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Abstract This paper deals with one kind of Belousov–Zhabotinskii reaction model. Linear stability

is discussed for the spatially homogeneous problem firstly. Then we focus on the stationary problem

with diffusion. Non-existence and existence of non-constant positive solutions are obtained by using

implicit function theorem and Leray–Schauder degree theory, respectively.
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1 Introduction

The Belousov–Zhabotinskii reaction (BZ reaction) is one of a class of reactions that serve as a
classical example of non-equilibrium thermodynamics. The system is important to theoretical
chemistry in that it shows that chemical reactions do not have to be dominated by equilibrium
thermodynamic behavior. One kind of the spatially homogeneous BZ reaction model reads
as [27]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du

dt
= u(1 − u− cv), t > 0,

dv

dt
= bw − v − kuv, t > 0,

dw

dt
= h(u− w), t > 0,

(1.1)

where b, c, k, h are positive constants which are related to the speed of reactions, and (u, v, w)
represent the concentration of reactants, so u, v, w > 0. Although the distribution differences
in space are neglected in (1.1), the ODE system (1.1) still implies the existence of chemical
oscillators, which is of interest for the chemists. See [13, 25] for more descriptions on the
model.

The BZ reaction was first discovered by Belousov in 1951 in an unpublished paper. His
discovery was briefly reported in a Russian medical meeting in 1959, see [1]. A translation of
the original work can be found in [6]. The study was continued by Zhabotinskii in [29], and the
model is now known as the Belousov–Zhabotinskii reaction or simply the BZ reaction. Later,
some variants of the original model are derived, for example, Noyes–Field model of BZ reaction
is derived in [7].
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In the spatial inhomogeneous case, the diffusion terms play important roles. In this situa-
tion, the model (1.1) with diffusions is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = u(1 − u− cv), x ∈ Ω, t > 0,

vt − d2Δv = bw − v − kuv, x ∈ Ω, t > 0,

wt − d3Δw = h(u− w), x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t ≥ 0,

(u, v, w) = (u0, v0, w0), x ∈ Ω̄, t = 0,

(1.2)

where Ω ⊂ R
n is a bounded domain with smooth boundary ∂Ω, positive constants d1, d2, d3 are

diffusion coefficients and the Neumann boundary conditions mean that there is no flux through
the boundary.

The corresponding stationary problem of (1.2) is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−d1Δu = u(1 − u− cv), x ∈ Ω,

−d2Δv = bw − v − kuv, x ∈ Ω,

−d3Δw = h(u− w), x ∈ Ω,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω.

(1.3)

Denote the solution of (1.3) by U = (u, v, w). It is obvious that system (1.3) has only one
positive constant solution Ũ = (ũ, ṽ, w̃):

ũ = w̃ = 1 − cṽ, ṽ =
bc+ k + 1 − √

(bc+ k + 1)2 − 4bck
2ck

. (1.4)

Although the biologists or chemists are more interested in the oscillation of the states of
reaction, the model itself produces rich research materials, especially the diffusion effect, for
mathematicians. Historically, Turing in [24] first realized that the diffusion plays an important
role in the formation of patterns. The diffusion effect has been extensively studied for many
models ever since, which include the Sel’kov model [5, 9, 18, 26], the Brusselator model [2,
20, 31], the chemotactic diffusion model [28], the competition model [10–12], the predator-prey
model [4, 8, 15, 16, 22, 23, 30], as well as models of semiconductors, plasmas, chemical waves,
combustion systems, embryogenesis, etc., see e.g., [3] and references therein.

In 2004 [19], Peng and Wang studied one version of the Noyes–Field model arising from BZ
reaction. They proved the existence and non-existence of the nontrivial stationary solution.

In this paper, we first analyze the stability of Ũ to the spatially homogeneous problem (1.1).
Then we prove the non-existence and existence of nontrivial positive solutions of (1.3) under
some conditions. The starting point to study the solutions of (1.3) is to derive the a priori
estimates, where the maximum principle and Hopf’s Lemma are the fundamental tools. Then
we use the implicit function theorem and Leray–Schauder theory to obtain the non-existence
and existence of nontrivial positive solutions, respectively.

The organization of the paper is as follows. In Section 2 we consider the stability of constant
solutions Ũ for the spatially homogeneous BZ reaction model (1.1). Then we concentrate on
the stationary problem (1.3) in the following sections. The a priori estimates are derived
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in Section 3. The non-existence and existence of non-constant positive solutions of (1.3) are
obtained in Sections 4 and 5, respectively.

2 Stability of Ũ for the Problem (1.1)

When U = (u, v, w) is independent of space variable x, we write model (1.1) as Ut = F (U),
where

F (U) = F (u, v, w) =

⎛

⎜
⎜
⎝

u(1 − u− cv)

bw − v − kuv

h(u− w)

⎞

⎟
⎟
⎠ .

Clearly,

FU (Ũ) =

⎛

⎜
⎜
⎝

1 − 2ũ− cṽ −cũ 0

−kṽ −(1 + kũ) b

h 0 −h

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(bc− k + 1) −Q(b, c, k)
2k

c

2k
[(bc− k + 1) −Q(b, c, k)] 0

−(bc+ k + 1) +Q(b, c, k)
2c

1
2
[(bc− k − 1) −Q(b, c, k)] b

h 0 −h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

Q(b, c, k) =
√

(bc+ k + 1)2 − 4bck. (2.1)

It can be checked that the corresponding eigenpolynomial of FU (Ũ) is

P (λ) = λ3 +A2λ
2 +A1λ+A0,

with

A0 =
h

2k
[b2c2 − 2bc(k − 1) + (k + 1)2 + (k − bc− 1)Q] > 0,

A1 =
1
2k

[(k + 1)2 + (3 + 2bc− 3k)bc+ [k2 + 2k − 1 − bc(k + 1)]h

+ [k − 2bc− 1 + (k + 1)h]Q],

A2 =
1
2k

[(k2 + 2k − 1) − (k + 1)bc+ 2kh+ (k + 1)Q] > 0,

On the other hand, the roots λ1, λ2, λ3 of P (λ) = 0 satisfy

A0 = −λ1λ2λ3 > 0,

A1 = λ2λ3 + λ3λ1 + λ1λ2,

A2 = −(λ1 + λ2 + λ3) > 0.

According to Routh–Hurwitz conditions, the necessary and sufficient conditions for the constant
solution to be stable are:

A1A2 −A0 > 0.

Therefore, we can conclude the following stability results:
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Theorem 2.1 Let b, c, k, h > 0, and consider the ODE system (1.1).
(i) Fix b, c, k, then for h sufficiently large, we have A1A2 − A0 > 0, and the constant

solution Ũ is locally stable.
(ii) Fix b, c, h, then for k sufficiently large, we have A1A2 − A0 > 0, and the constant

solution Ũ is locally stable.
(iii) Fix k, h, then for bc sufficiently large, we have A1A2 − A0 > 0, and the constant

solution Ũ is locally stable.

Proof (i) When b, c, k are fixed and h is large, the leading term of A1A2 −A0 is

A1A2 −A0 =
h2

2k
[
k2 + 2k − 1 − bc(k + 1) + (k + 1)Q

]
+O(1)h, (2.2)

where Q = Q(b, c, k) is defined in (2.1) and O(1) represents a quantity which is bounded by a
constant independent of h. It can be checked by direct computation that

(k + 1)2Q2 > (k2 + 2k − 1 − bc(k + 1))2.

The coefficient of h2 in (2.2) is always positive. Thus Ũ is stable.
(ii) Assume that b, c, h are fixed and k is large. Notice that

lim
k→∞

(Q− k) = lim
k→∞

(
√

(bc+ k + 1)2 − 4bck − k) = 1 − bc.

Then the leading terms of A0, A1, A2 are

A0 =
h

2k
(k2 + kQ+O(1)k) = hk +O(1),

A1 =
1
2k

(h+ 1)(k2 + kQ+O(1)k) = (h+ 1)k +O(1),

A2 =
1
2k

(k2 + kQ+O(1)k) = k +O(1),

where O(1) represents a quantity which is bounded by a constant independent of k. So the
leading term of (A1A2 −A0) is (h+ 1)k2 > 0 for k sufficiently large, Ũ is stable.

(iii) It is easy to see that the sign of (A1A2 − A0) depends only on bc, h, k. Assume that
h, k are fixed and bc is large. Notice that

lim
bc→∞

(Q− bc) = lim
bc→∞

(
√

(bc+ k + 1)2 − 4bck − bc) = 1 − k,

and
lim

bc→∞
[bc(Q− bc− 1 + k)] = 2k.

Thus we have
Q = bc+ 1 − k +

2k
bc

+ o(1)
1
bc
,

where o(1) means a quantity which goes to zero as bc → ∞. Therefore, the leading terms of
A0, A1, A2 are

A0 =
h

2k

[

b2c2 − 2bc(k − 1) + (k + 1)2 + (k − bc− 1)
(

bc+ 1 − k +
2k
bc

+ o(1)
1
bc

)]

= h+ o(1).

Similarly,
A1 = h+ o(1), A2 = (1 + h) + o(1).
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So A1A2 −A0 = h2 + o(1) > 0 when bc is sufficiently large. Thus Ũ is stable when bc is large.
The theorem is proved. �

3 The a Priori Estimates for the Positive Solution of (1.3)

The positive solution (u, v, w) of (1.3) to be mentioned throughout this paper always refers
to classical solutions with u, v and w > 0 on Ω̄. It should also be noted that the well-known
maximum principle ensures that a nonnegative classical solution of (1.3) with u, v, w �≡ 0 must
be positive one.

Lemma 3.1 (Maximum Principle [11]) Suppose that u ∈ C2(Ω) ∩ C1(Ω̄), g ∈ C(Ω̄ × R).
(i) If u satisfies

Δu+ g(x, u(x)) ≥ 0 in Ω,
∂u

∂ν
≤ 0 on ∂Ω,

and u(x0) = maxΩ̄ u, then g(x0, u(x0)) ≥ 0.
(ii) If u satisfies

Δu+ g(x, u(x)) ≤ 0 in Ω,
∂u

∂ν
≥ 0 on ∂Ω,

and u(x0) = minΩ̄ u, then g(x0, u(x0)) ≤ 0.

We first give the upper bound of positive solutions of (1.3). Let (u, v, w) ∈ [C2(Ω)∩C(Ω̄)]3

be a positive solution of (1.3) and suppose

u(x1) = max
Ω̄

u, u(x2) = min
Ω̄
u,

v(y1) = max
Ω̄

v, v(y2) = min
Ω̄
v,

w(z1) = max
Ω̄

w, w(z2) = min
Ω̄
w.

Applying the maximum principle (Lemma 3.1) to the equation of u, v and w, respectively, we
have

1 − u(x1) − cv(x1) ≥ 0,

1 − u(x2) − cv(x2) ≤ 0,

bw(y1) − v(y1) − ku(y1)v(y1) ≥ 0,

bw(y2) − v(y2) − ku(y2)v(y2) ≤ 0,

u(z1) − w(z1) ≥ 0,

u(z2) − w(z2) ≤ 0,

which imply that

1 − cv(x2) ≤ u(x2) ≤ u(x1) ≤ 1 − cv(x1) ≤ 1, (3.1)

bw(y2)
1 + ku(y2)

≤ v(y2) ≤ v(y1) ≤ bw(y1)
1 + ku(y1)

≤ bw(y1), (3.2)

0 ≤ u(x2) ≤ w(z2) ≤ w(z1) ≤ u(z1) ≤ u(x1) ≤ 1. (3.3)

Therefore,

(u, v, w) ≤ (1, b, 1) on Ω̄. (3.4)
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In order to derive the positive lower bound of positive solutions of (1.3), we first give a
lemma, whose proof is the same as that of Lemma 2 in [17] and the details are omitted here.

Lemma 3.2 Let dij ∈ (0,+∞), i = 1, 2, 3, and (uj , vj , wj) be the positive solutions of (1.3)
with di = dij. Assume that limj→∞ dij = di ∈ [0,+∞], and (uj , vj , wj) → (u∗, v∗, w∗) uni-
formly on Ω̄. If u∗, v∗ and w∗ are constants, then (u∗, v∗, w∗) must satisfy

1 − u∗ − cv∗ = 0, bw∗ − v∗ − ku∗v∗ = 0, u∗ = w∗.

In particular, if u∗, v∗ and w∗ are nonnegative constants, then (u∗, v∗, w∗) = (ũ, ṽ, w̃), the
unique positive constant solution of (1.3).

Lemma 3.3 (Lower bound) Let d > 0 be a constant. Then there is a positive constant ε(d)
such that for any d1, d2, d3 ≥ d, every positive solution (u, v, w) of (1.3) satisfies

min
{

min
Ω̄
u, min

Ω̄
v, min

Ω̄
w

}
≥ ε(d).

Proof We will use contradiction argument. Suppose the theorem is not true. Then there exist
a sequence {(d1j , d2j , d3j)}∞j=1 and the corresponding positive solutions (uj , vj , wj) of (1.3) with
(d1, d2, d3) = (d1j , d2j , d3j), such that

d1j , d2j , d3j ≥ d, lim
j→∞

min{min
Ω̄
uj , min

Ω̄
vj , min

Ω̄
wj} = 0.

By (3.4), (uj , vj , wj) is bounded. We may assume, by passing to a subsequence if necessary,
that as j → ∞,

lim
j→∞

dij = di ∈ [d,+∞], i = 1, 2, 3, (uj , vj , wj) → (u, v, w) ∈ [C2+α(Ω)]3,

min
{

min
Ω̄
u,min

Ω̄
v,min

Ω̄
w

}
= 0, (3.5)

where u, v, w are non-negative functions.
We will separate the proof into the following cases:

Case 1 d1, d2, d3 <∞. In such a case, (u, v, w) satisfies

− d1Δu = u(1 − u− cv) in Ω, (3.6)

− d2Δv = bw − v − kuv in Ω, (3.7)

− d3Δw = h(u− w) in Ω, (3.8)

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω. (3.9)

If w(x0) = minΩ̄ w = 0 for some x0 ∈ Ω̄, using Hopf’s lemma and the boundary condition
we conclude x0 ∈ Ω. It then follows from (3.8) that u(x0) = 0, and so minΩ̄ u = 0.

If minΩ̄ v = 0, similar to the above we have minΩ̄ w = 0, and then minΩ̄ u = 0.
Therefore, we always have minΩ̄ u = 0. Applying the strong maximum principle and Hopf

boundary lemma to (3.6), we have u ≡ 0. Then w ≡ v ≡ 0 by use of (3.8) and (3.7), respectively.
This is a contradiction to Lemma 3.2.

Case 2 d1 = ∞.
(2a) The subcase d2, d3 <∞. Then u satisfies

⎧
⎨

⎩

−Δu = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.
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So u = u∗ ≥ 0, where u∗ is a constant. Then v, w satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−d2Δv = bw − (1 + ku∗)v in Ω,

−d3Δw = h(u∗ − w) in Ω,
∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω.

(3.10)

If u∗ = 0, then (3.10) and the maximum principle implies that v = w = 0. This is a
contradiction to Lemma 3.2.

If u∗ > 0, then either minΩ̄ v = 0 or minΩ̄w = 0. Similarly to the above we can deduce
w(x0) = minΩ̄ w = 0 for some x0 ∈ Ω. It contradicts with the second equation of (3.10).

(2b) The subcase d2 = ∞. Now with d1 = d2 = ∞, u, v satisfy

Δu = Δv = 0 in Ω,
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω.

This implies u = u∗, v = v∗ for some nonnegative constants u∗, v∗.
If d3 = ∞. Then w = w∗ similarly to the above. So (u, v, w) = (u∗, v∗, w∗) for some nonneg-

ative constants u∗, v∗ and w∗. By Lemma 3.2, (u∗, v∗, w∗) = (ũ, ṽ, w̃). This contradicts (3.5).
If d3 <∞. Then w satisfies

−d3Δw = h(u∗ − w) in Ω,
∂w

∂ν
= 0 on ∂Ω. (3.11)

If u∗ = 0, then w ≡ 0. So (u, v, w) = (0, v∗, 0). This is a contradiction to Lemma 3.2. If v∗ = 0,
then by the second equation of (1.3), w ≡ 0. So (u, v, w) = (u∗, 0, 0). This is a contradiction
to Lemma 3.2. If u∗ > 0, v∗ > 0, by (3.5), minΩ̄ w = 0. Similarly to the above, w(x0) = 0 for
some x0 ∈ Ω. Then the differential equation of (3.11) does not hold at x0 since u∗ > 0. This is
a contradiction.

(2c) The subcase d2 <∞, d3 = ∞. In the present case, u = u∗ and w = w∗ are nonnegative
constants. Noticing

−d3jΔwj = h(uj − wj) in Ω,
∂wj

∂ν
= 0 on ∂Ω,

we have
∫

Ω
(uj − wj)dx = 0, and so u∗ = w∗. Thus v satisfies

−d2Δv = bu∗ − (1 + ku∗)v in Ω,
∂v

∂ν
= 0 on ∂Ω. (3.12)

If u∗ = 0, then (3.12) implies v ≡ 0, so u = v = w = 0, which contradicts Lemma 3.2. If u∗ > 0,
then minΩ̄ u = minΩ̄ w > 0, and (3.5) implies minΩ̄ v = 0. Similarly to the above, there exists
x0 ∈ Ω such that v(x0) = minΩ̄ v = 0. However, the differential equation of (3.12) does not
hold at x0. Now we have a contradiction.

Case 3 d1 <∞, d2 or d3 = ∞.
(3a) The subcase d2 = ∞. In such a case, v satisfies Δv = 0 in Ω with homogeneous

Neumann boundary condition. Therefore v = v∗ for some constant v∗ ≥ 0.
If d3 = ∞, then w = w∗ for some constant w∗ ≥ 0. Because of

∫

Ω
(uj − wj)dx = 0 and

uj → u, wj → w∗, it follows that u = w∗. Hence (u, v, w) = (w∗, v∗, w∗). Lemma 3.2 gives
(u, v, w) = (ũ, ṽ, w̃), which contradicts (3.5).

When d3 <∞, we see that w satisfies

−d3Δw = h(u− w) in Ω,
∂w

∂ν
= 0 on ∂Ω. (3.13)
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If v∗ = 0, then w ≡ 0 by the second equation of (1.3). Thus u = 0. This is a contradiction. If
v∗ > 0, then minΩ̄ u = 0 or minΩ̄ w = 0 by (3.5). Noticing that minΩ̄w = 0 implies minΩ̄ u = 0,
we always have minΩ̄ u = 0. Now since d1 <∞, u satisfies

−d1Δu+ (cv∗ + u)u = u in Ω,
∂u

∂ν
= 0 on ∂Ω.

The Hopf boundary lemma and strong maximum principle assert u ≡ 0, and then w ≡ 0
by (3.13). This is a contradiction.

(3b) The subcase d2 < ∞, d3 = ∞. Arguing as above we have w = w∗ for some constant
w∗ ≥ 0. By the third equation of (1.3), u = w = w∗.

If w∗ = 0, then v satisfies −d2Δv = −v in Ω with homogeneous Neumann boundary
condition. Thus, v = v∗. Now (u, v, w) = (w∗, v∗, w∗) leads to a contradiction of Lemma 3.2
and (3.5).

If w∗ > 0, then minΩ̄ v = 0 by (3.5), and v satisfies

−d2Δv = bw∗ − (1 + kw∗)v in Ω,
∂v

∂ν
= 0 on ∂Ω.

Similarly to the above, we can get a contradiction.
Now we have proved that no matter in which case, there is always a contradiction. The

theorem is proved. �

From the above discussion we have

Theorem 3.4 (A priori estimate) Every positive solution (u, v, w) of (1.3) satisfies (u, v, w) ≤
(1, b, 1). Moreover, for the fixed d > 0, there exists a constant ε(d) > 0 such that any positive
solution (u, v, w) of (1.3), with d1, d2, d3 ≥ d, satisfies (u, v, w) ≥ ε(d).

4 Non-existence of Non-constant Positive Solutions

In this section, we use the implicit function theorem [14] to investigate the non-existence of
non-constance positive solution of (1.3) when c, k is simultaneously small, or one of d1, d2 is
large. The technique comes from [16, 19, 21]. We first state some lemmas.

Lemma 4.1 Fix b, h and di, i = 1, 2, 3. Assume that (uj , vj , wj) are solutions of (1.3) with
c = cj , k = kj and cj , kj → 0+ as j → ∞. Then (uj , vj , wj) → (1, b, 1) in [C1(Ω̄)]3 as j → ∞.

Proof This lemma is followed from (3.1)–(3.3), Theorem 3.4 and the standard regularity theory
of elliptic equations. �

Lemma 4.2 Choose b, c > 0. Then
(i) Fix k, h and di, i = 2, 3. Let (uj , vj , wj) be positive solutions of (1.3) with d1 = d1j and

d1j → ∞ as j → ∞. Then (uj , vj , wj) → (ũ, ṽ, w̃) in [C1(Ω̄)]3 as j → ∞.

(ii) Fix k, h and di, i = 1, 3. Let (uj , vj , wj) be positive solutions of (1.3) with d2 = d2j and
d2j → ∞ as j → ∞. Then (uj , vj , wj) → (ũ, ṽ, w̃) in [C1(Ω̄)]3 as j → ∞.

Proof (i) By Theorem 3.4 and the standard regularity theory of elliptic equations, we can show
that there exists a subsequence of (uj , vj , wj), also labelled by itself, such that (uj , vj , wj) →
(u, v, w) in [C1(Ω̄)]3 as j → ∞. Moreover, u ≡ c1 which is a nonnegative constant and (c1, v, w)
satisfy

∫

Ω

(1 − c1 − cv)dx = 0, (4.1)
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− d2Δv = bw − (1 + kc1)v in Ω, (4.2)

− d3Δw + hw = hc1 in Ω, (4.3)

∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω. (4.4)

In view of Lemma 3.2, it is easy to show that c1 > 0. By (4.3), (4.4) and the uniqueness of
solution we have w ≡ c1.

Similarly, by (4.2) and (4.4), we have v ≡ bc1
1+kc1

. Substituting the value of v into (4.1) one
has 1 − c1 − cbc1

1+kc1
= 0. Then

c1 =
k − bc− 1 +

√
(k − bc− 1)2 + 4k
2k

= ũ, v ≡ ṽ.

Therefore, our result holds and the proof of (i) is complete.
Now we prove (ii). The same as the discussion of (i), there exists a subsequence of

(uj , vj , wj), still denoted by itself, such that (uj , vj , wj) → (u, v, w) in [C1(Ω̄)]3 as j → ∞.
Moreover v ≡ c2 is a positive constant, u,w ≥ 0 and satisfy

− d1Δu = u(1 − u− cc2) in Ω,
∂u

∂ν
= 0 on ∂Ω, (4.5)

∫

Ω

(bw − c2 − kuc2) dx = 0, (4.6)

− d3Δw = h(u− w) in Ω,
∂w

∂ν
= 0 on ∂Ω. (4.7)

We claim that 1 − cc2 > 0. If this is not true, then u ≡ 0 by (4.5), and in turn w ≡ 0 by (4.7).
This contradicts with (4.6). Thus 1− cc2 > 0, and then u ≡ 1− cc2 := û. Using (4.7) and (4.6)
successively, we have w = û and bû− c2 − kûc2 = 0. Noticing 1 − cc2 > 0, it solves

c2 =
(bc+ k + 1) − √

(bc+ k + 1)2 − 4bck
2ck

:= ṽ.

Therefore, (u, v, w) = (ũ, ṽ, w̃). The proof of part (ii) is finished. �

Now, we are ready to prove the following non-existence results of the non-constant solution
of (1.3).

Theorem 4.3 (i) Fix b, h and di, i = 1, 2, 3. Then there exists a positive constant ε0 depending
only on b, h and di, i = 1, 2, 3, such that (1.3) has no nontrivial positive solution provided that
0 < c, k < ε0.

(ii) Let b, c, k, h and d2, d3 be fixed. Then there exists a constant D1 > 0 such that, for any
d1 > D1, the problem (1.3) has no nontrivial positive solution.

(iii) Let b, c, k, h and d1, d3 be fixed. If bc �= k + 1, then there exists a positive constant D2

such that, for any d2 > D2, the problem (1.3) has no nontrivial positive solution.

Proof Define the Banach spaces:

H2
ν (Ω) =

{

f ∈ H2(Ω) :
∂f

∂ν

∣
∣
∣
∣
∂Ω

= 0
}

, L2
0(Ω) =

{

f ∈ L2(Ω) :
∫

Ω

f(x)dx = 0
}

and X = H2
ν (Ω) ∩ L2

0(Ω).

Proof of (i) Define F : R
+ × R

+ × [H2
ν (Ω)]3 → [L2(Ω)]3 with

F (c, k, u, v, w) = (f1, f2, f3)T (c, k, u, v, w),
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f1(c, k, u, v, w) = d1Δu+ u(1 − u− cv),

f2(c, k, u, v, w) = d2Δv + bw − v − kuv,

f3(c, k, u, v, w) = d3Δw + h(u− w).

Notice that finding positive solutions of (1.3) is equivalent to finding positive solution of
F (c, k, u, v, w) = 0. It is easy to see that when c = k = 0, (ũ, ṽ, w̃)|c=k=0 = (1, b, 1) is the
unique positive solution of F (0, 0, u, v, w) = 0. In order to prove that (ũ, ṽ, w̃) is the unique so-
lution of F (c, k, u, v, w) = 0 for c, k small, it is sufficient to prove that Ψ = D(u,v,w)F (0, 0, 1, b, 1)
is bijective. Actually,

Ψ(η, φ, ψ) =

⎛

⎜
⎜
⎝

d1Δη − η

d2Δφ+ bψ − φ

d3Δψ + h(η − ψ)

⎞

⎟
⎟
⎠ .

It is not hard to see that Ψ is bijective. By the implicit function theorem, for c, k sufficiently
small, (ũ, ṽ, w̃) is the unique solution of F (c, k, u, v, w) = 0. Therefore, there exists no nontrivial
solution of (1.3) when c, k are small.

Proof of (ii) We make a decomposition: u = û+ ξ with
∫

Ω
ûdx = 0 and ξ ∈ R

+ = [0,+∞).
We observe that finding positive solutions of (1.3) is equivalent to finding positive solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δû+ ρP[(û+ ξ)(1 − (û+ ξ) − cv)] = 0 in Ω,
∫

Ω

[(û+ ξ)(1 − (û+ ξ) − cv)]dx = 0,

d2Δv + bw − v − kv(û+ ξ) = 0 in Ω,

d3Δw + h(û+ ξ) − hw = 0 in Ω,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω,

(4.8)

where ρ = d−1
1 and Pz = z− 1

|Ω|
∫

Ω
zdx, i.e., P is the projective operator from L2(Ω) to L2

0(Ω).
Define

F (ρ, û, ξ, v, w) = (f1, f2, f3, f4)T (ρ, û, ξ, v, w),

f1(ρ, û, ξ, v, w) = Δû+ ρP[(û+ ξ)(1 − (û+ ξ) − cv)],

f2(ρ, û, ξ, v, w) =
∫

Ω

[(û+ ξ)(1 − (û+ ξ) − cv)]dx,

f3(ρ, û, ξ, v, w) = d2Δv + bw − v − kv(û+ ξ),

f4(ρ, û, ξ, v, w) = d3Δw + h(û+ ξ) − hw.

Then
F : R

+ ×X × R
+ × [H2

ν (Ω)]2 → L2
0(Ω) × R × [L2(Ω)]2

is a well-defined mapping, and clearly, for any ρ > 0, (u, v, w) solves (1.3) if and only if
F (ρ, û, ξ, v, w) = 0.

It is easy to prove that the equation (4.8) has a unique positive solution (0, ũ, ṽ, w̃) when
ρ = 0. Let Ψ be the Fréchet derivative of F at (0, 0, ũ, ṽ, w̃) with respect to (û, ξ, v, w). A direct
computation shows that

Ψ := D(û,ξ,v,w)F (0, 0, ũ, ṽ, w̃) : X × R
+ × [H2

ν (Ω)]2 → L2
0(Ω) × R × [L2(Ω)]2,
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where

Ψ(η, z, φ, ψ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δη
∫

Ω

[(1 − 2ũ− cṽ)η + (1 − 2ũ− cṽ)z − cũφ]dx

d2Δφ− kṽη − kṽz − (1 + kũ)φ+ bψ

d3Δψ + hη + hz − hψ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In order to use the implicit function theorem, we have to verify that Ψ is both injective and
surjective. In the following, we will prove that the equation Ψ(η, z, φ, ψ) = (0, 0, 0, 0) has only
solution (0, 0, 0, 0), so Ψ is injective.

Suppose Ψ(η, z, φ, ψ) = (0, 0, 0, 0). By Δη = 0, ∂η
∂ν = 0 and

∫

Ω
ηdx = 0, we have η ≡ 0.

Thus, Ψ(η, z, φ, ψ) = (0, 0, 0, 0) becomes
∫

Ω

[(1 − 2ũ− cṽ)z − cũφ]dx = 0, (4.9)

d2Δφ− kṽz − (1 + kũ)φ+ bψ = 0 in Ω,
∂φ

∂ν

∣
∣
∣
∣
∂Ω

= 0, (4.10)

d3Δψ + hz − hψ = 0 in Ω,
∂ψ

∂ν

∣
∣
∣
∣
∂Ω

= 0. (4.11)

It follows from z ∈ R that the problem (4.11) has a unique solution ψ = z. Hence, the
problem (4.10) becomes

−d2Δφ+ (1 + kũ)φ = (b− kṽ)z in Ω,
∂φ

∂ν

∣
∣
∣
∣
∂Ω

= 0,

which also has a unique solution φ = (b−kṽ)z
1+kũ .

By substituting the value of φ into (4.9) we have
∫

Ω

(

1 − 2ũ− cṽ − cũ
b− kṽ

1 + kũ

)

zdx = 0.

Noting that 1 − ũ− cṽ = 0, we have

1 − 2ũ− cṽ − cũ
b− kṽ

1 + kũ
= −ũ

(

1 + c
b− kṽ

1 + kũ

)

= − ũ

1 + kũ
(1 + kũ+ bc− ckṽ)

= − ũ

1 + kũ
(1 + k(1 − cṽ) + bc− ckṽ)

= − ũ

1 + kũ
(1 + k + bc− 2ckṽ)

= − ũ

1 + kũ

√
(bc+ k + 1)2 − 4bck �= 0.

Since z ∈ R, we conclude z = 0 from the above integral. Therefore, η = z = φ = ψ = 0 and Ψ
is invertible. On the other hand, we can easily verify that Ψ is also a surjection.

By the implicit function theorem, there exist positive constants ρ0 and ε0 such that, for
each ρ ∈ [0, ρ0], (0, ũ, ṽ, w̃) is the unique solution of F (ρ, û, ξ, v, w) = 0 in Bε0(0, ũ, ṽ, w̃), where
Bε0(0, ũ, ṽ, w̃) is the ball in X×R×H2

ν ×H2
ν centered at (0, ũ, ṽ, w̃) with radius ε0. Take small

ρ0 and ε0, part (ii) can be proved by use of Lemma 4.2.
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Proof of (iii) Similarly, we decompose v = v̂ + γ, where
∫

Ω
v̂dx = 0 and γ ∈ R

+. Then
finding positive solutions of (1.3) is equivalent to finding positive solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1Δu+ u(1 − u− c(v̂ + γ)) = 0 in Ω,

Δv̂ + ρP(bw − (1 + ku)(v̂ + γ)) = 0 in Ω,
∫

Ω

[bw − (1 + ku)(v̂ + γ)]dx = 0,

d3Δw + h(u− w) = 0 in Ω,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω,

where ρ = d−1
2 and Pz = z − 1

|Ω|
∫

Ω
zdx. Define

F (ρ, u, v̂, γ, w) = (f1, f2, f3, f4)T (ρ, u, v̂, γ, w),

f1(ρ, u, v̂, γ, w) = d1Δu+ u(1 − u− c(v̂ + γ)),

f2(ρ, u, v̂, γ, w) = Δv̂ + ρP(bw − (1 + ku)(v̂ + γ)),

f3(ρ, u, v̂, γ, w) =
∫

Ω

[bw − (1 + ku)(v̂ + γ)]dx,

f4(ρ, u, v̂, γ, w) = d3Δw + h(u− w).

Then
F : R

+ ×H2
ν (Ω) ×X × R

+ ×H2
ν (Ω) → L2(Ω) × L2

0(Ω) × R × L2(Ω)

is a well-defined mapping, and clearly, for any ρ > 0, (u, v, w) solves (1.3) if and only if
F (ρ, u, v̂, γ, w) = 0.

Similarly as part (ii), it can be proved that (ũ, 0, ṽ, w̃) is a solution of F (ρ, u, v̂, γ, w) =
0 for any ρ and the solution is unique when ρ = 0. In order to prove that (ũ, 0, ṽ, w̃)
is the only solution for ρ small by implicit function theorem, it is sufficient to prove that
D(u,v̂,γ,w)F (0, ũ, 0, ṽ, w̃) is a bijection. Actually, let Ψ = D(u,v̂,γ,w)F (0, ũ, 0, ṽ, w̃), then

Ψ(η, φ, z, ψ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d1Δη + η(1 − 2ũ− cṽ) − cũφ− cũz

Δφ
∫

Ω

[bψ − kṽη + (1 + kũ)(φ+ z)]dx

d3Δψ + hη − hψ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ψ1

Ψ2

Ψ3

Ψ4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where (η, φ, z, ψ) ∈ H2
ν (Ω) ×X × R

+ ×H2
ν (Ω). We first solve Ψ(η, φ, z, ψ) = 0. By Ψ2 = 0 in

Ω, ∂φ
∂ν = 0 on ∂Ω and

∫

Ω
φdx = 0, we have φ = 0. Then Ψ1 = Ψ4 = 0 becomes

d1Δη − ũη − cũz = 0 in Ω,
∂η

∂ν
= 0 on ∂Ω, (4.12)

d3

h
Δψ + η − ψ = 0 in Ω,

∂ψ

∂ν
= 0 on ∂Ω, (4.13)

where the equality 1 − ũ − cṽ = 0 is used. Since c, ũ, z are constants and ũ > 0, by the
uniqueness of solution we can derive from (4.12) that η = −cz. Similarly, ψ = −cz by (4.13).
Using 1 − ũ− cṽ = 0 we have

Ψ3 =
∫

Ω

(1 + k − bc)zdx.
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Therefore, Ψ3 = 0 and bc �= k + 1 implies z = 0, and then η = φ = z = ψ = 0. This shows
that Ψ is injection. On the other hand, it can be prove that Ψ is surjective under the condition
bc �= k + 1. Then using similar arguments as in part (ii), we can prove the conclusion (iii). �

5 Existence of Non-constant Positive Solutions

Recall that U = (u, v, w)T , Ũ = (ũ, ṽ, w̃)T . Let 0 = λ1 < λ2 < · · · < λi < · · · be the complete
set of eigenvalues of the operator −Δ in Ω with homogeneous Neumann boundary condition, li
be the multiplicity of λi.

We shall derive the existence of non-constant positive solutions to (1.3) in terms of diffusion
coefficient by topology degree theory. It is easy to see that (1.3) are equivalent to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = (I − d1Δ)−1(2u− u2 − cuv),

v = (I − d2Δ)−1(bw − kuv),

w = (I − d3

h
Δ)−1u,

(5.1)

with Neumann boundary condition ∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0. Denote the right hand side of (5.1) by

G(U) :=

⎛

⎜
⎜
⎝

(I − d1Δ)−1(2u− u2 − cuv)

(I − d2Δ)−1(bw − kuv)

(I − d3
h Δ)−1u

⎞

⎟
⎟
⎠ ,

then (5.1) can be written as (I−G)U = 0. It is obvious that G : [C(Ω̄)]3 → [C(Ω̄)]3 is compact.
In order to apply the degree theory to obtain the existence of non-constant positive solutions,

our first aim is to compute the index of I −G at (ũ, ṽ, w̃). Consider the eigenvalue problem for
the linearized system,

(I −D(u,v,w)G(Ũ))V = −μV (5.2)

where V = (ξ, η, ζ), μ is some constant. By Leray–Schauder theorem, we know that if zero is
not an eigenvalue of (5.2), then

index(I −G, Ũ) = (−1)γ , with γ =
∑

μ>0

nμ, (5.3)

where nμ is the multiplicity of the eigenvalue μ of (5.2).
Direct computation shows that (5.2) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(μ+ 1)(I − d1Δ)ξ − (2ξ − 2ũξ − cũη − cṽξ) = 0 in Ω,

(μ+ 1)(I − d2Δ)η − (bζ − kũη − kṽξ) = 0 in Ω,

(μ+ 1)
(

I − d3

h
Δ

)

ζ − ξ = 0 in Ω,

∂ξ

∂ν
=
∂η

∂ν
=
∂ζ

∂ν
= 0 on ∂Ω.

(5.4)

Suppose that (ξ, η, ζ) are multiples of the eigenfunction of −Δ corresponding to eigenvalue λi

under the Neumann boundary condition, i.e.

−Δξ = λiξ, −Δη = λiη, −Δζ = λiζ in Ω,
∂ξ

∂ν
=
∂η

∂ν
=
∂ζ

∂ν
= 0 on ∂ Ω.



988 Myint, A. Z. et al.

Put the above relations into (5.4), we get a system
⎧
⎪⎪⎨

⎪⎪⎩

(μ+ 1)(1 + d1λi)ξ + (−2 + 2ũ+ cṽ)ξ + cũη = 0,

(μ+ 1)(1 + d2λi)η + kṽξ + kũη − bζ = 0,

(μ+ 1)(1 + d3
h λi)ζ − ξ = 0.

(5.5)

System (5.5) has a solution if and only if Bi(μ) = 0 for some i ≥ 1, where

Bi(μ) = Det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ+
d1λi + ũ

d1λi + 1
cũ

d1λi + 1
0

kṽ

d2λi + 1
μ+

d2λi + 1 + kũ

d2λi + 1
−b

d2λi + 1

−h
d3λi + h

0 μ+ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a polynomial of μ of degree 3, i.e.,

Bi(μ) = μ3 + ci2μ
2 + ci1μ+ ci0.

Denote the multiplicity of μ, which is a root of Bi(μ) = 0, by miμ. By Lemma 5.1 in [16]
and (5.3), we have that if Bi(0) �= 0 for all i ≥ 1,

index(I −G, Ũ) = (−1)γ , γ =
∞∑

i=1

∑

μ>0, Bi(μ)=0

miμli. (5.6)

Lemma 5.1 There exists a positive constant D̄1 depending only on b, c, k, h, d2 and d3 such
that index(I −G, Ũ) = 1, for all d1 > D̄1.

Proof For i = 1, we have λ1 = 0 and B1(μ) is given by

B1(μ) = μ3 + (2 + ũ+ kũ)μ2 + (1 + 2ũ+ kũ+ kũ2 − ckũṽ)μ+ (ũ+ bcũ+ kũ2 − ckũṽ).

Using (1.4) we can deduce

B1(μ) = μ3 + (2 + ũ+ kũ)μ2 + (1 + 2ũ+ 2kũ2)μ+ (ũ+ bcũ− kũ+ 2kũ2) > 0

for all μ ≥ 0.
For i ≥ 2, we have λi > λ1 = 0 and

lim
d1→∞

Bi(μ) = (μ+ 1)2
(

μ+
d2λi + 1 + kũ

d2λi + 1

)

.

Therefore, there exists a large positive constant D̄1 depending only on b, c, k, h, d2 and d3 such
that Bi(μ) > 0 for all μ ≥ 0, d1 ≥ D̄1 and i ≥ 2.

The above arguments show that Bi(μ) > 0 for all μ ≥ 0, d1 ≥ D̄1 and i ≥ 1, and the
number γ in (5.6) is zero. The desired conclusion follows from (5.6). �

A direct computation gives

ci0 =
bchũ

(1 + d1λi)(1 + d2λi)(h+ d3λi)
+

(1 + d2λi + kũ)(d1λi + ũ) − ckũṽ

(1 + d1λi)(1 + d2λi)
,

ci1 =
1 + d2λi + kũ

1 + d2λi
+
d1λi + ũ

1 + d1λi
+

(1 + d2λi + kũ)(d1λi + ũ) − ckũṽ

(1 + d1λi)(1 + d2λi)
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>
1 + d2λi + kũ

1 + d2λi
− ckũṽ

(1 + d1λi)(1 + d2λi)

=
(1 + d2λi + kũ)(1 + d1λi) − kũ+ kũ2

(1 + d1λi)(1 + d2λi)
> 0,

ci2 = 1 +
1 + d2λi + kũ

1 + d2λi
+
d1λi + ũ

1 + d1λi
> 0,

here cṽ = 1 − ũ is used. Therefore, the equation

Bi(μ) = μ3 + ci2μ
2 + ci1μ+ ci0 = 0

has positive root if and only if ci0 < 0. Moreover, when ci0 < 0, the positive root of Bi(μ) = 0
exists uniquely and is simple. We write

ci0 =
H(λi)

(1 + d1λi)(1 + d2λi)(h+ d3λi)
,

where

H(λi) = d1d2d3λ
3
i + [d1d2h+ d1d3(1 + kũ) + d2d3ũ]λ2

i

+ [(1 + kũ)hd1 + hd2ũ+ ũ(1 − k + 2kũ)d3]λi

+ hũ(1 + bc− k + 2kũ).

The direct calculation gives 1 + bc− k + 2kũ > 0. Denote

C̃ := 1 − k + 2kũ.

Then

lim
d3→∞

H(λ)
d3

= λ{d1d2λ
2 + [d1(1 + kũ) + d2ũ]λ+ C̃ũ}.

Thus we have

Proposition 5.2 Assume C̃ < 0. For any fixed d1, d2 > 0, there exists a positive constant
D3 such that when d3 ≥ D3, the equation H(λ) = 0 has three real solutions λ∗j , j = 1, 2, 3, with
the following properties:

(i) −∞ < λ∗1 < 0 < λ∗2 < λ∗3 <∞,
(ii) H(λ) < 0 in (−∞, λ∗1) ∪ (λ∗2, λ∗3); H(λ) > 0 in (λ∗1, λ∗2) ∪ (λ∗3,∞),
(iii) limd3→∞ λ∗2 = 0, limd3→∞ λ∗1 = λ∗− and limd3→∞ λ∗3 = λ∗+ where

λ∗± =
1

2d1d2

(
− Θ ±

√

Θ2 − 4d1d2C̃
)
, Θ = d1(1 + kũ) + d2ũ.

Lemma 5.3 Assume that C̃ < 0 and λ∗+ ∈ (λm, λm+1) for some m ≥ 2. Then there exists a
positive constant D3 depending only on b, c, k, h, d1 and d2 such that when d3 ≥ D3,

index(I −G, Ũ) = (−1)σ, σ =
m∑

i=2

li.

Proof In view of Proposition 5.2, when d3 ≥ D3, H(λi) < 0 if and only if 2 ≤ i ≤ m.
Moreover, for each 2 ≤ i ≤ m, the positive root μ of Bi(μ) = 0 exists uniquely and is simple,
i.e., miμ = 1. Using (5.6) we get the desired conclusion. �
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Theorem 5.4 Assume that C̃ < 0 and λ∗+ ∈ (λm, λm+1) for some m ≥ 2. If
∑m

i=2 li is odd,
then there exists a positive constant D3 depending only on b, c, k, h, d1 and d2 such that (1.3)
has at least one nontrivial solution provided that d3 ≥ D3.

Proof Let D̃1 := max{D1, D̄1} + 1, where D1, D̄1 are given in (ii) of Theorem 4.3 and
Lemma 5.1 respectively for fixed b, c, k, h, d2 and d3 = 1. Then (1.3) with d1 = D̃1, d3 = 1 has
only trivial solution (ũ, ṽ, w̃) by (ii) of Theorem 4.3 and Lemma 4.2.

For all 0 ≤ t ≤ 1, we define

G(U ; t) =

⎛

⎜
⎜
⎝

(I − (td1 + (1 − t)D̃1)Δ)−1(2u− u2 − cuv)

(I − d2Δ)−1(bw − kuv)

(I − (td3
h + (1 − t))Δ)−1(u)

⎞

⎟
⎟
⎠ .

In view of the a priori estimates Theorem 3.4, there exists a positive constant M depending
only on b, c, k, h such that (1.3) has no solution on ∂Λ, where

Λ =
{

u, v, w ∈ C(Ω̄) :
1
M

< u, v, w < M

}

.

Since G(U ; t) : Λ × [0, 1] → [C(Ω̄)]3 is compact, deg(I − G(U ; t),Λ, 0) is well-defined. By the
homotopy invariance of the topological degree,

deg(I −G(U ; 0),Λ, 0) = deg(I −G(U ; 1),Λ, 0). (5.7)

Since (1.3) with d1 = D̃1, d3 = 1 has only trivial solution Ũ = (ũ, ṽ, w̃), we have that

deg(I −G(U ; 0),Λ, 0) = index(G(U ; 0), Ũ) = 1.

On the contrary, we assume that for some d3 ≥ D3, (1.3) has no nontrivial solution. By
Lemma 5.3, we have

deg(I −G(U ; 1),Λ, 0) = index(G(U ; 1), Ũ) = (−1)σ = −1,

where σ =
∑m

i=2 li is odd. This contradicts (5.7), and the proof is complete. �

Remark 5.5 It can be proved that when k > 1 and bc > (k+1)2

2(k−1) , we have C̃ < 0. Theorem 5.4

gives the existence of nontrivial solutions under the condition C̃ < 0. In other cases when
C̃ ≥ 0, the existence of nontrivial solutions is not clear.
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