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Abstract In this paper, we will analyze the blow-up behaviors for solutions to the Laplacian equation

with exponential Neumann boundary condition. In particular, the boundary value is with a kind of

singular data. We show a Brezis–Merle type concentration-compactness theorem, calculate the blow

up value at the blow-up point, and give a point-wise estimate for the profile of the solution sequence

at the blow-up point.

Keywords Exponential Neumann boundary condition, singular data, blow up analysis, profile of the

solution sequence

MR(2010) Subject Classification 35B40, 35J65

1 Introduction

Let Ω ⊂ R
2 be a smooth bounded domain. In the celebrated paper by Brezis and Merle [6],

they initiated the study of blow-up analysis for the Liouville equation

−Δu(x) = V (x)e2u in Ω (1.1)

with the energy condition
∫
Ω

V (x)eudx < +∞. Here V (x) is a nonnegative function. They first
showed that any solution to (1.1) belongs to L∞, and further they analyzed the convergence of a
sequence of solutions {un} to (1.1) and obtained a concentration-compactness result under the
uniformly bounded energy condition

∫
Ω

V (x)eundx < C. Their results initiate many works on
the asymptotic behavior of blow-up solutions. In particular, Yanyan Li and Shafrir [9] showed
the quantization of blow-up value at the blow-up point, and Yanyan Li [10] furthermore showed
the profile of solution sequences in a neighborhood of a blow-up point provided the oscillation
on the boundary of this neighborhood is uniformly bounded.

The corresponding Brezis–Merle type compactness-concentration result and the asymptotic
behavior of blow-up solutions to Liouville type equation with singular version

−Δu(x) = V (x)|x|2αe2u in Ω\{0} (1.2)

also had been established in [1–4], etc. Here α > −1. It turns out that when α �= 0, the problem
is more subtler. Since there possibly exist two types of bubbling solutions when a blow-up point
occurs at singular point, therefore one needs to analyze the problem deeply to get the results.

Received September 18, 2017, accepted November 2, 2018

The second author is supported by NSFC (Grant No. 11771285)

1) Corresponding author



464 Zhang T. and Zhou C. Q.

It is well known that Liouville equation (1.1) and (1.2) have a rich background in geometry
and physics. In particular, when α �= 0, Eq. (1.2) was studied in the problem of finding a metric
on Ω that has a prescribed scalar curvature with a conical singularity at zero, see [13, 14], etc.
Beside geometrical interpretations, Eq. (1.1) and Eq. (1.2) is also related to fields of physics and
Chern–Simons gauge theory, see [3, 12], etc. They also arise in some problems of combustion
and statistical mechanics, see [5, 7] and the reference therein.

The aim of the present paper is to generalize the blow-up analysis for Eq. (1.1) and Eq. (1.2)
to the Laplacian equation with exponential Neumann boundary condition and with singular
data. In other words, we assume that Ω ⊂ R

2 is a smooth bounded domain and 0 ∈ ∂Ω, and
consider the following problem

⎧
⎪⎨

⎪⎩

−Δu = 0 in Ω,
∂u

∂n
= V (x)|x|αeu − W (x) on ∂Ω\{0}, (1.3)

where α > −1. When α = 0, the problem had been investigated by Guo and Liu in [8]. They
proved a Brezis–Merle type concentration-compactness theorem and showed that the all blow-
up points of blow-up solutions are on the boundary ∂Ω. They further got the blow-up value,
which is 2πn for n ∈ N, at a blow-up point for the local problem of (1.3).

In this paper, we study the problem (1.3) with singular data. From [15], we know that
a weak solution u of (1.3) satisfies that u ∈ C2(Ω) ∩ C1(Ω\{0}) and u is continuous at the
origin. When α ≥ 0, u ∈ C2(Ω) ∩ C1(Ω). We first prove the following Brezis–Merle type
concentration-compactness Theorem:

Theorem 1.1 Assume that un is a sequence of solutions to (1.3) satisfying the energy condi-
tion ∫

∂Ω

Vn(x)|x|αeundx ≤ C, (1.4)

where C is a positive number, α > −1, 0 < a ≤ V
n
(x) ≤ b, Vn(x) ∈ C1(Ω) and Vn(x) → V (x)

uniformly in Ω. Moreover we assume Wn(x) ∈ C1(Ω) and Wn(x) → W (x) uniformly in Ω.
Then, there exists a subsequence, denoted still by un, satisfying one of the following alternatives:

(i) un is bounded in L∞(Ω),
(ii) un → −∞ uniformly on Ω,
(iii) there exists a finite blow-up set S = {p1, p2, . . . , pm} ⊂ ∂Ω such that, for any 1 ≤ i ≤ m,

there exists {xn} ⊂ ∂Ω, xn → pi, un(xn) → +∞. Moreover,

un(x) → −∞ uniformly on compact subsets of Ω\S,

and

Vn(x)|x|αeun ⇀
∑

miδpi

in the sense measure on ∂Ω with mi ≥ min{π(1 + α), π} for all i and α > −1.

Due to the singularity of (1.3), we cannot only use the argument given in [8]. So it is worth
mentioning that, if p = 0 is a blow-up point, we prove Theorem 1.1 by using the global Green
representation formula when −1 < α ≤ 0 and by using the local Green representation formula
and the Pohozaev type identity of equations when α > 0.
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Next we assume that {un} is a sequence of blow-up solutions. The important part of the
blow-up behaviors of solution sequences is to compute the blow-up value at p ∈ S. The blow-up
value at p ∈ S is defined as

m(p) = lim
R→0

lim
n→∞

∫

BR(p)∩∂Ω

Vn(x)|x|αeundσ.

Then we have the following proposition:

Proposition 1.2 There exists G ∈ W 1,q(Ω) ∩ C2
loc(Ω\S) with

∫
Ω

G = 0 for 1 < q < 2 such
that

un − 1
|Ω|

∫

Ω

un → G, (1.5)

in C2
loc(Ω\S) and weakly in W 1,q(Ω). Moreover at each blow-up point pl ∈ ∂Ω∩ S, there exists

R > 0 small enough such that BR(pl) ∩ S = {pl} and

G =
1
π

m(pl) log
1

|x − pl| + g(x),

for x ∈ BR(pl) ∩ Ω\{pl} with g ∈ C2(BR(pl)).

Proposition 1.2 and the Pohozaev type identity of equations imply the following theorem:

Theorem 1.3 If 0 ∈ S, then m(0) = 2π(1 + α). If p �= 0 and p ∈ S, then m(p) = 2π.

For purpose of accurate behaviors of solution sequences, it is necessary to show a point-wise
estimate for the profile of the solution sequences. Noticing that un has uniformly bounded
oscillations on compact subsets Ω\S due to (1.5), we assume simply that

⎧
⎪⎨

⎪⎩

−Δun = 0 in B+
1

∂un

∂n
= Vn(x)|x|αeun − Wn(x) on ∂B+

1 ∩ ∂R
2
+\{0},

(1.6)

with conditions
max un − min un ≤ C, on ∂B+

1 ∩ R
2
+,

and
Vn(x)|x|αeun ⇀ 2π(1 + α)δ0.

i.e., 0 is the only blow-up point on B̄+
1 . Assume that μn = un(xn) = max

B+
1

un(x), xn =

(sn, tn) ∈ B+
1 and λn = e−

μn
1+α . Then we have λn → 0 and xn → 0. Define the scaling functions

by
ũn(x) = un(λnx) + (1 + α) ln λn,

for any x ∈ B 1
λn

∩ R
2
+. Then ũn satisfies

⎧
⎪⎨

⎪⎩

−Δũn = 0, in B 1
λn

∩ R
2
+,

∂ũn

∂n
= Vn(λnx)|x|αeũn − λnWn(λnx), on B 1

λn
∩ ∂R

2
+\{0},

with the energy condition
∫

B 1
λn

∩∂R
2
+

Vn(λnx)|x|αeũndx ≤ C.
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When α ∈ (−1, +∞), if we assume limn→∞
|xn|
λn

= Λ < +∞, then we have ũn(x) ≤ 0 and
ũn(xn

λn
) = 0. Hence by Theorem 1.1, {ũn} admits a subsequence converging to ũ in C2

loc(R
2
+) ∩

C1
loc(R

2

+\{0}) which satisfy
⎧
⎪⎨

⎪⎩

−Δũ = 0, in R
2
+,

∂ũ

∂n
= V (0)|x|αeũ, on ∂R

2
+\{0},

with the condition
∫

∂R
2
+

V (0)|x|αeũdx ≤ C, sup
R

2
+

ũ(x) ≤ C. By classification results in [15],

ũ(x) takes the form

ũ(x) = ln
√

8(α + 1)λα+1

|xα+1 − x0|2 ,

for some point x0. Moreover
∫

∂R
2
+

V (0)|x|αeũdx = 2π(1 + α). Our main results is:

Theorem 1.4 For α ∈ (−1, +∞), assume that {un} satisfies the problem (1.6) with its con-
ditions. If limn→∞

|xn|
λn

= Λ < +∞, then there exists two constants r0 > 0 and C independent
of n, such that ∣

∣
∣
∣un(x) − μn − ũ

(
1
λn

x

)∣
∣
∣
∣ ≤ C, in Br0 ∩ R

2
+. (1.7)

Remark 1.5 In Theorem 1.4, we assume limn→∞
|xn|
λn

= Λ < +∞. In fact, we can prove

limn→∞
|xn|
λn

= Λ < +∞ when α ∈ (−1, 0). Now we give a sketch of proof. Suppose that

limn→∞
|xn|
λn

→ +∞ when α ∈ (−1, 0). Set τn = e−un(xn)

|xn|α = λn( λn

|xn| )
α → 0, n → ∞. Letting

ξn(x) = un(xn + τnx) − un(xn), we see that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−Δξn = 0, in Dk =
{

|x|≤ 1
2τn

}

∩R
2
− tn

τn

,

∂ξn

∂n
=

∣
∣
∣
∣

xn

|xn| +
τn

|xn|x
∣
∣
∣
∣

α

Vn(xn + τnx)eξn − τnWn(xn + τnx), on ∂R
2
− tn

τn

,

ξn(0) = maxD̄k
ξn = 0.

Now we distinguish two cases.

Case 1 tn

τn
→ +∞. Then after passing to a subsequence, ξn converges in C2

loc(R
2) to a

function ξ satisfying
⎧
⎨

⎩

−Δξ = 0 in R
2,

ξ(x) ≤ ξ(0) = 0 in R
2.

Hence ξ ≡ 0. Now we define a function wn(x) =
∫ s0

−s0
eun(x+(s,0))ds, x ∈ B̄+

2s0
, 0 < s0 ≤ 1

4 . Then
wn is a subharmonic function and wn(x) ≤ 1

a

∫ s0

−s0
Vneunds ≤ C

a . On the other hand, we have
for k > C

a and n sufficiently large

wn(xn) =
∫ s0

−s0

eun(xn+(s,0))ds

≥
∫ kτn

−kτn

eun(xn+(s,0))ds

=
∫ k

−k

eξn(s,0) →
∫ k

−k

eξ(s,0) >
2C

a
,
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which is a contradiction.

Case 2 tn

τn
→ t0 < +∞. Then after passing to a subsequence, ξn converges in C2

loc(R
2
−t0) ∩

C1
loc(R

2

−t0\{0}) to a function ξ satisfying
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δξ = 0 in R
2
−t0 ,

∂ξ

∂n
= V (0)eξ on ∂R

2
−t0 ,

ξ(x) ≤ ξ(0) = 0 in R̄
2
−t0 ,

with the condition ∫

∂R
2
−t0

V (0)eξds ≤ C, sup
R

2
−t0

ξ(x) ≤ C.

By the classification result in [11], we have
∫

∂R
2
−t0

V (0)eξds = 2π.

However, ∀δ > 0 small,

lim
n→+∞

∫

Bδ(0)∩∂R
2
+

|x|αVneundx ≥ lim
n→+∞

∫

{|x−xn|≤ δ
2 }∩∂R

2
+

|x|αVneundx

= lim
n→+∞

∫

|x|≤ δ
2τn

∩∂R
2
− tn

τn

∣
∣
∣
∣

xn

|xn| +
τn

|xn|x
∣
∣
∣
∣

α

Vn(xn + τnx)eξn

≥
∫

∂R
2
−t0

V (0)eξ

= 2π,

which also is a contradiction.
But for α ≥ 0, this is an open problem, we will make a further research about this problem.
The proof of Theorem 1.4 follows closely the idea in [1] where they gave the profile of blow-

up solutions to mean field equations with singular data. The approach in [1] was designed for
α ≥ 0 and for interior problem. In case of our exponential Neumann boundary and of more
general α ∈ (−1, +∞), we need some refined calculation on B 1

λn
\B(log 1

λn
)k ∩ R

2
+ for chosen

k > 1
1+α , and need to construct the new barrier functions for the corresponding Neumann

boundary problem in B 1
λn

\B(log 1
λn

)k ∩ R
2
+. See the details in Section 3.

2 Brezis–Merle Type Concentration Compactness Theorem

In this section, we would like to prove Theorem 1.1. We begin with a lemma in [8].

Lemma 2.1 ([8]) Let l be an embedded C1 curve in R
2. f ∈ L1(l). Set ‖f‖1 =

∫
l
|f(x)|dx,

and ρ = diam l. If we define

ω(x) =
1
π

∫

l

log
ρ

|x − y|f(y)dy,

then for every δ ∈ (0, π) we have
∫

l

exp[(π − δ)|ω(x)|/‖f‖1]dx ≤ C

δ
. (2.1)
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By using Lemma 2.1, we can get the following lemma.

Lemma 2.2 Set f(x) ∈ L1(∂B+
r (0) ∩ ∂R

2
+). And we define

ω(x) =
1
π

∫

∂B+
r (0)∩∂R

2
+

log
2r

|x − y|f(y)dy,

then for every k > 0 we have ek|ω| ∈ L1(∂B+
r (0) ∩ ∂R

2
+).

Proof Let 0 < ε < 1
k . Since f(x) ∈ L1(∂B+

r (0) ∩ ∂R
2
+), we can split f(x) as f(x) = f1(x) +

f2(x) with ‖f1‖1 < ε and f2 ∈ L∞(∂B+
r (0) ∩ ∂R

2
+). Write ω(x) = ω1(x) + ω2(x) where

ωi(x) =
1
π

∫

∂B+
r (0)∩∂R

2
+

log
2r

|x − y|fi(y)dy.

Choosing δ = π − 1 in Lemma 2.1 we find
∫

∂B+
r (0)∩∂R

2
+

exp[|ω1(x)|/‖f1‖1]dx ≤ C. This implies

that ek|ω1| ∈ L1(∂B+
r (0) ∩ ∂R

2
+) for every k > 0. Thus the conclusion follows the fact |ω| ≤

|ω1| + |ω2| and ω2 ∈ L∞(∂B+
r (0) ∩ ∂R

2
+). �

Now we show the small energy regularities by applying Lemma 2.1 to the solutions of
(1.3)–(1.4).

Proposition 2.3 Assume un is a sequence of solutions of (1.3)–(1.4). Let un = 1
|∂Ω|

∫
∂Ω

un.
If one of the following alternatives is satisfied,

(i) x ∈ Ω,
(ii) x ∈ ∂Ω, x �= 0 and there exist a neighborhood BR of x and a constant β1 < π such that

∫

∂Ω∩BR(x)

Vn(x)|x|αeundx ≤ β1 < π, ∀n,

(iii) x = 0 ∈ ∂Ω, −1 < α < 0, and there exist a neighborhood BR of 0 and a constant
β1 < π(1 + α) such that

∫

∂Ω∩BR(0)

Vn(x)|x|αeundx ≤ β2 < π(1 + α), ∀n,

(iv) x = 0 ∈ ∂Ω, α ≥ 0, and there exist a neighborhood BR of 0 and a constant β3 < π such
that ∫

∂Ω∩BR(0)

Vn(x)|x|αeundx ≤ β3 < π, ∀n,

then un − un is bounded near x.

Proof When α = 0, it is the smooth case. The results has been shown in [8]. So to prove the
proposition, it is sufficient to show (iii) and (iv) for α �= 0.

By using the Green representation, we have

un(x) = un +
∫

∂Ω

(
1
π

log
ρ

|x − y| + R(x, y)
)

(Vn(y)|y|αeun − Wn(y))dy. (2.2)

Here R(x, y) is the regular part of Green function and ρ = diam Ω. Denote

wn(x) =
1
π

∫

∂Ω∩BR(0)

log
ρ

|x − y|Vn(y)|y|αeundy, (2.3)

In the case of (iii), by Lemma 2.1 we have for any δ ∈ (0, π),
∫

∂Ω∩BR(0)

exp
[

π − δ

‖Vn|x|αeun‖1
wn(y)

]

dy ≤ C

δ
,
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where ‖Vn|x|αeun‖1 =
∫

∂Ω∩BR(0)
Vn(x)|x|αeundx. In particular, we can choose δ sufficiently

small such that π−δ
β2

= p > 1
1+α > 1. Then we have

∫

∂Ω∩BR(0)

epwn ≤ C. (2.4)

Let vn = un − wn. Then for any x ∈ BR/2(0) ∩ Ω̄ we have

|vn(x) − un| ≤ 1
π

∫

∂Ω\BR(0)

log
ρ

R/2
Vn(y)|y|αeundy +

∫

∂Ω

Vn(y)|y|αeundy + C ≤ C. (2.5)

From (2.4)–(2.5), we obtain
∫

∂Ω∩BR/2(0)

epun ≤
∫

∂Ω∩BR/2(0)

ep(wn+un+C) ≤ Cepun .

Note that when −1 < α < 0, the energy condition (1.4) implies
∫

∂Ω

eun ≤ C. (2.6)

Hence from Jensen’s inequality it holds

eun = e
1

|∂Ω|
∫

∂Ω un ≤ 1
|∂Ω|

∫

∂Ω

eun ≤ C.

Consequently we get ∫

∂Ω∩BR/2(0)

epun ≤ C.

Since
∫

∂Ω∩BR(0)
|x|αq ≤ C if q = p

p−1 , we have for x ∈ BR/4(0) ∩ Ω̄,

|un(x) − ūn(x)| ≤ 1
π

∫

∂Ω∩BR/2(0)

log
ρ

|x − y|Vn(y)|y|αeundy

+
1
π

∫

∂Ω\BR/2(0)

log
ρ

|x − y|Vn(y)|y|αeundy + C

≤ C‖eun‖Lp(∂Ω∩BR/2(0))

∥
∥
∥
∥|y|α log

ρ

|x − y|
∥
∥
∥
∥

Lq(∂Ω∩BR/2(0))

+ C log
ρ

R/4

∫

∂Ω

Vn(y)|y|αeundy + C

≤ C.

In the case of (iv), noting that the definition of wn in (2.3) and using Lemma 2.1 again, we
can choose small positive number δ such that π−δ

β3
= p > 1 and

∫

∂Ω∩BR(0)

epwn ≤ C. (2.7)

Let vn = un − wn and for x ∈ BR/2(0) ∩ Ω̄ we can also obtain

|vn(x) − un| ≤ 1
π

∫

∂Ω\BR(0)

log
ρ

R/2
Vn(y)|y|αeundy +

∫

∂Ω

Vn(y)|y|αeun + C ≤ C. (2.8)

From (2.7)–(2.8), we have
∫

∂Ω∩BR/2(0)

epun ≤
∫

∂Ω∩BR/2(0)

ep(wn+un+C) ≤ Cepun .
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Now take t such that
∫

∂Ω
1

|x|αt dx ≤ C and set s = t
t+1 < 1. It follows that

∫

∂Ω

esundx =
∫

∂Ω

esun |x|αs|x|−αsdx ≤
( ∫

∂Ω

eun |x|αdx

)s(∫

∂Ω

1
|x|αt

dx

)1−s

≤ C.

From Jensen’s inequality

esun = e
1

|∂Ω|
∫

∂Ω sun ≤ 1
|∂Ω|

∫

∂Ω

esun ≤ C,

hence ∫

∂Ω∩BR/2(0)

epun ≤ C.

Now return to (2.2). For x ∈ BR/4(0) ∩ Ω̄, we have

|un(x) − ūn(x)| ≤ 1
π

∫

∂Ω∩BR/2(0)

log
ρ

|x − y|Vn(y)|y|αeundy

+
1
π

∫

∂Ω\BR/2(0)

log
ρ

|x − y|Vn(y)|y|αeundy + C

≤ C‖eun‖Lp(∂Ω∩B R
2

(0)) + C log
4ρ

R

∫

∂Ω

Vn(y)|y|αeundy + C

≤ C.

Thus we complete the proof of this proposition. �

Remark 2.4 From the proof of Proposition 2.3 we know un = 1
|∂Ω|

∫
∂Ω

un is bounded from
above. Define the singular set Σ by

Σ =
{

0 ∈ ∂Ω
∣
∣
∣
∣ lim

R→0
lim

n→∞

∫

∂Ω∩BR(0)

Vn(x)|x|αeun ≥ π(1 + α)
}

∪
{

0 �= x ∈ ∂Ω
∣
∣
∣
∣ lim

R→0
lim

n→∞

∫

∂Ω∩BR(x)

Vn(x)|x|αeun ≥ π

}

,

when −1 < α < 0, or

Σ =
{

x ∈ ∂Ω
∣
∣
∣
∣ lim

R→0
lim

n→∞

∫

∂Ω∩BR(x)

Vn(x)|x|αeun ≥ π

}

,

when α ≥ 0. Noting that the definition of the blow-up set S in Theorem 1.1 we know that
Σ = S from Proposition 2.3.

Proof of Theorem 1.1 By Proposition 2.3, un − un is bounded in L∞
loc(Ω\S). If S = ∅, then

(i), (ii) holds depending on whether un is bounded or un → −∞.
If S �= ∅, we will show (iii). Suppose x0 ∈ S and x0 �= 0, it follows from the arguments in [8]

we know that (iii) holds. Next we suppose x0 = 0 ∈ S.
The first case is −1 < α < 0. To get the conclusion, it is sufficient to show that un → −∞.

To this end, let us consider wn which is defined as in (2.3). Since for each 0 < ε < R and
x ∈ ∂Ω ∩ BR(0), we have

wn(x) ≥ 1
π

∫

∂Ω∩Bε(0)

log
ρ

|x − y|Vn(y)|y|αeundy

≥ 1
π

∫

∂Ω∩Bε(0)

log
ρ

|x| + ε
Vn(y)|y|αeundy.
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We obtain from the definition of the singular set that

lim
n→∞wn(x) ≥ (1 + α) log

1
|x| − C, x ∈ ∂Ω ∩ BR(0).

If un is bounded, then, by (2.5), vn = un − wn is bounded in Ω ∩ BR/2(0). Hence we have

lim
n→∞

∫

∂Ω∩BR/2(0)

|x|αeundσ ≥ C lim
n→∞

∫

∂Ω∩BR/2(0)

|x|αewndσ

≥ C lim
n→∞

∫

∂Ω∩BR/2(0)

1
|x|dσ

= +∞,

which is a contradiction with the energy condition.
The second case is α ≥ 0. In this case, it is a little bit subtle. We will use a trick in [3]. We

assume 0 is the only blow-up point in BR(0)∩Ω. For simplicity, we assume Ω∩BR(0) = B+
R(0).

And we only need to show that un → −∞ uniformly in compact subsets of B+
R(0)\{0}. We

assume by contradiction that un is uniformly bounded in L∞
loc(B

+
R(0)\{0}). By elliptic estimates

and by extracting a subsequence, we may assume that

un → ξ pointwise a.e. and in C1,δ
loc (B+

R(0)\{0}), for some δ ∈ (0, 1),

Vn(x)|x|αeun → V (x)|x|αeξ, in C0
loc(B

+
R(0)\{0}).

Note that by Fatou’s Lemma, V (x)|x|αeξ ∈ L1(∂B+
R(0) ∩ ∂R

2
+). Then we derive

Vn(x)|x|αeun ⇀ V (x)|x|αeξ + βδ0, (2.9)

weakly in the sense of measures on ∂B+
R(0) ∩ ∂R

2
+, where

β = m(0) = lim
R→0

lim
n→∞

∫

∂B+
R(0)∩∂R

2
+

Vn(x)|x|αeundσ.

Next we choose r0 is small enough. Fix 0 < r0 < R, and in B+
r0(0) we define

ϕn(x) = Vn(x)|x|αeun , ϕ(x) = V (x)|x|αeξ.

By Green’s representation formula for un in B+
r0(0) and (2.9) to derive that

ξ(x) =
β

π
log

1
|x| + φ(x) + γ(x), (2.10)

with
φ(x) =

1
π

∫

∂B+
r0 (0)∩∂R

2
+

log
1

|x − y|V (y)|y|αeξdy,

and

γ(x) =
1
π

∫

∂B+
r0 (0)∩R

2
+

log
1

|x − y|
∂ξ

∂ν
dy +

1
π

∫

∂B+
r0 (0)∩R

2
+

(x − y) · ν
|x − y|2 ξ(y)dy.

Clearly,
γ(x) ∈ C1(B+

r (0)), for every r ∈ (0, r0).

For φ(x), we observe first that φ(x) is clearly bounded from below on B+
r0(0), i.e.,

φ(x) ≥ 1
π

log
1

2r0
‖ϕ‖L1(∂B+

r0 (0)∩∂R
2
+), ∀x ∈ B+

r0(0).
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For r0 is small enough, by (2.10) we find

ϕ(x) = V (x)|x|αeξ = V (x)
|x|α
|x| β

π

eφ(x)+γ(x)+βR(x,0)+ β
π ln(2r0) ≥ C

|x| β
π −α

.

Thus by the integrability of ϕ, we see that necessarily

β < π(1 + α). (2.11)

On the other hand, let us set s = β
π −α. In view of (2.11), we have s < 1. Furthermore, we

have
ϕ(x) = V (x)|x|αeξ ≤ C

|x|s eφ(x), in B+
r0(0).

By Lemma 2.2, for every k > 0 we have ek|φ| ∈ L1(∂B+
r0

(0) ∩ ∂R
2
+), we have by Hölder’s

inequality to get ϕ ∈ Lt(∂B+
r0

(0)∩ ∂R
2
+) for any t ∈ (1, 1

s ) if s > 0, and ϕ ∈ Lt(∂B+
r0

(0)∩ ∂R
2
+)

for any t > 1 if s ≤ 0.
Now we estimate ∇φ(x) for x ∈ B+

r0
(0). First we have

|∇φ(x)| ≤ 1
π

∫

{|x−y|≥ |x|
2 }∩∂B+

r0 (0)∩∂R
2
+

1
|x − y|ϕ(y)dy

+
1
π

∫

{|x−y|≤ |x|
2 }∩∂B+

r0 (0)∩∂R
2
+

1
|x − y|ϕ(y)dy

= I1 + I2.

For I1, we fix t ∈ (1, 1
s ) and choose τ > 0 such that τt

t−1 < 1, and hence we have 0 < τ < 1− s.
By Hölder’s inequality we obtain

I1 ≤ 1
π

( ∫

{|x−y|≥ |x|
2 }∩∂B+

r0 (0)∩∂R
2
+

1

|x − y| τt
t−1

dy

) t−1
t

·
( ∫

{|x−y|≥ |x|
2 }∩∂B+

r0 (0)∩∂R
2
+

1
|x − y|t(1−τ)

|ϕ(y)|tdy

) 1
t

≤ C

|x|1−τ
.

For I2, since |x − y| ≤ |x|
2 implies that |y| ≥ |x|

2 , we have

I2 ≤ C

∫

{|x−y|≤ |x|
2 }∩∂B+

r0 (0)∩∂R
2
+

1
|x − y|

1
|y|s dy

≤ C

|x|s
∫

{|x−y|≤ |x|
2 }∩∂B+

r0 (0)∩∂R
2
+

1
|x − y|dy

≤ C

|x|s′ ,

for some s′ with 0 < s′ < 1. In conclusion, for all x ∈ B+
r0

(0) we have

|∇φ(x)| ≤ C

|x|1−τ
+

C

|x|s′ , (2.12)

for suitable 0 < τ < 1−s and 0 < s′ < 1. At this point we are ready to derive our contradiction
by means of a Pohozaev type identity. We multiply all terms in (1.3) by x · ∇un and integrate
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over B+
r (0) ∩ ∂R

2
+ for any r ∈ (0, r0) to get

r

∫

∂B+
r (0)∩R

2
+

(
1
2
|∇un|2 −

∣
∣
∣
∣
∂un

∂n

∣
∣
∣
∣

2)

dσ

= −(1 + α)
∫

∂B+
r (0)∩∂R

2
+

Vn(s, 0)|s|αeunds + Vn(s, 0)|s|αseun(s,0) |s=r
s=−r

−
∫

∂B+
r (0)∩∂R

2
+

x · ∇Vn(x)|s|αeunds −
∫

∂B+
r (0)∩∂R

2
+

x · ∇unWn(s, 0)ds. (2.13)

Passing to the limit we have

r

∫

∂B+
r (0)∩R

2
+

(
1
2
|∇ξ|2 −

∣
∣
∣
∣
∂ξ

∂n

∣
∣
∣
∣

2)

dσ

= −(1 + α)
∫

∂B+
r (0)∩∂R

2
+

V (x)|x|αeξds + V (x)|s|αseξ(s,0) |s=r
s=−r

−
∫

∂B+
r (0)∩∂R

2
+

x · ∇V (x)|s|αeξds − β(1 + α) + 0r(1). (2.14)

Set η = φ + γ. Since ∇ξ(x) = −β
π

x
|x|2 + ∇η(x) and by (2.12)

|∇η(x)| ≤ C

r1−τ
+

C

rs′ + C,

with 0 < τ < 1 − s and 0 < s′ < 1, we have

Φr := r

∫

∂B+
r (0)∩R

2
+

(
1
2
|∇ξ|2 −

∣
∣
∣
∣
∂ξ

∂n

∣
∣
∣
∣

2)

ds

= r

∫

∂B+
r (0)∩R

2
+

1
2

[
β2

π2|x|2 − 2βx · ∇η

π|x|2 + |∇η|2
]

+
(

β

π|x| −
x · ∇η

|x|
)2

ds

= −1
2

(
β

π

)2

π + r

∫

∂B+
r (0)∩R

2
+

βx · ∇η

π|x|2 +
1
2
|∇η|2 −

(
x · ∇η

|x|
)2

ds

= −β2

2π
+ o(1), as r → 0. (2.15)

Similarly, letting r → 0 on the right side of (2.14) we also can obtain that

Φr = −β(1 + α) + o(1), r → 0. (2.16)

Comparing (2.15) and (2.16), we see that necessarily β = 2π(1+α), in contradiction with (2.11).

Proof of Proposition 1.2 For any p > 2, let 2 > q = p
p−1 > 1. Then we have

‖∇un‖Lq(Ω) = sup
{∫

Ω

∇un∇ϕdv

∣
∣
∣
∣∀ϕ ∈ W 1,p(Ω),

∫

Ω

ϕdv = 0, ‖ϕ‖W 1,p(Ω) = 1
}

.

By the Sobolev embedding theorem, we can get ‖ϕ‖L∞(Ω) ≤ C. It follows that
∣
∣
∣
∣

∫

Ω

∇un∇ϕdv

∣
∣
∣
∣ ≤

∫

∂Ω

(Vn(x)|x|αeun + |Wn(x)|)|ϕ|dσ ≤ C.

Hence un − 1
|Ω|

∫
Ω

un is uniformly bounded in W 1,q(Ω). Next, we define the Green function G
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by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ΔG = 0 in Ω,
∂G

∂n
=

∑

p∈∂Ω∩S

m(p)δp − W (x) on ∂Ω,

∫

Ω

G = 0.

We have for any ϕ ∈ C∞(Ω),
∫

Ω

∇(un − G)∇ϕdv =
∫

∂Ω

(Vn(x)|x|αeun − Wn(x) − Σm(p)δp + W (x))ϕ → 0.

Combining the fact that un − 1
|Ω|

∫
Ω

un is uniformly in W 1,q(Ω), we get the conclusion of
Proposition 1.2.

Now we can compute the blow-up value by using the Pohozaev identity and Proposition 1.2.

Proof of Theorem 1.3 First we assume the blow-up point p = 0. For sufficiently small r > 0,
then 0 is the only blow-up point in Br(0) ∩ Ω. In view of Pohozaev identity for solutions un

of (2.13) and Proposition 1.2, we have

lim
r→0

lim
n→∞ r

∫

∂B+
r (0)∩R

2
+

∣
∣
∣
∣
∂un

∂n

∣
∣
∣
∣

2

− 1
2
|∇un|2

= lim
r→0

lim
n→∞ r

∫

∂B+
r (0)∩R

2
+

∣
∣
∣
∣
∂G

∂n

∣
∣
∣
∣

2

− 1
2
|∇G|2

=
1
2π

m2(0). (2.17)

Since un → −∞ uniformly on ∂B+
r (0) ∩ R

2
+, we have

lim
r→0

lim
n→∞Vn(s, 0)|s|αseun |r−r= 0,

lim
r→0

lim
n→∞

∫

∂B+
r (0)∩∂R

2
+

x · ∇Vn(x)|s|αeunds = 0,

and

lim
r→0

lim
n→∞

∫

∂B+
r (0)∩∂R

2
+

x · ∇unWn(s, 0)ds = 0.

Letting r → 0 and n → ∞ in (2.13), we get that

1
2π

m2(0) = (1 + α)m(0).

It follows that m(0) = 2π(1 + α). When the blow-up point p �= 0, we can obtain m(p) = 2π in
a similar way.

3 Proof of Theorem 1.4

Proof of Theorem 1.4 The proof consists of four steps.

Step 1 From the rescaling functions ũn(x) = un(λnx) + (1 + α) lnλn, (1.7) is valid in
BλnR ∩ R

2
+ for any fixed R > 0 and for some constants C > 0 independent of n. Hence we are

left to prove (1.7) are valid on (Br0\BλnR) ∩ R
2
+ for some r0 > 0.
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Step 2 It follows from the boundary condition in (1.6) that

0 ≤ un(x) − min
y∈∂B+

1 ∩R
2
+

un(y) ≤ C, on ∂B+
1 ∩ R

2
+.

Let wn(x) be the solution of the following problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δwn = 0 in B+
1 ,

wn = un(x) − min
y∈∂B+

1 ∩R
2
+

un(y), on ∂B+
1 ∩ R

2
+,

∂wn

∂n
= 0 on ∂B+

1 ∩ ∂R
2
+.

We can apply the maximal principle to obtain that wn is uniformly bounded in B
+

1 . And the
function vn = un − miny∈∂B+

1 ∩R
2
+

un(y) − wn satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δvn = 0 in B+
1 (0),

vn = 0 on ∂B+
1 ∩ R

2
+,

∂vn

∂n
= Vn(x)|x|αeun − Wn(x) on ∂B+

1 ∩ ∂R
2
+.

Then we use the Green representation formula to obtain

vn(x) =
1
π

∫

∂B+
1 ∩∂R

2
+

(

log
1

|x − y|
)

Vn(y)|y|αeundy + Rn(x),

where Rn(x) is uniformly bounded function in B
+

1 . Hence we obtain

un(x) − min
y∈∂B+

1 ∩R
2
+

un(y) =
1
π

∫

∂B+
1 ∩∂R

2
+

(

log
1

|x − y|
)

Vn(y)|y|αeundy + O(1).

Here and in the sequel O(1) denotes the uniformly bounded term. We set

Mn =
∫

∂B+
1 ∩∂R

2
+

Vn(y)|y|αeundy.

Recalling the definition of ũn(x), we get

ũn(x) =
1
π

∫

{|y|< 1
λn

}∩∂R
2
+

(

log
1

|x − y|
)

Vn(λny)|y|αeũndy

−
[
Mn

π
− (1 + α)

]

log λn + min
y∈∂B+

1 ∩R
2
+

un(y) + O(1).

Further from ũn(0) = O(1) we obtain

1
π

∫

{|y|< 1
λn

}∩∂R
2
+

(

log
1
|y|

)

Vn(λny)|y|αeũndy

=
[
Mn

π
− (1 + α)

]

log λn − min
∂B+

1 ∩R
2
+

un(y) + O(1).

Putting the above equations together, we get

ũn(x) =
1
π

∫

{|y|< 1
λn

}∩∂R
2
+

log
|y|

|x − y|Vn(λny)|y|αeũndy + O(1).
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Claim For small δ > 0 there exist R = Rδ > 1 and N = Nδ ∈ N such that when x ∈ B 1
λn

∩R
2
+

with |x| > 2R and n > N we have

ũn(x) +
Mn

π
log |x| ≤ δ log |x| + O(1). (3.1)

To establish the claim notice that limn→∞ Mn = 2π(1 + α), therefore for any small δ > 0
and any large n, we can choose R large enough such that

1
π

∫

{|y|≤R}∩∂R
2
+

Vn(λny)|y|αeũndy ≥ Mn

π
− δ

2(α + 2)
.

Taking x ∈ B 1
λn

∩ R
2
+ with |x| > 2R and decomposing ũn as

ũn(x) =
1
π

∫

{|y|≤R}∩∂R
2
+

log
|y|

|x − y|Vn(λny)|y|αeũndy

+
1
π

∫

{R≤|y|≤ |x|
2 }∩∂R

2
+

log
|y|

|x − y|Vn(λny)|y|αeũndy

+
1
π

∫

B(x,
|x|
2 )∩∂R

2
+

log
|y|

|x − y|Vn(λny)|y|αeũndy

+
1
π

∫

Ω′∩∂R
2
+

log
|y|

|x − y|Vn(λny)|y|αeũndy + O(1)

= I1 + I2 + I3 + I4 + O(1),

where Ω′ = (B 1
λn

∩ ∂R
2
+)\(B |x|

2
∪ B(x, |x|

2 )). Notice that log |y|
|x−y| ≤ C in B |x|

2
∪ Ω′ with

a constant C > 0, we have that I2 and I4 are bounded uniformly with respect to n. On
the other hand, recalling that ũn(x) ≤ 0 and |x|

2 ≤ |y| ≤ 3
2 |x| in B(x, |x|

2 ), if we set Dα =
B(x, |x|

2 ) ∩ {|x − y| < |x|−(α+1)}, then we get

I3 ≤ 1
π

∫

Dα∩∂R
2
+

log
|y|

|x − y|Vn(λny)|y|αeũndy

+
α + 2

π
log |x|

∫

B(x, |x|
2 )∩∂R

2
+

Vn(λny)|y|αeũndy + O(1)

≤ C|x|α
∫

{|x−y|≤|x|−(α+1)}∩∂R
2
+

log
1

|x − y|dy +
δ

2
log |x| + O(1)

≤ δ

2
log |x| + O(1).

Putting those estimates together, and also noticing that 1
2 ≤ |x−y|

|x| ≤ 3
2 for |y| ≤ R and |x| > 2R,

we find

ũn(x) ≤ 1
π

log
2R

|x|
∫

{|y|≤R}∩∂R
2
+

Vn(λny)|y|αeũndy +
δ

2
log |x| + O(1)

≤ −
(

Mn

π
− δ

)

log |x| + O(1),

and (3.1) is established. From (3.1) it follows that

eũn ≤ C|x|−Mn
π +δ, (3.2)
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for x ∈ B 1
λn

∩ R
2
+ with |x| > 2R. Since Mn = 2π(1 + α) + o(1), by some computations we can

obtain ∫

B 1
λn

∩∂R
2
+

| log |y|||y|αeũndy ≤ C. (3.3)

Next let us estimate the decay of ũn(x) and ∇ũn(x) at infinity. We choose some k satisfying
k > 1

1+α . Since α ∈ (−1, +∞), we have 0 < k < +∞. Then we claim for x ∈ (B 1
λn

\B(log 1
λn

)k)∩
R

2
+,

∣
∣
∣
∣ũn(x) +

Mn

π
log |x|

∣
∣
∣
∣ ≤ C, (3.4)

∣
∣
∣
∣∇ũn(x) +

Mn

π

x

|x|2
∣
∣
∣
∣ ≤ C

(
1

|x|2+α−δ
+

1
|x|2

)

. (3.5)

To prove the above claim, let us set

M̃n(x) =
∫

{|y|≤η0|x|}∩B 1
λn

∩∂R
2
+

Vn(λny)|y|αeũndy

for any small η0 > 0 (can be fixed latter). We can show that

|Mn − M̃n(x)| =
∫

B 1
λn

∩∂R
2
+\{|y|≤η0|x|}

Vn(λny)|y|αeũndy

≤
∫

|y|≥η0(log 1
λn

)k∩∂R
2
+

Vn(λny)|y|−Mn
π +δ+αdy

≤
(

log
1
λn

)−1(

log
1
λn

)1−k(1+α+δ+o(1))

= o(1)
(

log
1
λn

)−1

(3.6)

for x ∈ (B 1
λn

\B(log 1
λn

)k) ∩ R
2
+. While by (3.3) we obtain

ũn(x) =
1
π

∫

B 1
λn

∩∂R
2
+\{|y|≤η0|x|}

log
|y|

|x − y|Vn(λny)|y|αeũndy

+
1
π

∫

B 1
λn

∩∂R
2
+∩{|y|≤η0|x|}

log
1

|x − y|Vn(λny)|y|αeũndy + O(1).

Noting that
∣
∣
∣
∣

∫

B 1
λn

∩∂R
2
+\{|y|≤η0|x|}

log
|y|

|x − y|Vn(λny)|y|αeũndy

∣
∣
∣
∣

≤ C

∫

∂R
2
+∩{|y|≥η0(log 1

λn
)k}

log |y||y|αeũndy

= O(1)
(

log
1
λn

)−1

,

hence, it follows from that (1 − η0)|x| ≤ |x − y| ≤ (1 + η0)|x| when |y| ≤ η0|x| to get

ũn(x) = − 1
π

M̃n(x) log |x| + O(1)
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provided η0 is small enough. Consequently, by (3.6) we get (3.4).
For (3.5), we use Green representation formula of ũn(x) (see (3.1)) to obtain

∇ũn(x) +
Mn

π

x

|x|2 =
1
π

∫

B 1
λn

∩∂R
2
+

[
x

|x|2 − x − y

|x − y|2
]

Vn(λny)|y|αeũndy + O(1).

Set Ωn,1 = B 1
λn

∩ ∂R
2
+ ∩ {|y| ≤ |x|

2 }, Ωn,2 = B 1
λn

∩ ∂R
2
+ ∩ { |x|

2 ≤ |y| ≤ 2|x|}, Ωn,3 = B 1
λn

∩
∂R

2
+ ∩ {|y| ≥ 2|x|} for any given x ∈ (B 1

λn
\B(log 1

λn
)k) ∩ R

2
+. Notice that 1

|x−y| ≤ 1
|x|−|y| ≤ 2

|x|
in Ωn,1 and |y|

|x−y| ≤ |y|
|y|−|x| ≤ 2 in Ωn,3. Since by the mean value theorem for any |x| ≥ 1 there

holds ∣
∣
∣
∣

x

|x|2 − x − y

|x − y|2
∣
∣
∣
∣ ≤

|y|
|x − y||x| ,

we obtain from (3.2) that

1
π

∫

B 1
λn

∩∂R
2
+

∣
∣
∣
∣

x

|x|2 − x − y

|x − y|2 |Vn(λny)|y
∣
∣
∣
∣

α

eũndy

≤ C

|x|2
∫

Ωn,1

|y|Vn|y|αeũndy + C

∫

Ωn,2

|y|αeũn

|x − y| dy +
C

|x|
∫

Ωn,3

|y|αeũndy

≤ C

|x|2
∫

Ωn,1

Vn|y|1+αeũndy + C

∫ 2|x|

|x|
2

s−2−α+δ

√
(x1 − s)2 + x2

2

ds +
C

|x|
∫ +∞

2|x|
s−2−α+δds

≤ C

(
1

|x|2+α−δ
+

1
|x|2

)

.

Thus we get (3.5).

Step 3 We want to show that

Mn = 2π(1 + α) + O(1)
(

log
1
λn

)−1

. (3.7)

For this purpose, by scaling back to un, (3.4)–(3.5) yield

un(x) =
Mn

π
log

1
|x| +

[

(1 + α) − Mn

π

]

log
1
λn

+ O(1), (3.8)

∇un(x) = −Mn

π

x

|x|2 + O

(
λ1+α−δ

n

|x|2+α−δ
+

λn

|x|2
)

, (3.9)

for x ∈ (B1 ∩ R
2
+)\Bλn(log 1

λn
)k . Now we take r = λn(log 1

λn
)k+1 and apply Pohozaev iden-

tity (2.13) in Br. It follows from (3.8)–(3.9) to get

r

∫

∂B+
r ∩R

2
+

∣
∣
∣
∣
∂un

∂n

∣
∣
∣
∣

2

− 1
2
|∇un|2 =

M2
n

2π
+ O(1)

(

log
1
λn

)−1

,

∫

∂B+
r ∩∂R

2
+

x · ∇Vn(x)|s|αeunds = O(1)
(

log
1
λn

)−1

,

Vn(s, 0)|s|αseun(s,0) |s=r
s−r = O(1)r1+α−Mn

π

(
1
λn

)1+α−Mn
π

= O(1)
(

log
1
λn

)−1

,

∫

∂B+
r ∩∂R

2
+

x · ∇un(x)Wn(s, 0)ds = O(1)
(

log
1
λn

)−1

,
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and

(1 + α)Mn − (1 + α)
∫

∂B+
r ∩∂R

2
+

Vn(x)|x|αeundσ

= (1 + α)
∫

∂(B+
1 \B+

r )∩∂R
2
+

Vn(x)|x|αeundσ

= O(1)r1+α−Mn
π

(
1
λn

)1+α−Mn
π

= O(1)
(

log
1
λn

)−1

.

So we get (3.7).

Step 4 Now we come to prove the local estimate (1.7). From Step 1, we are left to show that

|ũn(x) − ũ(x)| ≤ C (3.10)

for x ∈ (B 1
λn

\BR) ∩ R
2
+, here R is large enough. Notice that

|ũn(x) − ũ(x)| ≤ |ũn(x) + 2(1 + α) log |x|| + |ũ(x) + 2(1 + α) log |x||,
and with the asymptotic behavior of entire solution

|ũ(x) + 2(1 + α) log |x|| ≤ C,

for x ∈ R
2
+\BR. So to prove (3.10), it is suffice to prove

|ũn(x) + 2(1 + α) log |x|| ≤ C,

for x ∈ (B 1
λn

\BR) ∩ R
2
+. For this purpose, by (3.4), (3.7), we have

|ũn(x) + 2(1 + α) log |x|| ≤
∣
∣
∣
∣ũn(x) +

Mn

π
log |x|

∣
∣
∣
∣ +

∣
∣
∣
∣
Mn

π
log |x| − 2(1 + α) log |x|

∣
∣
∣
∣ ≤ C

for x ∈ (B 1
λn

\B(log 1
λn

)k)∩R
2
+. Since {ũn(x)} converges to ũ(x) in C1,γ

loc (R2
+) and ũ(x) satisfies

that |ũ(x) + 2(1 + α) log |x|| ≤ C for x ∈ R
2
+\BR, we have

|ũn(x) + 2(1 + α) log |x|| ≤ |ũn(x) − ũ(x)| + |ũ(x) + 2(1 + α) log |x|| ≤ C,

for x ∈ ∂BR ∩ R
2
+ and large n and large R. We construct w±(x) as follows:

w±(x) = −2(1 + α) log |x| ± (C1 − C2|x|− 1
l ) ∓ C3t

|x|1+p

for positive constant numbers C1, C2 and C3. Let 0 < p < 1 + α and l > 1
p . Then

Δw+(x) = −C2

l2
|x|− 1

l −2 +
(1 + p)(1 − p)C3t

|x|3+p
,

and
∂w+(x)

∂t
= −2(1 + α)t

|x|2 +
C2t

l|x| 1l +2
+

C3(1 + p)t2

|x|3+p
− C3

|x|1+p
.

Hence, by a suitable choice of C1, C2 and C3, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δ(ũn(x) − w+(x)) ≤ 0 in (B(log 1
λn

)k\BR) ∩ R
2
+,

∂(ũn(x) − w+(x))
∂n

≤ 0 on (B(log 1
λn

)k\BR) ∩ ∂R
2
+,

ũn(x) − w+(x) ≤ 0 on ∂(B(log 1
λn

)k\BR) ∩ R
2
+.
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We can apply the maximum principle to conclude

ũn(x) ≤ w+(x),

for (B(log 1
λn

)k\BR) ∩ R
2
+. By the similar way we also can obtain that

w−(x) ≤ ũn(x),

for (B(log 1
λn

)k\BR) ∩ R
2
+. Thus we complete the local estimate on un.
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