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Abstract Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, α) over the complex

number field C. Using existence of a non-degenerate invariant bilinear form and root space decompo-

sition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an

example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra

spl(3, 3).
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1 Introduction

In 1997, Šemrl introduced the concepts of 2-local automorphism and 2-local derivation on
associative algebras in [13]. Let A be an associative algebra, a map Φ : A → A is called a
2-local automorphism if for ∀x, y ∈ A, there is an automorphism Φx,y : A → A such that
Φ(x) = Φx,y(x) and Φ(y) = Φx,y(y). A map T : A → A is called a 2-local derivation if for
∀x, y ∈ A, there is a derivation δx,y : A → A such that T (x) = δx,y(x) and T (y) = δx,y(y).
2-Local automorphisms and 2-local derivations are close to automorphisms and derivations. P.
Šemrl studied 2-local automorphisms on the algebra B(H) of all bounded linear operators on
the infinite-dimensional separable Hilbert space H and proved that every 2-local automorphism
on B(H) is an automorphism [13]. Later, the mathematicians considered the similar problems
on semi-finite von Neumann algebras and von Neumann algebras and they obtained the same
conclusions on these algebras (see [1, 2, 5, 6]). Afterwards, the similar problems were extended
for non-associative algebras, in particular, Lie algebras and Lie superalgebras.
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Recently in [4], the authors proved that every 2-local derivation on a semi-simple Lie algebra
is a derivation and gave an example of 2-local derivations which are not a derivation on finite-
dimensional nilpotent Lie algebras with dimension larger than two. In [8], Chen and Wang
initiated the study of 2-local automorphisms on finite-dimensional simple Lie algebras. They
proved that every 2-local automorphism is an automorphism on a simple Lie algebra of type
A(l), l ≥ 1, D(l), l ≥ 4, Ek(k = 6, 7, 8) over an algebraically closed field of characteristic
zero. In [3], authors obtained the same result for finite-dimensional semi-simple Lie algebras
and gave example of nilpotent Lie algebras which admit 2-local automorphisms which are not
automorphisms. In the present paper, we consider the same problem for Lie superalgebras.

In 1975, Kac in [11] presented the classification of finite-dimensional simple Lie superalge-
bras over an algebraically closed field of characteristic zero: classical Lie superalgebras and the
Lie superalgebras of Cartan type. The classical Lie superalgebras include basic classical Lie
superalgebras and two strange series P (n) and Q(n). The properties of basic classical Lie super-
algebras are similar to those of semi-simple Lie algebras. The notions of a 2-local superderivation
and a 2-local automorphism for Lie superalgebras are defined similar to the associative case.
In [9, 16], authors proved that every local superderivation (2-local superderivation) on basic
classical Lie superalgebras except A(n, n) over the complex numbers field C is a superderiva-
tion. Furthermore, they gave examples of Lie superalgebras with local superderivations (2-local
superderivations) which are not superderivations. The present paper is devoted to the study of
2-local automorphisms of basic classical Lie superalgebras.

The Killing forms of classical Lie superalgebras are different from those of semi-simple Lie
algebras. The Killing forms of classical Lie superalgebras are non-degenerate or equal to zero.
If a basic classical Lie superalgebra has non-degenerate Killing form, then it is isomorphic
to a simple Lie algebra or is isomorphic to one of A(m, n)(m �= n), B(m, n), D(m, n)(m− n �=
1), C(n), G(3), F (4). In Section 3, we describe the 2-local automorphisms on these basic classical
Lie superalgebras. Since the Killing form of Lie superalgebra D(n + 1, n) is zero, we study
its 2-local automorphisms in Section 4 by trace form b(x, y) = str(xy). The case of 2-local
automorphisms of classical Lie superalgebras A(n, n), D(2, 1, α), P (n) and Q(n) are still an
unsolved problem. In Section 5, we give an example of a 2-local automorphism which is not an
automorphism on a subalgebra of Lie superalgebra spl(3, 3).

We denote by Z, C and Z2 the sets of all integers, complex numbers and residue classes
modulo 2, respectively. The Lie superalgebras in this paper are all finite-dimensional over the
complex numbers field C.

2 Preliminaries

In this section, we recall the definition and significant properties of basic classical Lie superal-
gebras.

Definition 2.1 ([12]) Let b(, ) be a bilinear form on finite-dimensional Lie superalgebra G =
G0̄ ⊕ G1̄.

(1) If ∀x ∈ Gα, y ∈ Gβ, α, β ∈ Z2, b(x, y) = (−1)αβb(y, x), then b(, ) is called supersymmet-
ric.

(2) If ∀x, y, z ∈ G, b([x, y], z) = b(x, [y, z]), then b(, ) is called invariant.
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(3) If {x | b(x, y) = 0, ∀y ∈ G} = {0}, then b(, ) is called non-degenerate.
(4) If b(G0̄, G1̄) = 0, then b(, ) is called even; if b(Gī, Gī) = 0, i ∈ Z2, then b(, ) is called

odd.

Definition 2.2 ([12]) A finite-dimensional Lie superalgebra G = G0̄ ⊕ G1̄ is called a basic
classical Lie superalgebra if

(1) G is a simple Lie superalgebra;
(2) G0̄ is a reductive Lie algebra;
(3) there exists a non-degenerate even supersymmetric invariant bilinear form on G.

Proposition 2.3 ([12]) Let G be a finite-dimensional basic classical Lie superalgebra. Then
either G is a simple Lie algebra or G is isomorphic to one of the following algebras:

A(m, n) = spl(m + 1, n + 1), m �= n, m, n ≥ 0,
A(n, n) = spl(n + 1, n + 1), n ≥ 1,
B(m, n) = osp(2m + 1, 2n), m ≥ 0, n ≥ 1,

C(n) = osp(2, 2n − 2), n ≥ 2,

D(m, n) = osp(2m, 2n), m ≥ 2, n ≥ 1,

D(2, 1; a), a �= 0,−1,
G(3),
F (4).

Proposition 2.4 ([12]) Let G be a simple Lie superalgebra.
(1) Any invariant bilinear form on G either is non-degenerate or equals to zero.
(2) Any invariant bilinear form on G is super-symmetric.
(3) Any two non zero invariant bilinear forms on G are proportional.
(4) The invariant bilinear forms on G are either all even or all odd.

Definition 2.5 ([12]) Let G be a finite-dimensional simple Lie superalgebra. For g ∈ G, if
g = ( A B

C D ) ∈ gl(m, n), we define the supertrace of g, str(g), by str(g) = tr(A)−tr(D) and define
the Killing form of G by κ(x, y) = str(adxady), ∀x, y ∈ G.

Let G be a basic classical Lie superalgebra and H0 be the Cartan subalgebra of G0̄. Set

Gα = {x ∈ G | [h0, x] = α(h0)x, ∀h0 ∈ H0},
then Δ = {α ∈ H∗

0 | α �= 0, Gα �= 0} is the set of roots of G. Evidently, Δ = Δ0̄ ∪Δ1̄ where Δ0̄

is the root system of G0̄, Δ1̄ is the weight system of G0̄ on G1̄. Since the action of H0 on any
finite-dimensional simple G0̄-module is diagonalizable, there is a root space decomposition

G = H ⊕
( ⊕

α∈Δ

Gα

)
,

where H = G0 is the centralizer of H0 in G.

Proposition 2.6 ([12]) Let G be a basic classical Lie superalgebra. Then dimGα = 1 and
H = H0.

We can represent the root vector of the root α by eα �= 0 for α ∈ Δ.

Definition 2.7 Let G be a finite-dimensional Lie superalgebra. A map Ψ : G → G is called
a 2-local automorphism if for ∀x, y ∈ G, there exists an automorphism Φx,y : G → G such that
Φx,y(x) = Ψ(x) and Φx,y(y) = Ψ(y).
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Definition 2.8 ([10, 14]) Let G be a finite-dimensional complex simple Lie superalgebra and
Ω be the component connected of the identity of a Lie group, with Lie algebra G0̄. We call Ω
the inner automorphisms group of G. Out(G) = Aut(G)/Ω is called the outer automorphisms
group.

3 Basic Classical Lie Superalgebras with Non-degenerate Killing Forms

We know that the Killing form of a simple Lie superalgebra G either is non-degenerate or equals
to zero. If G = A(m, n), then κ(x, y) = (m − n)str(xy). Thus the Killing form of A(m, m)
equals to zero. If a basic classical Lie superalgebra G has the non-degenerate invariant Killing
form, then it is isomorphic to a simple Lie algebra or is isomorphic to one of A(m, n)(m �=
n), B(m, n), D(m, n)(m − n �= 1), C(n), G(3), F (4) in [15]. In this section, G denotes one of
these algebras. The main result is Theorem 3.1.

Theorem 3.1 If G is a basic classical Lie superalgebra with non-degenerate Killing form,
then every 2-local automorphism on G is an automorphism.

The proof of Theorem 3.1 consists of several lemmas.

Lemma 3.2 There exists an element d ∈ H such that α(d) �= β(d) for ∀α, β ∈ Δ ∪ {0} and
α �= β. d is called a strongly regular element of G.

Proof The proof is similar to Lemma 2.2 of [7]. Since the restriction to H0 of the Killing form
is non-degenerate, there exists a bijection H∗

0 → H0, φ 	→ hφ satisfying φ(h) = κ(hφ, h) for
∀h ∈ H0 and we may transfer the Killing form to H∗

0 by (γ, δ) = κ(hγ , hδ). Let

D = {γ − δ | γ, δ ∈ Δ ∪ {0}, γ �= δ}.
Obviously, D is a finite set. For α ∈ D, there exists a hyperplane

Pα = {γ ∈ H∗
0 | (γ, α) = 0}.

Then we have
dimPα = dimH∗

0 − 1.

It is generally acknowledged truth that the union of finitely many hyperplanes can’t exhaust
H∗

0 . So we have
γ0 ∈ H∗

0 −
⋃

α∈D

Pα,

i.e.,
(γ0, α) �= 0, ∀α ∈ D.

There exists corresponding hγ0 ∈ H0, such that

α(hγ0) = κ(hγ0 , hα) = (γ0, α) �= 0, α ∈ D.

By the definition of D, we know that d = hγ0 is a strongly regular element. �

Lemma 3.3 If d is a strongly regular element of G, then {x ∈ G | [x, d] = 0} = H.

Proof d ∈ H implies that H ⊆ CG(d). Conversely, let y ∈ CG(d), then y can be written as

y =
∑
β∈Δ

aβeβ + h, h ∈ H.
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We obtain [y, d] = −∑
β∈Δ aββ(d)eβ = 0. By Lemma 3.2, we know that β(d) �= 0. Thus

aβ = 0, y ∈ H. �

Lemma 3.4 The Killing form is Aut(G)-invariant.

Proof Recall the definition of the Killing form on G, κ(x, y) = str(adxady). Let Φ ∈ Aut(G).
Because deg(Φ) = 0̄, we can choose homogeneous elements as the basis of G. The matrix of Φ
in the basis is a block diagonal matrix, i.e.,

Φ =

⎛
⎝ A 0

0 D

⎞
⎠ .

It is obvious that A, D are invertible matrices. It is easy to see that

adΦ(x) = Φ ◦ adx ◦ Φ−1.

Then

κ(Φ(x), Φ(y)) = str(adΦ(x)adΦ(y))

= str(ΦadxΦ−1ΦadyΦ−1)

= str(ΦadxadyΦ−1). (3.1)

Let
(

M N
P Q

)
represent the matrix corresponding to adxady. Then⎛

⎝ A 0

0 D

⎞
⎠

⎛
⎝ M N

P Q

⎞
⎠

⎛
⎝ A−1 0

0 D−1

⎞
⎠ =

⎛
⎝ AMA−1 AND−1

DCA−1 DQD−1

⎞
⎠ .

Thus
str(ΦadxadyΦ−1) = tr(AMA−1) − tr(DQD−1) = tr(M) − tr(Q)

= str(adxady) = κ(x, y).

By (3.1), we have κ(Φ(x), Φ(y)) = κ(x, y). �

Lemma 3.5 Let Φ ∈ Aut(G) and d be a strongly regular element of G such that Φ(d) = d.
(a) If α ∈ Δ, then Φ(eα) = cαeα, cα ∈ C∗.
(b) If h ∈ H, then Φ(h) = h.

Proof (a) For α ∈ Δ, according to the root space decomposition, we can represent the element
Φ(eα) in the form

Φ(eα) = h +
∑
β∈Δ

cβeβ, (3.2)

where h ∈ H, cβ ∈ C. By Φ(d) = d, we have

[d, Φ(eα)] = [Φ(d), Φ(eα)] = Φ([d, eα]) = Φ(α(d)eα) = α(d)Φ(eα),

i.e.,

[d, Φ(eα)] = α(d)Φ(eα). (3.3)

Plug (3.2) into equation (3.3), we have∑
cββ(d)eβ = α(d)h +

∑
cβα(d)eβ. (3.4)
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Since d is a strongly regular element of G, we have α(d) �= 0, β(d) �= α(d) for any α �= β. Thus
by the equality (3.4), we obtain h = 0, cβ = 0, ∀β �= α, α, β ∈ Δ. So Φ(eα) = cαeα, cα �= 0.

(b) For arbitrary h ∈ H, by [d, Φ(h)] = [Φ(d), Φ(h)] = Φ([d, h]) = Φ(0) = 0 and Lemma 3.3,
we have Φ(h) ∈ H. Thus for α ∈ Δ,

[Φ(h), Φ(eα)] = [Φ(h), cαeα] = cαα(Φ(h))eα.

On the other hand, we have

[Φ(h), Φ(eα)] = Φ([h, eα]) = Φ(α(h)eα) = α(h)cαeα.

Thus
cαα(Φ(h)) = α(h)cα

which implies that
α(Φ(h)) = α(h), ∀α ∈ Δ.

Therefore Φ(h) = h. �

Lemma 3.6 Let Ψ be a 2-local automorphism on G and d be a strongly regular element of G

such that Ψ(d) = d. Then
(a) Ψ(h) = h for ∀h ∈ H,

(b) Ψ(eα) = cαeα, cα ∈ C∗ for ∀α ∈ Δ.

Proof (a) Since Ψ is a 2-local automorphism on G, for arbitrary h ∈ H, there exists an
automorphism Φh,d such that

Φh,d(h) = Ψ(h), Φh,d(d) = Ψ(d).

Therefore
Φh,d(d) = Ψ(d) = d.

By Lemma 3.5, we have
Ψ(h) = Φh,d(h) = h.

(b) For arbitrary α ∈ Δ, we can take an automorphism Φd,eα
such that

Φd,eα
(d) = Ψ(d), Φd,eα

(eα) = Ψ(eα).

By Lemma 3.5
Φd,eα

(eα) = cαeα.

Thus Ψ(eα) = cαeα. �

Lemma 3.7 Let Ψ be a 2-local automorphism on G and d be a strongly regular element such
that Ψ(d) = d. Then Ψ is linear.

Proof Because Killing form is Aut(G)-invariant, for any x, y ∈ G, we have

κ(Ψ(x), Ψ(y)) = κ(Φx,y(x), Φx,y(y)) = κ(x, y).

For any x, y, z ∈ G, we have

κ(Ψ(x + y), Ψ(z)) = κ(x + y, z) = κ(x, z) + κ(y, z)

= κ(Ψ(x), Ψ(z)) + κ(Ψ(y), Ψ(z))

= κ(Ψ(x) + Ψ(y), Ψ(z)),
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i.e.,

κ(Ψ(x + y), Ψ(z)) = κ(Ψ(x) + Ψ(y), Ψ(z)).

Furthermore

κ(Ψ(x + y) − Ψ(x) − Ψ(y), Ψ(z)) = 0.

Set z = eα and z = h ∈ H, respectively, then by Lemma 3.6, we have

κ(Ψ(x + y) − Ψ(x) − Ψ(y), eα) = 0

and

κ(Ψ(x + y) − Ψ(x) − Ψ(y), h) = 0.

Thus for all ω ∈ G, we have

κ(Ψ(x + y) − Ψ(x) − Ψ(y), ω) = 0.

Since the Killing form is non-degenerate on G, we obtain

Ψ(x + y) = Ψ(x) + Ψ(y), ∀x, y ∈ G.

Finally,

Ψ(λx) = Φλx,x(λx) = λΦλx,x(x) = λΨ(x).

Thus Ψ is linear. �
Next, we prove Theorem 3.1 in this section.

Proof Let Ψ be a 2-local automorphism on G and d be a strongly regular element. Put
q =

∑
α∈Δ eα. By the definition of 2-local automorphisms, there exists an automorphism Φd,q

such that

Φd,q(d) = Ψ(d), Φd,q(q) = Ψ(q).

Set Ψ′ = Φ−1
d,q ◦ Ψ, then Ψ′ is a 2-local automorphism such that

Ψ′(d) = d, Ψ′(q) = q.

By Lemma 3.7, we obtain that Ψ′ is linear. Take into account Lemma 3.6, we have

Ψ′(q) = Ψ′
( ∑

eα

)
=

∑
Ψ′(eα) =

∑
cαeα. (3.5)

On the other hand,

Ψ′(q) = q =
∑

eα. (3.6)

Comparing the equality (3.5) with (3.6), we have cα = 1 for all α ∈ Δ. We can get Ψ′(x) =
x, ∀x ∈ G, i.e.,

Ψ′ = Id|G.

Thus Ψ = Φd,q is an automorphism. �
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4 The Lie Superalgebra D(n + 1, n)

We know that the Killing form of D(n + 1, n) is zero. Taking b(x, y) = str(xy) as a non-
degenerate even invariant bilinear form on D(n + 1, n), we prove that b(, ) is Aut(D(n + 1, n)-
invariant.

Let GLn, SOn, SPn denote the general linear groups, special orthogonal groups and sym-
plectic groups, respectively.

gl(m, n) :=

⎧⎨
⎩

⎛
⎝ A B

C D

⎞
⎠ | A ∈ C

m×m, D ∈ C
n×n, B ∈ C

m×n, C ∈ C
n×m

⎫⎬
⎭ .

Let gl(n) denote the general linear Lie algebra. There is a natural homorphism Ad : GLn →
Aut(gl(n)), where AdX : A 	→ XAX−1, X ∈ GLn, A ∈ gl(n).

For (X, Y ) ∈ GLm × GLn, we define Ad(X, Y ) : gl(m, n) → gl(m, n) by

Ad(X, Y )(G) = diag(X, Y ) · G · diag(X, Y )−1, G ∈ gl(m, n).

This yields a group homorphism Ad : GLm × GLn → Aut(gl(m, n)).
By Table 4.1 of [10], for D(n+1, n) = osp(2(n+1), 2n), we know Ω ∼= SO2(n+1) ×SP2n/u2,

where kerAd = u2 = (−I2n+2,−I2n). This show that every inner automorphism is in the form
Ad(X, Y ) where X,Y are invertible matrices.

Let B2k,n = diag(I2k, Jn), where Jn =
(

0 In

−In 0

)
. By Theorem 1 of [14], we know Out(G) ∼=

Ad(Jn+1,n) for G = D(n+1, n), where Jn+1,n ∈ gl(2n+2, 2n) with det(Jn+1,n) = −1, J2
n+1,n =

I2(n+1)+2n, Jn+1,nB2(n+1),nJk,n = B2(n+1),n. By simple calculation one can verify that Jn+1,n

is a block diagonal matrix. Let Jn+1,n = ( X O
O Y ) , X ∈ GL2n+2, Y ∈ GL2n. For A ∈ D(n+1, n),

we have

Ad(Jn+1,n)(A) = (Jn+1,n)A(Jn+1,n)−1 = Ad(X, Y )(A).

Therefore every automorphism on D(n + 1, n) is the form Ad(X, Y ) where X, Y are invertible
matrices.

Lemma 4.1 b(, ) is Aut(D(n + 1, n))-invariant.

Proof For Φ ∈ Aut(D(n + 1, n)), we know that Φ is Ad(X, Y ) for some invertible matrices X

and Y . Set

x =

⎛
⎝ A B

C D

⎞
⎠ , x̃ =

⎛
⎝ Ã B̃

C̃ D̃

⎞
⎠ ∈ D(n + 1, n).

Then

b(x, x̃) = str(xx̃) = tr(AÃ + BC̃) − tr(CB̃ + DD̃)

= tr(X(AÃ + BC̃)X−1) − tr(Y (CB̃ + DD̃)Y −1)

= Str(diag(X, Y ) · xx̃ · diag(X, Y )−1) = Str(Ad(X, Y )(x) · Ad(X, Y )(x̃))

= b(Φ(x), Φ(x̃)).

Therefore b(, ) on D(n + 1, n) is Aut(D(n + 1, n))-invariant. �

Lemma 4.2 There exists a strongly regular element on D(n + 1, n).
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Proof The proof is similar to that of Lemma 3.2. �
Replacing Killing form with Trace form, we can prove the following Theorem 4.3 by the

same method of Theorem 3.1.

Theorem 4.3 Every 2-local automorphism on D(n + 1, n) is an automorphism.

Corollary 4.4 If G is a basic classical Lie superalgebras except A(n, n) and D(2, 1, α) over
C, then every 2-local automorphism on G is an automorphism.

Proof This is the result of Theorem 3.1, Theorem 4.3 and References [3, 8]. �

5 A 2-local Automorphism on a Subalgebra of spl(3,3)

In [3], the authors give an example of a 2-local automorphism which is not an automorphism of
nilpotent Lie algebras. Referring to their method, we construct a non-nilpotent Lie superalgebra
with its 2-local automorphism which is not an automorphism.

Suppose that G is a Lie superalgebra over C. Let Z(G) and [G, G] denote the center and
derived algebra of G, respectively. Let δ : G → G be a linear map of degree α(α ∈ Z2) such
that δ|[G,G] = 0 and δ(G) ⊆ Z(G). Then δ is a superderivation.

Let S be a subalgebra of spl(3, 3) consisting of the following elements:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

d1 0 d2 0 0 d4

d3 0 0 0 0 0

0 0 0 d6 d7 0

0 0 0 d8 −d6 0

d5 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where di ∈ C, i = 1, . . . , 8. We can obtain that [S, S] = CE21 + C(E44 − E55) + CE45 + CE54,
Z(S) = CE21, where Eij is a 6 × 6 matrix with 1 in the (i, j) position and 0 elsewhere. There
exists a decomposition of S as follows:

S = [S, S] + CE23 + CE31 + CE26 + CE61.

We define a function f on C2.

f(k1, k2) =

⎧⎪⎨
⎪⎩

k2
1

k2
, if k2 �= 0,

0, if k2 = 0,

where k1, k2 ∈ C. Define a map T on S by

T (x) = f(k1, k2)E21, for x = x1 + k1E23 + k2E31 + k3E26 + k4E61,

where x1 ∈ [S, S], k1, k2, k3, k4 ∈ C.
Let

Ψ(x) = x + T (x), x ∈ S.

It is obvious that Ψ is not an automorphism since it is not linear. In following sections we prove
that Ψ is a 2-local automorphism.
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Define a map δ on S by

δ(x) = (ak1 + bk2)E21, for x = x1 + k1E23 + k2E31 + k3E26 + k4E61,

where x1 ∈ [S, S], k1, k2, k3, k4 ∈ C. δ is a superderivation of degree 0̄ since δ|[S,S] = 0 and
δ(S) ⊆ Z(S).

Let x = x1 + k1E23 + k2E31 + k3E26 + k4E61 and y = x′
1 + k′

1E23 + k′
2E31 + k′

3E26 + k′
4E61

be the elements of S. Since the function f is homogeneous, the system of linear equations{
k1a + k2b = f(k1, k2),

k′
1a + k′

2b = f(k′
1, k

′
2)

in variables a and b has a solution. Namely, there exists δx,y such that

T (x) = δx,y(x), T (y) = δx,y(y).

Therefore, ∀x, y ∈ S there exists a superderivation δx,y such that

Ψ(x) = x + T (x) = x + δx,y(x), Ψ(y) = y + T (y) = y + δx,y(y).

Suppose φx,y = Id|S + δx,y, then φx,y is a linear map. For ∀x′, y′ ∈ S, [φx,y(x′), φx,y(y′)] =
[x′, y′] = φx,y([x′, y′]). It is obvious that φx,y is bijective and deg(φx,y) = 0̄. Therefore φx,y is
an automorphism. Namely, there exists an automorphism φx,y such that

Ψ(x) = φx,y(x), Ψ(y) = φx,y(y).

So Ψ is a 2-local automorphism on S but it’s not an automorphism.
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