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Abstract Let £ be a second-order linear elliptic operator with complex coefficients. It is shown that
if the LP Dirichlet problem for the elliptic system £(u) = 0 in a fixed Lipschitz domain € in R? is

solvable for some 1 < p = pg < 2(;:21), then it is solvable for all p satisfying
2(d—1)
po<p< d—9 +e.

The proof is based on a real-variable argument. It only requires that local solutions of £(u) = 0 satisfy
a boundary Cacciopoli inequality.
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1 Introduction
In this paper we consider the LP Dirichlet problem for an m x m second-order elliptic system,
L(u)=0 in Q,
u=f e LP(0Q;C™) on 09, (1.1)
N(u) € LP(09),
where Q is a bounded Lipschitz domain in R% and N(u) denotes the (modified) nontangential
maximal function of w. The operator £ in (1.1) is a second-order linear elliptic operator with
complex coefficients. It may contain lower order terms and needs not to be in divergence form.

Instead we shall impose the following condition.

Let ro = diam(Q2). There exist constants k > 0 and ¢y > 0 such that the boundary

|Vu|? dr < " lu|? da (1.2)
2
B(xg,r)NQ " J B(z0,2r)N

holds, whenever xo € 92, 0 < r < coro, and u € WH2(B(xq,2r) N §;C™) is a weak solution to
L(u) =0 in B(xg,2r) N Q with v = 0 on B(xzg, 2r) N 0N.

Cacciopoli inequality
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Theorem 1.1 Let Q be a (fived) bounded Lipschitz domain in R% and 1 < py < 2%(1:21). Let
L be a second-order linear elliptic operator satisfying the condition (1.2). Assume that for any
f € C(R4C™), there exists a weak solution u € WH2(Q;C™) to L(u) = 0 in Q such that
u = f on O in the sense of trace, and ||N(u)||Lro90) < CollfllLro(a0). Then the weak solution

u satisfies the LP estimate

[N (w)l[Lr00) < Cllfllro0) (1.3)
for any p satisfying
2(d—1
po <p< (d—2)+€’ (1.4)

where € > 0 depends only on d, m, pg, K, cg, Coy and the Lipschitz character of 2. The constant
C in (1.3) depends on d, m, po, p, k, co, Co and the Lipschitz character of .

We remark that in the scalar case m = 1 with real coefficients, the maximum principle
llull Lo @) < |lullzo(aq) holds for weak solutions of L(u) = 0 in Q. It follows by interpolation
that if the estimate (1.3) holds for p = pg, then it holds for any py < p < oco. However, it is
known that the maximum principle or its weak version |[u|| =) < Cllul|L~(sq) is not available
in Lipschitz domains for elliptic systems or scalar elliptic equations with complex coefficients.
Theorem 1.1 provides a partial solution to this problem.

The analogous of Theorem 1.1 also holds if 2 is the region above a Lipschitz graph,

Q={(2',2q) ERY: x4 > (z')}, (1.5)
where ¢ : R~1 — R is a Lipschitz function with ||Vt|le < M.

Theorem 1.2 Let Q be a (fized) graph domain in RY, given by (1.5), and 1 < pg < Q(dd:;). Let
L be a second-order linear elliptic operator satisfying the condition (1.2) with ro = co. Assume
that for any f € C§°(R% C™), there exists a weak solution u € W22 (Q;C™) to L(u) = 0 in Q
such that w = f on 02 in the sense of trace, and ||N(u)||Lro00) < CollfllLro0). Then the
weak solution u satisfies the estimate (1.3) for any p satisfying (1.4), where ¢ > 0 depends only

ond, m, po, k, Co and M. The constant C' in (1.3) depends on d, m, po, p, k, Co and M.
Remark 1.3 Regarding the boundary Cacciopoli inequality (1.2) in a graph domain €2, con-

sider the elliptic operator

0 ous ous
L(u)® = - of b2” 1.6
where 1 < o, < m and 1 < 4,j < d (the repeated indices are summed). Assume that the
af o

coefficients a;! (z) are complex-valued bounded functions satisfying ||azjﬁ loo < =t and the

j
ellipticity condition

Re(af) (v)€]€) > plef? (1.7)
for any ¢ = (¢£2) € C™*4 where 1 > 0. Also assume that there exists some v > 0 such that
§()[bs” ()] < v (1.8)

for any z € , where d(x) = dist(z, 9Q). Then there exists a constant vy > 0, depending only
on d, m, u and M, such that if v < vy, the Cacciopoli inequality (1.2) holds for any 0 < r < oco.
This may be proved by using Hardy’s inequality. In the case of a bounded Lipschitz domain,
one only needs to assume (1.8) with v <y for z sufficiently close to 9Q (§(x) < coro).
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Remark 1.4 Let d > 3. If the Dirichlet problem (1.1) is solvable for p = py = 2(;1:21), our

argument gives the solvability for pg < p < pg + €.

The LP boundary value problems for second-order elliptic equations and systems in Lip-
schitz domains have been studied extensively. We refer the reader to [1, 2, 6, 11-14, 16] for
references. In particular, the L? Dirichlet problem is solvable for elliptic systems with real
constant coefficients satisfying the Legendre-Hadamard condition and the symmetry condition
[5, 7, 8, 10]. It is also known that under the same assumption, the LP Dirichlet problem is
solvable for 2—e < p<ooif d=3[4], and for2—e < p < 2%1:31) +eif d > 4 [16]. More recent
work in this area focuses on operators with complex coefficients or real coefficients without the
symmetry condition [1, 2, 11-13].

As in [16], the proof of Theorems 1.1 and 1.2 is based on a real-variable method, which may
be regarded as a dual version of the celebrated Calderén-Zygmund Lemma. The method was
originated in [3] and was further developed in [15-17]. It reduces the LP estimate (1.3) to the

reverse Holder inequality,

1/q 1/po
(][ NOK da) < c(][ N (u)[Po da> (1.9)
B(zg,r)NON B(x0,2r)NoQ

(for any 2 < q¢ < oo, if d = 2), where zg € 99, u is a weak solution to
L(u) =0 in Q with u = 0 in B(zg,3r) N IQ. To prove (1.9), we replace N(u) by N"(u), a
localized nontangential maximal function at height r (see Section 2 for definition), and use the

observation
[ Wi <c u(w)"5()" dy. (110
B(xg,r)NoQ B(xo,2r)NQ
The right-hand side of (1.10) is then handled by using Sobolev inequality and Hardy’s inequality,
Ju(y)[? 2
/B(zo,Qr)ﬁQ 6(y)? = C/B(zo,Qr)ﬁQ [Vuldy. (L.11)
(d=1)

The exponent ¢ = 2 " arises in the use of Sobolev inequality

—2

lull L2a-1) (B(z0,2mn0) < ClIVUl|L2(B(20,2r)n0)- (1.12)
It may be worthy to point out that ¢ is also the exponent in the boundary Sobolev inequality
lullzaan) < Cllull grrza0)-

2 Reverse Holder Inequalities

Throughout this section we assume that € is the region above a Lipschitz graph in R?, given
by (1.5) with ||V¥|| < M. A nontangential approach region at z € 92 is given by

Fu(z)={x€Q: |z -2z <ad(x)}, (2.1)
where §(z) = dist(z,dQ) and @ > 1+ 2M. We also need a truncated version
IM(2)={reQ: |z -z <ad(z)and §(z) < h}, (2.2)

where h > 0. For u € L% (Q2), the modified nontangential maximal function of u is defined by

loc

Na(u)(2) = sup { (]{3(%(1/4)6(@) u|2> e Fa(z)} (2.3)
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for each z € 9Q. Similarly, we introduce

N =sw{( f o ) o i) (2.4

The definitions of N, (u) and N (u) are same if  is a bounded Lipschitz domain. We will drop

the subscript «a if there is no confusion.

Lemma 2.1 Let2 < q < oo. Then

1/q
@ <o [, uwrse i) 25)
I3 (2)
for any z € 0Q, where C depends only on d and q.
Proof Fix z € T"(z). Let y € B(x,(1/4)6(z)). Note that
6(y) <0(x) + |z —yl < (5/4)6(x).

Since §(z) < 6(y) + |z — y| < 6(y) + (1/4)5(zx), we obtain (3/4)d(z) < d(y). It follows that

ly—z[ < |z — 2]+ |z -yl < (a+(1/4))d(x)

< (4/3)(a+(1/4))(y)
< 2ad(y),

where we have used the fact a > 1. Also observe that d(y) < (5/4)d(x) < (5/4)h. Thus we
have proved that B(z, (1/4)§(x)) C T'3"(z). This, together with Hélder’s inequality, gives

1/2 1/q
(f uwPa) < (f " dy)
B(x,(1/4)0(x)) B(z,(1/4)5(x))
1/q
<c( / |u<y>|q5<y>ddy) ,
e

where C' depends only on d and ¢. The inequality (2.5) now follows by definition. a
Assume that 1(0) = 0. For r > 0, define

D, ={(z',24) €RY: |2'| < r and ¥(2') < x4 < 2(M + 1)r},

A, ={(@,p() eRY: 2! < 7). (2.6)
Lemma 2.2  Suppose that u € H(D,) and u =0 on A,. Then
/DT |§Ez;|22 dx < 4/DT \Vu|? dz, (2.7)
where 8(z) = |zq — (2')].
Proof Using u(z’,¥(2")) = 0 and Fubini’s Theorem, we obtain

2(14+M)r
L [ 2
D, 5 |z’ |<r |xd_ (.’E)‘
2(1+M

Jood,

|z’ |<r Jap(z’)
§4/ |Vu|? dz,

D

s

IN

dxddx'

8:[,'(1
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where we have used the Hardy inequality (see e.g. [18, p.272]) for the first inequality. O
The following lemma is one of the main steps in our argument.

Lemma 2.3 Let u € H'(B(0,6kr) N Q;C™) be a weak solution to L(u) = 0 in B(0,6kr) N Q
with w =0 on B(0,6kr) N oY for some 0 < r < oo, where k = 10a(M + 2). Assume that

C
/ |Vu|? dz < 20 / lu|? da. (2.8)
r
B(0,kr)NQ B(0,2kr)NQ

1/2

(ﬁ,,.Nf?(“)qdf’)l/qSC( . memrar) (29)

T

Then

where q = 2(;1:21) ford >3 and 2 < q < oo for d = 2. The constant C depends only on d, m,
M, Cy, and q (if d = 2).

Proof We give the proof for the case d > 3. With minor modification, the same argument
works for d = 2. Tt follows from (2.5) and Fubini’s Theorem that

/A NS < /A T / 150 dyo ()

<c [E () |76 () " dy,
where

E= | T3(2).

ZEA,
Note that if y € E, then y € '3 (z) for some 2 € A,.. Hence,

lyl < ly — 2|+ [2] <2a6(y) + (1 + M)r
< (da+1+M)r
< bar,
where we have used the fact @ > 1+ M. This shows that |y'| < 5ar and |yq| < bar. As a result,
we obtain E C Ds,,.. Thus,
[ @i <e [ s

A Dsar

< C(/DSM |u|?(@—1) dy) 1/2</D |Z§3;; dy) 1/2, (2.10)

S5ar

where we have used the Cauchy inequality for the last step.
To bound the right-hand side of (2.10), we first note that

1 /
zq — ()| < 5(z) < |xg — ()]
Jatar 4 11— P < 3(0) < oa = 0w
In view of Lemma 2.2 we obtain
2
[ e[ wuwPa (2.11)
Dsar i(y) Dsanr
where C' depends only on M. Recall that ¢ = 2%(1:21). Thus 2(¢ — 1) = d2_dz- Since © = 0 on

Asqr, we may apply the Sobolev inequality to obtain

1/(2(g—1)) 1/2
(/ w241 dy) < C(/ |Vul|? dy) . (2.12)
DSar DSaT
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This, together with (2.10) and (2.11), leads to

/A,|N£(U)|ng<c</D

q/2
[Vul? dy>
. sar

qa/2
< C(/ |Vul? dy> : (2.13)
B(0,10a(M+2)r)NQ

where we have used the observation Dj,, C B(0,10a(M + 2)r) for the last step. Hence,

1/q 4 a1 1/2
(7[ Ng(u)qcla> <Crz (][ |Vu|2dy)
A, B(0,10a(M+2)r)NQ

1/2
<c(f P dy) (2.14)
B(0,20a(M+2)r)N$2

where we have used the assumption (2.8) for the last step.
Finally, we note that if |z — y| < (1/5)d(y), then |x —y| < (1/4)0(x). Thus, by Fubini’s

Theorem,
][ lul? de < C <][ |u|2dy>dx
B(0,R)NQ B(0,R)N2 \ J B(z,(1/4)6(x))
<cf NP do
AR
for any R > 0. This, together with (2.14), yields the reverse Holder inequality (2.9). O

We are now ready to prove the main result of this section.

Theorem 2.4 Letu € H'(B(0,9kR)NQ; C™) be a weak solution to L(u) = 0 in B(0,9kR)NQ
with w =0 on B(0,9kR) N 0N for some 0 < R < 0o, where k = 10a(M + 2). Assume that

C
Vul?de < 0 |u)? da (2.15)
2
B(z,r)N r B(z,2r)NQ

for any 0 < r < 3kR and any z € B(0,3kR) N 0Q. Then for any 0 <r < R,

1/q
(][ |N§kR(u)|qda> <C N2 (y) do, (2.16)
JADS

r

where q = 2(;1:21) ford >3 and 2 < g < oo for d = 2. The constant C depends only on d, m,
M, Cy, and q (if d = 2).

Proof We first show that for any 0 < r < R,

(][A |N§kR(u)|qda)l/q < (J(][Am N;lkR(u)zd0_>1/2. (217)

s

Let z € A, and x € T2*E(2). If §(y) < r, we have

1/2
(f W) < NZ(u)(2).
B(x,(1/4)0(x))

Suppose §(z) > r. It follows by a simple geometric observation that there exists a constant
co € (0,1), depending only on d, M and a, such that

{y € Aayy, + 2 €T (Y)Y = cor? ™
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This implies that

1/2
(7[ |u|2> <C N2 () do.
B(z,(1/4)4(=)) Aogr

N2 () (2) < NI (u)(2) + C N (y) do, (2.18)
Aoy

Hence, for any z € A,

which, together with (2.9), gives (2.17).
The fact that (2.17) implies (2.16) follows from a convexity argument, found in [9]. For
z=(Z,9(2")) € 0 and r > 0, define the surface ball A, (z) on 9Q by

A(2) ={(@,¢)) eRY: 2! — 2| < r}. (2.19)

Note that A, = A,(0). By translation the inequality (2.17) continues to hold if A, and Agy,
are replaced by A,.(z) and Agg,.(z), respectively. Let 0 < s < t < 1. We may cover Ay, by a
finite number of surface balls {A,;—s)-(2¢)} with the property Agpei—s)r(2¢) C Ay Note that

][ IN2E ()9 do < Cs' =9t — 5)4 IZ][ |NARE ()] do
Asr

Act—syr(ze)

q/2
< Cs 1— d d 12 (7[ |N§kR(u)|2d0)
Agke(t—s)r(ze)
q/2
SC 1— d d 1<Zf |N4kR( )|2d0')
Aope(t—s)r(ze)

< Cs' ot — s) i3 (- 5) 73 (D) (7[
- A
It follows that for any 0 < s <t < 1,

1/q
(7[ N;lkR(u)wda) < cslthd?(t—s)<d1><é%><7[
A A

Write ; = (9] + ?, where 6 € (0,1). By Holder’s inequality,

(f ) Né’“R(u)Zdo)l/Q (4 ) Né’“R(unqu)w/q( AR da)e. (221)
Le
t 10~ (f, wera) " [, v ao

By (2.20) and (2.21) we obtain
]( )<CS q t(d (3 *9)( )(d—l)(fl—é)[l(t)]lfe'

q/2
N Pas)

tr

1/2
| NARR () |2 dc) . (2.20)

tr

Hence,
log I(s) < log(Cs DG 270 (t - )(dfl)(flfé)) +(1—0)logI(t).

Let s = t*, where b > 1 is chosen so that b1 > 1 — §. We integrate the inequality above in ¢
with respect to t~1dt over the interval (1/2,1). This gives

e dt ! dt

. / log 1) < ¢+ (1 —9)/ tog (1) .
(

1/2)b 1/2



Ezxtrapolation for the LP Dirichlet Problem in Lipschitz Domains 1081

1
<1 —9)/ 1ogI(t)dt <C.
Since I(t) > ¢I(1/2) for t € (1/2,1), we obtain I(1/2) < C, which gives (2.16).

Remark 2.5 By translation the inequality (2.16) continues to hold if A, and As, are replaced

by surface balls A,.(z) and Ay, (), respectively, where z € Ag. In the case d > 3, (2.16) in fact

2(d—1)
d—2

the well known self-improving property of the reverse Holder inequality.

It follows that

holds for some g = + ¢, where € > 0 depends only on d, m, M and Cy. This follows from

3 Proof of Theorem 1.2

Throughout this section we assume that €2 is a graph domain, given by (1.5), with ¥(0) = 0
and ||V¢|sc < M. Consider the map ® : 92 — R9~1 defined by ®(a’,(2")) = 2’. We say
Q C 00 is a surface cube of 9 if ®(Q) is a cube of R?~! (with sides parallel to the coordinate
planes). A dilation of Q is defined by aQ = ®~1(a®(Q)). We call z € Q the center of Q if ®(z)
is the center of ®(Q). Similarly, the side length of @ is defined to be the side length of ®(Q).

Proofs of Theorems 1.1 and 1.2 are based on a real variable argument.
Theorem 3.1 Let F € LP°(2Qq) for some surface cube Qo of 9 and 1 < py < oo. Let

p1 > po and f € LP(2Qy) for some py < p < p1. Suppose that for each surface cube @ C Qg
with |Q| < B|Qo|, there exist two integrable functions Fg and Rg such that

[F| < |Fol+|Rq|  on2Q, (3.1)
1/p1 1/po 1/po
( } irol da) < cl{ ( F i da> + sup < £ da> } (3.2)
2Q a 2Q00Q'DQ Q'
1/po 1/po
(7[ |FolP° da> <C; sup < | f]Fo da> ) (3.3)
2Q 2Q0DQ'DQ Q'

where C1,Co >0 and 0 < <1 < «a. Then

1/p 1/po 1/p
<][ |F|pd0) SC'(][ |F'|Po da> +C’<][ |fpda> , (3.4)
0 2Qo 2Qo

where C' > 0 depends at most on d, M, pg, p1, p, C1, Ca, o and .

Proof This theorem with pg = 1 was formulated and proved in [17, Theorem 3.2 and Remark
3.3]. Tts proof was inspired by a paper of Caffarelli and Peral [3]. The case py > 1 follows
readily from the case pg = 1 by considering the functions |F'|P° and |f|P°. O

Assume d > 3. To prove Theorem 1.2, we fix f € C{°(R% C™). By the assumption of
the theorem, there exists a weak solution u € H} (Q;C™) to the elliptic system L(u) = 0
in Q such that v = f on 9 in the sense of trace and |[N(u)||zro90) < Collfllzro(90), Where
1<po< 2(;{_21). We need to show that | N(u)||zr0) < CllfllLra0) for po < p < 2(;1:21) +e,
where £ > 0 depends only on d, m, pg, p, M and Cj.

To this end we fix Qp = Q(0, R), a surface cube centered at the origin with side length R.
Let Q = Q(z,7) C Qo be a surface cube centered at z with side length r < SR, where 8 € (0, 1)
is sufficiently small. Let g = ¢f, where ¢ is a smooth cut-off function such that 0 < ¢ < 1,

@=1in A2, (2), and ¢ = 0in 90Q\ Ay, 2,(2), where
2Q C A'yr C A272T(2) C 2Qo
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and v = y(M) > 1 is large. By the assumption there exists a weak solution v to £(v) =0 in Q
such that v = ¢ f on 02 and

IV ()| ro (902) < Coll@f Il Lro(a62)- (3.5)
Let w = u — v and define
F=N(u), Fo=N(@) and Rg=N(w). (3.6)
Using N(u) < N(v) + N(w), we obtain (3.1). To verify (3.3), we use the estimate (3.5) to
obtain
1/po 1/po
(][ |FolP° da) C( v)[Pe da)
2Q Q| OQ
1/po
< C( P do)
‘ 2“/27(2)
1/po
<C sup < | PO d0> . (3.7)
2Q0DQ'DQ Q’

To verify (3.2), we use Theorem 2.4. Observe that £L(w) = 0in Q and w = 0 on A.2,(2).
By choosing v = v(M) > 1 sufficiently large, it follows from (2.16) as well as Remark 2.5 that

1/q
<][ | N4 (1) 4 da> <C N (w) do, (3.8)
+r(2) Azyr(2)
where g = (d 1) +¢ and € > 0 depends only on d, m, M and Cy. Note that for any y € A,,(2),

N(w)(y) < N*™7" (w)(y) + C o )N(w) do (3.9)

(see the proof of (2.18)). This, together with (3.8), yields

1/q
(][ N (w)]? da> <c N(w) do. (3.10)
Ayr(2) Azyr(2)

Hence,

1/q 1/q
(][ RQ|qda) < c(f |N(w)|qda)
2Q Ay (2)
1/po
O(][ | N (w)|Pe do)
Azyr(2)
1/po 1/po
c(f N ()70 da) + C(][ N ()P da)
ZX?WT(Z) ZX27T(Z)

1/po 1/po
< C(][ | F'|Po da) +C sup ( | £]Po do) , (3.11)
aQ 2Q0DQ'DQ Q’

IN

IN

where a@) D Ag.,(z) and we have used (3.5) for the last inequality.
To summarize, we have verified the conditions in Theorem 3.1. As a result, we may conclude

that
(f vpar) <o f e i) "o {0 )" ae
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for any pg < p < 227_721) + . It follows that

1/p J L. 1/po 1/p
( / |N<u>|pdo) < C1Qu —“(p-vo)( / |N<u>mda) +c( / fl”d0>
0 2Qo 2Qo

_ 11
< C1Qo| V0| £l oo (a2 + CIF | Lo 900 -
By letting the side length of Q¢ go to infinity in the inequalities above, we obtain the desired
estimate [|N(u)zr(a0) < Cllfllzr00)-
Finally, note that if d = 2, the same argument yields the estimate (1.3) for pg < p < oo.

4 Proof of Theorem 1.1

Theorem 1.1 follows from the proof of Theorem 1.2 by a simple localization technique. Fix
z € 90, Let ro = diam(Q2) and r = ¢org, where ¢g > 0 is sufficiently small such that

B(z,r)NQ = B(z,7) N {(z',2q) : xg > Y(2')}

in a new coordinate system, obtained from the standard system through translation and rota-
tion. It follows from the estimate (3.12) that

» 1/p (dil)(;l;iplo)
/B( )noQ IN(w)l" do < Cro [N (u)llzroa0) + ClIfllLr(o02)
z,c17m)N

(d=1)(,— )
< Cry TP fll o a0y + Cllf e o0

< Clfllzr a9, (4.1)

where ¢; = ¢1(€2) > 0 is small and we have used Holder’s inequality as well as the fact [0Q] <
Crd~" for the last step. By covering 99 with a finite number of balls {B(z, 1)} we obtain
the estimate (1.3).

References

[1] Alfonseca, M. A., Auscher, P., Axelsson, A., et al.: Analyticity of layer potentials and L? solvability of
boundary value problems for divergence form elliptic equations with complex L°° coefficients. Adv. Math.,
226(5), 4533-4606 (2011)

[2] Auscher, P., Axelsson, A.: Weighted maximal regularity estimates and solvability of non-smooth elliptic
systems I. Invent. Math., 184(1), 47-115 (2011)

[3] Caffarelli, L., Peral, I.: On WP estimates for elliptic equations in divergence form. Comm. Pure Appl.
Math., 51, 1-21 (1998)

[4] Dahlberg, B., Kenig, C.: LP estimates for the three-dimensional system of elastostatics on Lipschitz do-
mains, Lecture Notes in Pure and Applied Mathematics (Cora Sadoesky, ed.), vol. 122, Dekker, 1990, pp.
631-634

(5] Dahlberg, B., Kenig, C., Verchota, G.: Boundary value problems for the system of elastostatics in Lipschitz
domains. Duke Math. J., 57(3), 795-818 (1988)

[6] Dindos, M., Pipher, J., Rule, D.: Boundary value problems for second-order elliptic operators satisfying a
Carleson condition. Comm. Pure Appl. Math., 70(7), 1316-1365 (2017)

[7] Fabes, E.: Layer potential methods for boundary value problems on Lipschitz domains. Lecture Notes in
Math., 1344, 55-80 (1988)

[8] Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains.
Duke Math. J., 57(3), 769-793 (1988)

[9] Fefferman, C., Stein, E.: H? spaces of several variables. Acta Math., 129(3-4), 137-193 (1972)

[10] Gao, W.: Layer potentials and boundary value problems for elliptic systems in Lipschitz domains. J. Funct.
Anal., 95, 377-399 (1991)



1084
(11]

(12]

(13]

(14]
(15]
[16]

(17]
(18]

Shen Z. W.

Hofmann, S., Kenig, C., Mayboroda, S., et al.: The regularity problem for second order elliptic operators
with complex-valued bounded measurable coefficients. Math. Ann., 361(3-4), 863-907 (2015)

Hofmann, S., Kenig, C., Mayboroda, S., et al.: Square function/non-tangential maximal function estimates
and the Dirichlet problem for non-symmetric elliptic operators. J. Amer. Math. Soc., 28(2), 483-529
(2015)

Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded mea-
surable coefficients in LP, Sobolev and Hardy spaces. Ann. Sci. Ec. Norm. Super. (4), 44(5), 723-800
(2011)

Kenig, C.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS
Regional Conference Series in Math., vol. 83, AMS, Providence, RI, 1994

Shen, Z.: Bounds of Riesz transforms on LP spaces for second order elliptic operators. Ann. Inst. Fourier
(Grenoble), 55, 173-197 (2005)

Shen, Z.: Necessary and sufficient conditions for the solvability of the LP Dirichlet problem on Lipschitz
domains. Math. Ann., 336(3), 697-724 (2006)

Shen, Z.: The LP boundary value problems on Lipschitz domains. Adv. Math., 216, 212-254 (2007)
Stein, E.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series,
No. 30, Princeton University Press, Princeton, NJ, 1970



