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1 Introduction

A finite group G is said to be minimal nonabelian if G is nonabelian but all its proper subgroups
are abelian. Obviously, every finite nonabelian group contains a minimal nonabelian subgroup.
In particular, every finite nonabelian p-group, by [4, Proposition 10.28], can be generated by its
minimal nonabelian subgroups. Hence the behavior of minimal nonabelian subgroups deeply
influence the structure of finite nonabelian p-groups, see for example [3, 15, 17–19]. Berkovich
and Janko in their long paper [6] introduced a more general concept than that of minimal
nonabelian p-groups. A finite nonabelian p-group is called an At-group, t ∈ N, if it has a
nonabelian subgroup of index pt−1 but all its subgroups of index pt are abelian. In other
words, an At-group is a finite nonabelian p-group whose every nonabelian subgroup of index
pt−1 is minimal nonabelian. Obviously, A1-groups are minimal nonabelian p-groups. Given a
nonabelian p-group G, there is a t ∈ N such that G is an At-group. Hence the study of finite
nonabelian p-groups can be regarded as that of At-groups for some t ∈ N.

A1-groups were classified by Rédei in [13]. A2-groups were classified by Kazarin in his
unpublished thesis, but his exposition did not give a full proof. Berkovich and Janko gave
an elementary treatment, see [6, Sections 3–5]. However, they did not solve the isomorphism
problem for some classes of groups. Zhang et al. in [20] gave a new proof of the classification
of A2-groups and gave all non-isomorphic types of the A2-groups. Subsequently, Zhang et al.
in [21] classified A3-groups. We observed that A2-groups are the p-groups all of whose A1-
subgroups are of index p. A3-groups are the p-groups all of whose A1-subgroups are of index
p or p2. In other words, the A1-subgroups of A2-, A3-groups are of large order. Moreover, An
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and Qu et al. in a series of papers [1, 2, 10–12] classified finite p-groups with an A1-subgroup of
index p. In this paper, we consider an opposite question, that is, what can be said about finite
p-groups all of whose A1-subgroups are of the smallest order? Obviously, the smallest order of
A1-subgroups is p3. Moreover, Berkovich and Janko proposed the following:

Problem ([5, Problem 920]) Classify the p-groups all of whose A1-subgroups are of order p3.
For p = 2, the problem was solved by Janko in [9]. For odd prime p, the problem is open.

We investigate this problem. For convenience, we use P1-groups to denote the p-groups all of
whose A1-subgroups are nonmetacyclic of order p3, P2-groups the p-groups all of whose A1-
subgroups are metacyclic of order p3 and P3-groups the p-groups all of whose A1-subgroups are
of order p3, respectively. In this paper, some properties of Pi-groups are given, and P1-groups
are classified. It turns out that the structure of P1-groups is closely related to the Hughes
subgroup, and the Hughes’ conjecture is true for P1-groups. By the way, Zhao et al. in [22]
classified finite p-groups with exactly one A1-subgroup of given structure of order p3.

For a finite p-group G, we use M � G to denote M is a maximal subgroup of G, G ∈ At to
denote G is an At-group and G ∈ Pi to denote G is a Pi-group. For a nilpotent group G, let

G = G1 > G2 > · · · > Gc+1 = 1

denote the lower central series of G, where Gi = [Gi−1, G] and c = c(G), and

1 = Z0(G) ≤ Z1(G) ≤ · · · ≤ Zc(G) = G

the upper central series of G, where Zi(G)/Zi−1(G) = Z(G/Zi−1(G)).
Assume G is a group, A ≤ G, B ≤ G and K = A ∩ B. G is called a center product of A

and B if G = AB and [A, B] = 1, denoted by A ∗K B.

2 Preliminaries

In the following, we list some known results which are often used.

Theorem 2.1 ([16, Lemma 2.2]) Let G be a finite p-group. Then the following statements
are equivalent.

(1) G is minimal nonabelian.
(2) d(G) = 2 and |G′| = p.
(3) d(G) = 2 and Z(G) = Φ(G).

We use Mp(m, n) to denote the p-groups

〈a, b | apm

= bpn

= 1, ab = a1+pm−1〉, where m ≥ 2,

and Mp(m, n, 1) to denote the p-groups

〈a, b, c | apm

= bpn

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉,
where m ≥ n, and m + n ≥ 3 for p = 2. It is not difficult to know that Mp(m, n) is metacyclic,
and Mp(m, n, 1) is nonmetacyclic. We can give a presentation of minimal nonabelian p-groups
as follows.

Theorem 2.2 (Rédei [13]) Let G be a minimal nonabelian p-group. Then G is one of Q8,
Mp(m, n) and Mp(m, n, 1).



Finite p-groups Whose Minimal Nonabelian Subgroups are of Order p3 1181

Let G be a group, p odd prime and Hp(G) the subgroup of G generated by the elements of
order different from p. Hp(G) is called a Hughes subgroup of G.

Lemma 2.3 ([7]) Let G be a finite p-group with Hp(G) 	= 1. Then |G : Hp(G)| ≤ p if G

satisfies one of the following conditions:
(a) Gi/Gi+1 is cyclic for all i ≥ 2,
(b) G is metabelian.

Proposition 2.4 Assume P is a set consisting of all p-groups with a fixed property. Then
the following statements are equivalent.

(1) If G ∈ P, then G/N ∈ P, where N � G with |N | = p.
(2) If G ∈ P, then G/N ∈ P, where N � G.

Proof (2) ⇒ (1): It is obvious.
(1) ⇒ (2): Assume N �G and |N | > p without loss of generality. We use induction on |N |.

Let K be a minimal normal subgroup of G contained in N . Then |K| = p. Thus G/K ∈ P
by (1). Since |N/K| < |N |, (G/K)/(N/K) ∈ P by induction hypothesis. Hence G/N ∈ P. �

3 Some Properties of Pi-groups

In the following, we always assume p is an odd prime.

Lemma 3.1 Assume G ∈ Pi. Then
(1) Subgroups of G are Pi-groups for i = 1, 2, 3.

(2) Quotient groups of G are Pi-groups for i = 1, 3.

Proof (1) It is obvious.
(2) Assume N � G and G = G/N . By Proposition 2.4 we may assume |N | = p. We will

prove G ∈ Pi for i = 1, 3 by a counterexample.
If G /∈ Pi, then there exists an A1-subgroup H of G such that H /∈ Pi. It follows by

Theorem 2.1 that d(H) = 2 and |H ′| = p. Let H = 〈a, b〉 and N = 〈x〉. Then d(H) ≤ 3. We
claim that

d(H) = 2, H = 〈a, b〉 and |H ′| = p2.

If d(H) 	= 2, then d(H) = 3 and H = 〈a, b, x〉 = 〈a, b〉 × 〈x〉. It follows by (1) that 〈a, b〉 ∈ Pi.
On the other hand, it is easy to verify that 〈a, b〉 ∼= H . This contradicts H /∈ Pi. So d(H) = 2.
Since x ∈ Z(G) and H is nonabelian, H = 〈a, b〉. Notice that |H | ≥ p3. So |H| ≥ p4. Since
d(H) = 2 and H ∈ Pi, |H ′| 	= p by Theorem 2.1. On the other hand, since H ∈ A1, |H ′| = p

by Theorem 2.1. It follows that p ≤ |H ′| ≤ p2. Hence |H ′| = p2.
In the following, we will prove the conclusion for i = 1 and 3 respectively.

Case 1 i = 3
We claim that AN is an abelian subgroup of index p of H if A � H and d(A) = 2. If not,

then AN is an nonabelian subgroup of index p of H. Since N ≤ Z(G), A is nonabelian. Since
H ∈ A1, A is abelian. Moreover, N = A′ < A. Hence AN = A and d(A) = d(A) = 2. Since
|A′| = |N | = p, A ∈ A1 by Theorem 2.1. On the other hand, it follows from H /∈ P3 that
|H | > p3. Hence |A| > p2. So |A| > p3. This contradicts G is a P3-group.

Now we discuss the possible case of H. Theorem 2.2 tells us that H ∼= Mp(m, n) or
Mp(m, n, 1).
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If H ∼= Mp(m, n), then Φ(H) = 〈ap, b
p〉. Let M1 = 〈ap, b〉 and M2 = 〈a, b

p〉. Then M1 � H

and M2 � H. By the claim above paragraph we get M1N and M2N are abelian subgroups of
index p of H. It follows that |H ′| ≤ p. This contradicts |H ′| = p2.

If H ∼= Mp(m, 1, 1), then let M1 = 〈ā, c̄〉 and M2 = 〈ba, c̄〉. We have M1 � H and M2 � H.

By a same argument as that of above paragraph, a contradiction occurs.
If H ∼= Mp(m, n, 1), where n > 1, then assume c = [a, b] without loss of generality. If

[a, c] = [b, c] = 1, then H3 = 1 and H2 = 〈c〉 ∼= Cp2 . Since |H ′| = p and |H ′| = p2, N ≤ H ′.
Hence 〈cp〉 = N . It follows from H3 = 1 that [ap, b] = [a, b]p = cp. So 〈ap, b〉′ = 〈cp〉 = N .
Moreover, 〈ap, b〉 ∈ A1. On the other hand, |〈ap, b〉| = o(ap)o(b)|N | > p3. This contradicts G

is a P3-group. This implies that either [a, c] or [b, c] is not identity. Assume [a, c] 	= 1 without
loss of generality. Then 〈a, c〉′ = N . It follows by Theorem 2.1 that 〈a, c〉 ∈ A1. On the other
hand, |〈a, c〉| = o(a)o(c)|N | > p3. This contradicts G is a P3-group again. To sum up, G ∈ P3.

Case 2 i = 1
Since P1-group is a P3-group, G ∈ P3. By the argument of Case 1 we get G ∈ P3. Hence

|H | = p3, and so |H| = p4. If G /∈ P1, then H ∼= Mp(2, 1). For convenience assume

H = 〈ā, b̄ | āp2
= 1̄, b̄p = 1̄, [ā, b̄] = āp, [āp, b̄] = 1̄〉.

If H has a cyclic subgroup of index p, then, since p > 2, H ∼= Mp(3, 1). This contradicts
G ∈ P1. So ap2

= 1. If H3 = 1, then H ′ = 〈[a, b]〉 = 〈apxt〉, where t is an integer. Moreover,
|H ′| = p. This contradicts |H ′| = p2. So H3 	= 1. Hence H is a p-group of maximal class and
N = Z(H). Obviously, exp(H/Z(H)) = exp(H) 	= p. On the other hand, exp(H/Z(H)) = p

by [4, Lemma 9.3]. This is a contradiction. So G ∈ P1. �
There exists a P2-group whose a quotient group is not a P2-group.

Example 3.2 Let G = 〈a, b | ap2
= bp = cp = 1, [a, b] = c, [c, a] = ap, [c, b] = 1〉, where p ≥ 5.

Then G ∈ P2 and G/Z(G) /∈ P2.

Proof It is not difficult to verify that G is a p-group of maximal class of order p4. So G /∈ A1.
Let K ≤ G and K ∈ A1. Then |K| = p3. By a simple calculation we have K is one of 〈a, c〉
and 〈abi, c〉, where i = 1, 2, . . . , p − 1. Notice that G′ = 〈ap, c〉. Thus G is metabelian. By a
simple calculation we get 〈a, c〉 ∼= 〈abi, c〉 ∼= Mp(2, 1). Thus G ∈ P2. On the other hand, since
G is of maximal class, Z(G) = G3 = 〈ap〉. It is not difficult to verify

G/Z(G) = 〈ā, b̄ | āp = b̄p = 1, [ā, b̄] = c̄, [c̄, ā] = [c̄, b̄] = 1〉.
So G/Z(G) ∼= Mp(1, 1, 1). That is, G/Z(G) ∈ P1. �

Lemma 3.3 Assume G is a finite nonabelian p-group and G ∈ P3, z ∈ Z(G) and o(z) = p2.
If H is an A1-subgroup of G, then H ′ = 〈zp〉.
Proof By Theorem 2.1 we may assume H = 〈x, y〉. Let K = 〈xz, y〉. Then K ′ = H ′. Thus
K ∈ A1 by Theorem 2.1. Since G ∈ P3, |H| = |K| = p3. It follows by Theorem 2.2 that
�1(H) ≤ H ′ and �1(K) ≤ K ′. Thus

xpzp = (xz)p ∈ �1(K) ≤ K ′ = H ′ and xp ≤ �1(H) ≤ H ′.

So zp ∈ H ′. Since |〈zp〉| = p = |H ′|, H ′ = 〈zp〉. �
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Lemma 3.4 Assume G is a finite nonabelian p-group and G ∈ Pi. Then
(1) |�1(Z(G))| = 1 for i = 1, 2.
(2) |�1(Z(G))| ≤ p for i = 3.

Proof (1) It suffices to show exp(Z(G)) = p. If not, then there exists x ∈ Z(G) such that
o(x) = p2.

If i = 1, then there exists H ≤ G such that H ∼= Mp(1, 1, 1). By Theorem 2.2 we may
assume

H = 〈a, b | ap = bp = cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉.
Let K = 〈ax, b〉. Then K ′ = H ′. By Theorem 2.1, we get K ∈ A1. Since G ∈ P1, K ∼=
Mp(1, 1, 1). Thus o(ax) = p. On the other hand, o(ax) = o(x) = p2 by hypothesis. A
contradiction.

If i = 2, then there exists H ≤ G such that H ∼= Mp(2, 1). By Theorem 2.2 we may assume

H = 〈a, b | ap2
= 1, bp = 1, [a, b] = ap〉.

It follows by Lemma 3.3 that 〈ap〉 = H ′ = 〈xp〉. Assume ap = xp without loss of generality.
Then (ax−1)p = 1. Let K = 〈ax−1, b〉. Then K ∼= Mp(1, 1, 1). This contradicts G ∈ P2.

(2) Since G ∈ P3, there exists K ≤ G such that K ∈ A1 and |K| = p3. Assume K = 〈a, b〉.
Take 1 	= x ∈ Z(G). Let H = 〈ax, b〉. Then H ′ = K ′. It follows by Theorem 2.1 that H ∈ A1.
Since G ∈ P3, |H| = p3. If o(x) ≥ p3, then o(ax) ≥ p3. Hence H = 〈ax〉. This contradicts
H ∈ A1. So o(x) ≤ p2. It follows that exp(Z(G)) ≤ p2.

If exp(Z(G)) = p, then |�1(Z(G))| = 1. If exp(Z(G)) = p2, then assume o(x) = p2. Since
G ∈ P3, H ′ = 〈xp〉 by Lemma 3.3. Hence �1(Z(G)) = H ′. Moreover, |�1(Z(G))| = |H ′| = p. �

Lemma 3.5 Assume G is a nonabelian p-group and G ∈ P3. Then Φ(G) = G′.

Proof It suffices to show xp ∈ G′ for all x ∈ G. If x ∈ Z(G), then, since G ∈ P3, o(x) ≤ p2

by Lemma 3.4 (2). If o(x) = p2, then 〈xp〉 ≤ G′ by Lemma 3.3. If x /∈ Z(G), then there exists
y ∈ G such that [x, y] 	= 1. Let L = 〈x, y〉 and L = L/�1(L′)L3. It is not difficult to see
that |L′| = p. Thus L ∈ A1 by Theorem 2.1. Since G ∈ P3, L ∈ P3 by Lemma 3.1 (1). It
follows by Lemma 3.1 (2) that L ∈ P3. Then |L| = p3. Thus x̄p ∈ L

′
. Since �1(L′)L3 ≤ L′,

xp ∈ L′ ≤ G′. �

Proposition 3.6 Assume G is a finite p-group. Then G is a Pi-group if and only if all
two-generator subgroups of G are Pi-groups, where i = 1, 2, 3.

Proof =⇒: It follows by Lemma 3.1 (1).
⇐=: Let K ≤ G and K ∈ A1. Then d(K) = 2 by Theorem 2.1. If K ∈ P1, then

K ∼= Mp(1, 1, 1). Hence G ∈ P1. Similarly, if K ∈ P2 or K ∈ P3, respectively, then so do G. �

Theorem 3.7 Assume G is a finite nonabelian p-group and p odd prime. Then G ∈ P1 if
and only if nonabelian subgroups of G are generated by elements of order p.

Proof =⇒: Since G ∈ P1, all A1-subgroups of G are isomorphic to Mp(1, 1, 1) by Theorem 2.2.
[4, Proposition 10.28] tells us that G is generated by its A1-subgroups. Hence nonabelian
subgroups of G are generated by elements of order p.

⇐=: Let K ≤ G and K ∈ A1. Then, by hypothesis, K is generated by elements of order
p. On the other hand, d(K) = 2 and |K ′| = p by Theorem 2.1. Thus c(K) = 2 < p. Hence
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K is regular. It follows by [4, Theorem 7.2 (b)] that exp(K) = p, and so K ∼= Mp(1, 1, 1) by
Theorem 2.2. That is, G ∈ P1. �

Hughes had conjectured in [8] that |G : Hp(G)| = p if G > Hp(G) > 1. We will prove the
structure of P1-groups is closely related to the Hughes subgroup, and the Hughes’s conjecture
is true for P1-groups.

Theorem 3.8 Assume G is a finite nonabelian p-group and exp(G) > p > 2. Then G ∈ P1

if and only if Hp(G) is abelian subgroup of index p of G. In particular, P1-groups satisfy the
Hughes conjecture.

Proof ⇐=: Let K ≤ G and K ∈ A1. It is enough to show K ∼= Mp(1, 1, 1). This needs only to
prove K can be generated by its elements of order p by Theorem 2.2. By Theorem 2.1 we may
assume K = 〈x, y〉. Since Hp(G) is abelian subgroup of index p of G, K � Hp(G). Assume
x /∈ Hp(G) without loss of generality. If y /∈ Hp(G), then o(x) = o(y) = p. If y ∈ Hp(G), then
xy /∈ Hp(G) and K = 〈x, xy〉. In any case, we have K can be generated by its elements of order
p.

=⇒: For convenience, the Hughes subgroup Hp(G) is denoted by H. Take x ∈ H with
o(x) > p and y ∈ Z2(H). Let K = 〈x, y〉. Then K is abelian or of class 2. If K is nonabelian,
then K ∈ P1 by Lemma 3.1 (1). Hence all A1-subgroups of K are isomorphic to Mp(1, 1, 1). It
follows by [4, Proposition 10.28] that K is generated by its elements of order p. Since p > 2, K

is regular. Hence exp(K) = p by [4, Theorem 7.2 (b)]. This contradicts o(x) > p. Hence K is
abelian. Thus x ∈ CG(Z2(H)). Moreover, H ≤ CG(Z2(H)). It follows that H = CH(Z2(H)).
So Z2(H) = Z(H). Hence Z(H) = H. That is, H is abelian.

Notice that G is nonabelian. We have |G : H| 	= 1. If |G : H| > p, then there exists K ≤ G

such that H < K and |K : H| = p2. Hence K/H is abelian of order p2. So K ′ ≤ H. Hence K

is metabelian. Since G is nonabelian and exp(G) > p, H > 1. It follows by Lemma 2.3 that
|K : H| = p. This contradicts |K : H| = p2. So |G : H| = p. �

The following Theorems 3.9 and 3.10 describe the rough structure of P3-groups.

Theorem 3.9 Assume G is a finite nonabelian p-group, and G = H × Cn
p . If H ∈ Pi for

i = 1, 2, 3, then G ∈ Pi.

Proof We use induction on n. If n = 1, then G = H × Cp. Assume G = H × 〈x〉, where
o(x) = p. Let K ≤ G and K ∈ A1. It follows by Theorem 2.1 that d(K) = 2. Assume
K = 〈a, b〉. Then a = h1x

i and b = h2x
j , where h1, h2 ∈ H, 1 ≤ i, j ≤ p − 1. By a simple

calculation we get 〈h1, h2〉′ = 〈a, b〉′. It follows by Theorem 2.1 that 〈h1, h2〉 ∈ A1. Since
H ∈ Pi, 〈h1, h2〉 ∼= Mp(2, 1) or Mp(1, 1, 1).

If 〈h1, h2〉 ∼= Mp(2, 1), then

o(a) = o(h1) = p2, o(b) = o(h2) = p and [a, b] = [h1, h2] = hp
1 = ap.

Hence 〈a, b〉 is isomorphic to a quotient group of 〈h1, h2〉 by [14, 2.2.1]. Since |〈a, b〉| ≥ p3,
〈a, b〉 ∼= 〈h1, h2〉. In the same way, if 〈h1, h2〉 ∼= Mp(1, 1, 1), then 〈a, b〉 ∼= 〈h1, h2〉. So the
conclusion is true for n = 1.

Assume the conclusion is true for n = k. If n = k+1, then G = H×Ck+1
p . Let L = H×Ck

p .
By induction hypothesis, L ∈ Pi. Thus G = L × Cp ∈ Pi. �
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Theorem 3.10 Assume G is a finite nonabelian p-group. If G ∈ P3, then there exists a
subgroup H of G satisfying H ∈ P3 and Z(H) ≤ Φ(H) such that G = H × Ck

p or G =
(H ∗N Cp2) × Ck

p , where |N | = p.

Proof Assume G is a counterexample of the smallest order. Then Z(G) � Φ(G). Let x ∈
Z(G) \ Φ(G). Then there exists M � G such that x /∈ M . Hence G = 〈M, x〉 = M〈x〉. It
follows by Lemma 3.1 (1) that M ∈ P3. Since |M | < |G|, there exists L ≤ M with L ∈ P3 and
Z(L) ≤ Φ(L) such that M = L × Cm

p or (L ∗N Cp2) × Cm
p , where |N | = p.

Since G ∈ P3 and x ∈ Z(G), o(x) ≤ p2 by Lemma 3.4 (2). If o(x) = p, then G = M × 〈x〉.
Thus G = L×Cm+1

p or (L ∗N Cp2)×Cm+1
p , where Z(L) ≤ Φ(L) and |N | = p. This contradicts

G is a counterexample.
If o(x) = p2, then G = M ∗N 〈x〉, where N = 〈xp〉. By Lemma 3.4 (2), |�1(Z(G))| ≤ p.

It follows that �1(Z(G)) = 〈xp〉. On the other hand, |�1(Z(M))| ≤ p by Lemma 3.4 (2). If
|�1(Z(M))| = p, then �1(Z(M)) = 〈xp〉. Hence, there exists an element y of order p2 of Z(M)
such that �1(Z(M)) = 〈yp〉. Thus xp = yjp, where (j, p) = 1. Let x′ = xy−j . Then o(x′) = p

and x′ ∈ Z(G)\Φ(G). This reduces to the case mentioned above. Hence |�1(Z(M))| = 1. That
is, exp(Z(M)) = p. Thus M = L×Cm

p . Hence G = (L×Cm
p )∗N 〈x〉 ∼= (L×Cm

p )∗N Cp2 . We will
prove N ≤ L. If not, then L〈x〉 = L×〈x〉. Obviously, L is nonabelian. Thus there exists H ≤ L

such that H ∼= Mp(1, 1, 1) or Mp(2, 1). It is easy to verify that Mp(1, 1, 1)×Cp2 has a subgroup
which is isomorphic to Mp(2, 1, 1), and Mp(2, 1) × Cp2 has a subgroup which is isomorphic to
Mp(2, 2). This contradicts G ∈ P3. So N ≤ L. It follows that G = (L ∗N Cp2) × Cm

p . This
contradicts G is a counterexample. �

The group (H ∗N Cp2) × Ck
p in Theorem 3.10 is not necessarily a P3-group.

Example 3.11 Let H = S × T , where S ∼= T ∼= Mp(1, 1, 1), K = 〈x〉 and 〈xp〉 = T ′. Then
H ∈ P3 with Z(H) ≤ Φ(H), and G = (H ∗T ′ K) × Ck

p is not a P3-group.

Proof Since exp(H) = p, H ∈ P1. Thus H ∈ P3. Obviously, Z(H) ≤ Φ(H). Assume without
loss of generality S = 〈a1, b1〉 and T = 〈a2, b2〉. Since S ∩ K ≤ (H ∩ K) ∩ S = T ′ ∩ S = 1,
SK = S × K. It follows that 〈a1x, b1〉 ∼= Mp(2, 1, 1). Hence G = (H ∗N K) × Ck

p is not a
P3-group. �

4 A Classification of P1-groups

Let G be a group of maximal class of order pn. For convenience, in this section a group of
maximal class of order p2 means an elementary abelian group. In the following, we give a more
intensive description about the structure of P1-groups.

Lemma 4.1 Assume G is a finite nonabelian p-group with d(G) = 2 and G ∈ P1. If G has
an abelian subgroup H of index p, then G is a group of maximal class, and all elements of G\H
are of order p.

Proof Since G ∈ P1, G′ = Φ(G) by Lemma 3.5. It follows from d(G) = 2 that |G/G′| = p2.

Since G has an abelian subgroup H of index p, G is of maximal class by [4, §1, Exercise 4].
Let a ∈ G\H, then G = 〈a〉H. Since d(G) = 2, there exists b ∈ H such that G = 〈a, b〉.

If |G| = p3, then it follows from G ∈ P1 that G ∼= Mp(1, 1, 1). Thus o(a) = p. Assume
|G| = pn ≥ p4. Let K = 〈a, [b, (n − 3)a]〉. Notice that Gn−1 = 〈[b, (n − 2)a], Gn〉. Since G is
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of maximal class, Gn = 1. Thus K ′ = Gn−1, and |Gn−1| = p. It follows by Theorem 2.1 that
K ∈ A1. Since G ∈ P1, K ∼= Mp(1, 1, 1). Thus, o(a) = p. �

Lemma 4.2 Assume G ∈ P1. If G has an abelian subgroup H of index p, and all elements
of G\H are of order p, then G = H � 〈a〉, a semidirect product of H by 〈a〉, where H =
B1 × B2 × · · · × Bn and o(a) = p. Moreover, for all 1 ≤ i ≤ n, Bi〈a〉 is a group of maximal
class with an abelian subgroup Bi of index p, and all elements of Bi〈a〉\Bi are of order p.

Proof Obviously, there exists a ∈ G\H such that o(a) = p. Thus G = H � 〈a〉, a semidirect
product of H by 〈a〉. Since all elements of G\H are of order p, all elements of Bi〈a〉\Bi are of
order p.

It suffices to show that H = B1 × B2 × · · · × Bn and for all 1 ≤ i ≤ n, Bi〈a〉 is a group of
maximal class with an abelian subgroup Bi of index p. We prove by induction on |G|.

It is clear that the conclusion holds for |G| ≤ p2. Assume |G| ≥ p3. Take N ≤ H such that
N � G and |N | = p. Let G = G/N . Then, by Lemma 3.1 (2), G ∈ P1. Obviously, H is an
abelian subgroup of index p of G. By induction hypothesis,

H = B1 × B2 × · · · × Bn,

and Bi〈a〉 is a group of maximal class with an abelian subgroup Bi of index p for all 1 ≤ i ≤ n.
Since Bi〈a〉 is of maximal class, Bi〈a〉 is generated by two elements. Assume Bi〈a〉 = 〈bi, a〉

without loss of generality. Let 〈bi, a〉 = Ai/N = Ai. Then Ai = 〈bi, a〉N . By modular law we
have

Ai = (Ai ∩ H)〈a〉.
Since Bi ≤ Ai ∩ H and Ai = Bi〈a〉, Bi = Ai ∩ H. Thus Bi = Ai ∩ H for all 1 ≤ i ≤ n.

Case 1 There exists i such that N � 〈bi, a〉.
In this case, Ai = 〈bi, a〉 × N . By modular law we have

Bi = Ai ∩ H = (〈bi, a〉 ∩ H)N.

Let
H1 = B1 · · ·Bi−1Bi+1 · · ·Bn.

Since N ≤ H1,
H = BiH1 = (〈bi, a〉 ∩ H)NH1 = (〈bi, a〉 ∩ H)H1.

Since Bi ∩ H1 = 1, Bi ∩ H1 = N . Thus

(〈bi, a〉 ∩ H) ∩ H1 = (〈bi, a〉 ∩ H) ∩ Bi ∩ H1 = (〈bi, a〉 ∩ H) ∩ N = 1.

It follows that H = (〈bi, a〉 ∩ H) × H1. Let Di = 〈bi, a〉 ∩ H.
Since H1〈a〉 ∈ P1 and |H1〈a〉| < |G|, by induction hypothesis, without loss of generality

assume
H1 = D1 × · · · × Di−1 × Di+1 × · · · × Dn,

and Dj〈a〉 is a group of maximal class with an abelian subgroup Dj of index p for all 1 ≤ j ≤ n

and j 	= i. Thus H = H1 × Di = D1 × D2 × · · · × Dn.
Now we prove Di〈a〉 is a group of maximal class with an abelian subgroup Di of index p.

Obviously, Di〈a〉 = 〈bi, a〉. If 〈bi, a〉 is nonabelian, then, by Lemma 4.1, 〈bi, a〉 is a group of
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maximal class. If 〈bi, a〉 is abelian, then, since a, abi ∈ G\H, o(a) = o(abi) = p by hypothesis.
It follows that 〈bi, a〉 = 〈abi, a〉 ∼= C2

p. Thus 〈bi, a〉 is of maximal class.

Case 2 N ≤ 〈bi, a〉 for all 1 ≤ i ≤ n.
In this case, Ai = 〈bi, a〉 and |Ai| ≥ p3. If Ai is abelian, then |Ai| = p2 by a same argument

as that of paragraph above. This is a contradiction. Hence Ai is nonabelian. Thus Ai is a
group of maximal class by Lemma 4.1. Let |Bi| = pmi . Since Bi is an abelian subgroup of
index p of Ai, mi ≥ 2. Without loss of generality assume that m1 is minimum among mi, where
1 ≤ i ≤ n.

Since Ai = 〈bi, a〉 is a group of maximal class of order pmi+1, N = Z(Ai) = (Ai)mi
. It

follows that N = 〈[bi, (mi − 1)a]〉 for all 1 ≤ i ≤ n. Without loss of generality assume

[b1, (m1 − 1)a] = [b2, (m2 − 1)a].

Let b = [b2, (m2 − m1)a]. Then [b1b
−1, (m1 − 1)a] = 1.

Let A = 〈b1b
−1, a〉. If A is nonabelian, then, by Lemma 4.1, A is of maximal class. Since

Am1 = 1, c(A) ≤ m1 − 1. It follows that |A| ≤ pm1 . If A = 〈b1b
−1, a〉 is abelian, then,

since a, b1b
−1a ∈ G\H, o(a) = o(b1b

−1a) = p by hypothesis. Hence A ∼= C2
p . It follows that

|A| = p2 ≤ pm1 . In any case, we have |A| ≤ pm1 .
Let B = A ∩ H. Then |B| ≤ pm1−1 < |B1|. Let H1 = B2B3 · · ·Bn. Then G = (BH1)〈a〉.

It follows that BH1 = H. Since B1H1 = H and B1 ∩ H1 ≤ N , B ∩ H1 = 1 by comparing the
order. Thus H = B × H1. The conclusion follows by induction hypothesis. �

Lemma 4.3 Let G be a group, N a normal subgroup of G. Then for any a ∈ G, b ∈ N ,

(ab)k = ak · f(a, b, k), where f(a, b, k) = bak−1 · bak−2 · · · ba · b.
In particular, if N is abelian and b1, b2 ∈ N , then f(a, b1b2, k) = f(a, b1, k)f(a, b2, k).

Proof It follows by a simple calculation. �

Lemma 4.4 Assume G = H � 〈a〉 with exp(G) > p, where H = B1 ×B2 ×· · ·×Bn is abelian
and o(a) = p. If Bi is an abelian subgroup of index p of 〈Bi, a〉 and all elements of 〈Bi, a〉 \Bi

are of order p for all 1 ≤ i ≤ n, then H = Hp(G). In particular, G is an P1-group.

Proof Assume gp = 1 for every g ∈ G \ H. Then H ≥ Hp(G). On the other hand, since H is
abelian, we may assume

H = 〈a1〉 × 〈a2〉 × · · · × 〈at〉, where o(a1) ≥ o(a2) ≥ · · · ≥ o(at).

Since exp(G) > p, exp(H) > p. It follows that o(a1) > p. Obviously,

H = 〈a1, a1a2, . . . , a1at〉.
This means H can be generated by its elements of order > p. It follows that H ≤ Hp(G). Thus
H = Hp(G). Since Hp(G) is an abelian subgroup of index p of G, by Theorem 3.8, we get G is
an P1-group.

Now it suffices to show that gp = 1 for every g ∈ G\H. Let g = asb1b2 · · · bn, where bi ∈ Bi

and (s, p) = 1. Since H is an abelian normal subgroup of G and o(a) = p, we get by Lemma 4.3

gp = (asb1b2 · · · bn)p = asp · f(as, b1b2 · · · bn, p)
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= f(as, b1b2 · · · bn, p) = f(as, b1, p)f(as, b2, p) · · · f(as, bn, p).

We will prove f(as, bi, p) = 1 for all 1 ≤ i ≤ n. Since Bi is a subgroup of index p of 〈Bi, a〉,
Bi � 〈Bi, a〉. We get by Lemma 4.3 that

(asbi)p = aspf(as, bi, p) = f(as, bi, p).

Obviously, asbi ∈ 〈Bi, a〉 \ Bi. Thus (asbi)p = 1. That is, f(as, bi, p) = 1. It follows that
gp = 1. �

Now, by Theorem 3.8, Lemmas 4.2 and 4.4, we have the following:

Theorem 4.5 Assume G is a finite nonabelian p-group and p an odd prime. Then G ∈ P1 if
and only if G is one of the following groups:

(1) nonabelian groups with exp(G) = p;
(2) G = Hp(G)�〈a〉, a semidirect product of Hp(G) by 〈a〉, where Hp(G) = B1×B2×· · ·×Bn

is an abelian subgroup of index p and o(a) = p. Moreover, for all 1 ≤ i ≤ n, Bi〈a〉 is a group
of maximal class with an abelian subgroup Bi of index p, and all elements of Bi〈a〉\Bi are of
order p.
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