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Abstract By using the idea of Wakimoto’s free field, we construct a class of representations for
the Lie superalgebra D(2,1; «) on the tensor product of a polynomial algebra and an exterior algebra
involving one parameter A. Then we obtain the necessary and sufficient condition for the representations
to be irreducible. In fact, the representation is irreducible if and only if the parameter A\ satisfies
(A4 m)(A— "t*m) # 0 for any m € Z,.
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1 Introduction

Lie algebras, Lie groups and their representation theories are important parts of modern math-
ematics. They played a central role in the description of symmetries. Lie superalgebras and
their representations came from the understanding and exploitation of supersymmetry in phys-
ical systems. Since the classification of the simple complex finite-dimensional Lie superalgebras
was completed by Kac [8] in 1977, these superalgebras have found applications in various areas
including quantum mechanics, nuclear physics, particle physics, and string theory.

The representation theory of Lie superalgebra is so different from the one of complex
semisimple Lie algebras. More and more works on the representation and character theory
about Lie superalgebra are finished, such as [10, 11], even on the general Kac-Moody case
[2, 7], and so on. While for the exceptional Lie superalgebra of type D(2,1; a), it is too discrete
to describe the module theory. Understanding their module theory has been a very difficult
problem, even at the level of the finite-dimensional simple modules.

In this paper, we aim to extend the understanding of the module theory of Lie superalgebras
by drawing motivation from Wakimoto’s free fields construction, which provides a remarkable
way to realize affine Kac-Moody Lie algebras (see [4, 9, 12]). This approach has also been
successfully used to construct the representation of gl/N—EEq), the extended affine Lie algebra
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of type A coordinatized by a quantum torus, over a polynomial ring with infinitely many
variables (see [5, 6, 14]). This idea has also been used to construct the representation of the
Lie superalgebra ng?L((Cq) (see [1, 13]). Since the construction given in [6] is different from
Wakimoto’s original constructions, the researchers called this as Wakimoto-like construction.
We construct a class of representations for the Lie superalgebra D(2, 1; «) on the tensor product
of a polynomial algebra and an exterior algebra involving one parameter A\, and we also obtain
the necessary and sufficient condition for the representations to be irreducible.

The organization of this paper is as follows. In Section 2, we introduce the exceptional Lie
superalgebra D(2,1; ). In the first part of Section 3, we construct a family of representations
for the Lie superalgebra D(2,1; «) by using the idea of Wakimoto’s free field. We end the paper
by discussing the irreducibility of the representations.

Throughout this paper, we denote by Z, Z, and C the sets of integers, nonnegative integers

and complex numbers respectively. All vector spaces and Lie (super)algebras are over C.

2 The Exceptional Lie Superalgebra D(2,1; )
The exceptional Lie superalgebra D(2,1; @) is a deformation of the Lie superalgebra osp (4|2)

with a continuous parameter o # 0, —1,00. It forms a one-parameter family of superalgebras
of rank 3 and dimension 17 (see [3, 8]). The bosonic (or even) part is sly @ sla @ sla and the
fermionic (or odd) part is a spinorial representation (2,2, 2) of the even part.

In terms of the orthogonal basis vector ¢; (i = 1,2, 3) with the bilinear form

14+« 1 « L
2 3 (62762): 27 (63563): 27 (eia€j):0 fOI‘Z#.L

the root system A = AgUA; of D(2,1;«) is given by

(61561) = -

AO = {:|:2€1, :|:2€2, :|:2€3}, A1 = {:|:61 + €2 + 63}.
Let [[ = {a1 = €1 — €2 — €3, a0 = 269, a3 = 2e3} be the simple roots with a; being fermionic
01
and ag, a3 being bosonic, the associated Cartan matrix is (a;;) = (:1 2 %) .

The positive even roots A and the positive odd roots A are then given respectively by

AF = {az,a3,2a1 + az + az},

AT - {alval + g, (1 + ag, + (0%) + 013},

the set of all positive roots AT is a union of the positive even and odd roots, namely, AT =
+ +
Ay UAT.

Associated with each positive root §, there is a raising operator es, a lowering operator

fs = e_s and a Cartan generator hs. These operators have definite Zo-gradings:

0, 0€A]f,

el =0, el =l =4 O

For any two homogenous elements (i.e., elements with definite Zo-gradings) a,b € D(2,1; «),
the (anti)commutator is defined by [a,b] = ab — (—1)*pa, this commutator extends to inho-
mogenous elements through linearity.

Specifically, we describe all the relations of D(2,1; «) as the following.
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Proposition 2.1 ([3])

ea,-vfaj] = 6ijhai7

haorho,] =0, i, =1,2,3,

ha;s€a;] = Gijea,,

hoss fo,) = —ij foys i0d = 1,2,3,

€a1sCas] = —Caytass  |€orsCas] = —€aitass
€ars Caytastas] = —(1+ @)€2a; +as+ass

€ars Pas] = [€ars Pas] = €ays

€ars fart+as] = fazs  [€ars far+as] = fay,

€ars f2a1+astas] = —far+astas

€azs €artas] = €artastas

Cans Ray] = —€ass  [Eans Nas] = —2€4,,

€ass fartas] = fars  [€az; far+as+as] = fai+as:
€ass Coytas] = Cartantass |CassPay] = —0€ag,
€ass Ras] = —2€as,  [€as, fartas] = fars

€ass fa1+0t2+043] = fa1+0¢2’

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[ea1+as:
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Cartazs Par] = [€artazs Pas] = —€aytass
has] = €ajtass

Cajtazs ea1+a3] = (1 + O‘)€20¢1+a2+0437

Car+tazs far] = —€ay,

ea1+a27fa1+a2] = _hal + hOéz’

Cartass fartastas) = —Cfag,

ea1+azaf2061+042+0t3] = _fa1+a3a

€artass Pa] = —0a; +as,

Cartags Mas] = €a+as,

€aytasy N ] —Cai+tass

Cortass Jar] = —Qay,  [Cartass fas] = —€ars

ea1+a3afa1+a2] = _hal + O‘has’

€ar+ass fartastas] = —fas,

ea1+a37f2a1+oc2+a3] = _fa1+ocza

Car+astass Pai] = —(1+ a)ea;s +astass

€ar+astas Pas] = —€ar+astas

Car+astas: Pas] = —€ar+astas

Car+astasy fas] = —€artas)

€ar+astass fas] = —€artas)

Cheng J. and Zeng Z. T.
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Caj+astas; fO¢1+O£2} = QCqy,
Cay+aztas; fa1+043} = Cay)
Cay+aztas> fa1+a2+063] = hal - haz - ahaQ’

ea1+a2+a3a f20¢1+a2+a3} - _falﬂ

[
[
[
[
(€20, +az+asy o] = —(1 4+ a)ea; +astas,
€201 +az+ass far] = €astastass

(€201 +az+ass far+as] = €artas:

(€201 +as+ass far+as] = €artass

[

€2a;+astasz; foz1+a2+a3} = €ay,

fa17fl)é2] = _fal-i-aza [foclvfozg] = _fa1+a37
falaquJraeras] = (1 + a)f2a1+a2+oc37
fagvfoz1+013] = fa1+a2+a3)

fa37fa1+0l2] = fO¢1+O¢2+O£35

(€20, +az+asy [201 +astas] = 1—ia ar — 1ia @ — 1—|Cfaho‘3’
[hars faol = =fass  [hays fas] = —afay,

[hays fortas] = = fartas,

[hars far+as] = —far+as,

[hars far+as+as] = =(1+ @) fay +as+as

[hass frar+as+as] = —(1+ @) foa, +as+as>

[hass for] = far,  [has, fas] = —2fas,

[hass fartas) = —fartas,  [Pas, far+as] = far+as:
[hazs for+az+as] = —far+az+as,

[hass far]l = fars  [has, fas] = =2fas,

[hass far+as] = far+as,

[hags fortas] = = fartas)

[hass far+az+as] = —far+az+as

[

[

[

[

[

fOt1+Ot2’ fOt1+Ot3] = _(1 + a)f2a1+042+0t3'

3 A Family of Modules and Their Structure
3.1 Construction of the Wakimoto-like Modules

Let
W = Clz1, z2] ® Ays, ya)

be the tensor product of a polynomial algebra with two variables x1, zo and an exterior algebra

with two variables ys, y4 over C.



1582 Cheng J. and Zeng Z. T.

Then we can get

o 0
[xi,l'j} = [xuyk] - {yk’yl} - {8yk, ayl } B 07

o o1_[o o]_[o T1_7o 1_,
O Oz | |0 Oy 0w T low T T

0 0
[&Ei,%} =05, {ym Gyz} = Ok, 1

where i, j = 1,2; k, 1 = 3,4; and 82’ 82k are the partial differential operators on W, [, -] and
{-, -} denote the Lie-bracket, Jordan-bracket respectively.
With 7; € {£1},i = 1,2, 3,4, we define the following operators on W:

0
Eo = —T173y3 Oy To74(1 + a)xg Oy’
B 0

= T3, ,
asz 3 4y4ay3

Eag = 7—11'1,

0
Eoytay, = —T1Tay4 + o3 (1 4 a)o
1

Ox Oys’

Ea1+a3 = T3Y3,
Eotastas = Tala,

E2a1+a2+a3 = T2X2,

0

0
Fy, = —amit3a; — T2T4Y4 ;
8y3 81‘2

Fa2:7'37'4y36 ,
o 0

+y + Tom3T4(1 + )z ,
dys3 P ! 277 ) 2593 ya

0
F,, =— A
3 Tl( + 2 oz, + Y3 8y4> oz4

Fa1+a2 = (XT1T4X1 — T27T3Y3

0ya
0
Foitas =T3 (a)\ + axy

al‘g ’

— (14 @)z 0 0

g - g + T1TaT. J
O Ya Oy ) Dy 172T4Y4 Oz1 Oz’
0
— (14 a)as

o, (3.2)

Foitostas = —T4 (a)\ + ax,

851 Oz — v 0y3 ) 0y

+T1T2T3Y3 Oz, 01y’

F: @ Atz g + g + g g
aitastaz — T -

2a1togtas 2 1—}—04a 28352 y38y3 y48y4 Oxo

ys Oys’

0 0 0 0
H, ={F, . F = 1
o1 { ar 061} a(xlaxl +y38y3) +( +a)<x2ax2 +y4ay4)7

Ha2 = [EOQaFOéz] = Y3

—QT1T3T4T1

+ Ya (3.3)

y3
H,, = [Eos, Fos] = A+ 224

Oy ’

+ 6—1— 0
y38y3 y48y4'

8901

We may view W as a superalgebra with |z;| = 0 for i = 1,2 and |yx| = 1 for k = 3,4. It
follows that gl(WW) is a Lie superalgebra. Then by the above actions, we have the following
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theorem:

Theorem 3.1 The linear map

given by
ea;) =E,,, 1=1,2,3,
F,

fai): (628 7;:152737
hai) = H@w 1= 17273a

is a Lie superalgebra homomorphism. That is, W is a D(2,1; a)-module.

Proof It suffices to show that these corresponding operators satisfy all the commutator rela-
tions given in Proposition 2.1. We complete the proof by checking these formulas case by case.
We give the proofs for some cases, the others are either similar or easier.

We begin with the cases of two odd roots:

0 0 0 0
E, ,F = 1
{ (3R} O¢1} a{y38x1’x18y3}+( +a){x28y4ay4a$2}

al x 0 + 0 +(1+a)|z 0 + 0
1 oy Ys 3y3 2 Oz Y4 6y4
= Ha17

we have {¢(€a, ), ¢(for)} = P({ear; foi })-

0 0
{E0417E041+Ot2+0ts} = { — T17T3Y3 Oy - 7274(1 + 04)552 A s 7494}

0
=11+ 0‘){@ 8y4’y4}
= —T2(1 —+ a)xg

= _(1 + Q)E20t1+0t2+0433

that is {p(eq, ), P(ea)+aztas)} = P({€ars €ar+astas})-
Other cases are calculated:

0
(B> Foortastas] = | — T1T3Y3 0z, Toma(1 + a)zo Oy’
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—T—a/\—l-a?a-l- 8-1— 0 8—047'7'71‘88
2 1+« 28152 y38y3 y48y4 0xa 1T 18:’/3 3114

B 9 0 N A
= T1T273 yg@xl’y?’@yga@ T4 y38x17 18y33y4

intaalm? [ aim? e ? ey @) 7
* 20ys’ 1+ % Oy y38y3 y48y4 Oxo

. i o 0 P o 0 i 0 0
T Ozx2 021 T\ e O0ys Oy L 0x1 Dy,
o 0 0 0
1 — —
7l +Oé)(l—koc)\ anmg y38y3)8y4
B At 0 _(+a) 0 B 0 0 3 o 0
=T\« O‘xlaxl Q) T2 O Y3 8y3 6y4 T1T27T3Y3 Oz, 0o

= _Fa1+a2+043’

hence [w(eal)v (p(f2041+042+0ts)} = @([ea17f2a1+a2+063])'

0 0 0
Ha 7Ea1 as| = s T
[Ha, tao] {a<x18x1+y38y3> T1T4y48x1]
_|_

_ x 0 + 0 (1+a)x 0
_Oé 183:1 y38y3 y T273 26@/3

+ (1—|— ) 0 + 0 - 0
« y48y4 x28x2 ) TlT4y48x1

0 0 0
* (1 - a) (y4 0y o Oz ) ’ T273(1 * a):vg 8y3]

0
. + 1o73(1 + @)z

= —T1T4Y4 dy
3

= Ea1+0t2

S0 [Sp(hal)7 4,0(6(11+a2)] = (p([haweoéﬁraz])'
And

0 0

o B} d o\ o
Ha ;Foc astasz| — - A
[Hoy, Foy togtas) Tz( l+a + x , + Y3 + Ya )&xz + aT T34 A3 Ay

Ox Y3 0y

= _Fa1+a2+043’
we get [p(hay), P(for+astas)] = P([Pass for+astas))-

[E2a1+a2+063 ) F2a1+a2+a3]

0 0 0

« 0 0
pr— _— —_— A —
[7'2962, 7'2( 14+a + T2 Oy + Y3 s + Ya 8y4) Dy QT1T3T4T1 Dy Oy

e 0 0 0

= — A+2

14+« + $28x2+y38y3+y48y4
- 2 1 a
T l4ta M 14a M 14a

which means

[90(62&1+042+043)a So(f2a1+a2+a3)] = 90([62041+042+043a f2oé1+0tz+a3D' U
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3.2 Trreducibility
Let h = spanc{ha,; hass Pas |, 50 b is the Cartan subalgebra of D(2,1; «).
Let n_ = Span(C{fﬂq ) faza fa37 fOé1+0t2 ’ fOé1+0t3 ’ fa1+042+0t3 ’ f2a1+042+043}'
Notice that the operators actions are given in (3.1)—(3.3), we have the following lemma

immediately.

Lemma 3.2 § acts diagonally on W, which means that W is a weight module of D(2,1;a). As
a D(2,1; a)-module, W is a lowest weight module with lowest weight vector 1 of weight (0,0, \).

Theorem 3.3 W is an irreducible D(2,1;a)-module if and only if A satisfies (A + m)(\ —
m) £ 0 for any m € Z.

Proof 1If A = —m for some m € Z,, notice that 11,.:1071’1+1 = 0, then we get the submodule

™+ s a lowest weight module with lowest weight vector x’f”'l, which is a proper

generated by 7]
submodule of w.

IfXx="%m for some m € Z,, notice that n_ xm'H = 0, then we get the submodule
generated by x2 Lis a lowest weight module with lowest weight vector xé”“
submodule of W.

Suppose (A +m)(A — "t*m) 3£ 0 for any m € Z,.. Let U be a nonzero submodule of W.

Then we know that U is a weight module of D(2,1;a) by the above lemma.

, which is a proper

Notice that in fact there are only four possible monomials classes in W as follows

i1 .02 J1,.J2 k1,.k2 1,02
Ty Ty, X7 TYY3, LT To Y4, Tq Ty Y3Y4-

Moreover, the weights of 2, 27 al2ys, 2 ak2y,, alt a2 ysyy are (a(iy + iz) + i2,0, X + 2iy),

(a1 +d2+ 1) +jo, =1L, A+ 21 + 1), (alky + k2 + 1) + ko + 1,1, A + 2ky + 1), (a(ly + 12+ 2)
+lo + 1,0, A + 211 4 2) respectively.
Given a weight vector v € U, there are only three cases as follows:
1) ha,.v = v, then we can assume v = xklxk2y4,k1,k2 € Zy up to a scalar multiplier.
2 1 +2 +
Notice that

k
fa1+oz2+oc3-(f2§1+a2+a3 (fkl U))

= ()" A+ Ky) - (A + 1) (=T )2@( 1iax\+k2>--~<1iak+1>(r4oe)\),

now we get 1 € U up to a scalar multiplier since 71,79, 74, v are all nonzero and (A + m)
(A= "1Tm) 30 for any m € Z..
(2) ha,.v = —v, then we can assume v = (Ejl.’[%zyg,jl,jg € Z4 up to a scalar multiplier.

Notice that eq,.v = 7'37'4:10{1 x§2y4 € U, then from the first case, we get 1 € U.

PR el e ysys, i1, is € Zo, p# 0 or v #£0
i1+1 Z2+1

(3) ha,-v = 0, then we can assume v = px]
up to a scalar multiplier. If g # 0, notice that en,+ay+as-V = Tap] Y4, from the
first case, we get 1 € U. Otherwise, = 0, then v # 0. Notice that ey, 10,.v = 7273 (1 +
Qv x2ty,, from the first case again, we get 1 € U too.

To summarize, 1 must belong to the nonzero submodule U, then U = W, so W is an
irreducible module if (A +m)(A — '1¥m) £ 0 for any m € Z. O

For convenience, we set 2§ = 25 =0 if k ¢ Z,..
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Theorem 3.4 (1) If A = —m for some m € Z, let n = — """ | then the submodule U(X) of
W generated by :vmﬂ o3t s the unique mazimal proper submodule of W, so W/U(\) is an
irreducible D(2, 1; a)-module.

(2) If X = "t%m for some m € Zy, let n = —"1%m, then the submodule U(X) of W gener-
ated by x} 1, 72’”1 is the unique maximal proper submodule of W, so W/U(X) is an irreducible
D(2,1; a)-module.

Proof Ifn € Zy, set w = fo,-(fartas-(x5TH)) = aln + D)mimoxiad — (n 4+ D)nmsmazh  ysys
€ U(X). We have

ea, - w=—a(n—+1)(m+ 1)mr3ziys # 0,
Cartar T3y = TaT3(1 + @)zy ™ £ 0.
Let Vp be the submodule of W generated by """ and w. Then we have U()\) = Vj.
Notice that
for W= fa, W= fo, W= fo, 40, w =0,
Jortas W = fortastas- W = foartagtas-w =0,

together with n_.27"** = 0, we have U()\) = Vj, is a proper submodule of W.

If A =0, then the submodule U(0) of W generated by x1,x2 equals the set of polynomials
without constant term forms. Obviously, it is the unique maximal proper submodule of W,
hence W/U(0) is an irreducible D(2, 1; a)-module.

Suppose A = —m for some m € Z;\{0}, let n = — " .
Notice that
ea, 27T = —mimg(m 4+ 12y,

then z"ys € U(\). Since
€a2-$71ny3 = 737455717@47

then z7y, € U(N). So by the actions of €q,, €20, +agtas, we get 7 1azl2y, € U(N) for any
l1,l3 € Z, . Similarly, we have xl ”‘Hly € U(M) for any ly,ls € Z.

Let v € W\U(X) be a non-zero weight vector, V' is the submodule of W generated by v, we
claim 1 € V' (which means V = W).

We separate it to three cases for discussing:

(I) hay-v = v, then we may assume v = x]fla:gzy4, k1,ks € Z+ up to a scalar multiplier.

We get k1 < m since xT+l1xé2y4 € U()) for any ly,ly € Z,. If n € Z,, we also have ko < n
since z 2z ™y, € U(N) for any Iyl € Z,, or n ¢ Z.

Notice that

fa1+a2+o¢3-(f2ko?¢1+a2+a3 (fkl U))
= (=M R (=m 4 k1) - (o D (=) kel (=0 4 k) - (=04 1) (—maa(—m)),

we get 1 € V since 71,7, 74, @ are all nonzero, m € Z \{0}, k1 < m,k1,ky € Zy, and ky < n

orné¢Z;.
(I1) he,.v = —v, then we assume v = ' 23y, j1, jo € Z4 up to a scalar multiplier.
Notice that en, v = 374z @y € V, fap-(m3mazlzlys) = v ¢ U(N), now we have

a2y, € VA\U(N), then from the first case, we get 1 € V.
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i1+1 22+1

III) ha,.v = 0, then we can assume v = px; +vai a2ysys, i1, i € Z, and at least
2° 2 1+2 +

one of ny vV is non-zero.

m+1 7.2+1

We get i1 < m since both z7 and xi”a??ygyzl are in U(A) for any io € Zy. If n € Zy,

we also have iy < n since x““mgﬂ zalysy, € U(N) for any iy € Z,.

(i) If v = 0, u # 0, notice that fézﬂ_aﬁ% (fotto) = p(=m)" i+ 1) (—m—+ir) - - - (—m)
(—7o) 2+ (ig+1)!(—n+iy) - - - (—n), we get 1 € V because 71, T2, it are all nonzero, iy < m, iy, iy €
Zi,and i <norn¢Z,.

1 v , =0, 127 < m — 1. Notice that f,,.v = —var 3z z 14, then from , We
i) If v #0,u=0,i 1. Notice that f,, P2y, then f I
have 1 € V.
iii) If v s =0,4 =m — 1. Since en,.(foy-v) = viTe1374 (1l + @)
ifi) If v £ 0, = 0, i 1. Si o (fas 1
with the discussion of (i), we have 1 € V.

btlgltl together

(iv) If v # 0, u # 0, i3 = m—1. Notice that J;l ys €EUN), eq, . (27ys) = —Tim3ma Yysys —
mo1a(1 4 @)xPzy € U(N), we have mymsma ' a2ysys + mora(1 4+ )zt € U(N) for any
19 € Z+.

1,2+1

Since v = pz'x + v aRysys ¢ U(N) and 71, 72,73, 74 € {£1}, we have myrqum #

To13(1 + ). Notlce that eq,+a,-v = (—=T17apm + 1273(1 + a)v)z"™ ! Z2+1y4, now we have
ety eV ifn € Zy iy <n —1orn ¢ 7Z,, then from (I), we have 1 € V.

Iftn€Ziyio =n—1, fo,tas-v = (—73(1 + @)v + iramgppm)na*™ lmg L4, then we have

m—1_n—1

" wh T yy € Vosince n # 0 and Tyrapum # 1273(1 + a)v. Now from (I), we have 1 € V.

(v)Ifv # 0,10 # 0,41 < m—1. Notice that e, 1~ .0 = R (et e T 2y y,)
€ V, then from (iv), we have 1 € V.

Summarize all the discussion above, we have that 1 belongs to any nonzero submodule of
W, except for U(X).

So U(A) is the unique maximal proper submodule of W, and W/U()) is an irreducible
D(2,1; a)-module.

The proof for (2) is completely analogous to (1), we omit it. O

Hence we get all irreducible quotients of this class of modules.
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