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1 Introduction

Let p be an odd prime and let A be the mod p Steenrod algebra. To determine the stable
homotopy groups of sphere is one of the central problems in homotopy theory. One of the main
tools to approach the computation of the stable homotopy groups of sphere is the classical
Adams spectral sequence

{Es,t
r ; dr : Es,t

r → Es+r,t+r−1
r } =⇒ πt−sS.

The most important term of the Adams spectral sequence is its E2-term

Es,t
2 = Exts,t

A (Z/p, Z/p) = Hs,t(A),

which is the cohomology of A. In order to compute πt−sS, we first need to know the explicit
structure of Exts,∗

A (Z/p, Z/p) and then verify the convergence of the corresponding generators.
Up to now, only partial results about Exts,∗

A (Z/p, Z/p) have been known except the case s ≤ 3
(refer to [1, 3]).
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Since it is difficult to consider H∗,∗(A), we can study it by considering the cohomol-
ogy of some Hopf-subalgebra of A. From this view of point, May [4, 5] studied Hs,t(P) =
Exts,t

P
(Z/p, Z/p), the cohomology of a Hopf-subalgebra of A which is generated by the reduced

power operations Pi (i ≥ 0). Knowing well Exts,t
P

(Z/p, Z/p) is related to the existence of
important Smith–Toda spectra [9] which realizing the exterior part of the dual mod-p Steen-
rod algebra. It was shown in [9] that the Smith–Toda spectra V (n) exists for p > 2n when
n = 0, 1, 2, 3. Later, Nave [7] showed that not all Smith–Toda spectra exist.

In the following we recall some results on Exts,t
P

(Z/p, Z/p) due to May [4, 5]. Let ε : P → Z/p

be the argumentation. Let I be the kernel of ε and define F0P = P and F−iP = I · F−i+1P

inductively for i > 0. Associated with the filtration P = F0P ⊃ F−1P ⊃ · · · , there is a graded
Hopf algebra E0

P =
∑

i FiP/Fi−1P. Then by the corresponding exact couple there is a spectral
sequence

Es,t
2 = Hs,t(E0

P) =⇒ Hs,t(P) = Exts,t
P

(Z/p, Z/p). (1.1)

According to Milnor–Moore’s theorem [6], E0
P is a primitively generated Hopf algebra of char-

acteristic p and it is isomorphic to the restricted enveloping Hopf algebra V (L) = U(L)/J ,
where L = P (E0

P) is the restricted Lie algebra which consists of the primitive elements of
E0

P, and
U(L) = T (L)/{xy − yx − [x, y]}

is the universal enveloping algebra of L as a Lie algebra and J is the ideal generated by ξ(x)−xp

for x ∈ L and a certain self-map ξ : Ln → Lpn (refer to [6]). Lemma 9 in [5] implies that there
exists another multipliticable spectral sequence

E∗,∗
2 = P [bj

i ] ⊗ H∗,∗(U(L)) =⇒ H∗,∗(V (L)) = H∗,∗(E0
P) (1.2)

where P [ ] denotes the polynomial algebra and bj
i is a generator of bidegree (2, 2(pi+j+1−pj+1)).

From these two spectral sequences we obtain an estimate on Ext∗,∗
P

(Z/p, Z/p).
One critical thing is to determine the structure of H∗,∗(U(L)). Define a differential bigraded

exterior algebra (E(Rj
i )δ) generated by Rj

i of bidegree (1, 2(pi+j − pj)). The differential δ is
given by

δ(Rj
i ) =

i−1∑

k=1

Rj+k
i−k Rj

k.

May [4] showed that there is an isomorphism H∗,∗(U(L)) ∼= H∗,∗(E(Rj
i ), δ) such that the

determination of H∗,∗(U(L)) is transformed into determining H∗,∗(E(Rj
i ), δ). Along this idea,

May [4] computed the generators of Hs,t(U(L)) for the range t − s < (p3 + 2p2 + 2p + 1)q − 4.
In [10] the above results were generalized to the case t−s < (2p3 +2p2)q−3. But unfortunately
both of these two papers did not give the details of proof. Considering this, we go further to
determine the generators of H∗,∗(U(L)) in a greater range. Furthermore we show that the
obtained generators converge nontrivially into Ext∗,∗

P
(Z/p, Z/p). We state our main results as

follows.

Theorem 1.1 Up to total degree t− s < max{(5p3 + 6p2 + 6p + 4)q − 10, p4q}, Hs,t(U(L)) is
multiplicatively generated by the following classes:

hi = {Ri
1} (0 ≤ i ≤ 3), gi = {Ri

2R
i
1} (0 ≤ i ≤ 2), ki = {Ri

2R
i+1
1 } (0 ≤ i ≤ 2);
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l1 = {R0
3R

0
2R

0
1}, l2 = {R1

2R
0
2R

1
1}, l3 = {R0

3R
2
1R

0
1}, l4 = {R0

3R
1
2R

2
1},

l5 = {R1
3R

1
2R

1
1}, l6 = {R2

2R
1
2R

2
1}, l7 = {R1

3R
3
1R

1
1}, l8 = {R1

3R
2
2R

3
1};

m1 = {R0
3R

1
2R

0
2R

1
1}, m2 = {R0

4R
0
3R

0
2R

0
1}, m3 = {R1

3R
1
2R

0
2R

1
1},

m4 = {R2
2R

0
3R

2
1R

0
1}, m5 = {R2

2R
0
3R

1
2R

2
1}, m6 = {R1

3R
3
1R

0
2R

1
1},

m7 = {R0
4R

3
1R

0
2R

0
1}, m8 = {R1

3R
2
2R

1
2R

2
1}, m9 = {R0

4R
2
2R

3
1R

0
1},

m10 = {R0
4R

1
3R

2
2R

3
1};

n1 = {R1
3R

0
3R

1
2R

0
2R

1
1}, n2 = {R1

3R
0
3R

1
2R

2
1R

1
1}, n3 = {R1

3R
1
2R

3
1R

0
2R

1
1},

n4 = {R1
3R

2
2R

0
3R

1
2R

2
1}, n5 = {R0

4R
2
2R

3
1R

0
2R

0
1}, n6 = {R0

4R
1
3R

3
1R

0
2R

1
1},

n7 = {R0
4R

2
2R

0
3R

2
1R

0
1};

u1 = {R1
3R

0
3R

1
2R

2
1R

0
2R

1
1}, u2 = {R0

4R
1
3R

3
1R

1
2R

0
2R

1
1}, u3 = {R0

4R
1
3R

2
2R

3
1R

0
2R

0
1},

u4 = {R0
4R

2
2R

0
3R

1
2R

2
1R

0
1}, u5 = {R0

4R
2
2R

3
1R

0
3R

2
1R

0
2}, u6 = {R0

4R
1
3R

2
2R

0
3R

1
2R

2
1};

v1 = {R1
3R

2
2R

3
1R

0
3R

0
2R

1
1R

0
1}, v2 = {R0

4R
1
3R

0
3R

1
2R

2
1R

0
2R

1
1}, v3 = {R0

4R
1
3R

3
1R

0
3R

1
2R

0
2R

1
1}.

For the above generators, the nontrivial multiplications among them are given as follows:

Dimension Multiplication

2 h0h2 h0h3 h1h3

3 h0g2 h0k2 h1g0 = h0k0 h1k1 h3g0 h3g2 h3k0

4
h0h2k2 = h0h3g2 h0l4 h1l1 h1l4 h1l8 h2l1 h2l5 h2l8

h1h3g0 = h0h3k0

5

h0m1 = g1l1 h0m5 h0m10 h1m2 h1m7 h1m8 h1m10

h2m1 = k0l4 h2m2 h2m9 h2m10 h3m2 g0l4 = k1l1

g1l8 = k2l5 k1l8 = h3m8 k2l1

6
h0h2m10 h0n6 h1k1l8 = h1h3m8 = h1k2l5 h1h3m2 h1k1l1 h3n7

g1m2 g1m10 g2m2 k0m10 k1m2 k1m10 k2m2

7
h0u6 h1g0m2 h1k1m10 = h2g1m10 h1u6 h3g2m2 h3u6 l2m10

l3m10 l5m2 l6m2 l7m2 l8m2

8
h0l4m10 h1h3u6 = h1l4m10 h1l8m2 h2l5m2 h2l8m2 h3l5m2

k0u6 m1m10 m2m8

9 h1m2m8 h2m1m10 h3m2m8 = k1l8m2 g1l8m2 = k2l5m2

10 h1k1l8m2 = h1h3m2m8 = h1k2l5m2

Corollary 1.2 ([4]) Up to total degree t − s < (p3 + 2p2 + 2p + 1)q − 4, Hs,t(U(L)) is
multiplicatively generated by the following classes:

hi = {Ri
1} (0 ≤ i ≤ 3), gi = {Ri

2R
i
1} (0 ≤ i ≤ 2), ki = {Ri

2R
i+1
1 } (0 ≤ i ≤ 1);
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l1 = {R0
3R

0
2R

0
1}, l2 = {R1

2R
0
2R

1
1}, l3 = {R0

3R
2
1R

0
1},

l4 = {R0
3R

1
2R

2
1}, l5 = {R1

3R
1
2R

1
1}, l6 = {R2

2R
1
2R

2
1};

m1 = {R0
3R

1
2R

0
2R

1
1}, m2 = {R0

4R
0
3R

0
2R

0
1}, m3 = {R1

3R
1
2R

0
2R

1
1}, m4 = {R2

2R
0
3R

2
1R

0
1};

and we have additively

H∗,∗(U(L)) ∼= {1, l4, h3} ⊗ {1, h0, h1, g0, k0, k0h0}
+ {h2, h2h0, g1, l1, l2, l1h1, k1, l3, k1h1, l1h2, m1, m1h0, g2, g2h0, l5, m2, m3, l6, m4}.

Corollary 1.3 Rank(Exts,t
P

(Z/p, Z/p) ≤ Rank([P [bij ] ⊗ H∗,∗(U(L))]s,t)).

Remark 1.4 The Poincaré duality property has already been shown on the above table. It
seems that the Poincaré duality property holds for this kind of cohomology in a greater range.
We believe that our method is valid for an even larger range, but it seems that the number of
the obtained generators will become huge and we still do not know what is it used for in that
case.

This paper is organized as follows. In Section 2, we will inductively compute out the desired
generators shown as Theorem 1.1. In Section 3, we will verify that all the obtained generators
can converge nontrivially to Ext∗,∗

P
(Z/p, Z/p).

2 Computation of Generators

We take the notations defined in Section 1. Recall that there is an isomorphism H∗,∗(U(L)) ∼=
H∗,∗(E(Rj

i ), δ) and the differential δ is given by

δ(Rj
i ) =

i−1∑

k=1

Rj+k
i−k Rj

k.

Our method of computing H∗,∗(U(L)) is to break the exterior algebra E(Rj
i ) into four sum-

mands and compute the generators of the cohomology of each summand. The follows are our
proof.

Proof of Theorem 1.1 (i) Let K0 = E[Rj
i |i + j ≤ 4, j > 0]. Define a chain of increasing

complexes K1 ⊂ K2 ⊂ K3 ⊂ K4 by

K1 = {R0
1} ⊗ K0; K2 = {R0

2, R
0
1} ⊗ K0;

K3 = {R0
3, R

0
2, R

0
1} ⊗ K0; K4 = {R0

4, R
0
3, R

0
2, R

0
1} ⊗ K0.

There is a short exact sequence 0 → Kl−1 → Kl → Kl/Kl−1 → 0 for 2 ≤ l ≤ 4 with
Kl/Kl−1 = {R0

l } ⊗ K0. We will compute each H∗,∗(Kl) by the induced cohomological long
exact sequence

−→H∗−1,∗(Kl/Kl−1) δ−→ H∗,∗(Kl−1) i−→ H∗,∗(Kl)
j−→ H∗,∗(Kl/Kl−1) δ−→ H∗+1,∗(Kl)−→

(2.1)
Let us first compute H∗,∗(K0). There are six generators for K0: R1

3, R1
2, R1

1, R2
2, R2

1, R
3
1.

In what follows we list the first May differential on elements of K0.

R1
1 −→ 0 R2

1 −→ 0

R3
1 −→ 0 R1

2 −→ R2
1R

1
1
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R2
2 −→ R3

1R
2
1 R1

3 −→ R2
2R

1
1 − R1

2R
3
1

R3
1R

1
1 −→ 0 R1

2R
1
1 −→ 0

R1
2R

2
1 −→ 0 R1

2R
3
1 −→ R3

1R
2
1R

1
1

R2
2R

2
1 −→ 0 R2

2R
3
1 −→ 0

R2
2R

1
2 −→ −R2

2R
2
1R

1
1 + R1

2R
3
1R

2
1 R1

3R
1
1 −→ −R1

2R
3
1R

1
1

R1
3R

2
1 −→ −R2

2R
2
1R

1
1 − R1

2R
3
1R

2
1 R1

3R
3
1 −→ −R2

2R
3
1R

1
1

R1
3R

1
2 −→ −R1

3R
2
1R

1
1 − R2

2R
1
2R

1
1 R1

3R
2
2 −→ −R1

3R
3
1R

2
1 − R2

2R
1
2R

3
1

R1
3R

2
1 − R2

2R
1
2 −→ −2R1

2R
3
1R

2
1 R1

3R
2
1 + R2

2R
1
2 −→ 2R2

2R
2
1R

1
1

R1
2R

2
1R

1
1 −→ 0 R2

2R
3
1R

2
1 −→ 0

R2
2R

1
2R

1
1 −→ R1

2R
3
1R

2
1R

1
1 R2

2R
1
2R

2
1 −→ 0

R2
2R

1
2R

3
1 −→ −R2

2R
3
1R

2
1R

1
1 R1

3R
3
1R

1
1 −→ 0

R1
3R

1
2R

1
1 −→ 0 R1

3R
1
2R

2
1 −→ R2

2R
1
2R

2
1R

1
1

R1
3R

1
2R

3
1 −→ −R1

3R
3
1R

2
1R

1
1 + R2

2R
1
2R

3
1R

1
1 R1

3R
2
2R

1
1 −→ −R1

3R
3
1R

2
1R

1
1 − R2

2R
1
2R

3
1R

1
1

R1
3R

2
2R

2
1 −→ −R2

2R
1
2R

3
1R

2
1 R1

3R
2
2R

3
1 −→ 0

R1
3R

2
2R

1
2 −→ R1

3R
2
2R

2
1R

1
1 − R1

3R
1
2R

3
1R

2
1

R1
3R

2
2R

1
1 − R1

3R
1
2R

3
1 −→ −2R2

2R
1
2R

3
1R

1
1 R1

3R
2
2R

1
1 + R1

3R
1
2R

3
1 −→ −2R1

3R
3
1R

2
1R

1
1

R1
3R

1
2R

2
1R

1
1 −→ 0 R1

3R
1
2R

3
1R

1
1 −→ 0

R1
3R

1
2R

3
1R

2
1 −→ R2

2R
1
2R

3
1R

2
1R

1
1 R1

3R
2
2R

3
1R

1
1 −→ 0

R1
3R

2
2R

3
1R

2
1 −→ 0 R1

3R
2
2R

1
2R

1
1 −→ −R1

3R
1
2R

3
1R

2
1R

1
1

R1
3R

2
2R

1
2R

2
1 −→ 0 R1

3R
2
2R

1
2R

3
1 −→ R1

3R
2
2R

3
1R

2
1R

1
1

R1
3R

2
2R

1
2R

2
1R

1
1 −→ 0 R1

3R
2
2R

1
2R

3
1R

1
1 −→ 0

R1
3R

2
2R

1
2R

3
1R

2
1 −→ 0

R1
3R

2
2R

1
2R

3
1R

2
1R

1
1 −→ 0

The above elements with trivial differentials are the all possible generators of H∗,∗(K0). It is
known that the Poinćare series for H∗,∗(K0) is 1+3t+5t2 +6t3 +5t4 +3t5 + t6. Thus it follows
the generators of H∗,∗(K0):

dim 1 R1
1 R2

1 R3
1

dim 2 R1
1 · R3

1 R1
2R

1
1 R1

2R
2
1 R2

2R
2
1 R2

2R
3
1

dim 3 R1
1 · R1

2R
2
1 R3

1 · R2
2R

2
1 R2

2R
1
2R

2
1 R1

3R
3
1R

1
1 R1

3R
1
2R

1
1 R1

3R
2
2R

3
1

dim 4 R2
1 · R1

3R
1
2R

1
1 R3

1 · R1
3R

1
2R

1
1 R1

1 · R1
3R

2
2R

3
1 R2

1 · R1
3R

2
2R

3
1 R1

3R
2
2R

1
2R

2
1

dim 5 R1
1 · R1

3R
2
2R

1
2R

2
1 R1

2R
1
1 · R1

3R
2
2R

3
1 R1

2R
2
1 · R1

3R
2
2R

3
1

dim 6 R1
1 · R1

2R
2
1 · R1

3R
2
2R

3
1

Since d1(R0
1) = 0, it follows that H∗,∗(K1) = {R0

1}⊗H∗,∗(K0). For 2 ≤ l ≤ 4, since there is
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d1(R0
1) /∈ E[Rj

i |i + j ≤ 4, j > 0], we have H∗,∗(Kl/Kl−1) = {R0
1} ⊗ H∗,∗(K0). Considering the

long exact sequence (2.1), we see that if one element of H∗,∗(Kl/Kl−1) hit another one element
of H∗,∗(Kl−1) under the connecting homomorphism δ, then both of them vanish in H∗,∗(Kl)
(exclude H∗,∗(K0)). The remaining elements are the generators of H∗,∗(Kl). This idea will
also be used to compute H∗,∗(F l) and H∗,∗(Gl) later. Following this idea we first compute out
H∗,∗(K2). We list out the actions of δ on H∗,∗(K2/K1) in the following table:

R0
2 −→ R1

1R
0
1 R0

2R
1
1 −→ 0

R0
2R

2
1 −→ R2

1R
1
1R

0
1 R0

2R
3
1 −→ R3

1R
1
1R

0
1

R0
2R

3
1R

1
1 −→ 0 R0

2R
1
2R

1
1 −→ 0

R0
2R

1
2R

2
1 −→ R1

2R
2
1R

1
1R

0
1 R0

2R
2
2R

2
1 −→ R2

2R
2
1R

1
1R

0
1

R0
2R

2
2R

3
1 −→ R2

2R
3
1R

1
1R

0
1

R0
2R

1
2R

2
1R

1
1 −→ 0 R0

2R
2
2R

3
1R

2
1 −→ R2

2R
3
1R

2
1R

1
1R

0
1

R0
2R

2
2R

1
2R

2
1 −→ R2

2R
1
2R

2
1R

1
1R

0
1 R0

2R
1
3R

3
1R

1
1 −→ 0

R0
2R

1
3R

1
2R

1
1 −→ 0 R0

2R
1
3R

2
2R

3
1 −→ R1

3R
2
2R

3
1R

1
1R

0
1

R0
2R

1
3R

1
2R

2
1R

1
1 −→ 0 R0

2R
1
3R

1
2R

3
1R

1
1 −→ 0

R0
2R

1
3R

2
2R

3
1R

1
1 −→ 0 R0

2R
1
3R

2
2R

3
1R

2
1 −→ R1

3R
2
2R

3
1R

2
1R

1
1R

0
1

R0
2R

1
3R

2
2R

1
2R

2
1 −→ R1

3R
2
2R

1
2R

2
1R

1
1R

0
1

R0
2R

1
3R

2
2R

1
2R

2
1R

1
1 −→ 0 R0

2R
1
3R

2
2R

1
2R

3
1R

1
1 −→ 0

R0
2R

1
3R

2
2R

1
2R

3
1R

2
1 −→ R1

3R
2
2R

1
2R

3
1R

2
1R

1
1R

0
1

R0
2R

1
3R

2
2R

1
2R

3
1R

2
1R

1
1 −→ 0

By checking the generators of H∗,∗(K1) and H∗,∗(K2/K1) according to the above table, we
obtain the generators of H∗,∗(K2) as follows:

dim 1 R0
1

dim 2 R0
2R

1
1 R0

2R
2
1 R2

1R
0
1 R3

1R
0
1

dim 3 R0
2R

3
1R

1
1 R0

2R
1
2R

1
1 R0

2R
2
2R

2
1 R0

2R
2
2R

3
1 R1

2R
1
1R

0
1 R1

2R
2
1R

0
1 R2

2R
2
1R

0
1 R2

2R
3
1R

0
1

dim 4 R0
2R

1
2R

2
1R

1
1 R0

2R
1
3R

3
1R

1
1 R0

2R
1
3R

1
2R

1
1 R0

2R
2
2R

3
1R

2
1 R0

2R
2
2R

1
2R

2
1

R2
2R

3
1R

2
1R

0
1 R2

2R
1
2R

2
1R

0
1 R1

3R
3
1R

1
1R

0
1 R1

3R
1
2R

1
1R

0
1 R1

3R
2
2R

3
1R

0
1

dim 5 R0
2R

1
3R

1
2R

2
1R

1
1 R0

2R
1
3R

1
2R

3
1R

1
1 R0

2R
1
3R

2
2R

3
1R

1
1 R0

2R
1
3R

2
2R

3
1R

2
1

R1
3R

1
2R

2
1R

1
1R

0
1 R1

3R
1
2R

3
1R

1
1R

0
1 R1

3R
2
2R

3
1R

2
1R

0
1 R1

3R
2
2R

1
2R

2
1R

0
1

dim 6 R0
2R

1
3R

2
2R

1
2R

2
1R

1
1 R0

2R
1
3R

2
2R

1
2R

3
1R

1
1 R1

3R
2
2R

1
2R

3
1R

1
1R

0
1 R1

3R
2
2R

1
2R

3
1R

2
1R

0
1

dim 7 R0
2R

1
3R

2
2R

1
2R

3
1R

2
1R

1
1

Following the above method we can similarly use H∗,∗(K2) and H∗,∗(K3/K2) to compute
out H∗(K3) as follows:

dim 1 R0
1
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dim 2 R0
3R

3
1 R0

2R
1
1 R2

1R
0
1 R3

1R
0
1

dim 3 R0
3R

1
2R

2
1 R0

3R
3
1R

1
1 R0

2R
3
1R

1
1 R0

2R
1
2R

1
1 R0

2R
2
2R

2
1 R0

2R
2
2R

3
1 R2

2R
2
1R

0
1 R2

2R
3
1R

0
1

dim 4 R0
3R

1
2R

2
1R

1
1 R0

3R
2
2R

1
2R

2
1 R0

3R
2
2R

3
1R

2
1 R0

2R
1
3R

3
1R

1
1 R0

2R
1
3R

1
2R

1
1

R0
2R

2
2R

1
2R

2
1 R2

2R
3
1R

2
1R

0
1 R1

3R
3
1R

1
1R

0
1 R1

3R
1
2R

1
1R

0
1 R1

3R
2
2R

3
1R

0
1

dim 5 R0
3R

1
3R

1
2R

2
1R

1
1 R0

3R
1
3R

2
2R

1
2R

2
1 R0

3R
1
3R

1
2R

3
1R

1
1 R0

2R
1
3R

1
2R

3
1R

1
1

R0
2R

1
3R

2
2R

3
1R

1
1 R1

3R
1
2R

2
1R

1
1R

0
1 R1

3R
2
2R

3
1R

2
1R

0
1 R1

3R
2
2R

1
2R

2
1R

0
1

dim 6 R0
3R

1
3R

2
2R

1
2R

2
1R

1
1 R0

3R
1
3R

2
2R

1
2R

3
1R

2
1 R0

2R
1
3R

2
2R

1
2R

2
1R

1
1 R0

2R
1
3R

2
2R

1
2R

3
1R

1
1

dim 7 R0
3R

1
3R

2
2R

1
2R

3
1R

2
1R

1
1

We use H∗,∗(K3) and H∗,∗(K4/K3) to compute out H∗,∗(K4) as follows:

dim 1 R0
1

dim 2 R0
2R

1
1 R0

1 · R2
1 R0

1 · R3
1

dim 3 R0
3R

1
2R

2
1 R3

1 · R0
2R

1
1 R1

2R
0
2R

1
1 R0

1 · R2
2R

2
1 R0

1 · R2
2R

3
1

dim 4 R0
4R

1
3R

2
2R

3
1 R1

1 · R0
3R

1
2R

2
1 R2

2R
0
3R

1
2R

2
1 R1

3R
3
1R

0
2R

1
1 R1

3R
1
2R

0
2R

1
1 R0

1 · R2
1 · R2

2R
3
1

dim 5 R1
1 · R0

4R
1
3R

2
2R

3
1 R2

1 · R0
4R

1
3R

2
2R

3
1 R1

3R
0
3R

1
2R

2
1R

1
1 R1

3R
2
2R

0
3R

1
2R

2
1 R1

3R
3
1R

1
2R

0
2R

1
1

dim 6 R1
2R

1
1 · R0

4R
1
3R

2
2R

3
1 R1

2R
2
1 · R0

4R
1
3R

2
2R

3
1 R1

3R
2
2R

0
3R

1
2R

2
1R

1
1

dim 7 R1
1 · R1

2R
2
1 · R0

4R
1
3R

2
2R

3
1

(ii) Define a chain of increasing complexes F 1 ⊂ F 2 ⊂ F 3 by

F 1 = {R0
2R

0
1} ⊗ K0;

F 2 = {R0
3R

0
2, R

0
3R

0
1, R

0
2R

0
1} ⊗ K0;

F 3 = {R0
4R

0
3, R

0
4R

0
2, R

0
4R

0
1, R

0
3R

0
2, R

0
3R

0
1, R

0
2R

0
1} ⊗ K0.

There is a short exact sequence 0 → F l−1 → F l → F l/F l−1 → 0 for 2 ≤ l ≤ 3. We will
compute each H∗,∗(F l) by the induced cohomological long exact sequence

−→H∗−1(F l/F l−1) δ−→ H∗(F l−1) i−→ H∗(F l)
j−→ H∗(F l/F l−1) δ−→ H∗+1(F l)−→ (2.2)

Since d1(R0
2R

0
1) = 0, it follows H∗,∗(F 1) = {R0

2R
0
1} ⊗ H∗,∗(K0). For F 2/F 1 = {R0

3} ⊗ K2,
there is H∗,∗(F 2/F 1) = {R0

3} ⊗ H∗,∗(K2). Considering the long exact sequence (2.2), the
actions of δ on H∗,∗(F 2/F 1) = are listed as follows.

R0
3R

0
1 −→ R0

2R
0
1R

2
1

R0
3R

0
2R

1
1 −→ −R0

2R
0
1R

1
2R

1
1 R0

3R
0
2R

2
1 −→ −R0

2R
0
1R

1
2R

2
1

R0
3R

2
1R

0
1 −→ 0 R0

3R
3
1R

0
1 −→ R0

2R
0
1R

3
1R

2
1

R0
3R

0
2R

3
1R

1
1 −→ −R0

2R
0
1R

1
2R

3
1R

1
1 R0

3R
0
2R

1
2R

1
1 −→ 0

R0
3R

0
2R

2
2R

2
1 −→ R0

2R
0
1R

2
2R

1
2R

2
1 R0

3R
0
2R

2
2R

3
1 −→ R0

2R
0
1R

2
2R

1
2R

3
1

R0
3R

1
2R

1
1R

0
1 −→ −R0

2R
0
1R

1
2R

2
1R

1
1 R0

3R
1
2R

2
1R

0
1 −→ 0

R0
3R

2
2R

2
1R

0
1 −→ 0 R0

3R
2
2R

3
1R

0
1 −→ R0

2R
0
1R

2
2R

3
1R

2
1
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R0
3R

0
2R

1
2R

2
1R

1
1 −→ 0 R0

3R
0
2R

1
3R

3
1R

1
1 −→ R0

2R
0
1R

1
3R

1
2R

3
1R

1
1

R0
3R

0
2R

1
3R

1
2R

1
1 −→ 0 R0

3R
0
2R

2
2R

3
1R

2
1 −→ R0

2R
0
1R

2
2R

1
2R

3
1R

2
1

R0
3R

2
2R

3
1R

2
1R

0
1 −→ 0

R0
3R

2
2R

1
2R

2
1R

0
1 −→ 0 R0

3R
1
3R

3
1R

1
1R

0
1 −→ −R0

2R
0
1R

1
3R

3
1R

2
1R

1
1

R0
3R

1
3R

1
2R

1
1R

0
1 −→ −R0

2R
0
1R

1
3R

1
2R

2
1R

1
1 R0

3R
1
3R

2
2R

3
1R

0
1 −→ R0

2R
0
1R

1
3R

2
2R

3
1R

2
1

R0
3R

0
2R

1
3R

1
2R

2
1R

1
1 −→ 0 R0

3R
0
2R

1
3R

1
2R

3
1R

1
1 −→ 0

R0
3R

0
2R

1
3R

2
2R

3
1R

1
1 −→ −R0

2R
0
1R

1
3R

2
2R

1
2R

3
1R

1
1 R0

3R
0
2R

1
3R

2
2R

3
1R

2
1 −→ −R0

2R
0
1R

1
3R

2
2R

1
2R

3
1R

2
1

R0
3R

1
3R

1
2R

2
1R

1
1R

0
1 −→ 0 R0

3R
1
3R

1
2R

3
1R

1
1R

0
1 −→ −R0

2R
0
1R

1
3R

1
2R

3
1R

2
1R

1
1

R0
3R

1
3R

2
2R

3
1R

2
1R

0
1 −→ 0 R0

3R
1
3R

2
2R

1
2R

2
1R

0
1 −→ 0

R0
3R

0
2R

1
3R

2
2R

1
2R

2
1R

1
1 −→ 0 R0

3R
0
2R

1
3R

2
2R

1
2R

3
1R

1
1 −→ 0

R0
3R

1
3R

2
2R

1
2R

3
1R

1
1R

0
1 −→ −R0

2R
0
1R

1
3R

2
2R

1
2R

3
1R

2
1R

1
1 R0

3R
1
3R

2
2R

1
2R

3
1R

2
1R

0
1 −→ 0

R0
3R

0
2R

1
3R

2
2R

1
2R

3
1R

2
1R

1
1 −→ 0

By checking the generators of H∗,∗(F 1) and H∗,∗(F 2/F 1) according to the above table, we
obtain the generators of H∗,∗(F 2) as follows:

dim 2 R0
2R

0
1

dim 3 R0
3R

0
1R

2
1 R0

3R
0
1R

3
1 R0

2R
0
1R

1
1 R0

2R
0
1R

3
1

dim 4 R0
3R

0
2R

3
1R

1
1 R0

3R
0
2R

1
2R

1
1 R0

3R
0
2R

2
2R

3
1 R0

3R
0
1R

1
2R

2
1

R0
3R

0
1R

2
2R

2
1 R0

2R
0
1R

3
1R

1
1 R0

2R
0
1R

2
2R

2
1 R0

2R
0
1R

2
2R

3
1

dim 5 R0
3R

0
2R

1
2R

2
1R

1
1 R0

3R
0
2R

1
3R

1
2R

1
1 R0

3R
0
2R

2
2R

3
1R

2
1 R0

3R
0
2R

2
2R

1
2R

2
1 R0

3R
0
1R

2
2R

3
1R

2
1

R0
3R

0
1R

2
2R

1
2R

2
1 R0

3R
0
1R

1
3R

3
1R

1
1 R0

2R
0
1R

1
3R

3
1R

1
1 R0

2R
0
1R

1
3R

1
2R

1
1 R0

2R
0
1R

1
3R

2
2R

3
1

dim 6 R0
3R

0
2R

1
3R

1
2R

2
1R

1
1 R0

3R
0
2R

1
3R

1
2R

3
1R

1
1 R0

3R
1
3R

1
2R

2
1R

1
1R

0
1 R0

3R
1
3R

1
2R

3
1R

1
1R

0
1

R0
3R

0
1R

1
3R

2
2R

3
1R

2
1 R0

3R
0
1R

1
3R

2
2R

1
2R

2
1 R0

2R
0
1R

1
3R

2
2R

3
1R

1
1 R0

2R
0
1R

1
3R

2
2R

1
2R

2
1

dim 7 R0
3R

0
2R

1
3R

2
2R

1
2R

2
1R

1
1 R0

3R
0
2R

1
3R

2
2R

1
2R

3
1R

1
1 R0

3R
0
1R

1
3R

2
2R

1
2R

3
1R

2
1 R0

2R
0
1R

1
3R

2
2R

1
2R

2
1R

1
1

dim 8 R0
3R

0
2R

1
3R

2
2R

1
2R

3
1R

2
1R

1
1

In a similar way, we use H∗,∗(F 2) and H∗,∗(F 3/F 2) = {R0
4} ⊗ H∗,∗(K3) to compute out

the generators of H∗,∗(F 3) as follows:

dim 2 R0
2R

0
1

dim 3 R0
3R

2
1R

0
1 R1

1R
0
2R

0
1 R3

1R
0
2R

0
1

dim 4 R0
4R

2
2R

3
1R

0
1 R0

3R
1
2R

0
2R

1
1 R0

1R
0
3R

1
2R

2
1 R2

2R
0
3R

2
1R

0
1 R1

1R
3
1R

0
2R

0
1

dim 5 R0
4R

1
3R

3
1R

0
2R

1
1 R2

1R
0
4R

2
2R

3
1R

0
1 R0

1R
0
4R

1
3R

2
2R

3
1 R2

1R
0
3R

1
2R

0
2R

1
1

R1
3R

0
3R

1
2R

0
2R

1
1 R0

1R
2
2R

0
3R

1
2R

2
1

dim 6 R0
4R

1
3R

2
2R

0
3R

1
2R

2
1 R0

4R
1
3R

3
1R

1
2R

0
2R

1
1 R0

2R
1
1R

0
4R

1
3R

2
2R

3
1 R0

1R
2
1R

0
4R

1
3R

2
2R

3
1

R1
3R

0
3R

1
2R

2
1R

0
2R

1
1

dim 7 R1
1R

0
4R

1
3R

2
2R

0
3R

1
2R

2
1 R3

1R
0
4R

1
3R

2
2R

0
3R

1
2R

2
1 R1

2R
0
2R

1
1R

0
4R

1
3R

2
2R

3
1
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dim 8 R1
1R

0
3R

1
2R

2
1R

0
4R

1
3R

2
2R

3
1

(iii) Define two complexes G1 ⊂ G2 by

G1 = {R0
3R

0
2R

0
1} ⊗ K0;

G2 = {R0
4R

0
3R

0
2, R

0
4R

0
3R

0
1, R

0
4R

0
2R

0
1, R

0
3R

0
2R

0
1} ⊗ K0.

Since d1(R0
3R

0
2R

0
1) = 0, it follows that H∗,∗(G1) = {R0

3R
0
2R

0
1} ⊗H∗,∗(K0). It is easy to see

that G2/G1 = {R0
4}⊗F 2, thus H∗,∗(G2/G1) = {R0

4}⊗H∗,∗(F 2). For the induced cohomological
long exact sequence

−→H∗−1,∗(G2/G1) δ−→ H∗,∗(G1) i−→ H∗,∗(G2)
j−→ H∗,∗(G2/G1) δ−→ H∗+1,∗(G1)−→ (2.3)

let us consider the action of connecting homomorphism δ on H∗,∗(G2/G1). They are listed as
follows:

R0
4R

0
2R

0
1 −→ −R0

3R
0
2R

0
1R

3
1

R0
4R

0
3R

0
1R

2
1 −→ R0

3R
0
2R

0
1R

2
2R

2
1 R0

4R
0
3R

0
1R

3
1 −→ R0

3R
0
2R

0
1R

2
2R

3
1 + R0

4R
0
2R

0
1R

3
1R

2
1

R0
4R

0
2R

0
1R

1
1 −→ −R0

3R
0
2R

0
1R

3
1R

1
1 R0

4R
0
2R

0
1R

3
1 −→ 0

R0
4R

0
3R

0
2R

3
1R

1
1 −→ −R0

3R
0
2R

0
1R

1
3R

3
1R

1
1 + R0

4R
0
2R

0
1R

1
2R

3
1R

1
1

R0
4R

0
3R

0
2R

1
2R

1
1 −→ R0

3R
0
2R

0
1R

1
3R

1
2R

1
1

R0
4R

0
3R

0
2R

2
2R

3
1 −→ −R0

3R
0
2R

0
1R

1
3R

2
2R

3
1 − R0

4R
0
2R

0
1R

2
2R

1
2R

3
1 − R0

4R
0
3R

0
1R

2
2R

3
1R

1
1

R0
4R

0
3R

0
1R

1
2R

2
1 −→ R0

3R
0
2R

0
1R

2
2R

1
2R

2
1

R0
4R

0
3R

0
1R

2
2R

2
1 −→ 0 R0

4R
0
2R

0
1R

3
1R

1
1 −→ 0

R0
4R

0
2R

0
1R

2
2R

2
1 −→ R0

3R
0
2R

0
1R

2
2R

3
1R

2
1 R0

4R
0
2R

0
1R

2
2R

3
1 −→ 0

R0
4R

0
3R

0
2R

1
2R

2
1R

1
1 −→ −R0

3R
0
2R

0
1R

1
3R

1
2R

2
1R

1
1 R0

4R
0
3R

0
2R

1
3R

1
2R

1
1 −→ 0

R0
4R

0
3R

0
2R

2
2R

3
1R

2
1 −→ −R0

3R
0
2R

0
1R

1
3R

2
2R

3
1R

2
1 − R0

4R
0
2R

0
1R

2
2R

1
2R

3
1R

2
1 + R0

4R
0
3R

0
1R

2
2R

3
1R

2
1R

0
1

R0
4R

0
3R

0
2R

2
2R

1
2R

2
1 −→ −R0

3R
0
2R

0
1R

1
3R

2
2R

1
2R

2
1 R0

4R
0
3R

0
1R

2
2R

3
1R

2
1 −→ 0

R0
4R

0
3R

0
1R

2
2R

1
2R

2
1 −→ 0 R0

4R
0
3R

0
1R

1
3R

3
1R

1
1 −→ −R0

3R
0
2R

0
1R

1
3R

2
2R

3
1R

1
1 + R0

4R
0
2R

0
1R

1
3R

3
1R

2
1R

1
1

R0
4R

0
2R

0
1R

1
3R

3
1R

1
1 −→ 0 R0

4R
0
2R

0
1R

1
3R

1
2R

1
1 −→ −R0

3R
0
2R

0
1R

1
3R

1
2R

3
1R

1
1

R0
4R

0
2R

0
1R

1
3R

2
2R

3
1 −→ 0

R0
4R

0
3R

0
2R

1
3R

1
2R

2
1R

1
1 −→ 0 R0

4R
0
3R

0
2R

1
3R

1
2R

3
1R

1
1 −→ 0

R0
4R

0
3R

1
3R

1
2R

2
1R

1
1R

0
1 −→ R0

3R
0
2R

0
1R

1
3R

2
2R

1
2R

2
1R

1
1

R0
4R

0
3R

1
3R

1
2R

3
1R

1
1R

0
1 −→ R0

3R
0
2R

0
1R

1
3R

2
2R

1
2R

3
1R

1
1 + R0

4R
0
2R

0
1R

1
3R

1
2R

3
1R

2
1R

1
1

R0
4R

0
3R

0
1R

1
3R

2
2R

3
1R

2
1 −→ 0 R0

4R
0
3R

0
1R

1
3R

2
2R

1
2R

2
1 −→ 0

R0
4R

0
2R

0
1R

1
3R

2
2R

3
1R

1
1 −→ 0 R0

4R
0
2R

0
1R

1
3R

2
2R

1
2R

2
1 −→ R0

3R
0
2R

0
1R

1
3R

2
2R

1
2R

3
1R

2
1

R0
4R

0
3R

0
2R

1
3R

2
2R

1
2R

2
1R

1
1 −→ 0 R0

4R
0
3R

0
2R

1
3R

2
2R

1
2R

3
1R

1
1 −→ 0

R0
4R

0
3R

0
1R

1
3R

2
2R

1
2R

3
1R

2
1 −→ 0 R0

4R
0
2R

0
1R

1
3R

2
2R

1
2R

2
1R

1
1 −→ R0

3R
0
2R

0
1R

1
3R

2
2R

1
2R

3
1R

2
1R

1
1

R0
4R

0
3R

0
2R

1
3R

2
2R

1
2R

3
1R

2
1R

1
1 −→ 0
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According to the above table, the generators which are connected by δ will vanish in H∗,∗(G2)
and the remaining generators of H∗,∗(G1) and H∗,∗(G2/G1) are the generators of H∗(G2).
They are listed as follows:

dim 3 R0
3R

0
2R

0
1

dim 4 R1
1 · R0

3R
0
2R

0
1 R2

1 · R0
3R

0
2R

0
1 R0

4R
3
1R

0
2R

0
1

dim 5 R1
2R

1
1 · R0

3R
0
2R

0
1 R1

2R
2
1 · R0

3R
0
2R

0
1 R2

2R
3
1 · R0

3R
0
2R

0
1 R0

4R
2
2R

0
3R

2
1R

0
1 R1

1 · R0
4R

3
1R

0
2R

0
1

R0
4R

2
2R

3
1R

0
2R

0
1

dim 6 R1
1 · R1

2R
2
1 · R0

3R
0
2R

0
1 R0

4R
2
2R

3
1R

0
3R

2
1R

0
2 R3

1 · R0
4R

2
2R

0
3R

2
1R

0
1 R0

4R
2
2R

0
3R

1
2R

2
1R

0
1

R0
4R

1
3R

2
2R

3
1R

0
2R

0
1 R0

1 · R0
4R

1
3R

3
1R

0
2R

1
1

dim 7 R1
3R

2
2R

3
1R

0
3R

0
2R

1
1R

0
1 R0

4R
1
3R

0
3R

1
2R

2
1R

0
2R

1
1 R0

4R
1
3R

3
1R

0
3R

1
2R

0
2R

1
1

R0
3R

2
1R

0
1 · R0

4R
1
3R

2
2R

3
1 R0

1 · R0
4R

1
3R

2
2R

0
3R

1
2R

2
1 R1

1 · R0
2R

0
1 · R0

4R
1
3R

2
2R

3
1

dim 8 R0
2R

1
1 · R0

4R
1
3R

2
2R

0
3R

1
2R

2
1 R0

4R
1
3R

2
2R

3
1 · R0

3R
1
2R

0
2R

1
1 R0

1 · R0
3R

1
2R

2
1 · R0

4R
1
3R

2
2R

3
1

dim 9 R2
1 · R0

4R
1
3R

2
2R

3
1 · R0

3R
1
2R

0
2R

1
1

(iv) Let us define N = {R0
4R

0
3R

0
2R

0
1} ⊗ K0. Since d1(R0

4R
0
3R

0
2R

0
1) = 0, it follows that

H∗,∗(N) = {R0
4R

0
3R

0
2R

0
1} ⊗ H∗,∗(K0).

Since E[Rj
i |0 < i + j ≤ 4, j ≥ 0] = K0 ⊕ K4 ⊕ F 4 ⊕ G2 ⊕ N , thus we have

H∗,∗(U(L)) = H∗,∗(K0) ⊕ H∗,∗(K4) ⊕ H∗,∗(F 4) ⊕ H∗,∗(G2) ⊕ H∗,∗(N).

The above computation in each part together gives the desired results. The multiplication
among the generators of H∗,∗(U(L)) has already been marked in the list of its each summand. �

3 Convergence of Generators

In this section, we will show that the obtained generators of H∗,∗(U(L)) can converge non-
trivially to Ext∗,∗

P
(Z/p, Z/p). By reference [8], there is a spectral sequence {Es,t,∗

r , dr} which
converges to Exts,t

A (Z/p, Z/p). Its E1-term is

E∗,∗,∗
1 = E(hm,i|m > 0, i ≥ 0) ⊗ P (bm,i|m > 0, i ≥ 0) ⊗ P (an|n ≥ 0)

where

hm,i ∈ E
1,2(pm−1)pi,2m−1
1 , bm,i ∈ E

2,2(pm−1)pi+1,(2m−1)p
1 , an ∈ E1,2pn−1,2n+1

1 .

One has the r-th differential dr : Es,t,M
r → Es+1,t,M−r

r for r ≥ 1. For x ∈ Es,t,∗
r and y ∈ Es′,t′,∗

r ,
there is dr(x · y) = dr(x) · y + (−1)sx · dr(y) and for x, y ∈ {hm,i, bm,i, an} there is x · y =
(−1)ss′+tt′y · x. The first differential d1 : Es,t,M

1 → Es+1,t,M−1
1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

0≤k<i

hi−k,kak, d1(bi,j) = 0.

For the May spectral sequence (1.2) in Section 1,

E∗,∗
2 = P (bj

i ) ⊗ H∗,∗(U(L)) ∼= P (bj
i ) ⊗ H∗,∗(E(Rj

i ), δ) =⇒ H∗,∗(V (L)),

by the reasons of degree and dimension, there is an isomorphism

P (bij) ⊗ H∗,∗(E(hij), d1) ∼= P (bj
i ) ⊗ H∗,∗(E(Rj

i ), δ)
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by identifying bij and sending hij to Rj
i . Hence every {Rj

i } in H∗,∗(U(L)) has a unique preimage
hij in E∗,∗,∗

1 . It follows that every generator in H∗,∗(U(L)) has a unique preimage in E∗,∗,∗
1 .

Thus in order to prove that the generators of H∗,∗(U(L)) converge into Ext∗,∗
P

(Z/p, Z/p), it is
sufficient to prove that their corresponding preimages in E∗,∗,∗

1 converge into Ext∗,∗
A (Z/p, Z/p).

This relation can be shown in the following diagram:

E∗,∗,∗
1

��

��

Ext∗,∗
A (Z/p, Z/p)

��
P (bj

i ) ⊗ H∗,∗(U(L)) �� Ext∗,∗
P

(Z/p, Z/p).

Theorem 3.1 Each generator of Hs,t(U(L)) with t−s < max{(5p3 +6p2 +6p+4)q−10, p4q}
is a permanent cycle and converges nontrivially into Exts,t

P
(Z/p, Z/p).

Proof According to the above statement we use the same notations in E∗,∗,∗
1 to denote the

preimages of the corresponding generators in Theorem 1.1. It is well known that hi, gi and ki

in H∗,∗(U(L)) converge nontrivially to hi, gi and ki in Exts,t
P

(Z/p, Z/p), respectively. Thus we
need only to verify the convergence of the other generators of H∗,∗(U(L)).

Suppose we are given a generator x ∈ Es,t,M
1 , in order to show the convergence of x we

need to first show that any May differential dr : Es,t,M
r → Es+1,t,M−r

r on x is trivial and x also
can not be hit by any other May differential dr : Es−1,t,M+r

r → Es,t,M
r . For each preimage of

H∗,∗(U(L)) in E∗,∗,∗
1 , we list a table as follows.

generators ∈ Es,t,M
1 s t M Es−1,t,∗

1 Es+1,t,∗
1

l1 = h30h20h10 3 (p2 + 2p + 3)q 9 none none

l2 = h21h20h11 3 (p2 + 3p + 1)q 7 none
h30h11b10 h20h21b10

h20h11b20

l3 = h30h12h10 3 (2p2 + p + 2)q 7 none h30h10b11

l4 = h30h21h12 3 (3p2 + 2p + 1)q 9 none h30h21b11 h30h12b20

l5 = h31h21h11 3 (p3 + 2p2 + 3p)q 9 none
h31h21b10 h31h11b20

h21h11b30

l6 = h22h21h12 3 (p3 + 3p2 + p)q 7 none
h31h12b11 h21h22b11

h21h12b21

l7 = h31h13h11 3 (2p3 + p2 + 2p)q 7 none
h31h13b10 h11h13b30

h31h11b12

l8 = h31h22h13 3 (3p3 + 2p2 + p)q 9 none
h31h13b10 h22h13b30

h31h22b12

m1 = h30h21h20h11 4 (2p2 + 4p + 2)q 12 none h30h20h21b10 h30h20h11b20

m2 = h40h30h20h10 4 (p3 + 2p2 + 3p + 4)q 16 none none

m3 = h31h21h20h11 4 (p3 + 2p2 + 4p + 1)q 12 none
h40h21h11b10 h20h31h11b20

h20h21h11b30 h31h21h20b10



1622 Zhong L. N. et al.

generators ∈ Es,t,M
1 s t M Es−1,t,∗

1 Es+1,t,∗
1

m4 = h22h30h12h10 4 (p3 + 3p2 + p + 2)q 10 none
h40h10h12b10 h30h10h22b11

h30h10h12b21

m5 = h22h30h21h12 4 (p3 + 4p2 + 2p + 1)q 12 none
h40h21h12b11 h30h31h12b11

h30h21h22b11 h30h21h12b21

m6 = h40h13h20h10 4 (2p3 + p2 + 2p + 3)q 12 none h40h20h10b12

m7 = h31h13h20h11 4 (2p3 + p2 + 3p + 1)q 12 none
h20h11h13b30 h20h31h11b12

h31h13h20b10 h40h13h11b10

m8 = h31h22h21h12 4 (2p3 + 4p2 + 2p)q 12 none
h31h22h21b11 h31h22h12b20

h31h21h12b21 h22h21h12b30

m9 = h40h22h13h10 4 (3p3 + 2p2 + p + 2)q 12 none h40h22h10b12 h40h13h10b21

m10 = h40h31h22h13 4 (4p3 + 3p2 + 2p + 1)q 16 none
h40h31h22b12 h40h31h13b21

h40h22h13b30

n1 = h31h30h21h20h11 5 (p3 + 4p2 + 4p + 1)q 17 none

h40h30h21h11b10

h40h21h20h11b20

h30h20h31h21b10

h31h30h20h11h20

h30h21h20h11h30

n2 = h31h30h21h12h11 5 (p3 + 4p2 + 4p + 1)q 15 none

h40h21h12h11b20

h31h30h21h12b10

h31h30h21h11b11

h31h30h12h11b20

h30h21h12h11b30

h40h21b
2
20 h30h31b

2
20

h30h21b30b20

n3 = h31h13h21h20h11 5 (2p3 + 2p2 + 4p + 1)q 13 none

h31h13h21h20b10

h31h13h20h11b20

h31h21h20h11b12

h13h21h20h11b30

h20h11b
2
30

n4 = h31h22h30h21h12 5 (2p3 + 5p2 + 3p + 1)q 17 none

h31h22h30h21b11

h31h22h30h12b20

h31h30h21h12b21

h22h30h21h12b30

n5 = h40h22h13h20h10 5 (3p3 + 2p2 + 2p + 3)q 15 none
h40h22h20h10b12

h40h13h20h10b21



Cohomology of Universal Enveloping Algebra 1623

generators ∈ Es,t,M
1 s t M Es−1,t,∗

1 Es+1,t,∗
1

n6 = h40h31h13h20h11 5 (3p3 + 2p2 + 4p + 2)q 17 none

h40h31h13h20b10

h40h31h20h11b12

h40h13h20h11b30

n7 = h40h22h30h12h10 5 (2p3 + 4p2 + 2p + 3)q 17 none
h40h22h30h10b11

h40h30h12h10b21

u1 = h31h30h21h12h20h11 6 (p3 + 4p2 + 5p + 2)q 18 none

h31h30h21h12h20b10

h31h30h21h20h11b11

h31h30h12h20h11b20

h30h21h12h20h11b30

h40h21h12h20h11b20

h40h30h21h12h11b10

h31h30h20b
2
20

u2 = h40h31h13h21h20h11 6 (3p3 + 3p2 + 5p + 2)q 20 none

h40h31h13h21h20b10

h40h31h13h20h11b20

h40h31h21h20h11b12

h40h13h21h20h11b30

h40h31h22h20h11b10

h40h31h13h30h11b10

h40h20h11b
2
30

u3 = h40h31h22h13h20h10 6 (4p3 + 3p2 + 3p + 3)q 20 none

h40h31h22h20h10b12

h40h31h13h20h10b21

h40h22h13h20h10b30

u4 = h40h22h30h21h12h10 6 (2p3 + 5p2 + 3p + 3)q 20 none

h40h22h30h21h10b11

h40h22h30h12h10b20

h40h30h21h12h10b21

h40h31h30h12h10b20

u5 = h40h22h13h30h12h20 6 (3p3 + 4p2 + 3p + 3)q 20 none

h40h22h13h30h20b11

h40h22h30h12h20b12

h40h13h30h12h20b21

h40h30h20b
2
21

u6 = h40h31h22h30h21h12 6 (3p3 + 6p2 + 4p + 2)q 24 none

h40h31h22h30h21b11

h40h31h22h30h12b20

h40h31h30h21h12b21

h40h22h30h21h12b30
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generators ∈ Es,t,M
1 s t M Es−1,t,∗

1 Es+1,t,∗
1

v1 = h31h22h13h30h20h11h10 7 (3p3 + 3p2 + 4p + 3)q 19 none

h31h22h13h30h20h10b10

h31h22h30h20h11h10b12

h31h13h30h20h11h10b21

h22h13h30h20h11h10b30

h13h30h20h10b
2
30

v2 = h40h31h30h21h12h20h11 7 (2p3 + 5p2 + 6p + 3)q 25 none

h40h31h30h21h12h20b10

h40h31h30h21h20h11b11

h40h31h30h12h20h11b20

h40h30h21h12h20h11h30

h40h31h30h21h11h10b20

h40h31h30h20b
2
20

n7 = h40h22h30h12h10 5 (2p3 + 4p2 + 2p + 3)q 17 none
h40h22h30h10b11

h40h30h12h10b21

v3 = h40h31h13h30h21h20h11 7 (3p3 + 4p2 + 6p + 3)q 25 none

h40h31h13h30h21h20b10

h40h31h13h30h20h11b20

h40h31h30h21h20h11b12

h40h13h30h21h20h11b30

h40h31h22h30h20h11b10

h40h30h20h11b
2
30

According to the above table, we see that for every preimage x ∈ Es,t,M
1 and the corresponding r-

th differential dr : Es,t,M
r → Es+1,t,M−r

r , the E1-term Es+1,t,M−r
1 is either zero or has generators

with May filtrations greater than M − r. It follows that x has trivial May differential and then
it is a permanent cycle in the spectral sequence {Es,t,∗

r , dr}. Also since Es−1,t,M+r
1 is trivial, it

follows that x can not be hit by the May differential starting from Es−1,t,M+r
r . Thus x converges

nontrivially into Ext∗,∗
A (Z/p, Z/p). This finishes our proof. �
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