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generalize the related known results.
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1 Introduction

In 1972, Ekeland (see [14, 15]) presented a variational principle, now known as Ekeland vari-
ational principle (briefly, denoted by EVP), which says that for any lower semi-continuous
function f bounded from below on a complete metric space, there exists a slightly perturbed
version of this function that has a strict minimum. In the last four decades, the famous EVP
emerged as one of the most important results of nonlinear analysis and its application covers
numerous areas such as optimization, optimal control theory, fixed point theory, nonsmooth
analysis, Banach space geometry, game theory, nonlinear equations, dynamical systems, etc.;
for example, see [4, 11, 15, 16, 20, 35, 50]. Motivated by its wide usefulness, many authors have
been interested in extending EVP to the case with vector-valued maps or set-valued maps; see,
for example [3, 5–8, 10–13, 17, 18, 20, 21, 24–27, 29, 30, 33, 34, 39–41, 43–45, 47, 48, 51] and
the references therein.

In this paper, we consider extensions of EVP when the objective function is a vector-valued
map f : (X, d) → Y , where (X, d) is a complete metric space and Y is a real quasi-ordered
(topological) vector space. A systematization of such results can be found in, for example,
[11, 20, 21]. The common feature of these results is the presence of a certain term d(x, x′) k0 in
the perturbation, where k0 ∈ D\{0} and D is an ordering cone. Bednarczuk and Zagrodny (see
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[8, Theorem 4.1]) proved a vector EVP, where the perturbation is given by a bounded convex
subset H of the ordering cone D multiplied by the distance function d(x, x′), i.e., its form is as
d(x, x′) H. This generalizes the case where directions of the perturbations are singleton {k0}.
Tammer and Zǎlinescu also considered this type of EVPs and gave an improvement of the above
result; see [48, Theorem 6.2]. More generally, Gutiérrez, Jiménez and Novo [24] introduced a
set-valued metric, which takes values in the set family of all subsets of the ordering cone and
satisfies the triangle inequality. By using it they gave an original approach to extending the
scalar-valued EVP to a vector-valued map, where the perturbation contains a set-valued metric.
From this, they deduced several special versions of EVP involving approximate solutions for
vector optimization problems. However, in their work the assumption that the ordering cone D

is w-normal is required (see [24]). This requirement restricts the applicable extent of the new
version of EVP. Qiu [41] introduced a slightly more general notion: set-valued quasi-metrics,
and proposed the notion of compatibility between a set-valued quasi-metric and the original
metric d. By means of these notions, Qiu proved a general vector EVP, where the perturbation
contains a set-valued quasi-metric compatible with the original metric. Here, one needs not
assume that the ordering cone is w-normal. From the general EVP, Qiu deduced a number
of special vector EVPs, which improve the related known results. Particularly, Qiu obtained
several EVPs for ε-efficient solutions in the sense of Németh, which improve the related results
in [24].

In order to express our purpose clearly, we recall some details on this topic. Let Y be
a locally convex Hausdorff topological vector space (briefly, denoted by locally convex space)
and Y ∗ be its topological dual. For any ξ ∈ Y ∗, we define a continuous semi-norm pξ on Y as
follows: pξ(y) := |ξ(y)|, ∀y ∈ Y. The semi-norm family {pξ : ξ ∈ Y ∗} generates a locally convex
Hausdorff topology on Y (see, e.g., [28, 31, 32, 49]), which is called the weak topology on Y and
denoted by σ(Y, Y ∗). For any nonempty subset F of Y ∗, the semi-norm family {pξ : ξ ∈ F} can
also generate a locally convex topology (which need not be Hausdorff) on Y , which is denoted
by σ(Y, F ). In [31], the topology σ(Y, F ) is called the F -projective topology. If A, B ⊂ Y and
α ∈ R, the sets A + B and αA are defined as follows:

A + B := {z ∈ Y : ∃x ∈ A, ∃y ∈ B such that z = x + y},
αA := {z ∈ Y : ∃x ∈ A such that z = αx}.

A nonempty subset D of Y is called a cone if αD ⊂ D for any α ≥ 0. And D is called a convex
cone if D + D ⊂ D and αD ⊂ D for any α ≥ 0. Moreover, a convex cone is called a pointed
convex cone if D ∩ (−D) = {0}. A pointed convex cone D can specify a partial order in Y as
follows.

y1, y2 ∈ Y, y1 ≤D y2 ⇔ y1 − y2 ∈ −D.

In this case, D is called the ordering cone or positive cone. The positive polar cone of D is
denoted by D+, that is, D+ = {ξ ∈ Y ∗ : ξ(d) ≥ 0, ∀d ∈ D}. For H ⊂ D\{0}, the set
{ξ ∈ Y ∗ : inf{ξ(h) : h ∈ H} > 0} is denoted by H+s. A nonempty set M ⊂ Y is said to be
D-bounded by scalarization (briefly, denoted by D-bounded) if (see [24, Definition 3.3])

inf{ξ(y) : y ∈ M} > −∞, ∀ξ ∈ D+.
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Let us consider the following vector optimization problem:

Min{f(x) : x ∈ S}, (1.1)

where f : X → Y is a vector-valued map and S is a nonempty closed subset of X. A point
x0 ∈ S is called an efficient solution of (1.1) if

(f(S) − f(x0)) ∩ (−D\{0}) = ∅,
where f(S) denotes the set

⋃
x∈S{f(x)}.

Gutiérrez, Jiménez and Novo introduced the (C, ε)-efficiency concept, which extends and
unifies several ε-efficiency notions (see [22, 23]).

Definition 1.1 ([23]) A nonempty set C ⊂ Y is coradiant if
⋃

β≥1 βC = C.

Definition 1.2 ([23]) Let D be an ordering cone, C ⊂ D\{0} be a coradiant set and ε > 0.
A point x0 ∈ S is a (C, ε)-efficient solution of Problem (1.1) if (f(S)− f(x0)) ∩ (−εC) = ∅. In
this case, we also denote x0 ∈ AE(C, ε).

In particular, if C := H + D, where H ⊂ D\{0}, then we can easily verify that C is a
coradiant set and C ⊂ D\{0}. Thus, we obtain the concept of approximate efficiency due to
Németh.

Definition 1.3 ([23, 24, 34, 41]) Let H ⊂ D\{0} and ε > 0. A point x0 ∈ S is said to be
an ε-efficient solution of (1.1) in the sense of Németh (with respect to H) if (f(S) − f(x0)) ∩
(−εH − D) = ∅. In this case, we also denote x0 ∈ AE(CH , ε), where CH = H + D.

Usually, we assume that H ⊂ D\{0} is a D-convex set, i.e., H + D is a convex set. Let H

be a D-convex set and γ > 0. For any x ∈ S, put

S(x) := {z ∈ S : f(x) ∈ f(z) + γd(x, z)H + D}. (1.2)

It is easy to verify that x ∈ S(x) and S(x) = ∅ for all x ∈ S. Moreover, S(z) ⊂ S(x) for all
z ∈ S(x).

Definition 1.4 ([41]) Let X be a metric space and let S(·) : X → 2X\{∅} be a set-valued map.
The set-valued map S(·) is said to be dynamically closed at x ∈ X if (xn) ⊂ S(x), S(xn+1) ⊂
S(xn) ⊂ S(x) for all n and xn → x̄ then x̄ ∈ S(x). In this case, we also say that S(x) is
dynamically closed.

We remark that a property similar to the above dynamical closedness, i.e., the so-called lim-
iting monotonicity property, was also introduced in [5, 6]. Let’s recall the following assumption
(see [41]):

(Q3) For any x ∈ S(x0), S(x) is dynamically closed.
Now we can recall a vector EVP in [41] for ε-efficient solutions in the sense of Németh.

Theorem 1.5 ([41, Theorem 6.3]) Let H ⊂ D\{0} be a D-convex set such that 0 ∈ cl(H +D),
let γ > 0 and let Assumption (Q3) be satisfied by considering S(·) determined by (1.2). Let
x0 ∈ S be an ε-efficient solution of (1.1) in the sense of Németh with respect to H, and assume
that the set (f(S) − f(x0)) ∩ (−ε(cone(CH)\CH)) is D-bounded, where CH = H + D and
cone(CH) denotes the cone generated by CH . Then, there exists x̂ ∈ S such that

(a) f(x0) ∈ f(x̂) + γd(x0, x̂)H + D;
(b) d(x0, x̂)H ∩ (ε/γ) (cone(CH)\CH) = ∅;
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(c) ∀x ∈ S\{x̂}, f(x̂) ∈ f(x) + γd(x̂, x)H + D.

As we have seen, [41, Theorem 6.3] improves [24, Theorem 5.11] by removing the condition
that D is w-normal and the condition that the cone(CH) is based. However, whether in [41,
Theorem 6.3] or in [24, Theorem 5.11], the assumption that (f(S)−f(x0))∩(−ε(cone(CH)\CH))
is D-bounded is necessary. In fact, in the proofs of the above two theorems, we need to verify
that assumption (A6), i.e., x0 ∈ AE(CH , ε) and (f(S) − f(x0)) ∩ (−ε(cone(CH)\CH)) being
D-bounded, is satisfied (for more details, see [24, 41]). Thus, the above assumption on D-
boundedness is indispensable. In this paper, we shall follow another way of deriving this sort
of results. First, we generalize Gerstewitz’s functions from a single positive vector k0 to a cone-
convex subset H of the positive cone, i.e., generalizing ξk0 to ξH (see the following Section 2).
As we shall see, this generalization destroys the subadditivity and the lower semi-continuity
(when Y is a topological vector space) of ξk0 . But, not being too bad, it remains satisfying
the subadditivity under some condition. There might still be a ray of hope of deriving new
vector EVP by using the generalized Gerstewitz’s functions. Then, we present a partial order
principle, which consists of a partial order set (X,�) and an extended real-valued function η

which is monotone with respect to �. The partial order principle states that there exists a strong
minimal point dominated by any given point provided that the monotone function η satisfies
three general conditions. The partial order principle is indeed a variant of [43, Theorem 2.1]. By
using the generalized Gerstewitz’s functions and the partial order principle, we obtain a vector
EVP for ε-efficient solutions in the sense of Németh, which essentially improves Theorem 1.5. To
our surprise, we find out that even though the assumption (f(S)−f(x0))∩(−ε(cone(CH)\CH))
being D-bounded is completely removed, the result of Theorem 1.5 remains true. From this, we
also deduce several results, which improve [41, Theorem 6.5] and [24, Theorem 5.12]. Moreover,
by developing the above method, we obtain a vector EVP, where the perturbation contains a σ-
convex set, which improves [8, Theorems 4.1 and 5.1], [48, Theorem 6.2] and [41, Theorem 6.8]
by relaxing the lower boundedness on ranges of objective functions.

This paper is structured as follows. In Section 2, we generalize Gerstewitz’s functions from a
singleton {k0} to a set H and discuss the basic properties of generalized Gerstewitz’s functions.
In Section 3, we present a partial order principle, which is useful for deriving vector EVPs.
In Section 4, by using the generalized Gerstewitz’s functions and the partial order principle,
we obtain a vector EVP for ε-efficient solutions in the sense of Németh, which improves the
earlier results by removing a usual assumption on D-boundedness of the range of the objective
function. From this, we also deduce several interesting EVPs, which improve related known
results. Finally, in Section 5, we obtain a vector EVP, where the perturbation contains a σ-
convex set (i.e., cs-complete bounded set; see [48], also see Section 5). The EVP improves
several known EVPs by relaxing the lower boundedness for the range of the objective function.

2 Generalized Gerstewitz’s Functions and Their Properties

A useful approach for solving a vector problem is to reduce it to a scalar problem. Gerstewitz’s
functions introduced in [19] are often used as the basis of the scalarization. In the framework
of topological vector spaces, Gerstewitz’s functions generated by closed convex (solid) cones
and their properties have been investigated thoroughly, for example, see [11, 19, 20] and the
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references therein. In this section, we consider Gerstewitz’s functions and their generalizations
in a more general framework.

In the following, we always assume that Y is a real vector space. For a nonempty subset
A ⊂ Y , the vector closure of A is defined as follows (refer to [1, 2]):

vcl(A) = {y ∈ Y : ∃v ∈ Y, ∃λn ≥ 0, λn → 0 such that y + λnv ∈ A, ∀n ∈ N}.
For any given v0 ∈ Y , we define the v0-vector closure (briefly, v0-closure) of A as follows (refer
to [42, 44]):

vclv0(A) = {y ∈ Y : ∃λn ≥ 0, λn → 0 such that y + λnv0 ∈ A, ∀n ∈ N}.
Obviously,

A ⊂ vclv0(A) ⊂
⋃

v∈Y

vclv(A) = vcl(A).

All the above inclusions are proper. Moreover, if Y is a Hausdorff topological vector space
(briefly, denoted by t.v.s.) and cl(A) denotes the closure of A, then vcl(A) ⊂ cl(A) and the
inclusion is also proper; for details, see [2, 44]. A subset A of Y is said to be v0-closed if
A = vclv0(A); to be vectorially closed if A = vcl(A); to be (topologically) closed if A = cl(A).
Next, we discuss the problem in a setting which is slightly more general than one in Section 1.
Let Y be a real vector space and D ⊂ Y be a convex cone. D can specify a quasi-order ≤D as
follows:

y1, y2 ∈ Y, y1 ≤D y2 ⇔ y1 − y2 ∈ −D.

In this case, D is also called the ordering cone or positive cone (as in Section 1). We always
assume that D is nontrivial, i.e., D = {0} and D = Y . Let k0 ∈ D\ − D be given. For any
y ∈ Y , if there exists t ∈ R such that y ∈ tk0 − D, then for any t′ > t, y ∈ t′k0 − D. Thus,
we can define a function ξk0 : Y → R ∪ {±∞} as follows: if there exists t ∈ R such that
y ∈ tk0 −D, then define ξk0(y) = inf{t ∈ R : y ∈ tk0 −D}; or else, define ξk0(y) = +∞. Such
a function is called a Gerstewitz’s function generated by D and k0.

The following results concerning Gerstewitz’s functions originate from [19, 20].

Proposition 2.1 ([44, Lemma 2.6]) There exists z ∈ Y such that ξk0(z) = −∞ iff k0 ∈
−vcl(D).

Proposition 2.2 ([11, 20, 44]) Let D ⊂ Y be a convex cone and k0 ∈ D\−vcl(D). Then, the
Gerstewitz’s function ξk0 has the following properties:

(i) y1 ≤D y2 ⇒ ξk0(y1) ≤ ξk0(y2), ∀y1, y2 ∈ Y ;
(ii) ξk0(αy) = α ξk0(y), ∀y ∈ Y, ∀α ≥ 0, where we assume that 0 · ∞ = 0 if necessary;
(iii) ξk0(y1 + y2) ≤ ξk0(y1) + ξk0(y2), ∀y1, y2 ∈ Y ;
Let y ∈ Y and r ∈ R. Then, we have:
(iv) ξk0(y) < r ⇔ y ∈ rk0 − vintk0(D), where vintk0(D) = (0, +∞)k0 + D;
(v) ξk0(y) ≤ r ⇔ y ∈ rk0 − vclk0(D);
(vi) ξk0(y) = r ⇔ y ∈ rk0 − (vclk0(D)\vintk0(D));
Particularly, ξk0(0) = 0, ξk0(k0) = 1;
(vii) ξk0(y) ≥ r ⇔ y ∈ rk0 − vintk0(D);
(viii) ξk0(y) > r ⇔ y ∈ rk0 − vclk0(D);
(ix) ξk0(y + rk0) = ξk0(y) + r.
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As we have seen, the Gersterwitz’s function ξk0 plays an important role in deriving EVPs
where perturbations contain a singleton {k0}. Now, we consider EVPs where the {k0} in
perturbations is replaced by a subset H of the ordering cone D; for example, see Theorem 1.5.
Thus, we need to extend the notion of Gerstewitz’s functions.

Let H ⊂ D\ − D be a D-convex set. For any y ∈ Y , if there exists t ∈ R such that y ∈
t H −D, then for any t′ > t, y ∈ t′ H −D. Thus, we can define a function ξH : Y → R∪{±∞}
as follows: if there exists t ∈ R such that y ∈ t H − D, then define ξH(y) = inf{t ∈ R : y ∈
t H − D}; or else, define ξH(y) = +∞. We call such a function a generalized Gerstewitz’s
function generated by D and H. Next, we give some properties of generalized Gerstewitz’s
functions.

Proposition 2.3 There exists z ∈ Y such that ξH(z) = −∞ iff 0 ∈ vcl(H + D).

Proof Assume that there exists z ∈ Y such that ξH(z) = −∞. Then, for any n ∈ N,
z ∈ −nH − D. Thus, z/n ∈ −H − D. Letting n → ∞, we have

0 ∈ vcl(−H − D) = −vcl(H + D).

Hence, 0 ∈ vcl(H + D).
Conversely, assume that 0 ∈ vcl(H + D). Then, there exists v ∈ Y and a sequence (λn)

with λn ≥ 0 and λn → 0 such that λnv ∈ H + D. Since 0 ∈ H + D, we have λn > 0, ∀n. Thus,

−v ∈ − 1
λn

H − D, ∀n.

Put z = −v. Then ξH(z) = −∞. �

Proposition 2.4 Let D ⊂ Y be a convex cone and H ⊂ D be a D-convex set such that
0 ∈ vcl(H + D). Then, the generalized Gerstewitz’s function ξH has the following properties:

(i) y1 ≤D y2 =⇒ ξH(y1) ≤ ξH(y2), ∀y1, y2 ∈ Y ;
(ii) ξH(0) = 0;
(iii) ξH(αy) = α ξH(y), ∀y ∈ Y, ∀α ≥ 0, where we assume that 0 · ∞ = 0 if necessary;
(iv) ξH(y1 + y2) ≤ ξH(y1) + ξH(y2) if ξH(y1) < 0 and ξH(y2) < 0.

Proof (i) Without loss of generality, we may assume that ξH(y2) < +∞. For any ε > 0,

y2 ∈ (ξH(y2) + ε)H − D.

Since y1 ≤D y2, we have y1 ∈ y2 − D. Thus,

y1 ∈ (ξH(y2) + ε)H − D − D = (ξH(y2) + ε)H − D.

Hence ξH(y1) ≤ ξH(y2) + ε, which leads to ξH(y1) ≤ ξH(y2).
(ii) Obviously, 0 ∈ 0 · H − D, so ξH(0) ≤ 0. Assume that ξH(0) < 0. Then, there exists

ε > 0 such that ξH(0) + ε < 0. Thus,

0 ∈ (ξH(0) + ε)H − D = −(ξH(0) + ε)(−H − D).

Since −(ξH(y) + ε) > 0, we have 0 ∈ −H − D and 0 ∈ H + D, contradicting 0 ∈ vcl(H + D).
(iii) If α = 0, then from (ii), ξH(αy) = ξH(0) = 0. Also, α · ξH(y) = 0 · ξH(y) = 0. Hence,

ξH(αy) = α ξH(y) holds for α = 0.



Vector Variational Principle 303

If α > 0 and ξH(y) < +∞, then for any ε > 0, y ∈ (ξH(y) + ε)H − D. Thus, αy ∈
α(ξH(y)+ ε)H −D. Hence, ξH(αy) ≤ αξH(y)+αε. Since ε > 0 may be arbitrary small, we have

ξH(αy) ≤ αξH(y). (2.1)

Also,

ξH(y) = ξH

(
1
α

αy

)

≤ 1
α

ξH(αy).

From this,

ξH(αy) ≥ αξH(y). (2.2)

Combining (2.1) and (2.2), we have ξH(αy) = αξH(y).
If α > 0 and ξH(y) = +∞, then for any t ∈ R, y ∈ tH − D. Thus, for any t ∈ R,

αy ∈ t H − D. Hence ξH(αy) = +∞ and ξH(αy) = αξH(y) holds.
(iv) Assume that ξH(y1) < 0 and ξH(y2) < 0. Then, there exists ε > 0 such that ξH(y1) + ε

< 0 and ξH(y2) + ε < 0. Thus,

y1 ∈ (ξH(y1) + ε)H − D = −(ξH(y1) + ε) (−H − D)

and
y2 ∈ (ξH(y2) + ε)H − D = −(ξH(y2) + ε) (−H − D).

Since −H − D is convex, we have

y1 + y2 ∈ −(ξH(y1) + ε)(−H − D) − (ξH(y2) + ε)(−H − D)

= −(ξH(y1) + ξH(y2) + 2ε)(−H − D)

= (ξH(y1) + ξH(y2) + 2ε)H − D.

From this,
ξH(y1 + y2) ≤ ξH(y1) + ξH(y2) + 2ε.

Since 2ε > 0 may be arbitrary small, we have

ξH(y1 + y2) ≤ ξH(y1) + ξH(y2). �

Remark 2.5 Proposition 2.4 (iv) points out that ξH satisfies the subadditivity only if the
two items ξH(y1) and ξH(y2) are both negative. Being different from ξk0 (see Proposition 2.2
(iii)), in general, ξH does not satisfy the subadditivity. For example, let Y := R2 with the
ordering cone D := {(η1, η2) ∈ Y : η1 ≥ 0, η2 ≥ 0}. Let H be the set {(η1, η2) ∈ Y : 1 ≤
η1 + η2 ≤ 2, η1 ≥ 0, η2 ≥ 0}. Then H ⊂ D is a convex set and 0 ∈ vcl(H + D). Put y1 = (1, 1)
and put y2 = (−1,−1). It is easy to verify that

ξH(y1) = inf{t ∈ R : y1 = (1, 1) ∈ tH − D} = 1

and
ξH(y2) = inf{t ∈ R : y2 = (−1,−1) ∈ tH − D} = −2.

We see that
ξH(y1 + y2) = ξH((0, 0)) = 0 > 1 + (−2) = ξH(y1) + ξH(y2),

that is, the subadditivity does not hold.
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3 A Partial Order Principle

In this section, we present a partial order principle, which is a useful tool of deriving EVPs. In
fact, it is a variant of the pre-order principle in [43].

Let X be a nonempty set. As in [18], a binary relation � on X is called a pre-order if it
satisfies the transitive property; a quasi order if it satisfies the reflexive and transitive properties;
a partial order if it satisfies the antisymmetric, reflexive and transitive properties. Let (X,�)
be a partial order set. An extended real-valued function η : (X,�) → R ∪ {±∞} is called
monotone with respect to � if for any x1, x2 ∈ X,

x1 � x2 =⇒ η(x1) ≤ η(x2).

For any given x0 ∈ X, denote S(x0) the set {x ∈ X : x � x0}. First we give a partial order
principle, which is indeed a variant of [43, Theorem 2.1].

Theorem 3.1 Let (X,�) be a partial order set, x0 ∈ X be given and η : (X,�) → R∪{±∞}
be an extended real-valued function which is monotone with respect to �.

Suppose that the following conditions are satisfied:
(A) −∞ < inf{η(x) : x ∈ S(x0)} < +∞;
(B) For any x ∈ S(x0)\{x0} with −∞ < η(x) < +∞ and any x′ ∈ S(x)\{x}, one has

η(x) > η(x′);
(C) For any sequence (xn) ⊂ S(x0) with xn ∈ S(xn−1)\{xn−1}, ∀n, such that η(xn) −

inf{η(x) : x ∈ S(xn−1)} → 0 (n → ∞), there exists u ∈ X such that u ∈ S(xn), ∀n.
Then there exists x̂ ∈ X such that
(a) x̂ ∈ S(x0);
(b) S(x̂) = {x̂}.

Proof For brevity, denote inf{η(x) : x ∈ S(x0)} by inf η ◦ S(x0). By (A), we know that

−∞ < inf η ◦ S(x0) < +∞. (3.1)

If S(x0) = {x0}, then we may take x̂ := x0. Clearly, it satisfies (a) and (b). If S(x0) = {x0},
then by (3.1) we may take x1 ∈ S(x0)\{x0} such that

η(x1) < inf η ◦ S(x0) +
1
2
. (3.2)

By the transitive property of �, we have

S(x1) ⊂ S(x0). (3.3)

If S(x1) = {x1}, then we may take x̂ := x1. Clearly, it satisfies (a) and (b). If S(x1) = {x1},
then by (3.1), (3.2) and (3.3) we conclude that

−∞ < inf η ◦ S(x1) < +∞.

We may take x2 ∈ S(x1)\{x1} such that

η(x2) < inf η ◦ S(x1) +
1
22

.

In general, let xn−1 ∈ X (n ≥ 1) be given. If S(xn−1) = {xn−1}, then we may take x̂ := xn−1.
Clearly, it satisfies (a) and (b). If S(xn−1) = {xn−1}, then we conclude that

−∞ < inf η ◦ S(xn−1) < +∞.
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We may take xn ∈ S(xn−1)\{xn−1} such that

η(xn) < inf η ◦ S(xn−1) +
1
2n

. (3.4)

Without loss of generality, we assume that S(xn) = {xn} for every n. Thus, we obtain a
sequence (xn) ⊂ S(x0) with xn ∈ S(xn−1)\{xn−1}, ∀n, such that

η(xn) − inf η ◦ S(xn−1) <
1
2n

→ 0 (n → ∞).

By (C), there exists x̂ ∈ X such that

x̂ ∈ S(xn), ∀n. (3.5)

Clearly, x̂ ∈ S(x0), that is, x̂ satisfies (a). Next, we show that x̂ satisfies (b), that is, S(x̂) = {x̂}.
If not, there exists x̄ ∈ S(x̂) and x̄ = x̂. By (B),

η(x̂) > η(x̄). (3.6)

On the other hand, by x̄ ∈ S(x̂) and (3.5) we have

x̄ ∈ S(xn), ∀n. (3.7)

Since η is monotone with respect to �, by (3.4), (3.5) and (3.7) we have

η(x̂) ≤ η(xn) < inf η ◦ S(xn−1) +
1
2n

≤ η(x̄) +
1
2n

, ∀n.

Letting n → ∞, we have η(x̂) ≤ η(x̄), which contradicts (3.6). �

4 Vector EVPs for ε-Efficient Solutions in the Sense of Németh

In this section, we assume that (X, d) is a complete metric space, Y is a real vector space,
D ⊂ Y is a convex pointed cone, f : X → Y is a vector-valued map and S is a nonempty
closed subset of X. By using the partial order principle (i.e., Theorem 3.1) and generalized
Gerstewitz’s functions, we obtain the following vector EVP, which improves Theorem 1.5 by
removing the assumption that the set (f(S) − f(x0)) ∩ (−ε(cone(CH)\CH)) is D-bounded.
Besides, the assumption in Theorem 1.5 that 0 ∈ cl(H + D) is replaced by a weaker one that
0 ∈ vcl(H + D).

Theorem 4.1 Let H ⊂ D be a D-convex set such that 0 ∈ vcl(H + D), let γ > 0 and
let Assumption (Q3) be satisfied by considering S(·) determined by (1.2). Let x0 ∈ S be an
ε-efficient solution of (1.1) in the sense of Németh with respect to H, i.e., (f(S) − f(x0)) ∩
(−ε H − D) = ∅ (see Definition 1.3). Then, there exists x̂ ∈ S such that

(a) f(x0) ∈ f(x̂) + γd(x0, x̂)H + D;
(b) d(x0, x̂)H ∩ (ε/γ) (cone(CH)\CH) = ∅;
(c) ∀x ∈ S\{x̂}, f(x̂) ∈ f(x) + γd(x̂, x)H + D.

Proof For x, x′ ∈ S, define x′ � x iff f(x) ∈ f(x′)+γd(x, x′)H +D. It is easy to verify that �
is a partial order on S. Obviously, � satisfies the reflexive property and the transitive property.
Next, we show that � satisfies the antisymmetric property. In fact, if x′ � x and x � x′, then

f(x) ∈ f(x′) + γd(x, x′)H + D
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and
f(x′) ∈ f(x) + γd(x′, x)H + D.

Combining the above two belonging relations, we have

0 ∈ 2γd(x, x′)H + D.

Since 0 ∈ H + D, this leads to that d(x, x′) = 0 and x = x′. If x′ � x and x′ = x, we denote
x′ ≺ x. Define an extended real-valued function η : (S,�) → R ∪ {±∞} as follows:

η(x) := ξH(f(x) − y0), x ∈ S,

where y0 = f(x0). Since 0 ∈ vcl(H + D), by Proposition 2.3, ξH(f(x) − y0) = −∞, that is,
η(x) = −∞, ∀x ∈ S. Let x′ � x. Then

f(x) ∈ f(x′) + γd(x, x′)H + D.

Thus,
f(x′) − f(x) ∈ −γd(x, x′)H − D ⊂ −D

and
f(x′) − y0 ≤D f(x) − y0.

By Proposition 2.4 (i), we have

ξH(f(x′) − y0) ≤ ξH(f(x) − y0), that is, η(x′) ≤ η(x).

Hence, η is monotone with respect to �. We denote the set {x′ ∈ X : x′ � x} by S(x). Next,
we prove that Assumptions (A), (B) and (C) in Theorem 3.1 are satisfied.

Proof of (A) Since y0 = f(x0) ∈ f(S) + εH + D, for any x ∈ S(x0) ⊂ S,

f(x) − y0 ∈ −εH − D, so η(x) = ξH(f(x) − y0) ≥ −ε.

Also, by Proposition 2.4 (ii),

η(x0) = ξH(f(x0) − y0) = ξH(0) = 0.

Hence,
−∞ < −ε ≤ inf{η(x) : x ∈ S(x0)} ≤ η(x0) = 0 < +∞.

That is, (A) is satisfied.

Proof of (B) Let x ∈ S(x0)\{x0} with −∞ < η(x) < +∞ and let x′ ∈ S(x)\{x}. By
x ∈ S(x0)\{x0}, we have

f(x0) ∈ f(x) + γd(x0, x)H + D and x = x0. (4.1)

By x′ ∈ S(x)\{x}, we have

f(x) ∈ f(x′) + γd(x, x′)H + D and x′ = x. (4.2)

By (4.1), we know that
f(x) − y0 ∈ −γd(x0, x)H − D,

and so

ξH(f(x) − y0) ≤ −γd(x0, x) < 0. (4.3)
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By (4.2), we know that
f(x′) − f(x) ∈ −γd(x, x′)H − D,

and so

ξH(f(x′) − f(x)) ≤ −γd(x, x′) < 0. (4.4)

Remarking (4.3) and (4.4), and using Proposition 2.4 (iv), we have

ξH(f(x′) − y0) ≤ ξH(f(x′) − f(x)) + ξH(f(x) − y0).

From this and using (4.4), we have

ξH(f(x′) − y0) − ξH(f(x) − y0) ≤ ξH(f(x′) − f(x)) ≤ −γd(x, x′).

That is,
η(x′) − η(x) ≤ −γd(x, x′),

and so
η(x′) ≤ η(x) − γd(x, x′) < η(x).

Thus, (B) is satisfied.

Proof of (C) Let a sequence (xn) ⊂ S(x0) with xn ∈ S(xn−1)\{xn−1}, ∀n, such that η(xn)−
inf{η(x) : x ∈ S(xn−1)} → 0 (n → ∞). Since x0 � x1 � x2 � · · · � xn � · · · , by the transitive
property and the antisymmetric property, we have xm ≺ xn, ∀m > n. That is,

f(xn) ∈ f(xm) + γd(xn, xm)H + D.

From this,
ξH(f(xm) − f(xn)) ≤ −γd(xn, xm),

and so

γd(xn, xm) ≤ −ξH(f(xm) − f(xn)). (4.5)

Since ξH(f(xn) − y0) ≤ −γd(x0, xn) < 0 and ξH(f(xm) − f(xn)) ≤ −γd(xn, xm) < 0, by
Proposition 2.4 (iv), we have

ξH(f(xm) − y0) ≤ ξH(f(xm) − f(xn)) + ξH(f(xn) − y0),

and so

−ξH(f(xm) − f(xn)) ≤ ξH(f(xn) − y0) − ξH(f(xm) − y0). (4.6)

Combining (4.5) and (4.6), and remarking that xm ∈ S(xn−1), we have

γd(xn, xm) ≤ ξH(f(xn) − y0) − ξH(f(xm) − y0)

= η(xn) − η(xm)

≤ η(xn) − inf η ◦ S(xn−1) → 0 (n → ∞).

Hence (xn) is a Cauchy sequence. Since (X, d) is complete and S ⊂ X is closed, there exists
x̂ ∈ S such that xn → x̂ (n → ∞). For any given n, S(xn) ⊂ S(x0). We observe that
(xn+p)p∈N ⊂ S(xn) and xn+p+1 ∈ S(xn+p), ∀p. Since xn+p → x̂ (p → ∞) and S(xn) is
dynamically closed by (Q3), we have x̂ ∈ S(xn), ∀n. That is, (C) is satisfied.
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Now, applying Theorem 3.1 we conclude that there exists x̂ ∈ S such that x̂ ∈ S(x0) and
S(x̂) = {x̂}. That is, x̂ satisfies (a) and (c). Finally we show that x̂ satisfies (b). By (a),

f(x0) ∈ f(x̂) + γd(x0, x̂)H + D.

Hence, there exists h0 ∈ H and d0 ∈ D such that

f(x0) = f(x̂) + γd(x0, x̂)h0 + d0. (4.7)

Clearly,

d(x0, x̂)h0 ∈ d(x0, x̂)H (4.8)

and

d(x0, x̂)h0 ∈ cone(H + D). (4.9)

Next we show that

d(x0, x̂)h0 ∈ ε

γ
(H + D). (4.10)

Assume that
d(x0, x̂)h0 ∈ ε

γ
(H + D).

Then
γd(x0, x̂)h0 ∈ ε(H + D) = εH + D.

Thus,
γd(x0, x̂)h0 + d0 ∈ εH + D + D = εH + D.

Combining this with (4.7), we have

f(x0) − f(x̂) ∈ εH + D,

which contradicts the assumption that

f(x0) ∈ f(S) + εH + D.

Now, combining (4.8), (4.9) and (4.10), we have

d(x0, x̂)h0 ∈ d(x0, x̂)H ∩
(

cone(H + D)\ ε

γ
(H + D)

)

= d(x0, x̂)H ∩
(

ε

γ

)

(cone(H + D)\(H + D)).

This means that (b) is satisfied. �

Remark 4.2 As we have seen in the proof of Theorem 4.1, we applied Theorem 3.1 instead
of [43, Theorem 2.1] to prove Theorem 4.1. Here, Theorem 3.1 is specially made for deriving
Theorem 4.1. As shown in Section 2, being different from the Gerstewitz’s function ξk0 (where
k0 is a single point), the generalized Gerstewitz’s function ξH (where H is a cone-convex set)
satisfies the subadditivity ξH(y1 + y2) ≤ ξH(y1) + ξH(y2) only when the two items ξH(y1) and
ξH(y2) are both negative (compare Proposition 2.2 (iii) and Proposition 2.4 (iv)). In Proof of
(B) in the proof of Theorem 4.1, we need to use the inequality

ξH(f(x′) − y0) ≤ ξH(f(x′) − f(x)) + ξH(f(x) − y0). (4.11)
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In order to make the above inequality hold, we need to have

ξH(f(x′) − f(x)) < 0 and ξH(f(x) − y0) < 0.

By (4.3) and (4.4), we have

ξH(f(x) − y0) ≤ −γ d(x0, x) and ξH(f(x′) − f(x)) ≤ −γ d(x, x′).

Thus, in order to make (4.11) hold, it is sufficient to assume that d(x0, x) > 0 and d(x, x′) > 0,
that is, x0 = x and x′ = x. Hence, in Condition (B) of Theorem 3.1 we need to assume that
x ∈ S(x0)\{x0} and x′ ∈ S(x)\{x}. Recalling Condition (B) of [43, Theorem 2.1], there we
only assumed that x ∈ S(x0) and x′ ∈ S(x)\{x}. This is the reason why we need to change
“x ∈ S(x0)” in Condition (B) of [43, Theorem 2.1] into “x ∈ S(x0)\{x0}” in Condition (B) of
Theorem 3.1.

Similarly, in Proof of (C) in the proof of Theorem 4.1, we need to use the inequality

ξH(f(xm) − y0) ≤ ξH(f(xm) − f(xn)) + ξH(f(xn) − y0). (4.12)

In order to make the above inequality hold, we need to have

ξH(f(xm) − f(xn)) < 0 and ξH(f(xn) − y0) < 0.

Since
ξH(f(xm) − f(xn)) ≤ −γd(xn, xm) and ξH(f(xn) − y0) ≤ −γd(xn, x0),

in order to make (4.12) hold, we only need to assume that d(xn, xm) > 0 (∀m > n) and
d(x0, xn) > 0 (∀n > 0), that is, xm = xn (∀m > n) and xn = x0 (∀n > 0). Hence, we need to
assume that “�” is a partial order (not only a pre-order) and xn ∈ S(xn−1)\{xn−1}, ∀n (not
only xn ∈ S(xn−1), ∀n). This is just the difference between Condition (C) of Theorem 3.1 and
Condition (C) of [43, Theorem 2.1].

In a word, from [43, Theorem 2.1] we can’t prove Theorem 4.1 directly. But, from its
variant, i.e., Theorem 3.1, we can deduce Theorem 4.1.

As in [24, 41], a vector-valued map f : X → Y is said to be sequentially submonotone
with respect to D (briefly, denoted by submonotone) if for every x ∈ X and for each sequence
(xn) such that xn → x and f(xm) ≤D f(xn), ∀m > n, it follows that f(x) ≤D f(xn), ∀n.

Sometimes, a submonotone vector-valued map is said to be D-sequentially lower monotone
(briefly, denoted by D-slm or slm); see, for example [26]. In [8], a submonotone vector-valued
map is called a monotonically semi-continuous (denoted by msc) with respect to D map; in [21]
it is called a map with Property (H4); and in [30] it is called a lower semi-continuous from
above (briefly, denoted by lsca). Let us observe that a D-lower semi-continuous vector-valued
map f : X → Y , i.e., f such that the sets {x ∈ X : f(x) ≤D y} are closed for all y ∈ Y ,
is submonotone. But the converse is not true even Y is the real number space with the usual
order, for example, see [9].

Next, we present a particular version of vector EVP for ε-efficient solutions by giving a
certain condition for (Q3) fulfilled.

Theorem 4.3 Let H ⊂ D be a D-convex set such that 0 ∈ vcl(H + D), and let x0 ∈ S be an
ε-efficient solution of (1.1) in the sense of Németh with respect to H. Moreover, assume that
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H + D is h0-closed for a certain h0 ∈ H and f is submonotone. Then, for any γ > 0, there
exists x̂ ∈ S such that

(a) f(x0) ∈ f(x̂) + γd(x0, x̂)H + D;
(b) d(x0, x̂) < ε/γ;
(c) ∀x ∈ S\{x̂}, f(x̂) ∈ f(x) + γd(x̂, x)H + D.

Proof For any x ∈ S, put

S(x) := {z ∈ S : f(x) ∈ f(z) + γ d(x, z) H + D}.
From Theorem 4.1, we only need to prove that (Q3) is satisfied. Let x ∈ S(x0), (xn) ⊂ S(x) with
xn+1 ∈ S(xn) and xn → u. For any given n and for every m > n, we have xm ∈ S(xn) and hence
f(xm) ≤D f(xn). Since f is submonotone and xm → u (m → ∞), we have f(u) ≤D f(xn).
For m > n, xm ∈ S(xn). Thus,

f(xn) ∈ f(xm) + γd(xn, xm)H + D

⊂ f(u) + γd(xn, xm)H + D.

Next, we show the result according to the following two cases.

Case 1 There exists m > n such that d(xn, xm) ≥ d(xn, u). Then

f(xn) ∈ f(u) + γd(xn, xm)H + D

⊂ f(u) + γd(xn, u)H + D.

That is, u ∈ S(xn) ⊂ S(x).

Case 2 For every m > n, d(xn, xm) < d(xn, u). Then, from

f(xn) ∈ f(u) + γd(xn, xm)H + D,

we have

f(xn) + γ(d(xn, u) − d(xn, xm))h0

∈ f(u) + γd(xn, xm)H + D + γ(d(xn, u) − d(xn, xm))h0

⊂ f(u) + γd(xn, xm)(H + D) + γ(d(xn, u) − d(xn, xm))(H + D)

= f(u) + γd(xn, u)(H + D)

= f(u) + γd(xn, u)H + D.

From this,

f(xn) − f(u) + γ(d(xn, u) − d(xn, xm))h0 ∈ γd(xn, u)H + D. (4.13)

Since d(xn, u) − d(xn, xm) → 0 (m → ∞) and γd(xn, u)H + D is h0-closed, by (4.13) we have

f(xn) − f(u) ∈ γd(xn, u)H + D

and
f(xn) ∈ f(u) + γd(xn, u)H + D.

That is, u ∈ S(xn) ⊂ S(x). Thus, we have shown that (Q3) is satisfied. Applying Theorem 4.1,
there exists x̂ ∈ S such that (a) and (c) are satisfied. Next we show that (b) is satisfied. If not,
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assume that d(x0, x̂) ≥ ε/γ. Then from (a), we have

f(x0) ∈ f(x̂) + γd(x0, x̂)H + D

⊂ f(x̂) + γ
ε

γ
H + D

= f(x̂) + εH + D,

which contradicts the assumption that x0 ∈ S is an ε-efficient solution of (1.1) in the sense of
Németh with respect to H, i.e., f(x0) ∈ f(S) + εH + D. �

Theorem 4.4 Let Y be a locally convex space, D ⊂ Y be a closed convex cone and H ⊂ D\−D

be a σ(Y, D+)-countably compact, D-convex set. Suppose that f : X → Y is submonotone and
x0 is an ε-efficient solution of (1.1) in the sense of Németh with respect to H. Then, for any
γ > 0, there exists x̂ ∈ S such that

(a) f(x0) ∈ f(x̂) + γd(x0, x̂)H + D;
(b) d(x0, x̂) < ε/γ;
(c) ∀x ∈ S\{x̂}, f(x̂) ∈ f(x) + γd(x̂, x)H + D.

Proof By Theorem 4.3, we only need to prove that H + D is vectorially closed. Let z ∈
vcl(H + D). Then, there exists v0 ∈ Y and a sequence (εn) with εn > 0 and εn → 0 such that
z + εnv0 ∈ H + D. For each n, there exists hn ∈ H such that

z + εnv0 ∈ hn + D,

that is,

z − hn + εnv0 ∈ D. (4.14)

Since H is σ(Y, D+)-countably compact, the sequence (hn) ⊂ H has a σ(Y, D+)-cluster point
h′ ∈ H. Take any ξ ∈ D+. From (4.14), we have

ξ(z) − ξ(hn) + εnξ(v0) ≥ 0. (4.15)

Since a continuous map preserves cluster points, ξ(h′) is a cluster point of (ξ(hn))n in R. Hence,
there exists a subsequence n1 < n2 < n3 < · · · such that ξ(hni

) → ξ(h′) (i → ∞). By (4.15),
we have

ξ(z) − ξ(hni
) + εni

ξ(v0) ≥ 0.

Letting i → ∞, we have

ξ(z) − ξ(h′) ≥ 0, i.e., ξ(z − h′) ≥ 0.

Since ξ ∈ D+ is arbitrary and D is a closed convex cone, we have

z − h′ ∈ D++ = D.

That is, z ∈ h′ + D ⊂ H + D. Thus, we have shown that H + D = vcl(H + D). Now, from
Theorem 4.3 we obtain the result. �

Remark 4.5 [41, Theorem 6.5] also gives the same result as in Theorem 4.4, but there one
needs to assume that H is a base of D. Here, we have removed the assumption. Clearly,
Theorem 4.4 improves [41, Theorem 6.5] and also improves [24, Theorem 5.12].
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5 Vector EVP with Perturbation Containing a σ-Convex Set

Vector EVPs, where perturbations are of type d(x, y)H, were also considered by Bednarczuk
and Zagrodny [8], Tammer and Zǎlinescu [48] and Qiu [41]. For details, see [8, theorem 4.1],
[48, Theorem 6.2] and [41, Theorem 6.8]. We shall see that our partial order principle, i.e.,
Theorem 3.1, also implies this type of EVPs. We shall obtain a vector EVP, where the pertur-
bation contains a σ-convex set, which improves the above three results. First, we recall some
terms and notions. Let Y be a t.v.s. and B ⊂ Y be nonempty. A convex series of points of
B is a series of the form

∑∞
n=1 λnbn, where every bn ∈ B, every λn ≥ 0 and

∑∞
n=1 λn = 1.

B is said to be a σ-convex set if every convex series of its points converges to a point of B

(see [36, 42] and the references therein). Let B be a σ-convex set. Then, for a sequence (bn)
in B and a real sequence (λn) with λn ≥ 0 and 0 <

∑∞
n=1 λn < +∞,

∑∞
n=1 λnbn/

∑∞
n=1 λn

is a convex series in B and it converges to some point b̄ ∈ B. Thus,
∑∞

n=1 λnbn converges to
(
∑∞

n=1 λn)b̄ ∈ (
∑∞

n=1 λn)B. We call a set B sequentially complete iff every Cauchy sequence
(bn) in B, converges to a point of B. In [8], “ sequentially complete” is called “semi-complete”.
It is easy to show that every sequentially complete, bounded convex set is a σ-convex set (see
[48, Remark 6.1]). However, a σ-convex set need not be sequentially complete. For example,
an open ball B in a Banach space is σ-convex, but it is not closed and hence is not sequentially
complete (for details, see [36, 42]).

Some authors used the notion of cs-complete sets. In [48, 50], a set B ⊂ Y is said to be
cs-complete if for all sequence (λn)n∈N ⊂ [0,∞) and (bn)n∈N ⊂ B such that

∑∞
n=1 λn = 1 and

the sequence (
∑n

i=1 λibi)n∈N is Cauchy, the series
∑∞

n=1 λnbn is convergent to a point of B. A
set B ⊂ Y is said to be cs-closed if the sum of the series

∑∞
n=1 λnbn belongs to B whenever

∑∞
n=1 λnbn is convergent and (bn)n∈N ⊂ B, (λn)n∈N ⊂ [0,∞) such that

∑∞
n=1 λn = 1. As

pointed out in [48], any cs-complete set is cs-closed; and any cs-closed set is convex. Hence,
any cs-complete set is convex.

Next, we show that a set B ⊂ Y is σ-convex iff B is cs-complete and bounded. First, assume
that B is σ-convex. Then, clearly, it is cs-complete. Moreover, B is also bounded. If not, there
exists a circled 0-neighborhood V such that for all n ∈ N, B ⊂ n3V . Thus, there exists a
sequence (bn)n∈N ⊂ B such that bn ∈ n3V . So, bn/n2 ∈ n V . This leads to that the series
∑∞

n=1 bn/n2 does not converge, which contradicts that B is σ-convex. Conversely, assume that
B ⊂ Y is cs-complete and bounded. Since a cs-complete set must be convex, B is a bounded
convex set. Take any convex series

∑∞
n=1 λnbn, where (bn)n∈N ⊂ B and (λn)n∈N ⊂ [0,∞) such

that
∑∞

n=1 λn = 1. For any m, k ∈ N,

m+k∑

n=1

λnbn −
m∑

n=1

λnbn =
m+k∑

n=m+1

λnbn

=
( m+k∑

n=m+1

λn

)( m+k∑

n=m+1

λnbn/

m+k∑

n=m+1

λn

)

=
( m+k∑

n=m+1

λn

)

b′m,k,
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where b′m,k :=
∑m+k

n=m+1 λnbn/
∑m+k

n=m+1 λn ∈ B since B is a convex set. Thus,

m+k∑

n=1

λnbn −
m∑

n=1

λnbn ∈
( m+k∑

n=m+1

λn

)

B.

Since B is bounded, for any circled 0-neighborhood V , there exists α > 0 such that B ⊂ αV.

Since
∑∞

n=1 λn = 1, for α > 0, there exists m0 ∈ N such that
∑m+k

n=m+1 λn ≤ 1/α for all
m ≥ m0 and all k ∈ N. Thus,

m+k∑

n=1

λnbn −
m∑

n=1

λnbn ∈
( m+k∑

n=m+1

λn

)

B

⊂
( m+k∑

n=m+1

λn

)

αV

⊂ 1
α

αV

= V.

This means that (
∑m

n=1 λnbn)m∈N is a Cauchy sequence. Since B is cs-complete, we conclude
that

∑∞
n=1 λnbn is convergent to a point of B. That is, B is σ-convex.

Theorem 5.1 Let (X, d) be a complete metric space, Y be a t.v.s., D ⊂ Y be a closed convex
cone, H ⊂ D be a σ-convex set (i.e., a cs-complete bounded set) such that 0 ∈ vcl(H + D) and
let f : X → Y be a submonotone vector-valued map. Suppose that x0 ∈ X and ε > 0 such that

(f(x0) − εH − D) ∩ f(X) = ∅.
Then, for any γ > 0, there exists x̂ ∈ S such that

(a) f(x0) ∈ f(x̂) + γd(x0, x̂)H + D;
(b) d(x0, x̂) < ε/γ;
(c) ∀x ∈ S\{x̂}, f(x̂) ∈ f(x) + γd(x̂, x)H + D.

Proof For x, x′ ∈ X, define x′ � x iff f(x) ∈ f(x′) + γd(x, x′)H + D. It is easy to show that
� is a partial order on X. Here, in order to show that � satisfies antisymmetric property we
only need to assume that 0 ∈ H + D. Hence we need not assume that D is pointed. As in the
proof of Theorem 4.1, we define an extended real-valued function η : (X,�) → R ∪ {±∞} as
follows:

η(x) := ξH(f(x) − y0), x ∈ X,

where y0 = f(x0). For any x ∈ X, put S(x) := {x′ ∈ X : x′ � x}. It’s easy to prove that η

is monotone with respect to �, and Assumptions (A) and (B) in Theorem 3.1 are satisfied. It
suffices to prove that Assumption (C) in Theorem 3.1 is satisfied. Let a sequence (xn) ⊂ S(x0)
with xn ∈ S(xn−1)\{xn−1}, ∀n, such that

η(xn) − inf{η(x) : x ∈ S(xn−1)} → 0 (n → ∞).

By xi ∈ S(xi−1) for i = 1, 2, . . . , n, we have

f(x0) ∈ f(x1) + γd(x0, x1)H + D,

f(x1) ∈ f(x2) + γd(x1, x2)H + D,
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· · · · · ·
f(xn−1) ∈ f(xn) + γd(xn−1, xn)H + D.

By adding the two sides of the above n belonging relations, we have

f(x0) ∈ f(xn) + γ

( n∑

i=1

d(xi−1, xi)
)

H + D

and

f(xn) − y0 = f(xn) − f(x0) ∈ −γ

( n∑

i=1

d(xi−1, xi)
)

H − D.

From this,

ξH(f(xn) − y0) ≤ −γ

( n∑

i=1

d(xi−1, xi)
)

.

Hence,

γ

( n∑

i=1

d(xi−1, xi)
)

≤ −ξH(f(xn) − y0). (5.1)

By the assumption,
y0 = f(x0) ∈ f(xn) + εH + D,

so
f(xn) − y0 ∈ −εH − D.

Thus,
ξH(f(xn) − y0) ≥ −ε

and

−ξH(f(xn) − y0) ≤ ε. (5.2)

Combining (5.1) and (5.2), we have

γ

( n∑

i=1

d(xi−1, xi)
)

≤ ε

and
n∑

i=1

d(xi−1, xi) ≤ ε

γ
, ∀n.

Thus,
∞∑

i=1

d(xi−1, xi) ≤ ε

γ
.

Since (X, d) is complete, there exists u ∈ X such that xn → u in (X, d). Next, we show that
u ∈ S(xn), ∀n. By xi+1 ∈ S(xi) for i = n, n + 1, . . . , n + k − 1, we have

f(xn) ∈ f(xn+1) + γd(xn, xn+1)H + D,

f(xn+1) ∈ f(xn+2) + γd(xn+1, xn+2)H + D,

· · · · · ·
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f(xn+k−1) ∈ f(xn+k) + γd(xn+k−1, xn+k)H + D.

Thus, there exist hn+1, hn+2, . . . , hn+k ∈ H such that

f(xn) ∈ f(xn+1) + γd(xn, xn+1)hn+1 + D,

f(xn+1) ∈ f(xn+2) + γd(xn+1, xn+2)hn+2 + D,

· · · · · ·
f(xn+k−1) ∈ f(xn+k) + γd(xn+k−1, xn+k)hn+k + D.

By adding the two sides of the above k belonging relations, we have

f(xn) ∈ f(xn+k) + γ

n+k−1∑

i=n

d(xi, xi+1)hi+1 + D

= f(xn+k) + γ

n+k∑

i=n+1

d(xi−1, xi)hi + D.

From this,

f(xn+k) ∈ f(xn) − γ
n+k∑

i=n+1

d(xi−1, xi)hi − D. (5.3)

Since f is submonotone, we have f(u) ≤D f(xn+k). Combining this with (5.3), we have

f(u) ∈ f(xn+k) − D ⊂ f(xn) − γ

n+k∑

i=n+1

d(xi−1, xi)hi − D. (5.4)

Remarking that H is σ-convex, we conclude that there exists h′
n ∈ H such that

n+k∑

i=n+1

d(xi−1, xi)hi →
( ∞∑

i=n+1

d(xi−1, xi)
)

h′
n (k → ∞). (5.5)

Since D is closed, by (5.4) and (5.5) we have

f(u) ∈ f(xn) − γ

( ∞∑

i=n+1

d(xi−1, xi)
)

h′
n − D,

and so

f(xn) ∈ f(u) + γ

( ∞∑

i=n+1

d(xi−1, xi)
)

h′
n + D. (5.6)

On the other hand,

d(xn, u) = lim
k→∞

d(xn, xn+k)

≤ lim
k→∞

(d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xn+k−1, xn+k))

=
∞∑

i=n+1

d(xi−1, xi). (5.7)

By (5.6) and (5.7) we have

f(xn) ∈ f(u) + γ

( ∞∑

i=n+1

d(xi−1, xi)
)

h′
n + D
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⊂ f(u) + γd(xn, u)h′
n + D

⊂ f(u) + γd(xn, u)H + D.

Thus, u ∈ S(xn) and Assumption (C) is satisfied. Now, applying Theorem 3.1, there exists
x̂ ∈ X such that x̂ ∈ S(x0) and S(x̂) = {x̂}. From this, we can easily show that x̂ satisfies (a),
(b) and (c). �

As is well-known, for locally convex spaces, there are various notions of completeness. The
weakest one seems to be local completeness (see [36, 37, 46]). A locally convex space Y is locally
complete iff it is l1-complete, i.e., for each bounded sequence (bn) ⊂ Y and each (λn) ⊂ l1, the
series

∑∞
n=1 λnbn converges in Y . Thus, if Y is a locally complete locally convex space and H

is a locally closed, bounded convex set, then we can show that H is a σ-convex set. Concerning
local completeness and local closedness, please refer to [36, Chapter 5] and [37, 38, 46].

As we have seen, the assumption in [41, Theorem 6.8] that there exists ξ ∈ D+ ∩ H+s

such that (f(X) − f(x0)) ∩ (−(
⋃

λ>0 λH + D)) is ξ-lower bounded has been replaced by here
one that there exists ε > 0 such that (f(x0) − εH − D) ∩ f(X) = ∅. We shall see that the
latter is strictly weaker than the former from the following Proposition 5.2 and Example 5.3.
Hence, Theorem 5.1 improves [41, Theorem 6.8], and also improves [8, Theorem 4.1] and [48,
Theorem 6.2].

Proposition 5.2 Assume that there exists ξ ∈ D+∩H+s such that (f(X)−f(x0))∩(−(
⋃

λ>0 λ

H + D)) is ξ-lower bounded. Then, there exists ε > 0 such that (f(x0)− εH −D)∩ f(X) = ∅.
Proof If not, for every n ∈ N,

(f(x0) − nH − D) ∩ f(X) = ∅.
From this,

(f(X) − f(x0)) ∩ (−nH − D) = ∅, ∀n.

For each n, there exists zn ∈ f(X) − f(x0) such that

zn ∈ −nH − D. (5.8)

Clearly,

zn ∈ (f(X) − f(x0)) ∩
(

−
( ⋃

λ>0

λH + D

))

. (5.9)

Since ξ ∈ D+ ∩ H+s, we have ξ(d) ≥ 0, ∀d ∈ D and α := inf{ξ(h) : h ∈ H} > 0. Combining
this with (5.8), we have

ξ(zn) ≤ −nα, ∀n.

This with (5.9) contradicts the assumption that (f(X)− f(x0))∩ (−(
⋃

λ>0 λH +D)) is ξ-lower
bounded. �

The following example shows that there is such a vector-valued map f : X → Y and
x0 ∈ X such that there exists ε > 0 such that (f(X) − f(x0)) ∩ (−εH − D) = ∅, but for every
ξ ∈ D+ ∩ H+s, (f(X) − f(x0)) ∩ (−(

⋃
λ>0 λH + D)) is not ξ-lower bounded.

Example 5.3 Let X be R with the usual metric, i.e., d(x, x′) = |x − x′|, x, x′ ∈ R, let Y be
R2 with the usual topology and with the partial order generated by the closed convex pointed



Vector Variational Principle 317

cone D = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}, and let H ⊂ D\{0} be a singleton H = {k0},
where k0 = (1, 1) ∈ D ⊂ R2. For any ξ ∈ D+ ∩ H+s = D+ ∩ {k0}+s, there exists a unique
(α, β) ∈ R2 such that

ξ(y) = αy1 + βy2, ∀y = (y1, y2) ∈ Y = R2.

From ξ ∈ D+ ∩ {k0}+s, we conclude that α ≥ 0, β ≥ 0 and at least one of α and β is strictly
greater than 0, i.e., α > 0, β ≥ 0 or α ≥ 0, β > 0. Let f : X = R → Y = R2 be defined as
follows:

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(−x,−1), if x > 0;

(0, 0), if x = 0;

(−1, x), if x < 0.

Put x0 := 0 and ε = 2. Then

f(X) − f(x0) = {(−x,−1) : x > 0} ∪ {(−1, x) : x < 0} ∪ {(0, 0)}
= {(x,−1) : x < 0} ∪ {(−1, x) : x < 0} ∪ {(0, 0)}.

Also,

−εH − D = −2k0 − D

= −2(1, 1) + {(y1, y2) ∈ R2 : y1 ≤ 0, y2 ≤ 0}
= {(y1 − 2, y2 − 2) : y1 ≤ 0, y2 ≤ 0}
= {(y1, y2) : y1 ≤ −2, y2 ≤ −2}.

Obviously,
(f(X) − f(x0)) ∩ (−εH − D) = ∅.

On the other hand,

(f(X) − f(x0)) ∩
(

−
( ⋃

λ>0

λH + D

))

= (f(X) − f(x0)) ∩
(

−
( ⋃

λ>0

λk0 + D

))

= ({(x,−1) : x < 0} ∪ {(−1, x) : x < 0} ∪ {(0, 0)})
∩ {(y1, y2) ∈ R2 : y1 < 0, y2 < 0}

= {(x,−1) : x < 0} ∪ {(−1, x) : x < 0}.
For any ξ ∈ D+ ∩ {k0}+s, there exists a unique (α, β) ∈ R2 such that ξ(y) = αy1 + βy2, ∀y =
(y1, y2) ∈ Y = R2, where α ≥ 0, β ≥ 0 and at least one of α, β is strictly greater than 0. Thus,

ξ ◦
(

(f(X) − f(x0)) ∩
(

−
( ⋃

λ>0

λH + D

)))

= {αx − β : x < 0} ∪ {−α + βx : x < 0},
where α ≥ 0 and β ≥ 0. If α > 0, then {αx − β : x < 0} is not lower bounded. If β > 0, then
{−α + βx : x < 0} is not lower bounded. Hence, for any ξ ∈ D+ ∩ H+s,

(f(X) − f(x0)) ∩
(

−
( ⋃

λ>0

λH + D

))
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is not ξ-lower bounded.

Remark 5.4 In [41, Theorem 6.8], we imposed that ∃ ξ ∈ D+ ∩H+s. Now, we imposed that
0 ∈ vcl(H + D). In fact, ∃ ξ ∈ D+ ∩H+s ⇒ 0 ∈ vcl(H + D). First, since ξ ∈ D+ ∩H+s, there
exists α > 0 such that ξ(d) ≥ 0, ∀d ∈ D and ξ(h) ≥ α, ∀h ∈ H. Assume that 0 ∈ vcl(H + D).
Then, there exists a v ∈ Y and a real sequence (λn) with every λn ≥ 0 and λn → 0 such that
0 + λnv ∈ H + D. Thus, we have

ξ(λnv) = λnξ(v) → 0 (n → ∞). (5.10)

On the other hand, since λnv ∈ H +D, we have ξ(λnv) ≥ α > 0, ∀n, which contradicts (5.10).
In general, 0 ∈ vcl(H + D) ⇒ ∃ξ ∈ D+ ∩ H+s. In fact, a non-locally convex Hausdorff
topological vector space may have no nonzero continuous linear functional. Combining this
with Proposition 5.2 and Example 5.3, we conclude that Theorem 5.1 indeed improves [41,
Theorem 6.8].

Finally, we give a corollary of Theorem 5.1, which improves [8, Theorem 5.1].

Corollary 5.5 Let (X, d) be a complete metric space, Y be a locally convex space, D ⊂ Y be
a closed convex cone, H ⊂ D be a σ-convex set such that 0 ∈ vcl(H + D) and let f : X → Y

be a submonotone vector-valued map. Suppose that x0 ∈ X, ε > 0 and λ > 0 such that x0 is an
ελ-approximate solution with respect to H, i.e.,

(f(X) − f(x0)) ∩ (−ελH − D) = ∅.
Then, there exists x̂ ∈ X such that

(a) f(x0) ∈ f(x̂) + εd(x0, x̂) H + D;
(b) d(x0, x̂) < λ;
(c) ∀x ∈ X\{x̂}, f(x̂) ∈ f(x) + εd(x̂, x)H + D.

Comparing [8, Theorem 5.1] with Corollary 5.5, we have seen that the assumption that
H ⊂ D is a closed semi-complete (i.e., sequentially complete) convex and bounded set in [8,
Theorem 5.1] is replaced by a weaker one: H is a σ-convex set (see the beginning of this
section). And the assumption that 0 ∈ cl(H + D) is replaced by a weaker one: 0 ∈ vcl(H + D).
Furthermore, when x0 ∈ X is an ελ-approximate solution with respect to H, the assumption
that f : X → Y is D-bounded has been completely removed.
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