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1 Introduction

This paper focuses on the generalized rotating magnetohydrodynamics equations in three di-
mensions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + (u · ∇)u + μ(−Δ)αu + Ωe3 × u + ∇P = (B · ∇)B in R
3 × R+,

Bt + (u · ∇)B + γ(−Δ)αB = (B · ∇)u in R
3 × R+,

div u = 0, div B = 0 in R
3 × R+,

u|t=0 = u0, B|t=0 = B0 in R
3,

(grMHD)

where u is the velocity field of the fluid, P = p+ 1
2 |B|2 which p is pressure and B is the magnetic

field, constant μ is the viscosity coefficient, Ω ∈ R denotes twice the speed of rotation around
the vertical unit vector e3 = (0, 0, 1), γ is the diffusion of the magnetic field and α is a positive
parameter.

When α = 1, from mathematical point of view, the equation (grMHD) explain why the
earth has a non-zero large-scale magnetic field whose polarity turns out to invert over several
hundred centuries. We refer to [6] and references therein.

When Ω = 0, the equation (grMHD) reduces to the generalized Magnetohydrodynamics
(abbreviated as MHD) equations, which is the study of the magnetic properties of electrically
conducting fluids. Since Duvaut and Lions [9] constructed a global weak solution to MHD
for initial data with finite energy, 3D MHD equation remains an outstanding mathematical
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problem whether there always exists a global smooth solution for smooth initial data. We refer
to [16, 23, 26–30] and references therein.

When α = 1, B = 0 and Ω �= 0, Babin et al. [1–3] proved the global existence and
regularity of solution to the equation (grMHD) with the periodic initial velocity in the case |Ω|
is enough large. Chemin et al. [5, 6] showed that for a given divergence free initial velocity u0

belonging to L2(R2) + H
1
2 (R3), there exists a unique solution in the case |Ω| > Ω0 > 0. Hieber

and Shibata [12] obtained the uniform global well-posedness for small initial data in H
1
2 (R3)3.

Iwabuchi and Takada [13] proved the existence of global unique solutions to the Navier–Stokes
equations with Coriolis force in Sobolev spaces Ḣs(R3) with 1

2 < s < 3
4 if the speed of rotation

Ω is sufficiently large.
When α = 1, Ω = 0 and B = 0, the equation (grMHD) reduces to the classical Navier–

Stokes equations, which is well known that the global regularity of its solution is still a famous
open problem and one can gain the global regularity only for the equation with some special
geometry structure (see e.g. [7, 8, 11, 15, 20, 21, 32] and references therein). For the case
without the special geometric structure, Lei and Lin [17] gave global mild solutions of Navier–
Stokes equations in C(R+,X−1) ∩ L1(R+,X 1) with initial data ‖u0‖X−1 < μ, where X s =
{u ∈ D ′(R3) :

∫
R3 |ξ|s|û(ξ)|dξ < +∞} with the norm ‖u‖X s =

∫
R3 |ξ|s|û(ξ)|dξ. Recently, Bae

[4] proved the work of Lei–Lin [17] in a slightly different setting, which can be specifically
described as following:

L∞
t X s =

{

f ∈ D ′(R3 × R+) :
∫

R3

[
sup

0≤t<+∞
|ξ|s|f̂(ξ, t)|

]
dξ < +∞

}

with ‖f‖L∞
t X s =

∫
R3 [sup0≤t<+∞ |ξ|s|f̂(ξ, t)|]dξ and

L1
tX 1 =

{

f ∈ D ′(R3 × R+) :
∫

R3

∫ +∞

0

|ξ||f̂(ξ, τ )|dτdξ < +∞
}

with ‖f‖L1
tX1 =

∫
R3

∫ t

0
|ξ||f̂(ξ, τ )|dτdξ.

When s = 1, spaces X 1 and L∞
t X 1 are discussed in detail in [17] and [4], respectively. In

fact, X 1 and L∞
t X 1 are scale-invariant function spaces that are natural with respect to the

scaling of the Navier–Stokes equations.
In this paper, we will apply Lei–Lin and Bae’s ideas and methods to the equation (grMHD).

Considering the natural scale-invariant function spaces to the fractional Navier–Stokes equa-
tions, we should take s = 1 − 2α in L∞

t X s. In contrast to Bae’s results [4], we give the
corresponding results of the equation (grMHD) but we have to be careful to deal with the
rotating item, fractional diffusion terms and more complex nonlinear terms in the equation
(grMHD). Moreover, we avoid discussing the value of Ω because our workspace is in the fre-
quency space rather than the physical space. From the physical point of view, the value of Ω
can not be great in some physical models, which is not suitable for the case in [5]. In fact, this
paper also generalizes the results of [22]. Specifically, our results are following:

Theorem 1.1 (Global well posedness) Assume that 1
2 ≤ α ≤ 1, then there exists a positive

constant ε0 = ε0(μ, γ, α) > 0, such that for any initial data u0, B0 in X 1−2α with

‖u0‖X1−2α + ‖B0‖X1−2α < ε0,
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there is a unique global in time solution u, B ∈ L∞
t X 1−2α ∩ L1

tX 1 such that

‖u‖L∞
t X1−2α + ‖u‖L1

tX1 + ‖B‖L∞
t X1−2α + ‖B‖L1

tX1 � ‖u0‖X1−2α + ‖B0‖X1−2α .

The research about Gevrey class regularity of the solution to Navier–Stokes equation is also
an important topic, see [10, 18] and references therein. This approach enables one to avoid
cumbersome recursive estimation of higher-order derivatives. By Bae’s inspiration [4], we will
prove the Gevrey class regularities for the equation (grMHD). And the specific results are as
follows:

Theorem 1.2 (Gevrey class regularity) Suppose that 1
2 ≤ α ≤ 1, then there exists a constant

ε′0 = ε′0(μ, γ, α) > 0 such that for any initial data u0, B0 in X 1−2α with

‖u0‖X1−2α + ‖B0‖X1−2α ≤ ε′0,

the solution obtained in Theorem 1.1 is analytic in the sense that

‖e
√

t|D|αu‖L∞
t X1−2α + ‖e

√
t|D|αu‖L1

tX1 + ‖e
√

t|D|αB‖L∞
t X1−2α + ‖e

√
t|D|αB‖L1

tX1

� ‖u0‖X1−2α + ‖B0‖X1−2α , (1.1)

where e
√

t|D|α is a Fourier multiplier whose symbol is given by e
√

t|ξ|α .

Remark 1.3 When we take B = 0, α = 1 and Ω = 0 in equations (grMHD), Theorems 1.1
and 1.2 become immediately Theorems 1.2 and 1.3 in [4], respectively.

Remark 1.4 Without loss of generality, we just need to take μ = γ = 1 when we prove
Theorems 1.1 and 1.2.

This paper is organized as follows. In Section 2, we introduce “semigroup” TΩ,α correspond-
ing to the linearized equation of the equation (grMHD). In Section 3, we prove Theorem 1.1.
And in Section 4, we give the proof of Theorem 1.2.

2 Preliminaries

When the magnetic field B = 0, the equation (grMHD) deduces to the fractional Navier–Stokes
equations with Coriolis force. Hence we need to introduce the corresponding generalized Stokes–
Coriolis semigroup T . In fact, we have to consider the following linear generalized problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut + μ(−Δ)αu + Ωe3 × u + ∇p = 0 in R
3 × (0, +∞),

div u = 0 in R
3 × (0, +∞),

u|t=0 = u0 in R
3.

(LNSC)

The solution of equation (LNSC) can be given by the generalized Stokes–Coriolis semigroup
TΩ,α, which has the explicit representation [12, 22]:

TΩ,α(t)u = F−1

[

cos
(

Ω
ξ3

|ξ| t
)

e−|ξ|2αtI + sin
(

Ω
ξ3

|ξ| t
)

e−|ξ|2αtR(ξ)
]

∗ u

= F−1

[

cos
(

Ω
ξ3

|ξ| t
)

I + sin
(

Ω
ξ3

|ξ| t
)

R(ξ)
]

∗ (e−(−Δ)αtu),
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where divergence free vector field u ∈ S (R3), I is the unit matrix in M3×3(R) and R(ξ) is skew
symmetric matrix defined by

R(ξ) :=
1
|ξ|

⎛

⎜
⎜
⎝

0 ξ3 −ξ2

−ξ3 0 ξ1

ξ2 −ξ1 0

⎞

⎟
⎟
⎠ , ξ ∈ R

3 \ {0}.

Thus, we are easy to get a “semigroup”:

AΩ,α(t) =

⎛

⎝
TΩ,α(t) 0

0 Sα(t)

⎞

⎠

where Sα(t) := e−(−Δ)αt = F−1(e−|ξ|2αt). With the help of AΩ,α(t), we can rewrite the equation
(grMHD) in the form of integral:

⎛

⎝ u

B

⎞

⎠ = AΩ,α(t)

⎛

⎝ u0

B0

⎞

⎠

−
∫ t

0

AΩ,α(t − τ )P

⎛

⎝ div(u ⊗ u − B ⊗ B)

div(u ⊗ B − B ⊗ u)

⎞

⎠ (τ )dτ (2.1)

where

P = I −∇(−Δ)−1div

is the Leray–Hopf projection.

3 Proof of Theorem 1.1

In order to estimate the nonlinear terms in the proof of Theorem 1.1, we need an inequality
from [31]:

Lemma 3.1 ([31]) Assume that 1
2 ≤ α ≤ 1, then the following inequality holds

|x|2(1−α) ≤ 22(1−α)

2
(|y||x − y|1−2α + |y|1−2α|x − y|) (3.1)

for any x, y in R
3.

Remark 3.2 Ye [31] gave two counterexamples:
(1) If α > 1, x = (1 − b, 0,−√

1 − b2), y = (1, 0, 0) for 1
2 < b ≤ 1, then the inequality (3.1)

fails;
(2) If 0 < α < 1

2 , x = (1, 0, 0), y = (1 − c, 0,−√
1 − c2) with c close enough to 1, then the

inequality (3.1) fails.
These two counterexamples also explain the reason for the range of α in Theorems 1.1

and 1.2 in some sense.

Next, we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Taking the Fourier transform to the equation (2.1), we have

û(ξ, t) =
[

cos
(

Ω
ξ3

|ξ| t
)

I + sin
(

Ω
ξ3

|ξ| t
)

R(ξ)
]

e−t|ξ|2α

û0(ξ)
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−
∫ t

0

{

cos
[

Ω
ξ3

|ξ| (t − τ )
]

I + sin
[

Ω
ξ3

|ξ|(t − τ )
]

R(ξ)
}

e−(t−τ)|ξ|2α

Piξ

·
∫

R3
[û(ξ − η, τ) ⊗ û(η, τ) − B̂(ξ − η, τ) ⊗ B̂(η, τ)]dηdτ (3.2)

and

B̂(ξ, t) = e−t|ξ|2α

B̂0(ξ) −
∫ t

0

e−(t−τ)|ξ|2α

Piξ

·
∫

R3
[û(ξ − η, τ) ⊗ B̂(η, τ) − B̂(ξ − η, τ) ⊗ û(η, τ)]dηdτ. (3.3)

Since P and TΩ,α are bounded Fourier multiplier, we ignore these terms in the following esti-
mations. Hence, (3.2) and (3.3) yield

|û(ξ, t)| + |B̂(ξ, t)|
≤ e−t|ξ|2α

[|û0(ξ)| + |B̂0(ξ)|]

+
∫ t

0

e−(t−τ)|ξ|2α

∫

R3
|ξ|[|û(ξ − η, τ)||û(η, τ)| + |B̂(ξ − η, τ)|B̂(η, τ)|]dηdτ

+
∫ t

0

e−(t−τ)|ξ|2α

∫

R3
|ξ|[|B̂(ξ − η, τ)||û(η, τ)| + |û(ξ − η, τ)|B̂(η, τ)|]dηdτ. (3.4)

Step 1 Estimate of u, B in L∞
t X 1−2α.

Multiplying the equations (3.4) by |ξ|1−2α, we have

|ξ|1−2α[|û(ξ, t)| + |B̂(ξ, t)|] ≤ e−t|ξ|2α |ξ|1−2α[|û0(ξ)| + |B̂0(ξ)|]

+
∫ t

0

e−(t−τ)|ξ|2α

∫

R3
|ξ|2−2α|û(ξ − η, τ)||û(η, τ)|dηdτ

+
∫ t

0

e−(t−τ)|ξ|2α

∫

R3
|ξ|2−2α|B̂(ξ − η, τ)||B̂(η, τ)|dηdτ

+
∫ t

0

e−(t−τ)|ξ|2α

∫

R3
|ξ|2−2α|B̂(ξ − η, τ)||û(η, τ)|dηdτ

+
∫ t

0

e−(t−τ)|ξ|2α

∫

R3
|ξ|2−2α|û(ξ − η, τ)||B̂(η, τ)|dηdτ

= e−t|ξ|2α |ξ|1−2α[|û0(ξ)| + |B̂0(ξ)|] + I1 + I2 + I3 + I4.

By Lemma 3.1, we may estimate the nonlinear term I1, I2, I3, I4, respectively:

I1 =
∫ t

0

[ ∫

R3
|ξ|2−2α|û(ξ − η, τ)||û(η, τ)|dη

]

dτ

≤ 22(1−α)

2

∫ t

0

∫

R3
(|η||ξ − η|1−2α + |η|1−2α|ξ − η|)|û(ξ − η, τ)||û(η, τ)|dηdτ

≤ 22(1−α)

[ ∫ ∞

0

| · ||û(·, τ )|dτ

]

∗
[

sup
0≤t<+∞

| · |1−2α|û(·, t)|
]
,

I2 ≤ 22(1−α)

[ ∫ ∞

0

| · ||B̂(·, τ )|dτ

]

∗
[

sup
0≤t<+∞

| · |1−2α|B̂(·, t)|
]

and

I3 + I4 ≤ 22(1−α)

2

{[∫ ∞

0

| · ||B̂(·, τ )|dτ

]

∗
[

sup
0≤t<+∞

| · |1−2α|û(·, t)|
]
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+
[ ∫ ∞

0

| · ||û(·, τ )|dτ

]

∗
[

sup
0≤t<+∞

| · |1−2α|B̂(·, t)|
]}

.

Hence, we can get

‖u‖L∞
t X1−2α + ‖B‖L∞

t X1−2α

=
∫

R3
sup

0≤t<+∞
|ξ|1−2α|û(ξ, t)|dξ +

∫

R3
sup

0≤t<+∞
|ξ|1−2α|û(ξ, t)|dξ

≤ ‖u0‖X1−2α + ‖B0‖X1−2α

+ 22(1−2α)(‖u‖L1
tX1‖u‖L∞

t X1−2α + ‖B‖L1
tX1‖B‖L∞

t X1−2α)

+ 22(1−α)(‖B‖L1
tX1‖u‖L∞

t X1−2α + ‖u‖L1
tX1‖B‖L∞

t X1−2α)

≤ ‖u0‖X1−2α + ‖B0‖X1−2α

+ 22(1−2α)(‖u‖L1
tX1 + ‖B‖L1

tX1)(‖u‖L∞
t X1−2α + ‖B‖L∞

t X1−2α). (3.5)

Step 2 Estimate of u, B in L1
tX 1.

Multiplying the equation (3.4) by |ξ|, we can gain

|ξ|[|û(ξ, t)| + |B̂(ξ, t)|]
≤ |ξ|2αe−t|ξ|2α |ξ|1−2α[|û0(ξ)| + |B̂0(ξ)|]

+
∫ t

0

|ξ|2αe−(t−τ)|ξ|2α

∫

R3
|ξ|2−2α[|û(ξ − η, τ)||û(η, τ)| + |B̂(ξ − η, τ)||B̂(η, τ)|]dηdτ

+
∫ t

0

|ξ|2αe−(t−τ)|ξ|2α

∫

R3
|ξ|2−2α[|B̂(ξ − η, τ)||û(η, τ)| + |û(ξ − η, τ)||B̂(η, τ)|]dηdτ.

Since ∫ +∞

0

|ξ|2αe−t|ξ|2α

dt < ∞,

we obtain

‖u‖L1
tX1 + ‖B‖L1

tX1

� ‖u0‖X1−2α + ‖u0‖X1−2α

+ 22(1−2α)[‖u‖L1
tX1‖u‖L∞

t X1−2α + ‖B‖L1
tX1‖B‖L∞

t X1−2α ]

+ 22(1−2α)[‖B‖L1
tX1‖u‖L∞

t X1−2α + ‖u‖L1
tX1‖B‖L∞

t X1−2α ]

≤ ‖u0‖X1−2α + ‖B0‖X1−2α

+ 22(1−2α)(‖u‖L1
tX1 + ‖B‖L1

tX1)(‖u‖L∞
t X1−2α + ‖B‖L∞

t X1−2α). (3.6)

Step 3 Estimate of ‖u‖L∞
t X1−2α + ‖B‖L∞

t X1−2α + ‖u‖L1
tX1 + ‖B‖L1

tX1 .
Let Y = ‖u‖L∞

t X1−2α + ‖B‖L∞
t X1−2α + ‖u‖L1

tX1 + ‖B‖L1
tX1 . (3.5) and (3.6) yield

‖u‖L∞
t X1−2α + ‖B‖L∞

t X1−2α + ‖u‖L1
tX1 + ‖B‖L1

tX1

� 2(‖u0‖X1−2α + ‖B0‖X1−2α)

+ 2 · 22(1−2α)(‖u‖L1
tX1 + ‖B‖L1

tX1)(‖u‖L∞
t X1−2α + ‖B‖L∞

t X1−2α)

� ‖u0‖X1−2α + 22(1−2α)(‖u‖L∞
t X1−2α + ‖B‖L∞

t X1−2α + ‖u‖L1
tX1 + ‖B‖L1

tX1)2,

that is
Y � 22(1−2α)Y 2 + (‖u0‖X1−2α + ‖B0‖X1−2α).
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Denote
δ = 1 − 4 · 22(1−2α)(‖u0‖X1−2α + ‖B0‖X1−2α),

then it is not hard to get the existence of global solution in L∞
t X 1−2α ∩ L1

tX 1 for small initial
data in X 1−2α by standard fixed point argument.

4 Proof of Theorem 1.2

Firstly, we need an inequality [22], which is used to estimate nonlinear term in the proof of
Theorem 1.2.

Lemma 4.1 ([22]) Assume 0 < s ≤ t < +∞ and 0 ≤ α ≤ 1, then the following inequality
holds

t|x|α − 1
2
(t2 − s2)|x|2α − s|x − y|α − s|y|α ≤ 1

2
for any x, y ∈ R

3.

With the help of Lemma 4.1, we give the proof of Theorem 1.2.

Proof of Theorem 1.2 We utilize the following Gevrey class regularity:

sup
0<t<∞

sup
ξ∈R3

e
√

t|ξ|α |ξ|2α|û(ξ, t)| + sup
0<t<∞

sup
ξ∈R3

e
√

t|ξ|α |ξ|2α|B̂(ξ, t)| < +∞,

which is an extension of Gevrey class regularity of the solution that Le Jan and Sznitman
constructed in [18]:

sup
0<t<∞

sup
ξ∈R3

e
√

t|ξ||ξ|2|û(ξ, t)| < +∞.

Let ( v
b ) = e

√
t|D|α ( u

B ). On account of the equation (2.1), we have
⎛

⎝ v

b

⎞

⎠ = e
√

t|D|αAΩ,α(t)

⎛

⎝ u0

B0

⎞

⎠

−
∫ t

0

e
√

t|D|αAΩ,α(t − τ )P

⎛

⎝
div(u ⊗ u − B ⊗ B)

div(u ⊗ B − B ⊗ u)

⎞

⎠ (τ )dτ.

Similar to the method of deriving the inequality (3.4), we can get

|v̂(ξ, t)| + |b̂(ξ, t)|
� e

√
t|ξ|α−t|ξ|2α

[|û0(ξ)| + |B̂0(ξ)|]

+
∫ t

0

e
√

t|ξ|α−(t−τ)|ξ|2α |ξ|
{∫

R3
[|û(ξ − η, τ)||û(η, τ)| + |B̂(ξ − η, τ)||B̂(η, τ)|]dη

}

dτ

+
∫ t

0

e
√

t|ξ|α−(t−τ)|ξ|2α |ξ|
{∫

R3
[|B̂(ξ − η, τ)||û(η, τ)| + |û(ξ − η, τ)||B̂(η, τ)|]dη

}

dτ

= e
√

t|ξ|α−t|ξ|2α

[|û0(ξ)| + |B̂0(ξ)|]

+
∫ t

0

e
√

t|ξ|α−(t−τ)|ξ|2α−√
τ(|ξ−η|α+|η|α)|ξ|
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{∫

R3
[|v̂(ξ − η, τ)||v̂(η, τ)| + |b̂(ξ − η, τ)||b̂(η, τ)|]dη

}

dτ

+
∫ t

0

e
√

t|ξ|α−(t−τ)|ξ|2α−√
τ(|ξ−η|α+|η|α)|ξ|

{∫

R3
[|b̂(ξ − η, τ)||v̂(η, τ)| + |v̂(ξ − η, τ)||b̂(η, τ)|]dη

}

dτ. (4.1)

Note

e
√

t|ξ|α− 1
2 t|ξ|2α

= e−
1
2 (

√
t|ξ|α−1)2+ 1

2 ≤ e
1
2

and

e
√

t|ξ|α− 1
2 (t−τ)|ξ|2α−√

τ(|ξ−η|α+|η|α) ≤ e
1
2

by Lemma 4.1. Hence, we substitute the above two inequalities in the inequality (4.1) and
obtain

|v̂(ξ, t)| + |b̂(ξ, t)|
� e−

1
2 t|ξ|α [|v̂0(ξ)| + |v̂0(ξ)|]

+
∫ t

0

e−
1
2 (t−τ)|ξ|2α |ξ|

{∫

R3
[|v̂(ξ − η, τ)||v̂(η, τ)| + |b̂(ξ − η, τ)||b̂(η, τ)|]dη

}

dτ

+
∫ t

0

e−
1
2 (t−τ)|ξ|2α |ξ|

{∫

R3
[|b̂(ξ − η, τ)||v̂(η, τ)| + |û(ξ − η, τ)||b̂(η, τ)|]dη

}

dτ.

The remaining part of the proof is similar to Theorem 1.1, and thus we omit the details.
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