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1 Introduction

In this paper, we consider the class of one-dimensional nonlinear stochastic heat equation (SHE
in short)

∂uε

∂t
(t, x) =

κ

2
∂2uε

∂x2
(t, x) + b(uε(t, x)) +

√
εσ(uε(t, x))Ẇ (t, x), (1.1)

with t ∈ [0, T ], x ∈ R, where κ > 0 denoting the diffusive constant (in sequel, we will consider
κ = 1 in this paper for simiplicity) and W is a zero-mean Gaussian process with covariance
given by

E(W (t, x)W (s, y)) =
1
2
(|x|2H + |y|2H − |x− y|2H) min{t, s}, (1.2)

with t, s ∈ [0, T ], x, y ∈ R, 1/4 < H < 1/2 and ε > 0.
Since the seminal work of [5] and [18], there has been a lot of interests in the study of

stochastic partial differential equations driven by a Brownian motion in time and with spatial
homogeneous covariance. Recently, some scholars began to study the SHE (1.1), which is driven
by a spatially homogeneous Gaussian noise, which is white in time and behaves in space like a
fractional Brownian motion with Hurst index 1/4 < H < 1/2. For example, when σ(u) = au+b
is an affine function and the initial condition u0 is bounded and Hölder continuous of order H,
the authors in [1] proved the existence and uniqueness of a mild solution to SHE (1.1). The
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stochastic integral with respect to the Gaussian noise Ẇ is defined in the Itô’s sense. While in
the case of general nonlinear coefficient σ, which has a Lipschitz derivative and satisfies σ(0) = 0
and b(x) = 0, SHE (1.1) has been studied in [11]. They proved the existence and uniqueness of
the solution. In [12], the authors studied a class of parabolic Anderson model with the same
noise in SHE (1.1). They used the multiple Wiener–Itô integral and a Feynman–Kac formula
to study the moment bounds of the solution. While in [4], they studied the stochastic heat
equation driven by time fractional Gaussian noise with Hurst parameter H ∈ (0, 1/2). They
established the Feynman–Kac representation of the solution and used this representation to
obtain matching lower and upper bounds for the p-th moments of the solution.

On the other hand, the theory of large deviations which was firstly investigated in [7]
has been extensively studied recently. The large deviations reveal some important aspects of
asymptotic dynamics. Special attention has been paid to studying large deviations principle
for stochastic (partial) differential equation (e.g., [2, 3, 6–8, 13, 17]). Like the large deviations,
the moderate deviations problems arise in the study of statistical inference naturally. The
moderate deviations principle (MDP for short) can provide us with the rate of convergence
and a useful method for constructing asymptotic confidence intervals. Results on MDP for
stochastic (partial) differential equation can be found in [14, 15, 19, 20] and references therein.

As ε→ 0, the solutions to SHE (1.1) will tend to the solution of the deterministic equation
given by

∂u0

∂t
(t, x) =

κ

2
∂2u0

∂x2
(t, x) + b(u0(t, x)), (1.3)

with u0(0, x) = u0
0(x).

In this paper we shall investigate deviations of uε given by solution of SHE (1.1) from the
deterministic equation u0 satisfied by Eq. (1.3), as ε decreases to zero, that is, the asymptotic
behaviour of Zε = {Zε(t, x); t ∈ [0, T ], x ∈ R} which is defined by

Zε(t, x) =
1√
ελ(ε)

(uε − u0)(t, x), t ∈ [0, T ], x ∈ R, (1.4)

where λ(ε) is some deviation scale, which influences the asymptotic behavior of the above Zε.
We should mention that the case λ(ε) = 1√

ε
provides some large deviations estimates. Under

some mild assumptions, in [13], the authors proved that the laws of the solution uε to SHE (1.1)
satisfies a large deviations principle on the space X

1
2−H

T (see Definition 2.3).
If λ(ε) = 1, we are in the domain of central limit theorem. In order to fill the gap between

the central limit theorem (λ(ε) = 1) and large deviations scale (λ(ε) = 1√
ε
), in this paper, we

will study the moderate deviations, that is when the deviations scale λ(ε) satisfies

λ(ε) → ∞,
√
ελ(ε) → 0, as ε→ 0. (1.5)

The moderate deviation principle enables us to refine the estimates obtained through the central
limit theorem. It provides the asymptotic behavior of P (‖uε−u0‖ ≥ δ

√
ελ(ε)), while the central

limit theorem gives asymptotic bounds for P (‖uε − u0‖ ≥ δ
√
ε). Throughout this paper, we

assume that (1.5) is in place.
The rest of this paper is organized as follows. In Section 2, we describe the precise framework

we will use later on, such as the noise structure and related space-time function spaces and a
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criteria for large deviations firstly proved in [3]. In Section 3, the skeleton equation (3.1) is
studied. We prove the moderate deviations principle of the solution to SHE (1.1) by the weak
convergence approach in Section 4.

2 Preliminaries

2.1 Noise Structure and Related Space-time Function Spaces

Let D(R) be the space of real-valued infinitely differentiable functions with compact sup-
port on R. The noise Ẇ can be represented ([11, 13]) as a zero-mean Gaussian family
W (ϕ) = {Wt(ϕ), t ∈ [0, T ], ϕ ∈ D(R)} defined on a complete probability space (Ω,F , P ),
whose covariance structure is given by

E(Wt(ϕ)Ws(φ)) = c1,H(t ∧ s)
∫

R

Fϕ(ξ)Fφ(ξ)|ξ|1−2Hdξ,

where Fϕ(ξ) and Fφ(ξ) are the Fourier transform for ϕ, φ and c1,H = 1
2π Γ(2H + 1) sin(πH).

Moreover we have the following, by using the fractional derivatives (for example, [13])

c1,H(t ∧ s)
∫

R

Fϕ(ξ)Fφ(ξ)|ξ|1−2Hdξ

= cH(t ∧ s)
∫

R

∫
R

(ϕ(x+ y) − ϕ(x))(φ(x+ y) − φ(x))|y|2H−2dxdy,

with a constant cH > 0.
Let H denote the Hilbert space obtained by completing D(R) under the inner product

〈ϕ, φ〉H : = c1,H

∫
R

Fϕ(ξ)Fφ(ξ)|ξ|1−2Hdξ

= cH

∫
R

∫
R

(ϕ(x+ y) − ϕ(x))(φ(x+ y) − φ(x))|y|2H−2dxdy. (2.1)

Then the Gaussian family W (ϕ) = {Wt(ϕ), t ∈ [0, T ], ϕ ∈ H} can be regarded as an H-
cylindrical Brownian motion. One can see [11, 13] for the details about the stochastic integral
with respect to W .

Now let us recall several classes of function spaces studied in [11]. Let (B, ‖ ·‖) be a Banach
space equipped with the norm ‖ · ‖, and let β ∈ (0, 1), δ ∈ (0,∞] be fixed numbers. For every
function f : R → B, we introduce the functions NB

β f and NB,(δ)
β f : R → [0,∞] defined by

NB
β f(x) =

( ∫
R

‖f(x+ h) − f(x)‖2|h|−1−2βdh

) 1
2

, (2.2)

and

NB,(δ)
β f(x) =

( ∫
|h|≤δ

‖f(x+ h) − f(x)‖2|h|−1−2βdh

) 1
2

. (2.3)

When B = R, we abbreviate the notations NR

β f = Nβf and NR,(δ)
β f = N (δ)

β f . Note that for
δ = ∞, the above two functions defined by (2.2) and (2.3) coincide.

Definition 2.1 Let Xβ
T (B) be the space of all continuous functions f : [0, T ] × R → B such

that
‖f‖Xβ

T (B) := sup
t∈[0,T ],x∈R

‖f(t, x)‖ + sup
t∈[0,T ],x∈R

NB
β f(t, x) < +∞,
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where the function NB
β f(t, x), (t, x) ∈ [0, T ] × R is defined as follows

NB
β f(t, x) =

( ∫
R

‖f(t, x+ h) − f(t, x)‖2|h|−1−2βdh

) 1
2

.

It was shown in [11] that Xβ
T (B) is a Banach space. Throughout this paper, we write Xp

T

for Xβ
T (B) with B = Lp(Ω), β = 1

2 −H. For θ > 0, define the following semi-norm for f :

‖f‖Xp
T,θ

:= sup
t∈[0,T ],x∈R

e−θt‖f(t, x)‖ + sup
t∈[0,T ],x∈R

e−θtNLp(Ω)
1
2−H

f(t, x). (2.4)

For the uniqueness of the solution to (1.1), we need another space.

Definition 2.2 Zp
T is defined as the space of all random field f : [0, T ]×R×Ω → R such that

‖f‖Zp
T

:= sup
t∈[0,T ]

‖f(t, ·)‖Lp(Ω×R) + sup
t∈[0,T ]

N ∗
1
2−H,pf(t) <∞, (2.5)

where p ≥ 2 and

N ∗
1
2−H,pf(t) =

( ∫
R

‖f(t, ·) − f(t, · + h)‖2
Lp(Ω×R)|h|2H−2dh

) 1
2

. (2.6)

Denote by C([0, T ] × R) the space of all real-valued continuous functions on [0, T ] × R

equipped with the topology of uniform convergence over compact sets. For every h ∈ R, let τh
be the translation map in the spatial variable, that is τhf(t, x) = f(t, x− h).

Definition 2.3 Let Xβ
T be the space of all functions f ∈ C([0, T ] × R) such that

(1) (t, x) �→ N (1)
β f(t, x) is finite and continuous on [0, T ] × R.

(2) limh↓0 supt∈[0,T ],x∈[−M,M ] N (1)
β (τhf − f)(t, x) = 0 for every positive M .

It turns out that Xβ
T is a complete separable metric space equipped with the following

topology. A sequence {fn} in Xβ
T converges to f in Xβ

T if for all R > 0, the sequences {fn} and
{N (1)

β (fn − f)} converge uniformly on [0, T ], x ∈ [−R,R] to f and 0, respectively. We define a
metric on Xβ

T as follows

dβ(f, g) =
∞∑

n=1

2−n ‖f − g‖n,β

1 + ‖f − g‖n,β
,

where ‖ · ‖n,β is the seminorm

‖f‖n,β := sup
t∈[0,T ],x∈[−n,n]

|f(t, x)| + sup
t∈[0,T ],x∈[−n,n]

N (1)
β f(t, x).

We say that uε is a mild solution of (1.1) if for all t ∈ [0, T ] and x ∈ R we have

uε(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

pt−s(x− y)b(uε(s, y))dsdy

+
√
ε

∫ t

0

∫
R

pt−s(x− y)σ(uε(s, y))W (ds, dy), a.s., (2.7)

where the stochastic integral is understood in the sense of [13, Proposition 2.2] and pt ∗ u0(x)
=

∫
R
pt(x− y)u0(y)dy. The following result has been proved in [11].

Theorem 2.4 Assume that for SHE (1.1), the following conditions hold:
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(1) The initial condition u0 is bounded and locally Hölder continuous of order H. Further-
more, for some p > 6

4H−1 , u0 is in Lp(R) and
∫

R

‖u0(·) − u0(· + h)‖2
Lp(R) · |h|2H−2dh <∞.

(2) The coefficient b is Lipschitz continuous with b(0) = 0.
(3) σ is differentiable, its derivative is Lipschitz continuous and σ(0) = 0.

Then there exists a unique solution uε to SPDE (1.1) in Zp
T ∩Xp

T . In addition, the solution has
sample paths in X

1/2−H
T .

2.2 A Criteria for Large Deviations

Let H be the Hilbert space introduced in Section 2.1. Define the following space of predictable
stochastic processes

L2 :=
{
ψ : Ω × [0, T ] → H,

∫ T

0

‖ψ(s)‖2
Hds <∞, a.s.− P

}
. (2.8)

For N ≥ 1, define

HN
T =

{
f : f ∈ L2([0, T ];H),

1
2

∫ T

0

‖f(s)‖2
Hds ≤ N

}
. (2.9)

Moreover HN
T will be equipped with the topology of weak convergence in HT := L2([0, T ];H).

Define UN as follows

UN = {f ∈ L2 : f(ω) ∈ HN
T ,P − a.s. ω}.

The following condition will be sufficient to establish a large deviation principle (LDP for
short) for a family {Zε, ε > 0} defined by Zε = Gε(

√
εW ) where {Gε}ε>0 is a family of

measurable maps from V = C([0, T ];H) ⊂ C([0, T ] × R) to U which is a Polish space.

Condition A There exists a measurable map G0 : V → U such that the following two points
hold:

(1) For N ∈ N, let fn, f ∈ HN
T be such that fn → f weakly as n→ ∞. Then

G0

( ∫ ·

0

fn(s)ds
)

→ G0

( ∫ ·

0

f(s)ds
)
, in U. (2.10)

(2) For N ∈ N, let vε, v ∈ UN be such that vε converges in distribution to v as ε→ 0. Then

Gε

(
W +

1√
ε

∫ ·

0

vε(s)ds
)

⇒ G0

( ∫ ·

0

v(s)ds
)
, in distribution. (2.11)

The following criteria which was initially established in [3] plays an important role in this
paper.

Theorem 2.5 For ε > 0, let Zε = Gε(
√
εW ), and suppose that Condition A holds. Define

I(φ) = inf
f∈Sφ

{
1
2

∫ T

0

‖f(s)‖2
Hds

}
, φ ∈ U,

with Sφ = {f ∈ S = ∪N≥1HN
T : φ = G0(

∫ ·
0
f(s)ds)}, φ ∈ U. Then I(φ) is a rate function on U

and the family {Zε, ε > 0} satisfies a LDP with rate function I.
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3 Skeleton Equations

In this section, we will study the corresponding skeleton equation associated with SHE (1.1).
Let {ek, k ≥ 1} be a orthonormal basis of the Hilbert space H. The Gaussian process W admits
the following representation

W =
∑
k≥1

Bk(t)ek,

where {Bk(t), k ≥ 1} is a family of independent Brownian motion. The stochastic integral with
respect to W can be expressed as∫ T

0

∫
R

g(s, x)W (ds, dx) =
∑
k≥1

∫ T

0

〈g(s, ·), ek〉HdBk(s).

For f ∈ S =
⋃

N≥1 HN
T , consider the deterministic evolution equation (called Skeleton

equation)

Zf (t, x) = pt ∗ u0(x) +
∫ t

0

〈pt−s(x− �)σ(u0(s, �)), f(s, �)〉Hds

+
∫ t

0

[pt−s ∗ (b′(u0(s, �))Zf (s, �))](x)ds, (3.1)

with t ∈ [0, T ] and x ∈ R. The term
∫ t

0
〈pt−s(x − �)σ(u0(s, �)), f(s, �)〉Hds, in the above

equation (3.1) can be written as
∑
k≥1

∫ t

0

〈pt−s(x− �)σ(u0(s, �)), ek〉Hfk(s)ds,

with fk(s) := 〈f(s, �), ek〉H, t ∈ [0, T ] and k ≥ 1.
Let us firstly recall a useful lemma which has been proved in [12, 13]. It mainly concerns

with the Hölder continuity of the Green function pt(·).
Lemma 3.1 The following estimates hold:

(1) For any 0 ≤ s ≤ t,∫
R

|z|2H−2dz

∫
R2

|(pt−s(z + z1 − z2) − pt−s(z1 − z2)

− (pt−s(z + z1) − pt−s(z1))|2|z2|2H−2dz1dz2 ≤ C(t− s)−
3
2+2H .

(2) For any s > 0 and μ ∈ (0, 1),∫
R2

|ps(z + z1) − ps(z1)|2|z|−1−2μdz1dz ≤ Cs−
1
2−μ.

(3) For any 0 ≤ s < t ≤ T and x ∈ R,∫
R

|pt−s(x− y)|2dy ≤ C|t− s|− 1
2 .

Using the similar strategy in the proof of [13, Theorem 4.2], one can prove the following

Proposition 3.2 (Existence of solution to Eq. (3.1)) Assume the following conditions hold:
(1) The initial condition u0 satisfies

sup
x∈R

|u0(x)| + sup
x∈R

N 1
2−Hu0(x) <∞, (3.2)
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(2) The coefficients b and σ are differentiable and their derivatives are Lipschitz and b(0) =
σ(0) = 0. Furthermore, the derivative b′ is uniformly bounded.

Then there exists a unique solution Zf to Eq. (3.1). Moreover, the solution Zf belongs to
the space X

1
2−H

T .

Proof We will solve Eq. (3.1) using a successive iteration. Define

Zf
0 (t, x) = pt ∗ u0(x)

and

Zf
n+1(t, x) = pt ∗ u0(x) +

∫ t

0

〈pt−s(x− �)σ(u0(s, �)), f(s, �)〉Hds

+
∫ t

0

[pt−s ∗ (b′(u0(s, �))Zf
n(s, �))](x)ds. (3.3)

From the assumption on the initial condition u0, it follows that ‖Zf
0 (t, �)‖∞ < ∞. First, we

will prove a uniform bound for |Zf
n+1|. From Eq. (3.3), we have

|Zf
n+1(t, x)|2 ≤ C‖u0‖2

∞ + C

∫ T

0

‖f(s, �)‖2
Hds

∫ T

0

‖pt−s(x− �)σ(u0(s, �))‖2
Hds

+ C‖b′‖2
∞

∫ t

0

∫
R

|pt−s(x− y)|2(Zf
n(s, y))2dyds. (3.4)

From the proof of upper bound of (4.9) in the proof of [13, Theorem 4.2], one knows that

‖pt−s(x− �)σ(u0(s, �))‖2
H ≤ C‖u0(s, �)‖2

∞(t− s)−1+H + C‖N 1
2−Hu

0(s, �)‖2
∞(t− s)−

1
2 . (3.5)

On the other hand, one has∫ t

0

∫
R

|pt−s(x− y)|2(Zf
n(s, y))2dyds ≤

∫ t

0

‖Zf
n(s, �)‖2

∞

∫
R

|pt−s(x− y)|2dyds

≤
∫ t

0

(t− s)−
1
2 ‖Zf

n(s, �)‖2
∞ds, (3.6)

where we have used the estimate (4.11) in [13].
Combining the inequalities (3.5) and (3.6), one can obtain

‖Zf
n+1(t, ∗)‖2

∞ ≤ C‖u0‖2
∞ + C

∫ t

0

(t− s)−1+H‖u0(s, �)‖2
∞ds

+ C

∫ t

0

(t− s)−
1
2 ‖N 1

2−Hu
0(s, �)‖2

∞ds

+ C‖b′‖2
∞

∫ t

0

(t− s)−
1
2 ‖Zf

n(s, �)‖2
∞ds. (3.7)

Next let us find the upper bounds for ‖u0(t, �)‖2
∞ and ‖N 1

2−Hu
0(t, �)‖2

∞. Recall that u0(t, x)
is the solution to Eq. (1.3) which can be written by

u0(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

pt−s(x− y)b(u0(s, y))dyds. (3.8)

By using Hölder inequality and linear growth condition for the coefficient b, one gets

|u0(t, x)|2 ≤ 2|pt ∗ u0(x)|2 + 2
∣∣∣∣
∫ t

0

∫
R

pt−s(x− y)b(u0(s, y))dyds
∣∣∣∣
2
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≤ 2‖u0‖2
∞ + C

∫ t

0

(1 + ‖u0(s, �)‖2
∞)

∫
R

|pt−s(x− y)|2dyds

≤ 2‖u0‖2
∞ + C

∫ t

0

(1 + ‖u0(s, �)‖2
∞)(t− s)−

1
2 ds. (3.9)

Gronwall’s lemma yields that ‖u0(t, �)‖2
∞ is bounded by a positive constant. For the second

term ‖N 1
2−Hu

0(t, �)‖2
∞, from the definition of the mapping N 1

2−Hu
0(t, x), we have

|N 1
2−Hu

0(t, x)|2 =
∫

R

|u0(t, x+ z) − u0(t, x)|2|z|2H−2dz

=
∫

R

∣∣∣∣pt ∗ u0(x+ z) +
∫ t

0

∫
R

pt−s(x+ z − y)b(u0(s, y))dsdy

− pt ∗ u0(x) −
∫ t

0

∫
R

pt−s(x− y)b(u0(s, y))dsdy
∣∣∣∣
2

|z|2H−2dz

≤ 2
∫

R

|pt ∗ u0(x+ z) − pt ∗ u0(x)|2|z|2H−2dz

+ 2
∫

R

∣∣∣∣
∫ t

0

∫
R

(pt−s(x+ z − y) − pt−s(x− y))b(u0(s, y))dyds
∣∣∣∣
2

|z|2H−2dz

≤ C + C

∫ t

0

(1 + ‖u0(s, �)‖2
∞)(t− s)−1+Hds

≤ C + CtH . (3.10)

Then we proved that ‖N 1
2−Hu

0(t, �)‖2
∞ is bounded. Combining Eqs. (3.7), (3.9), (3.10), one

can easily obtain that

‖Zf
n+1(t, �)‖2

∞ ≤ C(1 + TH +
√
T ) + C

∫ t

0

(t− s)−
1
2 ‖Zf

n(s, �)‖2
∞ds. (3.11)

Next we want to establish a bound for N 1
2−HZ

f
n+1(t, x). Recall that Zf

n+1(t, x) satisfies the
iteration equation (3.3). Then we have

|N 1
2−HZ

f
n+1(t, x)|2 ≤ C|N 1

2−H(pt ∗ u0(x))|2

+ C

∣∣∣∣N 1
2−H

( ∫ t

0

〈pt−s(x− �)σ(u0(s, �)), f(s, �)〉Hds
)∣∣∣∣

2

+ C

∣∣∣∣N 1
2−H

( ∫ t

0

[pt−s ∗ (b′(u0(s, �))Zf
n(s, �))](x)ds

)∣∣∣∣
2

. (3.12)

The first term |N 1
2−H(pt ∗u0(x))|2 is finite according to (3.10). The second and the third terms

in (3.12) can be estimated as follows by using the estimates (4.15)–(4.18) obtained in [13]. Then
one can obtain that∣∣∣∣N 1

2−H

( ∫ t

0

〈pt−s(x− �)σ(u0(s, �)), f(s, �)〉Hds
)∣∣∣∣

2

=
∫

R

∣∣∣∣
∫ t

0

〈(pt−s(x+ z − �) − pt−s(x− �))σ(u0(s, �)), f(s, �)〉Hds
∣∣∣∣
2

· |z|2H−2dz

≤ C

∫ T

0

‖f(s, �)‖2
∞ds

∫ t

0

∫
R

‖(pt−s(x+ z − �) − pt−s(x− �))σ(u0(s, �))‖2 · |z|2H−2dzds

≤ C

∫ t

0

(‖u0(s, �)‖2
∞(t− s)−3/2+2H + ‖N 1

2−Hu
0(s, �)‖2

∞(t− s)−1+H)ds (3.13)
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and ∣∣∣∣N 1
2−H

( ∫ t

0

[pt−s ∗ (b′(u0(s, �))Zf
n(s, �))](x)ds

)∣∣∣∣
2

=
∫

R

∣∣∣∣
∫ t

0

∫
R

(pt−s(x+ z − y) − pt−s(x− y))b′(σ(u0(s, y)))Zf
n(s, y)dyds

∣∣∣∣
2

· |z|2H−2dz

≤ C

∫ t

0

‖Zf
n(s, �)‖2

∞

∫
R2

|pt−s(x+ z − y) − pt−s(x− y)|2 · |z|2H−2dydzds

≤ C

∫ t

0

‖Zf
n(s, �)‖2

∞(t− s)−1+Hds. (3.14)

Combining the estimates (3.12), (3.13) and (3.14), we have

|N 1
2−HZ

f
n+1(t, x)|2 ≤ C + C

∫ t

0

(‖u0(s, �)‖2
∞(t− s)−3/2+2H

+ ‖N 1
2−Hu

0(s, �)‖2
∞(t− s)−1+H)ds

+ C

∫ t

0

‖Zf
n(s, �)‖2

∞(t− s)−1+Hds. (3.15)

Set
An(t) = ‖Zf

n(t, �)‖2
∞ + ‖N 1

2−HZ
f
n(t, �)‖2

∞.

According to the estimates (3.11), (3.15), together with the condition 1/4 < H < 1/2, we can
find a κ1 < 1 such that

An+1(t) ≤ C + C

∫ t

0

(t− s)−κ1An(s)ds.

Then by using a version of Gronwall’s lemma (for example, [5, Lemma 9] or [11, Lemma 4.13]),
we conclude that

sup
n

sup
t∈[0,T ]

An(t) = sup
n

sup
t∈[0,T ]

{‖Zf
n(t, �)‖2

∞ + ‖N 1
2−HZ

f
n(t, �)‖2

∞} < +∞. (3.16)

Next we are going to show that {Zf
n , n ≥ 0} constitutes a Cauchy sequence in X

1
2−H

T . To this
end, we need to bound ‖Zf

n+1(t, x)−Zf
n(t, x)‖2

∞ and ‖N 1
2−H(Zf

n+1(t, x)−Zf
n(t, x))‖2

∞. In fact,
from (3.3) and (3.6)

|Zf
n+1(t, x) − Zf

n(t, x)|2 =
∣∣∣∣
∫ t

0

∫
R

pt−s(x− y)b′(u0(s, y))(Zf
n(s, y) − Zf

n−1(s, y))dyds
∣∣∣∣
2

≤ C‖b′‖2
∞

∫ t

0

(t− s)−
1
2 ‖Zf

n(s, �) − Zf
n−1(s, �)‖2

∞ds (3.17)

and

|N 1
2−H(Zf

n+1(t, x) − Zf
n(t, x))|2

=
∫

R

∣∣∣∣
∫ t

0

∫
R

pt−s(x+ z − y)b′(u0(s, y))(Zf
n(s, y) − Zf

n−1(s, y))dyds

−
∫ t

0

∫
R

pt−s(x− y)b′(u0(s, y))(Zf
n(s, y) − Zf

n−1(s, y))dyds
∣∣∣∣
2

|z|2H−2dz

≤ C‖b′‖2
∞

∫ t

0

∫
R2

(pt−s(x+ z − y) − pt−s(x− y))2(Zf
n(s, y) − Zf

n−1(s, y))
2|z|2H−2dzdyds
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≤ C‖b′‖2
∞

∫ t

0

(t− s)−1+H‖Zf
n(s, �) − Zf

n−1(s, �)‖2
∞ds. (3.18)

Set
Bn(t) = ‖Zf

n(t, �) − Zf
n−1(t, �)‖2

∞ + ‖N 1
2−H(Zf

n(t, �) − Zf
n−1(t, �))‖2

∞.

Combining (3.17) and (3.18), together with the condition 1/4 < H < 1/2, we can find a κ2 < 1
such that

Bn+1(t) ≤ C

∫ t

0

‖Zf
n(t, �) − Zf

n−1(t, �)‖2
∞((t− s)−1/2 + (t− s)−1+H)ds

≤ C

∫ t

0

(‖Zf
n(t, �) − Zf

n−1(t, �)‖2
∞ + ‖N 1

2−H(Zf
n(t, �) − Zf

n−1(t, �))‖2
∞)

· ((t− s)−1/2 + (t− s)−1+H)ds

≤ C + C

∫ t

0

(t− s)−κ2Bn(s)ds. (3.19)

Applying Lemma 4.13 in [11], we conclude from (3.19) that
∑

n≥0 |Zf
n+1(t, x) − Zf

n(t, x)| 2p
converges uniformly in [0, T ] for all p ≥ 1. In particular, this implies that the sequence {Zf

n , n ≥
0} is Cauchy in X

1
2−H

T . Denote by Zf the limit of {Zf
n , n ≥ 0}. Let n tends to infinity in (3.3),

it follows easily that Zf is the solution of Eq. (3.1). The uniqueness of the solution can be
proved by using the standard arguments.

The statement of Zf ∈ X
1
2−H

T follows from the Hölder continuity of Zf (see Proposition 3.3
below). �

Proposition 3.3 (Convergence of solution to Eq. (3.1)) Assume the following conditions hold:
(1) The initial condition u0 is bounded and local Hölder continuous of order H.
(2) The coefficients b and σ are differentiable and their derivatives are Lipschitz and b(0)

= σ(0) = 0.
For N ∈ N, let fn, f ∈ HN

T be such that fn → f weakly as n → ∞. Let Zfn denote the
solution to Eq. (3.1) replacing f by fn. Then

G0

( ∫ ·

0

fn(s)ds
)

= Zfn → G0

( ∫ ·

0

f(s)ds
)

= Zf ,

as n→ ∞ in X
1
2−H

T .

Proof Recall that for any (t, x) ∈ [0, T ] × R

Zfn(t, x) = pt ∗ u0(x) +
∫ t

0

〈pt−s(x− �)σ(u0(s, �)), fn(s, �)〉Hds

+
∫ t

0

[pt−s ∗ (b′(u0(s, �))Zfn(s, �))](x)ds. (3.20)

Since the norm {∫ T

0
‖fn(s)‖2

Hds, n ≥ 1} is bounded by a constant N , invoking similar
arguments as in the proof of Proposition 3.2, we can show that

sup
n

sup
t∈[0,T ]

{‖Zfn(t, �)‖2
∞ + ‖N 1

2−H(Zfn(t, �))‖2
∞} <∞. (3.21)

Next, we prove that the family {Zfn , n ≥ 1} is equi-Hölder continuous. For 0 ≤ t1 < t2 ≤ T

and x ∈ R, by using the property of semigroup of Green function pt and the Hölder regularity
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of u0, one gets

|pt2 ∗ u0(x) − pt1 ∗ u0(x)|2

=
∣∣∣∣
∫

R

pt2−t1(z)
∫

R

pt1(x− 2y)(u0(y − z) − u0(y))dydz
∣∣∣∣
2

≤ C

∫
R

pt2−t1(z)|z|2Hdz

≤ C(t2 − t1)2H . (3.22)

Denote by

Zfn

1 (t, x) =
∫ t

0

〈pt−s(x− �)σ(u0(s, �)), fn(s, �)〉Hds,
and

Zfn

2 (t, x) =
∫ t

0

[pt−s ∗ (b′(u0(s, �))Zfn(s, �))](x)ds.

It is sufficient to show that {Zfn

1 , n ≥ 1} and {Zfn

2 , n ≥ 1} are Hölder continuous with Hölder
exponents being independent of n.

Firstly, for 0 ≤ t1 < t2 ≤ T and x ∈ R, we have

|Zfn

1 (t2, x) − Zfn

1 (t1, x)|2

≤ C

∣∣∣∣
∫ t2

t1

〈pt2−s(x− �)σ(u0(s, �)), fn(s, �)〉Hds
∣∣∣∣
2

+ C

∣∣∣∣
∫ t1

0

〈(pt2−s(x− �) − pt1−s(x− �))σ(u0(s, �)), fn(s, �)〉Hds
∣∣∣∣
2

≤ C

∫ T

0

‖fn(s, �)‖2
Hds

∫ t2

t1

‖pt2−s(x− �)σ(u0(s, �))‖2
Hds

+ C

∫ T

0

‖fn(s, �)‖2
Hds

∫ t1

0

‖(pt2−s(x− �) − pt1−s(x− �))σ(u0(s, �))‖2
Hds. (3.23)

By using the similar arguments in the proofs [11, Theorem 4.2 and Theorem 4.3], one obtains,
respectively∫ t2

t1

‖pt2−s(x− �)σ(u0(s, �))‖2
Hds

≤ C

∫ t2

t1

(‖u0(s, �)‖2
∞(t2 − s)−1+H + ‖N 1

2−Hu
0(s, �)‖2

∞(t2 − s)−
1
2 )ds

≤ C((t2 − t1)H + (t2 − t1)
1
2 ),

and ∫ t1

0

‖(pt2−s(x− �) − pt1−s(x− �))σ(u0(s, �))‖2
Hds ≤ C((t2 − t1)H + (t2 − t1)

1
2 ).

Then we see that there exists a constant C (independent of n) such that

|Zfn

1 (t2, x) − Zfn

1 (t1, x)|2 ≤ C|t2 − t1|H , (3.24)

for all 0 ≤ t1, t2 ≤ T and x ∈ R. For the second term Zfn

2 (t, x), with 0 ≤ t1 < t2 ≤ T and
x ∈ R, we have

|Zfn

2 (t2, x) − Zfn

2 (t1, x)|2
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≤ C

∣∣∣∣
∫ t2

t1

∫
R

pt2−s(x− y)b′(u0(s, y))Zfn(s, y)dyds
∣∣∣∣
2

+
∣∣∣∣
∫ t1

0

∫
R

(pt2−s(x− y) − pt1−s(x− y))b′(u0(s, y))Zfn(s, y)dyds
∣∣∣∣
2

≤ C(t2 − t1)
1
2 , (3.25)

by using some results proved in the proof of [11, Theorem 4.3 ]. Combing the estimates (3.22),
(3.24) and (3.25), we have

|Zfn(t2, x) − Zfn(t1, x)|2 ≤ C|t2 − t1|H , (3.26)

for all 0 ≤ t1, t2 ≤ T and x ∈ R.
Secondly for x1, x2 ∈ R, similarly to the proof of (4.57) in [11], we have

|Zfn

1 (t, x1) − Zfn

1 (t, x2)|2

≤ C

∣∣∣∣
∫ t

0

〈(pt−s(x1 − �) − pt−s(x2 − �))σ(u0(s, �)), fn(s, �)〉Hds
∣∣∣∣
2

≤ C

∫ T

0

‖fn(s, �)‖2
Hds

∫ t

0

∥∥(pt−s(x1 − �) − pt−s(x2 − �))σ(u0(s, �))
∥∥2

H ds

≤ C(|x1 − x2| + |x1 − x2|2H), (3.27)

and

|Zfn

2 (t, x1) − Zfn

2 (t, x2)|2

≤ C

∫ t

0

∫
R

|(pt−s(x1 − y) − pt−s(x2 − y))b′(u0(s, y))Zfn(s, y)|2dyds

≤ C|x1 − x2|. (3.28)

For the term pt ∗ u0(x), with x1, x2 ∈ R, we have

|pt ∗ u0(x1) − pt ∗ u0(x2)|2 ≤ C

∫
R

(pt(x1 − y) − pt(x2 − y))2|u0(y)|2dy ≤ C|x1 − x2|. (3.29)

Collecting the inequalities (3.27), (3.28) and (3.29), we get

|Zfn(t, x1) − Zfn(t, x2)|2 ≤ C(|x1 − x2| + |x1 − x2|2H), (3.30)

for all x1, x2 ∈ R and 0 ≤ t ≤ T .
Recall that

Zfn(t, x) = pt ∗ u0(x) + Zfn

1 (t, x) + Zfn

2 (t, x).

Then it follows from (3.26) and (3.30) that there exists an independent constant C > 0 such
that

|Zfn(t1, x1) − Zfn(t2, x2)|2 ≤ C(|x1 − x2| + |x1 − x2|2H + |t1 − t2|H), (3.31)

for all 0 ≤ t1, t2 ≤ T and x1, x2 ∈ R. The above uniform estimate along with the Arzela–Ascoli
theorem yields that there exists a subsequence {nk, k ≥ 1} and a uniform function Z(t, x) such
that

sup
0≤t≤T

sup
x∈[−R,R]

|Zfnk (t, x) − Z(t, x)| → 0, (3.32)
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for every R > 0 as k → ∞. First, we will prove that Z = Zf . By the uniqueness of the equation,
it is sufficient to show that Z is a solution to (3.1). Applying Fatou lemma and taking into
account (3.21) and (3.31), it is easy to see that

sup
t∈[0,T ]

{‖Z(t, �)‖2
∞ + ‖N 1

2−H(Z(t, �))‖2
∞} <∞ (3.33)

and

|Z(t1, x1) − Z(t2, x2)|2 ≤ C(|x1 − x2| + |x1 − x2|2H + |t1 − t2|H), (3.34)

for all 0 ≤ t1, t2 ≤ T and x1, x2 ∈ R. Recall that

Zfnk (t, x) = pt ∗ u0(x) +
∫ t

0

〈pt−s(x− �)σ(u0(s, �)), fnk
(s, �)〉Hds

+
∫ t

0

[pt−s ∗ (b′(u0(s, �))Zfnk (s, �))](x)ds. (3.35)

To pass the limit in the above equation as k → ∞, it suffices to prove the following

lim
k→∞

∫ t

0

∣∣∣∣
∫

R

pt−s(x− y)b′(u0(s, y))(Zfnk (s, y) − Z(s, y))dy
∣∣∣∣
2

ds = 0. (3.36)

For every y ∈ R, one has (Zfnk (s, y) − Z(s, y))2 tends to zero as k → ∞. Applying the
dominated convergence theorem, we deduce that

lim
k→∞

∣∣∣∣
∫

R

pt−s(x− y)b′(u0(s, y))(Zfnk (s, y) − Z(s, y))dy
∣∣∣∣
2

= 0.

Moreover we also have∣∣∣∣
∫

R

pt−s(x− y)b′(u0(s, y))(Zfnk (s, y) − Z(s, y))dy
∣∣∣∣
2

≤ C‖b′‖2
∞

∫
R

|pt−s(x− y)|2dy
∫

R

(Zfnk (s, y) − Z(s, y))2dy

≤ C(t− s)−
1
2 .

Then, by the dominated convergence theorem, we have proved the limit (3.36). Since fnk

converges to f as k → ∞, using (3.36), we have

lim
k→∞

∫ t

0

[pt−s ∗ (b′(u0(s, �))Zfnk (s, �))](x)ds

=
∫ t

0

[pt−s ∗ (b′(u0(s, �))Zf (s, �))](x)ds.

Now let k → ∞ in (3.20) to get

Z(t, x) = pt ∗ u0(x) +
∫ t

0

〈pt−s(x− �)σ(u0(s, �)), f(s, �)〉Hds

+
∫ t

0

[pt−s ∗ (b′(u0(s, �))Z(s, �))](x)ds, (3.37)

which implies that Z = Zf . To conclude that Zfn → Zf in X
1
2−H

T , it suffices to show that the
family {Zfn , n ≥ 1} is relatively compact. According to [11, Proposition 4.18], one only need
to check the following three conditions:
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(1) supn |Zfn(0, 0)| is finite;
(2) for every x ∈ R, {Zfn(·, x), n ≥ 1} is equi-continuous in time;
(3) for every R > 0,

lim
δ→0

sup
n

sup
t∈[0,T ],x∈[−R,R]

∫ δ

−δ

|Zfn(t, x+ y) − Zfn(t, x)|2
|y|2−2H

dy = 0.

Actually the first point is clear. The second and third points follow from (3.31). Thus we can
conclude the proof of this proposition. �

4 Moderate Deviations Principle

The main aim of this paper is to prove that Zε(t, x) defined by (1.4) satisfies a LDP on the
space X

1
2−H

T , where λ(ε) satisfies (1.5). This special type of LDP is usually called the moderate
deviations principle of uε ([6]). It is stated as follows.

Theorem 4.1 (Moderate deviations principle) Assuming the conditions in Proposition 3.3
hold. Let uε be the solution to SHE (1.1), then the law of Zε(t, x) defined by (1.4) obeys an
large deviations principle in the space X

1
2−H

T with speed λ2(ε) and the good rate function I(u)
given by

I(u) = inf
f∈Su

{
1
2

∫ T

0

‖f(s)‖2
Hds

}
(4.1)

with

Su = {f ∈ L2([0, T ];H);Zf = u}, u ∈ X
1
2−H

T ,

where Zf is the solution to Eq. (3.1).

From (1.4), it is easy to see that Zε(t, x) satisfies the following equation

Zε(t, x) =
1

λ(ε)

∑
k≥1

∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Zε(s, �)), ek〉HdBk(s)

+
∫ t

0

{
pt−s ∗

[
b(u0(s, �) +

√
ελ(ε)Zε(s, �)) − b(u0(s, �))√

ελ(ε)

]}
(x)ds. (4.2)

For any v ∈ UN and ε > 0, define the controlled equation for Zε,v as follows

Zε,v(t, x) = pt ∗ u0(x) +
1

λ(ε)

∑
k≥1

∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Zε,v(s, �)), ek〉HdBk(s)

+
∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Zε,v(s, �)), v(s, �)〉Hds

+
∫ t

0

{
pt−s ∗

[
b(u0(s, �) +

√
ελ(ε)Zε,v(s, �)) − b(u0(s, �))√

ελ(ε)

]}
(x)ds. (4.3)

We shall prove the moderate deviations principle satisfied by uε(t, x) given by Theorem 4.1 by
using the weak convergence approach (for example, [3, 14, 15, 20] and etc). Inspired by [3], let
us consider the two conditions given by Condition A in Section 2.2 which correspond on the
weak convergence approach frame in our setting. Also refer to the weak convergence approach
used in [13]. We make the following remarks concerning with the two conditions.
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Remark 4.2 Condition (1) (i.e. Eq. (2.10)) says that the level sets of the rate function are
compact, and condition (2) (i.e. Eq. (2.11)) is a crucial assumption in the applications of the
weak convergence approach and is a statement of weak convergence of the family of random
variables {Zε,vε

, ε > 0} as ε→ 0.

Remark 4.3 Applying to Theorem 2.5, a verification of condition (1) and condition (2)
implies the validity of Theorem 4.1. The first point follows from Proposition 3.3. The second
point follows form Proposition 4.5.

One should first show the existence and uniqueness of the stochastic controlled equation
given by (4.3). Its proof can be given by following the similar arguments in the proofs of
Proposition 3.2. The details are left to the interested readers.

Proposition 4.4 Assuming the conditions in Proposition 3.2 hold, then there exists a unique
random field solution Zε,v = {Zε,v(t, x), t ∈ [0, T ], x ∈ R} to Eq. (4.3) such that Zε,v ∈ X

1
2−H

T .

Now we give the weak convergence of the solution to the controlled equation (4.3).

Proposition 4.5 Assume the following conditions hold:
(1) The initial condition u0 is bounded and local Hölder continuous of order H.
(2) The coefficients b and σ are differentiable and their derivatives are Lipschitz and b(0)

= 0, σ(0) = 0.
For any family {vε; ε > 0} ⊂ UN which converges in distribution as ε → 0 to v ∈ UN , we

have

lim
ε→0

Zε,vε

= Zv,

where Zv denotes the solution of Eq. (3.1) corresponding to the random variable v (instead of a
deterministic function f).

Proof First we claim that for any p ≥ 1, there exists some θ > 0 such that,

sup
ε≤1

sup
v∈UN

sup
t∈[0,T ],x∈R

‖Zε,vε

(t, x)‖Xp
T,θ

<∞, (4.4)

where the seminorm ‖ · ‖Xp
T,θ

is defined by (2.4).
Recall that Zε,vε

given by (4.3) can be written as

Zε,vε

= pt ∗ u0(x) + Φε
1(t, x) + Φε

2(t, x) + Φε
3(t, x),

where we denote by

Φε
1(t, x) =

1
λ(ε)

∑
k≥1

∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Zε,vε

(s, �)), ek〉HdBk(s), (4.5)

Φε
2(t, x) =

∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Zε,vε

(s, �)), vε(s, �)〉Hds, (4.6)

and

Φε
3(t, x) =

∫ t

0

{
pt−s ∗

[
b(u0(s, �) +

√
ελ(ε)Zε,vε

(s, �)) − b(u0(s, �))√
ελ(ε)

]}
(x)ds. (4.7)

Recall that

‖pt ∗ u0(x)‖Xp
T,θ

≤ C,
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then

‖Zε,vε

(t, x)‖Xp
T,θ

≤ C

3∑
i=1

(
sup

(t,x)∈[0,T ]×R

e−θt‖Φε
i (t, x)‖Lp(Ω) + sup

(t,x)∈[0,T ]×R

e−θtNLp(Ω)
1
2−H

Φε
i (t, x)

)
.

Now let us prove the upper bounds for the ‖Φε
i (t, x)‖Lp(Ω) and NLp(Ω)

1
2−H

Φε
i (t, x) with i = 1, 2, 3.

By using [13, Proposition 3.6], we have that

e−θt‖Φε
1(t, x)‖Lp(Ω)

≤ Cε sup
(s,x)∈[0,T ]×R

e−θs‖Zε,vε‖Lp(Ω)

( ∫ t

0

e−2θ(t−s)(t− s)−1+Hds

) 1
2

+ Cε sup
(s,x)∈[0,T ]×R

e−θs sup
x∈R

NLp(Ω)
1
2−H

Zε,vε

(s, x)
(∫ t

0

e−2θ(t−s)(t− s)−1/2ds

) 1
2

≤ Cε‖Zε,vε‖Xp
T,θ

(θ−
H
2 + θ−

1
4 ). (4.8)

The term e−θtNLp(Ω)
1
2−H

Φε
1(t, x) can be estimate as follows. Also by [13, Proposition 3.6] and the

definition of the mapping NLp(Ω)
1
2−H

Φε
1(t, x) given by (2.2), we have

e−θtNLp(Ω)
1
2−H

Φε
1(t, x)

≤ Cελ2(ε) sup
(s,x)∈[0,T ]×R

e−θs‖Zε,vε‖Lp(Ω)

( ∫ t

0

e−2θ(t−s)(t− s)−
3
2+2Hds

) 1
2

+ Cελ2(ε) sup
(s,x)∈[0,T ]×R

e−θs sup
x∈R

NLp(Ω)
1
2−H

Zε,vε

(s, x)
(∫ t

0

e−2θ(t−s)(t− s)−1+Hds

) 1
2

≤ Cελ2(ε)‖Zε,vε‖Xp
T,θ

(θ−
H
2 + θ

1
4−H). (4.9)

Combining the above estimates for e−θt‖Φε
1(t, x)‖Lp(Ω) and e−θtNLp(Ω)

1
2−H

Φε
1(t, x) together, we

have that

‖Φε
1(t, x)‖Xp

T,θ
≤ Cε‖Zε,vε‖Xp

T,θ
(θ−

H
2 + θ−

1
4 + λ2(ε)(θ−

H
2 + θ

1
4−H)). (4.10)

We can also use the similar arguments for ‖Φε
2(t, x)‖Xp

T,θ
. Moreover we have

‖Φε
2(t, x)‖Xp

T,θ
≤ Cελ2(ε)‖Zε,vε‖Xp

T,θ
(2θ−

H
2 + θ−

1
4 + θ

1
4−H). (4.11)

Now let us turn to the third term ‖Φε
3(t, x)‖Xp

T,θ
. By using the similar arguments for

‖Φε
1(t, x)‖Xp

T,θ
and Lipschitz continuity of b, we have

‖Φε
3(t, x)‖Xp

T,θ
≤ C‖Zε,vε‖Xp

T,θ
(θ−

1
4 + θ−

H
2 ). (4.12)

Then from (4.10), (4.11) and (4.12), we have

‖Zε,vε‖Xp
T,θ

≤ C + Cε‖Zε,vε‖Xp
T,θ

(θ−
H
2 + θ−

1
4 + λ2(ε)(θ−

H
2 + θ

1
4−H))

+ C‖Zε,vε‖Xp
T,θ

(θ−
1
4 + θ−

H
2 ). (4.13)

Now we can choose θ > 0 such that

C + Cε(θ−
H
2 + θ−

1
4 + λ2(ε)(θ−

H
2 + θ

1
4−H)) + C(θ−

1
4 + θ−

H
2 ) < 1.
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Thus from (4.13), we have proved that

‖Zε,vε‖Xp
T,θ

<∞,

which is the claim.
In order to prove this proposition, we need a stronger conclusion. For any β < H and p ≥ 2,

it holds that

‖Zε,vε‖Xβ,p
T,θ

<∞, (4.14)

where

‖Zε,vε‖Xβ,p
T,θ

:= sup
(t,x)∈[0,T ]×R

e−θt‖Zε,vε

(t, x)‖Lp(Ω) + sup
(t,x)∈[0,T ]×R

e−θtNLp(Ω)
β Zε,vε

(t, x).

In fact, for Φε
i (t, x), i = 1, 2, 3 defined above, by using [13, Proposition 3.6], we have, for large

enough θ,
‖Φε

i‖Xβ,p
T,θ

≤ Ci(‖σ(Zε,vε

)‖Xp
T,θ

+ ‖b′(Zε,vε

)‖Xp
T,θ

) ≤ C‖Zε,vε‖Xp
T,θ
.

Then (4.14) follows from the above arguments.
In the third step, we need to check the Hölder regularity of Zε,vε

= {Zε,vε

(t, x), t ∈ [0, T ], x ∈
R} with respect to t and x respectively. We also need to use the notation Φε

i (t, x), i = 1, 2, 3
defined by (4.5), (4.6) and (4.7).

For any 0 ≤ t1 < t2 ≤ T and x1, x2 ∈ R, we can write

Zε,vε

(t2, x2) − Zε,vε

(t1, x1) = pt2 ∗ u0(x2) − pt1 ∗ u0(x1)

+
3∑

i=1

(Φε
i (t2, x2) − Φε

i (t1, x1)).

From (3.22) and (3.29), we have

|pt2 ∗ u0(x2) − pt1 ∗ u0(x1)| ≤ C(|t2 − t1|H + |x2 − x1| 12 ). (4.15)

For the first term Φε
1(t2, x2) − Φε

1(t1, x1) in the above sum, applying [11, Proposition 3.8], we
obtain that

‖Φε
1(t2, x2) − Φε

1(t1, x1)‖Lp(Ω) ≤ C(|t2 − t1|H
2 + |x2 − x1|H). (4.16)

While the second term Φε
2(t2, x2) − Φε

2(t1, x1) in the above sum also satisfies the following

‖Φε
2(t2, x2) − Φε

2(t1, x1)‖Lp(Ω) ≤ C(|t2 − t1|H
2 + |x2 − x1|H). (4.17)

For the third term Φε
3(t2, x2)−Φε

3(t1, x1) in the above sum, we can bound is as follows. In fact,
by using Taylor formula, the boundedness of ‖b′‖∞ and Lipschitz continuity of b, we have that

‖Φε
3(t2, x2) − Φε

3(t1, x1)‖Lp(Ω) ≤ C(|t2 − t1| 12 + |t2 − t1|H
2 + |x2 − x1| 12 + |x2 − x1|H), (4.18)

with C independent of ε > 0. Then combining the above estimates, we conclude that

‖Zε,vε

(t2 − x2) − Zε,vε

(t1 − x1)‖Lp(Ω) ≤ C(|t2 − t1|H
2 + |x2 − x1|H). (4.19)

Using (4.14), (4.19) and [11, Proposition 4.24], we conclude that the law of the family {Zε,vε

, ε ≥
0} is tight on the space X

1
2−H

T . Hence, the family {(Zε,vε

,W (·, ·), vε); ε > 0} is tight on the
space

X
1
2−H

T × C([0, T ] × R) × L2([0, T ];H).
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Recall that the topology of weak convergence is used for L2([0, T ];H). Choosing a subsequence
if necessary, by Skorokhod’s embedding theorem, there exists a probability space (Ω,F , (F)t, P )

carrying a family of random fields (Z
ε,vε

,W
ε
(·, ·), vε) such that

{(Zε,vε

,W
ε
(·, ·), vε); ε > 0} = {(Zε,vε

,W (·, ·), vε); ε > 0},
in law and P -almost surely. {(Zε,vε

,W
ε
(·, ·), vε); ε > 0} converges to some random fields (Z

v
,

W (·, ·), v)) in the space
X

1
2−H

T × C([0, T ] × R) × L2([0, T ];H).

Here we should mention that the aboveW
ε
(·, ·) is the regularization of the noiseW (·, ·). One can

see [11] or [9] for some details about this regularization. In particular, the following stochastic
heat equation is held for

Z
ε,vε

(t, x) = pt ∗ u0(x) +
1

λ(ε)

∑
k≥1

∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Z

ε,vε

(s, �)), ek〉HdBk(s)

+
∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Z

ε,vε

(s, �)), vε(s, �)〉Hds

+
∫ t

0

{
pt−s ∗

[
b(u0(s, �) +

√
ελ(ε)Z

ε,vε

(s, �)) − b(u0(s, �))√
ελ(ε)

]}
(x)ds. (4.20)

Next we want to pass the limit in (4.20) as ε→ 0. First of all, we have

1
λ2(ε)

E

[∣∣∣∣
∑
k≥1

∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Z

ε,vε

(s, �)), ek〉HdBk(s)
∣∣∣∣
2]

=
1

λ2(ε)
E

[ ∫ t

0

‖pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Z

ε,vε

(s, �))‖2
Hds

]
, (4.21)

where E stands for the expectation under the probability measure P . By the Lipschitz conti-
nuity of σ it is easy to see that

‖pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Z

ε,vε

(s, �))‖2
H

≤ Cελ2(ε)
∫

R2
|pt−s(x− (y + z)) − pt−s(x− y)|2|Zε,vε

(s, y + z)|2|z|2H−2dydz

+ Cελ2(ε)
∫

R2
p2

t−s(x− y)|Zε,vε

(s, y + z) − Z
ε,vε

(s, y)|2|z|2H−2dydz

≤ Cελ2(ε)[(t− s)−1+H + (t− s)−
1
2 ].

Hence we have the following limit

1
λ2(ε)

E

[∣∣∣∣
∑
k≥1

∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Z

ε,vε

(s, �)), ek〉HdBk(s)
∣∣∣∣
2]

≤ Cε

∫ t

0

[(t− s)−1+H + (t− s)−
1
2 ]ds→ 0, ε→ 0, (4.22)

where we have used [13, Lemma 4.1] and the fact ‖Zε,vε

‖2
X2

T,θ
<∞.

Next we will prove

lim
ε→0

∫ t

0

〈pt−s(x− �)σ(u0(s, �) +
√
ελ(ε)Z

ε,vε

(s, �)), vε(s, �)〉Hds
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=
∫ t

0

〈pt−s(x− �)σ(u0(s, �)), v(s, �)〉Hds (4.23)

and

lim
ε→0

∫ t

0

{
pt−s ∗

[
b(u0(s, �) +

√
ελ(ε)Z

ε,vε

(s, �)) − b(u0(s, �))√
ελ(ε)

]}
(x)ds

=
∫ t

0

{pt−s ∗ [b′(u0(s, �))Z
v
(s, �)](x)}ds. (4.24)

Since vε → v weakly in L2([0, T ];H) as ε→ 0 and
∫ T

0
‖vε‖2ds ≤ N , in order to prove (4.23), it

suffices to show that

lim
ε→0

∫ t

0

E[‖pt−s(x− �)(σ(u0(s, �) +
√
ελ(ε)Z

ε,vε

(s, �)) − σ(u0(s, �)))‖2
H]ds = 0.

And this can be proved by using the estimates (5.22)–(5.31) in [13]. For the limit (4.24), by
using Taylor expansion and dominated convergence theorem, we have that

lim
ε→0

∫ t

0

E

[∣∣∣∣
∫

R

pt−s(x− y)
(
b(u0(s, y) +

√
ελ(ε)Z

ε,vε

(s, y)) − b(u0(s, y))√
ελ(ε)

− b′(u0(s, y))Z
v
(s, y)

)
dy

∣∣∣∣
2]
ds

= 0.

Then the limit (4.24) holds. Now let ε → 0 in (4.20) and use (4.22), (4.23) and (4.24), we
conclude that

Z
v
(t, x) = pt ∗ u0(x) +

∫ t

0

〈pt−s(x− �)σ(u0(s, �))v(s, �), v(s, �)〉Hds

+
∫ t

0

{pt−s ∗ [b′(u0(s, �))Z
v
(s, �)]}(x)ds. (4.25)

Since vε → v in distribution and vε has the same law as vε, v must have the same law as that
of v. It follows from the uniqueness of the solution of (3.1) that v(·, ·), the solution of the (3.1)
and v(·, ·) will have the law. We can finally conclude that

Zε,vε → Zv,

in distribution as ε→ 0, which completes the proof of this result. �
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[12] Hu, Y., Lê, K., Nualart, D., et al.: Parabolic Anderson model with rough dependence in space, E. Celledoni

et al. (eds.). Computation and Combinatorics in Dynamics, Stochastics and Control, Abel Symposia 13,

477–498 (2018)

[13] Hu, Y., Nualart, D., Zhang, T.: Large deviations for stochastic heat equation with rough dependence in

space. Bernoulli, 24(1), 354–385 (2018)

[14] Li, Y., Wang, R., Zhang, S.: Moderate deviations for a stochastic heat equation with spatially correlated

noise. Acta Appl. Math., 139, 59–80 (2015)

[15] Li, Y., Wang, R., Yao, N., et al.: Moderate deviations for a fractional stochastic heat equation with spatially

correlated noise. Stoch. Dyn., 17(4), 23 pages (2017)

[16] Lorenzini, D., Tucker, T. J.: The equations and the method of Chabauty–Coleman. Invent. Math., 148,

1–46 (2002)

[17] Mellali, T. El., Mellouk, M.: Large deviations for a fractional stocahstic heat equation in spatial dimension

R
d driven by a spatially correlated noise. Stoch. Dyn., 16(1), 22 pages (2016)

[18] Walsh, J. B.: An introduction to stochastic partial differential equations. In: Ecole d’été de Probabilités
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