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Abstract We consider a family of second-order elliptic operators {Lε} in divergence form with rapidly

oscillating and periodic coefficients in Lipschitz and convex domains in Rn. We are able to show that

the uniform W 1,p estimate of second order elliptic systems holds for 2n
n+1

− δ < p < 2n
n−1

+ δ where

δ > 0 is independent of ε and the ranges are sharp for n = 2, 3. And for elliptic equations in Lipschitz

domains, the W 1,p estimate is true for 3
2
− δ < p < 3 + δ if n ≥ 4, similar estimate was extended to

convex domains for 1 < p < ∞.

Keywords Homogenization, elliptic, non-smooth

MR(2010) Subject Classification 35B27, 35J57, 74B05

1 Introduction

In this paper, we carry out a study of the periodic homogenization problem subjected to Neu-
mann boundary condition. Precisely, let Ω be a bounded Lipschitz or convex domain in Rn and
N = (N1, N2, . . . , Nn) the outward unit normal to ∂Ω, assume f ∈ Lp(Ω) and g ∈ B−1/p,p(∂Ω),
consider ⎧

⎨

⎩

Lε(uε) = divf in Ω,
∂uε

∂νε
= −f ·N + g on ∂Ω,

(N)p

where
(
∂uε

∂νε

)α

= Ni(x)a
αβ
ij

(
x

ε

)
∂uβ

ε

∂xj
(1.1)

denotes the conormal derivative with respect to Lε and 1 ≤ i, j ≤ n, 1 ≤ α, β ≤ m. Here Lε is
a family of second order elliptic operator with rapidly oscillating, periodic coefficients, arising
in the theory of homogenization,

Lε = − ∂

∂xi

[

aαβ
ij

(
x

ε

)
∂

∂xj

]

= −div
[

A

(
x

ε

)

∇
]

. (1.2)

Suppose that the coefficient matrix A(y) = aαβ
ij (y)(1 ≤ i, j ≤ n, 1 ≤ α, β ≤ m) is real, bounded,

measurable. Here and thereafter we will suppose that A is elliptic, i.e.,

μ|ξ|2 ≤ aαβ
ij (x)ξα

i ξ
β
j ≤ 1

μ
|ξ|2, for ξ = (ξα

i ) ∈ Rnm, x ∈ Rn, μ > 0, (1.3)
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and the periodicity condition

A(y + z) = A(y), for z ∈ Zn, y ∈ Rn, (1.4)

as well as the smoothness condition

|A(x) −A(y)| ≤ τ |x− y|η, for some η ∈ (0, 1) and τ ≥ 0. (1.5)

The symmetry condition A∗ = A, i.e.,

aαβ
ij (x) = aβα

ji (x) (1.6)

is also needed.
Letting 1 < p <∞, for any f ∈ Lp(Ω) and g ∈ B−1/p,p(∂Ω), we say uε is a solution to (N)p

if uε ∈W 1,p(Ω) and
∫

Ω

aαβ
ij

(
x

ε

)
∂uβ

ε

∂xj

∂φα

∂xi
dx =

∫

Ω

fα
i

∂φα

∂xi
dx+ 〈gα, φα〉B−1/p,p(∂Ω)×B1/p,p′ (∂Ω) (1.7)

for any φ ∈ C∞(Rn), where 〈·, ·〉 denotes the paring between B1/p,p′
(∂Ω) and its dual

B−1/p,p(∂Ω). Recall that for any 0 < α < 1, the Besov spaces Bα,p is defined to mean
the collection of functions u on ∂Ω with the norm

‖u‖Bα,p(∂Ω) = ‖u‖Lp(∂Ω) +
( ∫

∂Ω

∫

∂Ω

|u(x) − u(y)|p
|x− y|n−1+αp

)1/p

<∞. (1.8)

The following are the main results of the paper.

Theorem 1.1 Let Ω be a bounded Lipschitz domain in Rn(n ≥ 2). Let m > 1 and Lε be
defined as in (1.2) with A satisfying (1.3)–(1.6). Suppose that f ∈ Lp(Ω) and g ∈ B−1/p,p(∂Ω)
where 2n

n+1 − δ < p < 2n
n−1 + δ. Then if g satisfies the compatibility condition

〈gα, 1〉B−1/p,p(∂Ω)×B1/p,p′ (∂Ω) = 0, (1.9)

the weak solutions to the Neumann problem (N)p satisfy the W 1,p estimate

‖∇uε‖Lp(Ω) ≤ C{‖f‖Lp(Ω) + ‖g‖B−1/p,p(∂Ω)}, (1.10)

where constants δ, C > 0 are independent of ε.

In the case of scalar equation (m = 1), we have the following theorem.

Theorem 1.2 Let Ω be a bounded Lipschitz domain in Rn(n ≥ 2). Let m = 1 and Lε be
defined as in (1.2) with A satisfying (1.3)–(1.6). Let f ∈ Lp(Ω) and g ∈ B−1/p,p(∂Ω) where
3
2 − δ < p < 3 + δ if n ≥ 3 ( 4

3 − δ < p < 4 + δ if n = 2). Then if g satisfies the compatibility
condition

〈g, 1〉B−1/p,p(∂Ω)×B1/p,p′ (∂Ω) = 0, (1.11)

the weak solutions to the Neumann problem (N)p satisfy the W 1,p estimate

‖∇uε‖Lp(Ω) ≤ C{‖f‖Lp(Ω) + ‖g‖B−1/p,p(∂Ω)}, (1.12)

where constant δ = δ(μ, n, τ,Ω, η) > 0 and C > 0 depends only on n, p, A and the Lipschitz
character of Ω.

The sharp ranges of p′s are obtained in convex domains, as follows.
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Theorem 1.3 Let 1 < p < ∞. Assume that Ω is a bounded convex domain in Rn(n ≥ 2).
Let m = 1 and Lε be defined as in (1.2) with A satisfying (1.3)–(1.6). Let f ∈ Lp(Ω) and
g ∈ B−1/p,p(∂Ω). Then if g satisfies the compatibility condition

〈g, 1〉B−1/p,p(∂Ω)×B1/p,p′ (∂Ω) = 0, (1.13)

the weak solutions to the Neumann problem (N)p satisfy the W 1,p estimate

‖∇uε‖Lp(Ω) ≤ C{‖f‖Lp(Ω) + ‖g‖B−1/p,p(∂Ω)}, (1.14)

where constant δ = δ(μ, n, τ,Ω, η) > 0 and C > 0 depending only on n, p, A and the Lipschitz
character of Ω.

Remark 1.4 In Theorems 1.3 and 1.2, the range of p′s is sharp even for the Laplacian.

Uniform regularity estimates in non-smooth domains play an essential role in the study
of the convergence problems in homogenization, we refer the reader to [7], also see related
work in [2–6, 20] and [22]. In [23] the L2 Dirichlet, Regularity and Neumann problems in
Lipschitz domain for elliptic systems with rapidly oscillating coefficients satisfying (1.3) are
solved by the method of layer potentials. The uniform W 1,p estimate (1.10) of (N)p was
established by Kenig, et al. in [20] for 1 < p < ∞ in C1,α domain under the assumption
that A satisfies (1.3), (1.4), (1.5) and (1.6), the non-tangential maximal function estimates and
Lipschitz estimates were also obtained there via a three-step compactness argument. In the
case of Dirichlet boundary condition on C1,α domain, the uniform W 1,p estimate (1.10) was
obtained in [2] under the same assumption on A as [20] without A∗ = A. We also refer the
reader to [3, 5, 6] for various estimates in elliptic homogenization.

In the case of second order elliptic systems subject to Dirichlet boundary conditions in
Lipschitz domains, in [16], the authors were able to show that the uniform W 1,p estimate (1.10)
holds on Lipschitz domains for | 1p − 1

2 | < 1
2n +δ under the assumption that A satisfies (1.5), (1.4)

and (1.3) as well as A∗ = A. Similar results for linear elasticity problem are also proved in [16]
by different approach. In the case of scalar equation (m = 1) on Lipschitz domain, the W 1,p

estimate (1.10) for the elliptic homogenization problem Lεuε = divf in Ω was proved in [26]
for 4

3 − ε < p < 4 + ε if n = 2 and 4
3 − ε < p < 4 + ε when n ≥ 3, and the range of p′s is sharp.

The Lp boundedness of Riesz transforms associated with {Lε} is also established for the same
optimal range of p in [26]. However, if the equation is subject to the Neumann boundary, it is
more difficult to obtain such estimate than the Dirichlet problem since the Neumann condition
in (1.1) involves ε.

Our approach is to reduce the W 1,p estimate to the weak reverse Hölder inequality (locally)
via a duality argument of the Calderón–Zygmund decomposition, see Theorem 2.2. Basically, to
obtain the W 1,p solvability of (N)p in Lipschitz domains, we rewrite |∇uε|p = |∇uε|p−2|∇uε|2,
and it is noted that the well-known interior estimate

sup
B

|∇uε| ≤ C

r

{

−
∫

2B

|uε|2
}1/2

, (1.15)

is proved by Avellaneda and Lin [2] if Lεuε = 0 in B(x, 4r) with A satisfying (1.3)–(1.5) and
the constant C is independent of ε. Consequently, |∇uε|p−2 will be estimated by (1.15) and
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|∇uε|2 be estimated by the Rellich estimate (see [23])
∫

∂Ω

|(∇uε)∗|2 ≤ C

∫

∂Ω

∣
∣
∣
∣
∂uε

∂νε

∣
∣
∣
∣

2

.

This allows us to solve the W 1,p estimate for homogenization problems Lε(uε) = 0 in Ω with
Neumann boundary data in Lp(∂Ω).

Our proof of Theorem 1.3 follows the same line of argument as in the proof of Theorem 1.2,
but one may notice that a convex domain must be Lipschitz domain, but a Lipschitz domain
may not be convex. And it worthwhile to point out that, in [15], by using some elegant analysis
tools such as co-area formula, weighted inequality, together with the convexity of Ω, we adapt
a complete different approach to establish the weak reverse Hölder estimates

(

−
∫

Z(r)

|∇u|p
) 1

p

≤ C

(

−
∫

Z(2r)

|∇u|2
) 1

2

(1.16)

holds for any 1 < p < ∞, where u is a weak solution of Δu = 0 in Ω and ∂u
∂N = 0 on ∂Ω, and

this results has been extended to the constant coefficient case in this paper, see Theorem 6.1.
Next, it follows by a real-variable perturbation argument, we obtain the weak reverse Hölder

estimates (1.16) for u satisfying Lu = 0 in Z(3r) and ∂u
∂ν = 0 on S(3r) with A ∈ VMO, then

the same argument as in Theorem 1.2 deduces that the W 1,p estimates (1.14) holds for any
2 < p <∞, this gives the small scale W 1,p estimates. To handle the large scale W 1,p estimates,
we fist utilize a three step compactness argument to obtain the boundary Hölder estimates

|uε(x) − uε(y)| ≤ C

( |x− y|
r

)η(

−
∫

Z(r)

|uε|2
)1/2

, (1.17)

where Lε(uε) = 0 in Z(2r) and ∂uε

∂νε
= 0 on S(2r). This, together with the L2 non-tangential

maximal function estimates, leads to the large scale estimates. See Section 6.
Compared to C1,α domain, as expected for non-smooth domains, the main difficulty lies in

the boundary estimates and one may not expect that the boundary W 1,p estimates hold for all
1 < p <∞ in Lipschitz domains. Let ψ be a Lipschitz mapping ψ : Rn−1 → R, for r > 0, set

Z(r) = {(x′, xn) ∈ Rn : |x′| < r}, (1.18)

S(r) = {(x′, xn) ∈ Rn : |x′| < r and ψ(x′) < xn < ψ(x′) + (M + 10n)r} (1.19)

denote the Lipschitz cylinder and its surface, respectively. And

B(Q, r0) ∩ Ω = {(x′, xn) ∈ Rn : xn > ψ(x′)} ∩B(Q, r0), (1.20)

B(Q, r0) ∩ ∂Ω = {(x′, xn) ∈ Rn : xn = ψ(x′)} ∩B(Q, r0), (1.21)

where B(Q, r0) = {x ∈ Rn : |x−Q| < r0} denotes a ball centered at Q with radius r0.

2 A Real Variable Argument

The following theorem is a refined real variable argument which established in [25, Theorem 3.2],
and can be seen as a duality argument of the Calderón–Zygmund decomposition. It plays an
important role in the proof of Theorems 2.2 and 3.1, with the help of it, the W 1,p estimates
follow from the locally weak reverse Hölder inequality consequently, we generalize [25, Theorem
3.2] and provide the proof for the sake of completeness.
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Theorem 2.1 Let Ω ⊂ R
n be bounded Lipschitz domain and F ∈ L2(Ω). Let p > 2 and

f ∈ Lq(Ω) for some 2 < q < p. Suppose that for each ball B with |B| ≤ β|Ω|, there exist two
measurable functions FB, RB on 2B such that |F | ≤ |FB| + |RB | on 2B ∩ Ω,

{

−
∫

2B∩Ω

|RB |pdx
} 1

p

≤ C1

{(

−
∫

αB∩Ω

|F |2dx
) 1

2

+ sup
B⊂B′

(

−
∫

B′∩Ω

|f |2dx
) 1

2
}

(2.1)

and

−
∫

2B∩Ω

|FB |2dx ≤ C2 sup
B⊂B′

−
∫

B′
|f |2dx+ σ−

∫

αB

|F |2dx, (2.2)

where C1, C2 > 0 and 0 < β < 1 < α. Then, if 0 ≤ σ < σ0 = σ0(C1, C2, n, p, q, α, β), we have
{

−
∫

Ω

|F |qdx
} 1

q

≤ C

{(

−
∫

Ω

|F |2dx
) 1

2

+
(

−
∫

Ω

|f |qdx
) 1

q
}

, (2.3)

where C > 0 depends only on C1, C2, n, p, q, α, β.

Proof We will argue by the Calderón–Zygmund decomposition and “Good-λ” inequality. For
the convenience of dyadic decomposition, we may choose a cube Q0 such that Ω ⊂ Q0 and
|Q0| ∼ |Ω|, and we will not make the effort to distinguish the “cube” and “ball”. Then for
λ > 0, consider

E(λ) = {x ∈ Q0 : M2Q0(|F |2)(x) > λ}, (2.4)

where M2Q0 denotes the Hardy–Littlewood maximal function defined on 2Q0.
Observe that the weak (1, 1) estimate of M2Q0 implies that

|E(λ)| ≤ Cn

λ

∫

2Q0

|F |2dx. (2.5)

By letting λ0 = C0
|2Q0|

∫

2Q0
|F |2dx and choosing C0 = 2n+1Cn/ε, combining with (2.5) we obtain

|E(λ)| < ε|Q0| (2.6)

for any λ > λ0, where ε ∈ (0, 1) is a constant to be determined later.
Next, we apply the Calderón–Zygmund decomposition to Q0, let Qk be the maximal dyadic

subcubes of Q0 and Q̃k denote the “parent” of Qk, by choosing ε sufficiently small, we may
assume that |Qk| ≤ β|Q0|, we then have the following properties:

∣
∣
∣E(λ)\

⋃

k

Qk

∣
∣
∣ = 0, (2.7)

and

−
∫

Q̃k

|F |2dx ≤ λ, since Q̃k � E(λ) (2.8)

as well as

−
∫

Q′
|F |2dx ≤ Cnλ, if Q′ ∩Qk �= ∅ and |Q′| ≥ cn|Qk|. (2.9)

Hence it is not hard to see that if x ∈ Qk,

M2Q0(|F |2)(x) ≤ max{M2Qk
(|F |2), Cnλ}. (2.10)
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Next, we claim that if {x ∈ Qk : M2Q0(|f |2) ≤ λγ} �= ∅, then

|E(Aλ) ∩Qk| ≤ ε|Qk|, (2.11)

where A = (2ε)−
2
q . To establish (2.11), we may assume that A > Cn. Then weak (1, 1), weak

(p
2 ,

p
2 ) type estimates of M2Qk

and the fact |F | ≤ |FQk
| + |RQk

| on 2Qk imply that

|E(Aλ) ∩Qk| ≤ |{x ∈ Qk : M2Qk
(|F |2)(x) > Aλ}|

≤
∣
∣
∣
∣

{

x ∈ Qk : M2Qk
(|FQk

|2)(x) > Aλ

4

}∣
∣
∣
∣

+
∣
∣
∣
∣

{

x ∈ Qk : M2Qk
(|RQk

|2)(x) > Aλ

4

}∣
∣
∣
∣

≤ Cn

Aλ

∫

2Qk

|FQk
|2dx+

Cn,p

(Aλ)
p
2

∫

2Qk

|RQk
|pdx. (2.12)

It follows from (2.1) and the fact {x ∈ Qk : M2Q0(|f |2) ≤ λγ} �= ∅ that
∫

2Qk

|RQk
|pdx ≤ Cp

1 |2Qk|
{(

−
∫

αQk

|F |2dx
) 1

2

+ sup
Qk⊂Q′

(

−
∫

Q′
|f |2dx

) 1
2
}p

≤ Cn,pC
p
1 |Qk|{λ 1

2 + (γλ)
1
2 }p. (2.13)

On the other hand, (2.2) implies that
∫

2Qk

|FQk
|2dx ≤ C2|Qk| sup

Qk⊂Q′
−
∫

Q′
|f |2dx+ σ|Qk|−

∫

αQk

|F |2dx

≤ C2|Qk|γλ+ σ|Qk|Cnλ

≤ λ|Qk|
{
C2γ + σCn

}
. (2.14)

Substituting (2.13) and (2.14) into (2.12), we then have

|E(Aλ) ∩Qk| ≤ ε|Qk|{CnC2γε
2
q −1 + Cnσε

2
q −1 + Cn,pC

p
1 ε

p
q −1}. (2.15)

One may notice that it is possible for us to choose δ and then γ, σ0 > 0 such that {CnC2γε
2
q −1+

Cnσ0ε
2
q −1 +Cn,pC

p
1 ε

p
q −1} < 1

2 , which gives the proof of (2.11). By taking the summation with
index k of (2.11) and using the fact that Qk is contained in E(λ), one obtains

|E(Aλ)| ≤ ε|E(λ)| + |{x ∈ Q0 : M2Q0(|f |2)(x) > γλ}|. (2.16)

The rest of the proof is exactly the same as in the case σ = 0. We refer the reader to [25,
Theorem 3.2] for details. �

Armed with Theorem 2.1, the W 1,p estimates for second order elliptic equations or systems
with divergence form subjected to Neumann boundary could be reduced to show that the weak
reverse Hölder inequality holds for p > 2, as follows.

Theorem 2.2 Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2 and p > 2. Let L =
div(A(x)∇) with A = (aαβ

ij (x)) satisfies (1.3). Assume that for any B(x0, r) with the property
that 0 < r < r0/8 and either x0 ∈ ∂Ω or B(x0, 2r) ⊂ Ω, the weak reverse Hölder inequality

(

−
∫

B(x0,r)∩Ω

|∇v|p
) 1

p

≤ C0

(

−
∫

B(x0,2r)∩Ω

|∇v|2
) 1

2

(2.17)
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holds, whenever v ∈ W 1,2(B(x0, 2r) ∩ Ω) satisfies L(v) = 0 in B(x0, 2r) ∩ Ω and ∂v
∂ν = 0 on

B(x0, 2r) ∩ ∂Ω (if x0 ∈ ∂Ω). Let u be a H1 solution of (N)2 with f ∈ Lp(Ω) and g = 0. Then
u ∈W 1,p(Ω) and

‖∇u‖Lp(Ω) ≤ C‖f‖Lp(Ω), (2.18)

with constants C > 0 depending only on n, p, μ, C0 and the Lipschitz character of Ω.

Proof The proof is directly follows from Theorem 2.1, see [14]. �

Lemma 2.3 Let uε ∈ H1(Z(3r)) be a weak solution of Lεuε = 0 in Z(3r) and ∂uε

∂νε
= 0 in

S(3r). Then ∇uε is locally Lp-integrable, for some p > 2, we have
{

−
∫

Z(r)

|∇uε|p
} 1

p

≤ C

{

−
∫

Z(2r)

|∇uε|2
} 1

2

. (2.19)

Proof The proof is is essentially due to Giaquinta (see [17]), which follows from the Cacciopoli’s
inequality and Sobolev–Poincaré inequality. �

3 The VMO Coefficient Case

This section is devoted to the W 1,p estimates for second order elliptic systems with VMO
coefficients in nonsmooth domains. Armed with the regularity theory of second order elliptic
systems in divergence form with constant coefficient in Lipschitz domain [18] (see [14, 19, 25]
and the references there), for elliptic systems with VMO coefficient it has become customary
to use perturbation method, first introduced in [12], also see [1, 8–11, 13] and [24].

The following theorem was stated in [14] without a proof, we sketch out the proof here.
Recall that we say f ∈ VMO(Rn) if

lim
r→0

sup
x∈Rn

−
∫

B(x,r)

∣
∣
∣
∣f −−

∫

B(y,r)

fdy

∣
∣
∣
∣dx = 0, (3.1)

where −
∫

B(x,r)
fdx denotes the L1 average of f over B(x, r).

Theorem 3.1 Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2 and 2n
n+1 −δ < p < 2n

n−1 +δ,
where δ > 0. Let L be a second order elliptic operator of divergence form with real-valued,
bounded, measurable coefficients. Also assume that the coefficient matrix A is symmetric and
in VMO(Rn). Then there exists a unique (up to constants) u ∈ W 1,p(Ω) such that Lu = divf
in Ω and ∂u

∂ν = −f ·N on ∂Ω. Moreover, the W 1,p estimate

‖∇u‖Lp(Ω) ≤ C{‖f‖Lp(Ω) + ‖g‖B−1/p,p(∂Ω)} (3.2)

holds with constant C depends only on n, p, A and Ω.

The following perturbation argument originating in [12] plays an important role in the proof
of Theorem 3.1.

Lemma 3.2 Let Ω be a Lipschitz domain in Rn(n ≥ 2). Assume that L satisfies the same
conditions as in Theorem 3.1. Let u be a W 1,2 solution of L(u) = 0 in B(x0, 8r)∩Ω and ∂u

∂ν = 0
on B(x0, 8r) ∩ ∂Ω. Then there exist a function θ(r) such that limr→0 θ(r) = 0 and a function
v ∈W 1,p(B(x0, r) ∩ Ω) as well as p > 2n

n−1 satisfy :
{

−
∫

B(x0,r)∩Ω

|∇v|pdx
} 1

p

≤ C

{

−
∫

B(x0,8r)∩Ω

|∇u|2dx
} 1

2

, (3.3)
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{

−
∫

B(x0,r)∩Ω

|∇u−∇v|2dx
} 1

2

≤ θ(r)
{

−
∫

B(x0,8r)∩Ω

|∇u|2dx
} 1

2

. (3.4)

Proof Consider
⎧
⎪⎨

⎪⎩

L(v) = 0 in Ω ∩B(x0, 4r),

cαβ
ij

∂v

∂xj
Ni = aαβ

ij

∂u

∂xj
Ni on ∂(Ω ∩ B(x0, 4r)),

(3.5)

where L = ∂
∂xi

(cαβ
ij

∂
∂xj

) and cαβ
ij = −

∫

B(x0,8r)
aαβ

ij (x)dx is a constant.
By using v − u as a test function, we derive
∫

Ω∩B(x0,4r)

cαβ
ij

∂(u− v)β

∂xj

∂(u− v)α

∂xi
dx =

∫

Ω∩B(x0,4r)

(cαβ
ij − aαβ

ij )
∂uβ

∂xj

∂(u− v)α

∂xi
dx. (3.6)

We will show that v satisfies estimates (3.3) and (3.4).
Thus, in view of ellipticity and Cauchy inequality with ε, we have

μ

∫

Ω∩B(x0,4r)

|∇(v − u)|2dx

≤
∫

Ω∩B(x0,4r)

∑

i,j

|aαβ
ij − cαβ

ij ‖∇u‖∇(v − u)|dx

≤ C

∫

Ω∩B(x0,4r)

|aαβ
ij − cαβ

ij |2|∇u|2dx+ ε

∫

Ω∩B(x0,4r)

|∇(u− v)|2dx. (3.7)

It follows from the Hölder inequality and Lemma 2.3, one obtains
{

−
∫

Ω∩B(x0,4r)

|∇(v − u)|2dx
} 1

2

≤ C

{

−
∫

Ω∩B(x0,4r)

|∇u|2qdx

} 1
2q

×
{

−
∫

Ω∩B(x0,4r)

|aαβ
ij − cαβ

ij |2q′
dx

} 1
2q′

≤ θ(r) ×
{

−
∫

Ω∩B(x0,8r)

|∇u|2dx
} 1

2

, (3.8)

where

θ(r) = C sup
x0∈Ω̄

∑

i,j

{

−
∫

Ω∩B(x0,4r)

|aαβ
ij − cαβ

ij |2q′
dx

} 1
2q′

and Lemma 2.3 was used in the last inequality. It is also known that the John–Nirenberg
inequality implies that θ(r) → 0 as r → 0 since aαβ

ij ∈ VMO. This gives (3.4).
Observing that v is a solution to L(v) = 0 in Ω∩B(x0, 4r) and cαβ

ij
∂v
∂xj

Ni = 0 on B(x0, 4r)∩
∂Ω, by the regularity theory of second order elliptic systems in divergence form with constant
coefficients [19], we obtain

{

−
∫

B(x0,r)∩Ω

|∇v|pdx
} 1

p

≤ C

{

−
∫

B(x0,4r)∩Ω

|∇v|2dx
} 1

2

≤ C

{

−
∫

B(x0,8r)∩Ω

|∇u|2dx
} 1

2

,

where p = 2n
n−1 + δ. This gives (3.3) and completes the proof. �

Now, we are ready to give the proof of Theorem 3.1.
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Proof of Theorem 3.1 In view of Theorem 2.2, it suffices to show L satisfies the weak reverse
Hölder inequality (2.17) for 2n

n+1 − δ < p < 2n
n−1 + δ if n ≥ 2. Since that u, v satisfy (3.3)–(3.4),

it follows from Theorem 2.1 with RB = ∇v, F = ∇u and f = 0 as well as FB = F − RB, we
then obtain desired estimate (2.17), thus Theorem 2.2 implies the gradient estimate

‖∇u‖Lp(Ω) ≤ C‖f‖Lp(Ω) (3.9)

in the case of p > 2, g = 0.
The uniform W 1,p estimate in the case of p < 2, and g �= 0 will be obtained by a duality

argument (see Section 4 for details), i.e., for any 2n
n+1 − δ < p < 2n

n−1 + δ, we have

‖∇u‖Lp(Ω) ≤ C{‖f‖Lp(Ω) + ‖g‖B−1/p,p(∂Ω)}. (3.10)

Thus we complete the proof.

4 Proof of Theorem 1.1

In view of Theorem 2.2, it suffices to show that for any weak solution uε ∈ W 1,2(Z(3r)) to
Lεuε = 0 in Z(3r) and ∂uε

∂νε
= 0 on S(3r), then we have ∇uε ∈ Lpn(Z(r)) and estimate (2.17)

holds for p = pn = 2n
n−1 , i.e.,

{

−
∫

Z(r)

|∇uε|p
} 1

p

≤ C

{

−
∫

Z(2r)

|∇uε|2
} 1

2

, (4.1)

where the constant C independent of ε.

Lemma 4.1 Let uε ∈ H1(Z(3r)) be a weak solution of Lεuε = 0 in Z(3r) and ∂uε

∂νε
= 0 in

S(3r), where the coefficient aαβ
ij of Lε satisfies (1.5), (1.6), (1.3) and (1.4). Let 2 < p = pn =

2n
n−1 . Then we have

(

−
∫

Z(r)

|∇uε|p
) 1

p

≤ C

(

−
∫

Z(2r)

|∇uε|2
) 1

2

. (4.2)

Proof We divide the proof into two steps.

Step 1 Let p = p1 be the same as in Lemma 2.3. It follows from the interior estimate and
Lemma 2.3 that

|∇uε| ≤ C

{

−
∫

B(x,cd(x))

|∇uε|p1

} 1
p1 ≤ C

{
r

d(x)

} n
p1

{

−
∫

B(x,cr)

|∇uε|2
} 1

2

, (4.3)

where d(x) = |xn − ψ(x′)|.
It follows from [23] that the L2 Neumann problem Lεuε = 0 on Ω and ∂uε

∂νε
= g on ∂Ω is

uniquely solvable under the assumption that the coefficient A satisfies (1.3)–(1.6); moreover,
the solution uε satisfies the estimate

{∫

∂Ω

|(∇uε)∗|2+δ

} 1
2+δ

≤ C

{∫

∂Ω

∣
∣
∣
∣
∂uε

∂νε

∣
∣
∣
∣

2+δ} 1
2+δ

, (4.4)

where δ > 0 and (∇uε)∗ denotes the non-tangential maximal function of ∇uε. By a perturbation
argument on Z(tr) with t ∈ (1, 2), we have

∫

S(r)

|(∇uε)∗|2+δdσ ≤ C

r

∫

Z(2r)

|∇uε|2+δdx. (4.5)
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Letting p0 = 2 + δ, it follows from Lemma 2.3 and (4.5) that
{

−
∫

S(r)

|(∇uε)∗|p0dσ

} 1
p0 ≤ C

{

−
∫

Z(2r)

|∇uε|2
} 1

2

. (4.6)

Next, by using (4.6) and (4.3), if 0 < n(p− p0) < p1 we have that
{

−
∫

Z(r)

|∇uε|pdx
} 1

p

=
{

−
∫

Z(r)

|∇uε|p0 |∇uε|p−p0dx

} 1
p

≤ C

{
1

rn−1

∫

S(r)

|(∇uε)∗|p0dσ
1
r

∫ cr

0

(r/t)
n(p−p0)

p1 dt

} 1
p

·
{

−
∫

Z(3r)

|∇uε|2dx
} p−p0

2p

≤ C

{

−
∫

Z(3r)

|∇uε|2dx
} 1

2

. (4.7)

It is easy to see that n(p− p0) < p1 implies that p < 2 + δ + p1
n .

Step 2 (Iteration) Assume p1 <
2n

n−1 , in view of Step 1 and Lemma 2.3, we know that there
exists some p = p2 > 2 + δ

2 + p1
n > p1 such that

{

−
∫

Z(r)

|∇uε|p2

} 1
p1 ≤ C0

{

−
∫

Z(2r)

|∇uε|2
} 1

2

. (4.8)

If p2 <
2n

n−1 , by Step 1 and Lemma 2.3, we know that there exists some p = p3 > 2+ δ
2 + p1

n

> p1 such that
{

−
∫

Z(r)

|∇uε|p3

} 1
p3 ≤ C0

{

−
∫

Z(2r)

|∇uε|2
} 1

2

. (4.9)

Continuing this process, we claim that there exists some p = pj >
2n

n−1 such that
{

−
∫

Z(r)

|∇uε|p3

} 1
p3 ≤ C0

{

−
∫

Z(2r)

|∇uε|2
} 1

2

. (4.10)

Otherwise, we may have a bounded increasing sequence {pj} such that pj+1 > 2 + δ
2 + pj

n ,
let p be the limit of pj , which implies that p > pn = 2n

n−1 . It follows that pj > pn if j sufficiently
large. Thus (4.7) holds for some p = pj > pn. Thus we complete the proof.

We need the following two duality lemmas to finish the proof of Theorem 1.1 in the case of
g �= 0 and p < 2, as follows.

Lemma 4.2 Let Ω be a bounded Lipschitz domain and 2n
n+1 −δ < p < 2n

n−1 +δ and f ∈ Lp(Ω).
Let Lε be defined as in (1.2). Suppose that A satisfies (1.3)–(1.6). Let uε ∈W 1,p(Ω) be a weak
solution to

⎧
⎨

⎩

Lε(uε) = divf in Ω,
∂uε

∂νε
= −f ·N on ∂Ω.

(4.11)

Then

‖∇uε‖Lp(Ω) ≤ C‖f‖Lp(Ω), (4.12)

where C independent of ε.
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Proof The case p > 2 was proved in Lemma 4.1. Let L∗
ε denote the adjoint operator of Lε and

vε be a weak solution of L∗
ε(vε) = div(g) in Ω and ∂vε

∂ν∗
ε

= 0 on ∂Ω where g ∈ Lq(Ω). Suppose
that 1

p + 1
q = 1 and 2n

n+1 − δ < p < 2. Since A∗ is also elliptic, periodic and Hölder continuous,
by using integration by parts we have that

∣
∣
∣
∣

∫

Ω

gα
i

∂uα
ε

∂xi
dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Ω

fα
i

∂vα
ε

∂xi
dx

∣
∣
∣
∣. (4.13)

Then the desired estimate (4.12) will be deduced from Lemma 4.1 and the fact

‖∇uε‖Lp(Ω) = sup
‖g‖Lq(Ω)≤1

∣
∣
∣
∣

∫

Ω

∇uε · gdx
∣
∣
∣
∣. (4.14)

Thus we finish the proof. �
Similar argument will lead to the following lemma and we leave details to the reader.

Lemma 4.3 Let Ω be a bounded Lipschitz domain and 2n
n+1 − δ < p < 2n

n−1 + δ. Suppose that

the coefficients of the operator Lε in (1.2) satisfy (1.3)–(1.6). Then for any gα ∈ B− 1
p ,p(∂Ω),

there exists a unique (up to constants) uε ∈W 1,p(Ω) such that
⎧
⎨

⎩

Lε(uε) = 0 in Ω,
∂uε

∂νε
= g on ∂Ω,

(4.15)

where g satisfies the compatible condition 〈g, 1〉 = 0. Moreover,

‖∇uε‖Lp(Ω) ≤ C‖g‖
B

− 1
p

,p
(∂Ω)

, (4.16)

where C independent on ε.

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1 The desired result follows from Lemmas 4.2 and 4.3. Let vε be a weak
solution of Lε(vε) = divf in Ω and ∂vε

∂νε
= f ·N on ∂Ω. Let hε = uε − vε. Then Lε(hε) = 0 in

Ω and ∂hε

∂νε
= g. Hence

‖∇uε‖Lp(Ω) ≤ ‖∇hε‖Lp(Ω) + ‖∇vε‖Lp(Ω)

≤ C{‖g‖
B

− 1
p

,p
(∂Ω)

+ ‖f‖Lp(Ω)}. (4.17)

Thus we finish the proof.

5 Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2, in view of Theorem 2.2, it suffices to show
that the weak reverse Hölder inequality

{

−
∫

Z(r)

|∇uε|p
} 1

p

≤ C

{

−
∫

Z(2r)

|∇uε|2
} 1

2

(5.1)

holds for 3
2 − δ < p < 3 + δ if n ≥ 4 with the constant C independent of ε whenever uε ∈

W 1,2(B(x0, 2r) ∩ Ω) satisfies Lε(uε) = 0 in B(x0, 2r) ∩ Ω and ∂uε

∂νε
= 0 on B(x0, 2r) ∩ ∂Ω (if

x0 ∈ ∂Ω).

Proof of Theorem 1.2 We divide the proof into two parts.
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Step 1 (p > 2 and g = 0) For x = (x′, xn) ∈ Z(2r), let d(x) = |xn − ψ(x′)|. It follows from
the interior estimate Lemma 1.15, De Giorgi–Nash estimate and Poincaré inequality, we have

|∇uε| ≤ C

{
d(x)
r

}η−1{

−
∫

Z(2r)

|∇uε|2dy
} 1

2

, (5.2)

where η > 0.
Since A satisfies (1.3)–(1.6), it follows from the L2 estimate (see [22]) that

‖(∇uε)∗‖L2(∂Ω) ≤ C

∥
∥
∥
∥
∂uε

∂νε

∥
∥
∥
∥

L2(∂Ω)

. (5.3)

Integrating with respect to t ∈ (1, 2) on Z(tr), we obtain
∫

S(r)

|(∇uε)∗r |2dσ ≤ C

r

∫

Z(2r)

|∇uε|2dx, (5.4)

here (∇uε)∗r(x′, ψ(x′)) = sup{|∇uε(x′, xn)| : (x′, xn) ∈ Z(tr)}.
Note that if (p− 2)(η − 1) > −1, we have
∫

Z(r)

|∇uε|pdx ≤ C

r(p−2)(η−1)

∫

Z(r)

|∇uε|2(d(x))(p−2)(η−1)dx

{

−
∫

Z(2r)

|∇uε|2dx
} p

2−1

≤ C

r(p−2)(η−1)

∫

S(r)

|(∇uε)∗r|2dσ
∫ cr

0

t(p−2)(η−1)dt

{

−
∫

Z(2r)

|∇uε|2dy
} p

2−1

≤ Cr

∫

S(r)

|(∇uε)∗r |2dσ
{

−
∫

Z(2r)

|∇uε|2dy
} p

2−1

, (5.5)

where (5.2) was used in the first inequality.
Plugging (5.4) into (5.5), we obtain the desired estimate

{

−
∫

Z(r)

|∇uε|pdx
} 1

p

≤ C

{

−
∫

Z(2r)

|∇uε|2dx
} 1

2

(5.6)

for 2 < p < 2 + 1
1−η . Typically, we may take p = 3. This gives the desired result for n ≥ 4.

Step 2 (Duality) Theorem 1.2 was partially proved if p > 2 and g = 0 in Step 1, the
remaining proof of Theorem 1.2 in the case of p < 2 and g �= 0 could be deduced from the
duality argument as in Section 4. Thus we complete the proof.

6 Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3, in view of Theorem 2.2, it suffices to show
that the weak reverse Hölder inequality

{

−
∫

Z(r)

|∇uε|p
} 1

p

≤ C

{

−
∫

Z(2r)

|∇uε|2
} 1

2

(6.1)

holds for 2 < p <∞ if n ≥ 2 with the constant C independent of ε whenever uε∈W 1,2(B(x0, 2r)
∩Ω) satisfies Lε(uε) = 0 in B(x0, 2r) ∩ Ω and ∂uε

∂νε
= 0 on B(x0, 2r) ∩ ∂Ω (if x0 ∈ ∂Ω).

We first establish the W 1,p regularity result of Neumann problem for second order elliptic
equation with constant coefficients in convex domains, as follows.
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Lemma 6.1 Let 2 < p < ∞. Assume that Ω ⊂ R
n is a bounded convex domain. Suppose

that u is a weak solution of Lu = 0 in B(x0, 2r) ∩ Ω and ∂u
∂ν = 0 on B(x0, 2r) ∩ ∂Ω, where

L = −div(A∇) with A = (aij) being constant and A = A∗. Then
(

−
∫

B(x0,r)∩Ω

|∇u|p
) 1

p

≤ C0

(

−
∫

B(x0,2r)∩Ω

|∇u|2
) 1

2

, (6.2)

where the constant δ > 0 and C0 depends only on n, the Lipschitz character of Ω and the
ellipticity constant μ.

Proof Since A is constant, symmetric and positive definite, by a change of the coordinate
system, we may assume that L = Δ. (6.2) was shown in [15] in the case of Laplace equation
subject to Neumann boundary and we outline the proof here for the sake of completeness.

Let g = |v|2 where v is a C2 vector which to be determined later, and assume that v ·n = 0
on ∂Ω. Set Φ defined on [0,∞) as a Lipschitz function. Use integration by parts twice we
obtain that

∫

Ω

Φ(|v|2)
{

{div(v)}2 − ∂vi

∂xj
· ∂vj

∂xi

}

=
∫

∂Ω

Φ(|div|2)
{

nividiv(v) − njvi
∂vj

∂xi

}

+ 2
∫

Ω

Φ′(|v|2)
{

vk
∂vk

∂xj
· vi · ∂vj

∂xi
− vk

∂vk

∂xi
· vi · div(v)

}

. (6.3)

Notice that v · n = 0, combine with the convexity −β(vT ; vT ) = nividiv(v) − njvi
∂vj

∂xi
≥ 0,

i.e., β(vT ; vT ) ≤ 0 on ∂Ω, and choose

Φ =

⎧
⎪⎪⎨

⎪⎪⎩

1 s ≥ τ,

linear t ≤ s ≤ τ,

0 s ≤ t,

this, together with (6.3) as well as some direct computation leads that

1
2(τ − t)

∫

t<|g|2<τ

|∇g|2 ≤ 1
(τ − t)

∫

t<g<τ

|∇g||v||div(v)|

+
1

(τ − t)

∫

t<g<τ

|∇g||v|
{∣

∣
∣
∣
∂vi

∂xj
− ∂vj

∂xi

∣
∣
∣
∣

2}1/2

+
∫

g>t

Φ(g)
{

{div(v)}2 − ∂vi

∂xj
· ∂vj

∂xi

}

. (6.4)

It follows from the co-area formula and Lebesgue’s differential theorem, and by choosing
ψ ∈ C∞

0 (B(x0, 2r)) and take v = (∇u)ψ, thus one may notice that v · n = 0, and some
computation shows that

∫

g=t

|∇g|dσ ≤ Ct1/2

∫

g=t

|∇u||∇ψ| + C

∫

g>t

|∇u|2|∇ψ|2. (6.5)

To this end, we use the co-area formula repeatedly, and in view of convexity of Ω as well as
weighted Hölder inequality we obtain that for p > 1,

∫

Ω

|g|qdx ≤ C

{∫

Ω

|f |2pdx

}q/p

+ C|Ω|1−q

{∫

Ω

|g|dx
}q

, (6.6)
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where 1
q = 1

p − 2
d .

Finally, the desired estimate (6.2) follows from simple iteration argument, we refer the
readers to [15]. �

Remark 6.2 It worths pointing out that in view of the Sobolev embedding, the W 1,p estimate
implies the uniform boundary Hölder estimate for any 0 < η < 1. Let A,Ω and u satisfy the
same assumption as in Lemma 6.1. Then it is not hard to see that for any x, y ∈ Z(r/2),

|u(x) − u(y)| ≤ C

( |x− y|
r

)η(

−
∫

Z(r)

|u|2
)1/2

, (6.7)

where the constant C depends only on μ, λ, τ, η and Ω.

Next theorem provide an approximation process for the weak solution of second order elliptic
equation with VMO coefficients by the constant coefficients regularity results in convex domains.

Theorem 6.3 Let Ω be a bounded convex domain in Rn, n ≥ 2 and 2 < p < ∞. Let L
be a second order elliptic operator of divergence form with real-valued, bounded, measurable
coefficients. Also assume that the coefficient matrix A is symmetric and in VMO(Rn). Then
there exists a unique (up to constants) u ∈ W 1,p(Ω) such that Lu = divf in Ω and ∂u

∂ν =
−f ·N + g on ∂Ω. Moreover, the W 1,p estimate

‖∇u‖Lp(Ω) ≤ C{‖f‖Lp(Ω) + ‖g‖B−1/p,p(∂Ω)} (6.8)

holds with constant C depending only on n, p, A and Ω.

Proof The proof is essentially the same as Theorem 3.1. Letting u be aW 1,2 solution of L(u) =
0 in B(x0, 8r)∩Ω and ∂u

∂ν = 0 on B(x0, 8r)∩∂Ω, by Lemma 6.1 and a real-variable perturbation
argument, then for any 2 < p <∞, there exist a function θ(r) such that limr→0 θ(r) = 0 and a
function v ∈W 1,p(B(x0, r) ∩ Ω) satisfying

{

−
∫

B(x0,r)∩Ω

|∇v|pdx
} 1

p

≤ C

{

−
∫

B(x0,8r)∩Ω

|∇u|2dx
} 1

2

, (6.9)

{

−
∫

B(x0,r)∩Ω

|∇u−∇v|2dx
} 1

2

≤ θ(r)
{

−
∫

B(x0,8r)∩Ω

|∇u|2dx
} 1

2

. (6.10)

This, combining with Lemma 2.1 and duality argument, leads to the desired estimates. �

Theorem 6.4 Let Ω, A and L be the same as in Theorem 6.3. Assume 2 < p <∞. Let u be
a weak solution of Lu = 0 in Z(2r) and ∂u

∂ν = 0 on S(2r). Then for any x, y ∈ Z(r),

|u(x) − u(y)| ≤ C

( |x− y|
r

)η(

−
∫

Z(r)

|u|2
)1/2

, (6.11)

where the constant C depends only on μ, λ, τ, η and Ω.

Proof The proof directly follows from Theorem 6.3 by Sobolev embedding. �
Armed with Remark 6.2 and Theorem 6.4, we are ready to investigate the uniform bound-

ary Cη estimate in convex domains by using the compensated compactness argument, which
originated by Avellaneda and Lin in [2] and further developed by Kenig et al. in [21].

Theorem 6.5 Let 0 < η < 1 and Z(r) and S(r) defined by (1.18) and (1.19) be convex.
Suppose that Lε be defined as in (1.2) with A satisfying (1.3), (1.4), (1.5) and (1.6). Suppose
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that ⎧
⎨

⎩

Lε(uε) = 0 in Z(2r),
∂uε

∂νε
= 0 on S(2r)

Then for any x, y ∈ Z(r),

|uε(x) − uε(y)| ≤ C

( |x− y|
r

)η(

−
∫

Z(r)

|uε|2
)1/2

, (6.12)

where the constant C depends only on μ, λ, τ, η and Ω.

Proof It was essentially proved in [21], we only point out the necessary modification here for
the convenience. To show (6.12), in view of the Campanoto’s characterization of Hölder spaces,
it suffices for us to show that

−
∫

Z(r)

|uε −−
∫

Z(r)

uε|2 ≤ Cr2η−
∫

Z(1)

|uε|2 for 0 < r <
1
4
. (6.13)

The proof (6.13) will follows from the elegant three step compactness method. The first
step is the improvement. To proceed our proof, let {ψk} be a sequence of convex domain and
one may notice that ψk → ψ0 in |x′| < 1 where ψ0 is a convex domain. Assume that there
exists sequences {εk}, {Ak}, {uεk

} such that uεk
satisfies

⎧
⎪⎨

⎪⎩

Lk
εk

(uεk
) = 0 in Zk(1),

∂uεk

∂νεk

= g on Sk(1),
(6.14)

where Lk
εk

= −div(Ak(x/εk)∇), Zk(r) = Z(r, ψk) and Sk(r) = S(r, ψk). It is known that, as
εk → 0, the equations (6.14) uniformly converge to

⎧
⎨

⎩

L0(u0) = 0 in Z(1/2, ψ0),
∂u0

∂ν0
= g on S(1/2, ψ0),

where ψ0 is convex and L0 is a second order elliptic operator with constant coefficient. Thus, it
follows from Remark 6.2 that u0 satisfies boundary Hölder estimates (6.7). This, by passing to
a subsequence, combining with a limit argument will give the improvement step, we refer the
reader to [21] for more details. The iteration step is exactly the same as in [21].

To this end, to utilize the blow up argument, the key step is to show the boundary Hölder
estimate for second order elliptic equations with VMO coefficients in convex domains, and this
was given in Theorem 6.4. Thus we complete the proof. �

Now, we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3 The proof follows the same line as the proof of Theorem 1.2. We first
assume that g = 0 and p > 2. Letting δ(x) = dist(x, ∂Ω), by the interior estimate (1.15) and
Theorem 6.5, for any η ∈ (0, 1), we obtain that

|∇uε(x)| ≤ C
1

δ(x)

(

−
∫

B(x,cδ(x))

|uε(y) − uε(x)|2dy
)1/2

≤ C

(
r

δ(x)

)1−η(

−
∫

Z(2r)

|∇uε|2dy
)1/2

. (6.15)
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By choosing suitable η such that 1 − 1
p < η < 1, and integrating both sides on Z(r), we have

−
∫

Z(r)

(

−
∫

B(x,cδ(x))

|∇uε|pdy
)

dy ≤ C‖∇uε‖p
L2(Z(2r)). (6.16)
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