and δ(x) < h}, (2.2)

where h > 0. For u ∈ L2
loc(Ω), the modified nontangential maximal function of u is defined by

Na(u)(z) = sup
{( �

B(x,(1/4)δ(x))

|u|2
)1/2

: x ∈ Γa(z)
}

(2.3)
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for each z ∈ ∂Ω. Similarly, we introduce

Nh
a (u)(z) = sup

{( �
B(x,(1/4)δ(x))

|u|2
)1/2

: x ∈ Γha(z)
}

. (2.4)

The definitions of Na(u) and Nh
a (u) are same if Ω is a bounded Lipschitz domain. We will drop

the subscript a if there is no confusion.

Lemma 2.1 Let 2 ≤ q <∞. Then

Nh
a (u)(z) ≤ C

( �
Γ2h

2a(z)

|u(y)|qδ(y)−d dy
)1/q

(2.5)

for any z ∈ ∂Ω, where C depends only on d and q.

Proof Fix x ∈ Γha(z). Let y ∈ B(x, (1/4)δ(x)). Note that

δ(y) ≤ δ(x) + |x− y| < (5/4)δ(x).

Since δ(x) ≤ δ(y) + |x− y| < δ(y) + (1/4)δ(x), we obtain (3/4)δ(x) < δ(y). It follows that

|y − z| ≤ |x− z| + |x− y| < (a+ (1/4))δ(x)

≤ (4/3)(a+ (1/4))δ(y)

≤ 2aδ(y),

where we have used the fact a > 1. Also observe that δ(y) < (5/4)δ(x) < (5/4)h. Thus we
have proved that B(x, (1/4)δ(x)) ⊂ Γ2h

2a(z). This, together with Hölder’s inequality, gives
( �

B(x,(1/4)δ(x))

|u(y)|2 dy
)1/2

≤
( �

B(x,(1/4)δ(x))

|u(y)|q dy
)1/q

≤ C

(�
Γ2h

2a(z)

|u(y)|qδ(y)−d dy
)1/q

,

where C depends only on d and q. The inequality (2.5) now follows by definition. �
Assume that ψ(0) = 0. For r > 0, define

Dr = {(x′, xd) ∈ R
d : |x′| < r and ψ(x′) < xd < 2(M + 1)r},

Δr = {(x′, ψ(x′)) ∈ R
d : |x′| < r}. (2.6)

Lemma 2.2 Suppose that u ∈ H1(Dr) and u = 0 on Δr. Then�
Dr

|u(x)|2
δ̃(x)2

dx ≤ 4
�
Dr

|∇u|2 dx, (2.7)

where δ̃(x) = |xd − ψ(x′)|.
Proof Using u(x′, ψ(x′)) = 0 and Fubini’s Theorem, we obtain

�
Dr

|u(x)|2
δ̃(x)2

dx =
�
|x′|<r

� 2(1+M)r

ψ(x′)

|u(x′, xd)|2
|xd − ψ(x′)|2 dxddx

′

≤ 4
�
|x′|<r

� 2(1+M)r

ψ(x′)

∣
∣
∣
∣
∂u

∂xd

∣
∣
∣
∣

2

dxddx
′

≤ 4
�
Dr

|∇u|2 dx,
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where we have used the Hardy inequality (see e.g. [18, p. 272]) for the first inequality. �
The following lemma is one of the main steps in our argument.

Lemma 2.3 Let u ∈ H1(B(0, 6kr) ∩ Ω; Cm) be a weak solution to L(u) = 0 in B(0, 6kr) ∩ Ω
with u = 0 on B(0, 6kr) ∩ ∂Ω for some 0 < r <∞, where k = 10a(M + 2). Assume that�

B(0,kr)∩Ω

|∇u|2 dx ≤ C0

r2

�
B(0,2kr)∩Ω

|u|2 dx. (2.8)

Then ( �
Δr

|Nr
a (u)|q dσ

)1/q

≤ C

( �
Δ2kr

|N4kr
a (u)|2 dσ

)1/2

, (2.9)

where q = 2(d−1)
d−2 for d ≥ 3 and 2 < q < ∞ for d = 2. The constant C depends only on d, m,

M , C0, and q (if d = 2).

Proof We give the proof for the case d ≥ 3. With minor modification, the same argument
works for d = 2. It follows from (2.5) and Fubini’s Theorem that�

Δr

|Nr
a (u)|q dσ ≤ C

�
Δr

�
Γ2r

2a(z)

|u(y)|qδ(y)−d dydσ(z)

≤ C

�
E

|u(y)|qδ(y)−1 dy,

where
E =

⋃

z∈Δr

Γ2r
2a(z).

Note that if y ∈ E, then y ∈ Γ2r
2a(z) for some z ∈ Δr. Hence,

|y| ≤ |y − z| + |z| < 2aδ(y) + (1 +M)r

≤ (4a+ 1 +M)r

≤ 5ar,

where we have used the fact a ≥ 1+M . This shows that |y′| ≤ 5ar and |yd| < 5ar. As a result,
we obtain E ⊂ D5ar. Thus,�

Δr

|Nr
a (u)|q dσ ≤ C

�
D5ar

|u(y)|qδ(y)−1 dy

≤ C

( �
D5ar

|u|2(q−1) dy

)1/2( �
D5ar

|u(y)|2
δ(y)2

dy

)1/2

, (2.10)

where we have used the Cauchy inequality for the last step.
To bound the right-hand side of (2.10), we first note that

1√
2(M + 1)

|xd − ψ(x′)| ≤ δ(x) ≤ |xd − ψ(x′)|.

In view of Lemma 2.2 we obtain�
D5ar

|u(y)|2
δ(y)2

dy ≤ C

�
D5ar

|∇u(y)|2 dy, (2.11)

where C depends only on M . Recall that q = 2(d−1)
d−2 . Thus 2(q − 1) = 2d

d−2 . Since u = 0 on
Δ5ar, we may apply the Sobolev inequality to obtain

( �
D5ar

|u|2(q−1) dy

)1/(2(q−1))

≤ C

(�
D5ar

|∇u|2 dy
)1/2

. (2.12)
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This, together with (2.10) and (2.11), leads to
�

Δr

|Nr
a (u)|q dσ ≤ C

(�
D5ar

|∇u|2 dy
)q/2

≤ C

(�
B(0,10a(M+2)r)∩Ω

|∇u|2 dy
)q/2

, (2.13)

where we have used the observation D5ar ⊂ B(0, 10a(M + 2)r) for the last step. Hence,
(�

Δr

|Nr
a (u)|q dσ

)1/q

≤ Cr
d
2− d−1

q

( �
B(0,10a(M+2)r)∩Ω

|∇u|2 dy
)1/2

≤ C

(�
B(0,20a(M+2)r)∩Ω

|u|2 dy
)1/2

, (2.14)

where we have used the assumption (2.8) for the last step.
Finally, we note that if |x − y| < (1/5)δ(y), then |x − y| < (1/4)δ(x). Thus, by Fubini’s

Theorem, �
B(0,R)∩Ω

|u|2 dx ≤ C

�
B(0,R)∩Ω

( �
B(x,(1/4)δ(x))

|u|2 dy
)

dx

≤ C

�
ΔR

|N2R
a (u)|2 dσ

for any R > 0. This, together with (2.14), yields the reverse Hölder inequality (2.9). �
We are now ready to prove the main result of this section.

Theorem 2.4 Let u ∈ H1(B(0, 9kR)∩Ω; Cm) be a weak solution to L(u) = 0 in B(0, 9kR)∩Ω
with u = 0 on B(0, 9kR) ∩ ∂Ω for some 0 < R <∞, where k = 10a(M + 2). Assume that�

B(z,r)∩Ω

|∇u|2 dx ≤ C0

r2

�
B(z,2r)∩Ω

|u|2 dx (2.15)

for any 0 < r < 3kR and any z ∈ B(0, 3kR) ∩ ∂Ω. Then for any 0 < r < R,
(�

Δr

|N4kR
a (u)|q dσ

)1/q

≤ C

�
Δ2r

N4kR
a (u) dσ, (2.16)

where q = 2(d−1)
d−2 for d ≥ 3 and 2 < q < ∞ for d = 2. The constant C depends only on d, m,

M , C0, and q (if d = 2).

Proof We first show that for any 0 < r < R,
( �

Δr

|N4kR
a (u)|q dσ

)1/q

≤ C

(�
Δ2kr

|N4kR
a (u)|2 dσ

)1/2

. (2.17)

Let z ∈ Δr and x ∈ Γ4kR
a (z). If δ(y) < r, we have

( �
B(x,(1/4)δ(x))

|u|2
)1/2

≤ Nr
a (u)(z).

Suppose δ(x) > r. It follows by a simple geometric observation that there exists a constant
c0 ∈ (0, 1), depending only on d, M and a, such that

|{y ∈ ΔΔ2kr
: x ∈ Γ4kR

a (y)}| ≥ c0r
d−1.
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This implies that
( �

B(x,(1/4)δ(x))

|u|2
)1/2

≤ C

�
Δ2kr

N4kR
a (u) dσ.

Hence, for any z ∈ Δr,

N4kR
a (u)(z) ≤ Nr

a (u)(z) + C

�
Δ2kr

N4kR
a (u) dσ, (2.18)

which, together with (2.9), gives (2.17).
The fact that (2.17) implies (2.16) follows from a convexity argument, found in [9]. For

z = (z′, ψ(z′)) ∈ ∂Ω and r > 0, define the surface ball Δr(z) on ∂Ω by

Δr(z) = {(x′, ψ(x′)) ∈ R
d : |x′ − z′| < r}. (2.19)

Note that Δr = Δr(0). By translation the inequality (2.17) continues to hold if Δr and Δ2kr

are replaced by Δr(z) and Δ2kr(z), respectively. Let 0 < s < t < 1. We may cover Δsr by a
finite number of surface balls {Δc(t−s)r(z�)} with the property Δ2kc(t−s)r(z�) ⊂ Δtr. Note that�

Δsr

|N4kR
a (u)|q dσ ≤ Cs1−d(t− s)d−1

∑

�

�
Δc(t−s)r(z�)

|N4kR
a (u)|q dσ

≤ Cs1−d(t− s)d−1
∑

�

( �
Δ2kc(t−s)r(z�)

|N4kR
a (u)|2 dσ

)q/2

≤ Cs1−d(t− s)d−1

(
∑

�

�
Δ2kc(t−s)r(z�)

|N4kR
a (u)|2 dσ

)q/2

≤ Cs1−d(t− s)d−1t
q
2 (d−1)(t− s)−

q
2 (d−1)

( �
Δtr

|N4kR
a (u)|2 dσ

)q/2

.

It follows that for any 0 < s < t < 1,
( �

Δsr

|N4kR
a (u)|q dσ

)1/q

≤ Cs
1−d

q t
d−1
2 (t− s)(d−1)( 1

q − 1
2 )

( �
Δtr

|N4kR
a (u)|2 dσ

)1/2

. (2.20)

Write 1
2 = θ

q + θ
1 , where θ ∈ (0, 1). By Hölder’s inequality,

(�
Δtr

|N4kR
a (u)|2 dσ

)1/2

≤
( �

Δtr

|N4kR
a (u)|q dσ

)(1−θ)/q(�
Δtr

|N4kR
a (u)| dσ

)θ

. (2.21)

Let

I(t) =
( �

Δtr

|N4kR
a (u)|q dσ

)1/q/ �
Δr

N4kR
a (u) dσ.

By (2.20) and (2.21) we obtain

I(s) ≤ Cs
1−d

q t(d−1)( 1
2−θ)(t− s)(d−1)( 1

q − 1
2 )[I(t)]1−θ.

Hence,
log I(s) ≤ log(Cs

1−d
q t(d−1)( 1

2−θ)(t− s)(d−1)( 1
q − 1

2 )) + (1 − θ) log I(t).

Let s = tb, where b > 1 is chosen so that b−1 > 1 − θ. We integrate the inequality above in t

with respect to t−1dt over the interval (1/2, 1). This gives

1
b

� 1

(1/2)b

log I(t)
dt

t
≤ C + (1 − θ)

� 1

1/2

log I(t)
dt

t
.
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It follows that (
1
b
− θ

) � 1

1/2

log I(t)
dt

t
≤ C.

Since I(t) ≥ cI(1/2) for t ∈ (1/2, 1), we obtain I(1/2) ≤ C, which gives (2.16).

Remark 2.5 By translation the inequality (2.16) continues to hold if Δr and Δ2r are replaced
by surface balls Δr(z) and Δ2r(z), respectively, where z ∈ ΔR. In the case d ≥ 3, (2.16) in fact
holds for some q = 2(d−1)

d−2 + ε, where ε > 0 depends only on d, m, M and C0. This follows from
the well known self-improving property of the reverse Hölder inequality.

3 Proof of Theorem 1.2

Throughout this section we assume that Ω is a graph domain, given by (1.5), with ψ(0) = 0
and ‖∇ψ‖∞ ≤ M . Consider the map Φ : ∂Ω → R

d−1, defined by Φ(x′, ψ(x′)) = x′. We say
Q ⊂ ∂Ω is a surface cube of ∂Ω if Φ(Q) is a cube of R

d−1 (with sides parallel to the coordinate
planes). A dilation of Q is defined by αQ = Φ−1(αΦ(Q)). We call z ∈ Q the center of Q if Φ(z)
is the center of Φ(Q). Similarly, the side length of Q is defined to be the side length of Φ(Q).

Proofs of Theorems 1.1 and 1.2 are based on a real variable argument.

Theorem 3.1 Let F ∈ Lp0(2Q0) for some surface cube Q0 of ∂Ω and 1 ≤ p0 < ∞. Let
p1 > p0 and f ∈ Lp(2Q0) for some p0 < p < p1. Suppose that for each surface cube Q ⊂ Q0

with |Q| ≤ β|Q0|, there exist two integrable functions FQ and RQ such that

|F | ≤ |FQ| + |RQ| on 2Q, (3.1)
( �

2Q

|RQ|p1 dσ
)1/p1

≤ C1

{(�
αQ

|F |p0 dσ
)1/p0

+ sup
2Q0⊃Q′⊃Q

( �
Q′

|f |p0 dσ
)1/p0}

, (3.2)

( �
2Q

|FQ|p0 dσ
)1/p0

≤ C2 sup
2Q0⊃Q′⊃Q

( �
Q′

|f |p0 dσ
)1/p0

, (3.3)

where C1, C2 > 0 and 0 < β < 1 < α. Then
( �

Q0

|F |p dσ
)1/p

≤ C

(�
2Q0

|F |p0 dσ
)1/p0

+ C

(�
2Q0

|f |p dσ
)1/p

, (3.4)

where C > 0 depends at most on d, M , p0, p1, p, C1, C2, α and β.

Proof This theorem with p0 = 1 was formulated and proved in [17, Theorem 3.2 and Remark
3.3]. Its proof was inspired by a paper of Caffarelli and Peral [3]. The case p0 > 1 follows
readily from the case p0 = 1 by considering the functions |F |p0 and |f |p0 . �

Assume d ≥ 3. To prove Theorem 1.2, we fix f ∈ C∞
0 (Rd; Cm). By the assumption of

the theorem, there exists a weak solution u ∈ H1
loc(Ω; Cm) to the elliptic system L(u) = 0

in Ω such that u = f on ∂Ω in the sense of trace and ‖N(u)‖Lp0 (∂Ω) ≤ C0‖f‖Lp0 (∂Ω), where
1 < p0 <

2(d−1)
d−2 . We need to show that ‖N(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω) for p0 < p < 2(d−1)

d−2 + ε,
where ε > 0 depends only on d, m, p0, p, M and C0.

To this end we fix Q0 = Q(0, R), a surface cube centered at the origin with side length R.
Let Q = Q(z, r) ⊂ Q0 be a surface cube centered at z with side length r ≤ βR, where β ∈ (0, 1)
is sufficiently small. Let g = ϕf , where ϕ is a smooth cut-off function such that 0 ≤ ϕ ≤ 1,
ϕ = 1 in Δγ2r(z), and ϕ = 0 in ∂Ω \ Δ2γ2r(z), where

2Q ⊂ Δγr ⊂ Δ2γ2r(z) ⊂ 2Q0
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and γ = γ(M) > 1 is large. By the assumption there exists a weak solution v to L(v) = 0 in Ω
such that v = ϕf on ∂Ω and

‖N(v)‖Lp0 (∂Ω) ≤ C0‖ϕf‖Lp0 (∂Ω). (3.5)

Let w = u− v and define

F = N(u), FQ = N(v) and RQ = N(w). (3.6)

Using N(u) ≤ N(v) + N(w), we obtain (3.1). To verify (3.3), we use the estimate (3.5) to
obtain

( �
2Q

|FQ|p0 dσ
)1/p0

≤ C

(
1
|Q|

�
∂Ω

|N(v)|p0 dσ
)1/p0

≤ C

(
1
|Q|

�
Δ2γ2r(z)

|f |p0 dσ
)1/p0

≤ C sup
2Q0⊃Q′⊃Q

( �
Q′

|f |p0 dσ
)1/p0

. (3.7)

To verify (3.2), we use Theorem 2.4. Observe that L(w) = 0 in Ω and w = 0 on Δγ2r(z).
By choosing γ = γ(M) > 1 sufficiently large, it follows from (2.16) as well as Remark 2.5 that

( �
Δγr(z)

|N4kγr(w)|q dσ
)1/q

≤ C

�
Δ2γr(z)

N4kγr(w) dσ, (3.8)

where q = 2(d−1)
d−2 +ε and ε > 0 depends only on d, m, M and C0. Note that for any y ∈ Δγr(z),

N(w)(y) ≤ N4kγr(w)(y) + C

�
Δ2γr(z)

N(w) dσ (3.9)

(see the proof of (2.18)). This, together with (3.8), yields
( �

Δγr(z)

|N(w)|q dσ
)1/q

≤ C

�
Δ2γr(z)

N(w) dσ. (3.10)

Hence,
( �

2Q

|RQ|q dσ
)1/q

≤ C

(�
Δγr(z)

|N(w)|q dσ
)1/q

≤ C

(�
Δ2γr(z)

|N(w)|p0 dσ
)1/p0

≤ C

(�
Δ2γr(z)

|N(u)|p0 dσ
)1/p0

+ C

( �
Δ2γr(z)

|N(v)|p0 dσ
)1/p0

≤ C

(�
αQ

|F |p0 dσ
)1/p0

+ C sup
2Q0⊃Q′⊃Q

( �
Q′

|f |p0 dσ
)1/p0

, (3.11)

where αQ ⊃ Δ2γr(z) and we have used (3.5) for the last inequality.
To summarize, we have verified the conditions in Theorem 3.1. As a result, we may conclude

that
( �

Q0

|N(u)|p dσ
)1/p

≤ C

(�
2Q0

|N(u)|p0 dσ
)1/p0

+ C

( �
2Q0

|f |p dσ
)1/p

(3.12)
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for any p0 < p < 2(d−1)
d−2 + ε. It follows that

( �
Q0

|N(u)|p dσ
)1/p

≤ C|Q0|(d−1)( 1
p− 1

p0
)

( �
2Q0

|N(u)|p0 dσ
)1/p0

+ C

( �
2Q0

|f |p dσ
)1/p

≤ C|Q0|(d−1)( 1
p− 1

p0
)‖f‖Lp0 (∂Ω) + C‖f‖Lp(∂Ω).

By letting the side length of Q0 go to infinity in the inequalities above, we obtain the desired
estimate ‖N(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω).

Finally, note that if d = 2, the same argument yields the estimate (1.3) for p0 < p <∞.

4 Proof of Theorem 1.1

Theorem 1.1 follows from the proof of Theorem 1.2 by a simple localization technique. Fix
z ∈ ∂Ω. Let r0 = diam(Ω) and r = c0r0, where c0 > 0 is sufficiently small such that

B(z, r) ∩ Ω = B(z, r) ∩ {(x′, xd) : xd > ψ(x′)}
in a new coordinate system, obtained from the standard system through translation and rota-
tion. It follows from the estimate (3.12) that

( �
B(z,c1r)∩∂Ω

|N(u)|p dσ
)1/p

≤ Cr
(d−1)( 1

p− 1
p0

)

0 ‖N(u)‖Lp0 (∂Ω) + C‖f‖Lp(∂Ω)

≤ Cr
(d−1)( 1

p− 1
p0

)

0 ‖f‖Lp0 (∂Ω) + C‖f‖Lp(∂Ω)

≤ C‖f‖Lp(∂Ω), (4.1)

where c1 = c1(Ω) > 0 is small and we have used Hölder’s inequality as well as the fact |∂Ω| ≤
Crd−1

0 for the last step. By covering ∂Ω with a finite number of balls {B(z�, c1r)} we obtain
the estimate (1.3).
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