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Abstract In this paper, we study solution structures of the following generalized Lennard-Jones

system in R
n,

ẍ =

(
− α

|x|α+2
+

β

|x|β+2

)
x,

with 0 < α < β. Considering periodic solutions with zero angular momentum, we prove that the corre-

sponding problem degenerates to 1-dimensional and possesses infinitely many periodic solutions which

must be oscillating line solutions or constant solutions. Considering solutions with non-zero angular

momentum, we compute Morse indices of the circular solutions first, and then apply the mountain pass

theorem to show the existence of non-circular solutions with non-zero topological degrees. We further

prove that besides circular solutions the system possesses in fact countably many periodic solutions

with arbitrarily large topological degree, infinitely many quasi-periodic solutions, and infinitely many

asymptotic solutions.

Keywords Generalized Lennard-Jones system, mountain pass solutions, periodic solutions, quasi-

periodic solutions, asymptotic solutions

MR(2010) Subject Classification 34C25, 58E05, 70H12, 92E20

1 Introduction

Periodic solutions of the generalized Lennard-Jones Hamiltonian system (1.2) have been ex-
tensively studied using variational methods since 1980s (see [1, 4, 5, 7–9, 16, 18, 21], and the
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references therein). Found by Lennard-Jones [13] in 1924, the Lennard-Jones potential is one
of the commonly used potentials in the molecular dynamics. For the N -body case with N ≥ 3,
we refer to interesting works of [5, 7, 8], and [21].

In the 2-body case, Lennard-Jones potential describes the interaction between two atoms
or molecules. The interaction consists with two parts, repulsion and attraction. It is defined by

VLJ = d

[(
σ

|y1 − y2|
)12

−
(

σ

|y1 − y2|
)6]

,

where d/4 is the depth of the potential well, σ is the finite distance at which the inter-particle
potential disappears, and |y1 − y2| is the distance between the two particles. The first term
( σ
|y1−y2| )

12 is the repulsive term describing Pauli repulsion; and the second term −( σ
|y1−y2| )

6 is
the attraction in the long range describing the van der Waals force ([18] for accurate quantum
chemistry computations).

We re-scale VLJ by the unit mass, unit length and fix one particle at the origin of R
n with

n ≥ 2, and consider the following generalized Lennard-Jones potential as in [4, 16] and [18],

ULJ(y) =
b

|y|β − a

|y|α , (1.1)

where 0 < α < β, a and b > 0 are fixed constants, |y| denotes the norm of y ∈ R
n. The

corresponding equation system of the motion is given by

yss = −∇ULJ(y) =
(
− aα

|y|α+2
+

bβ

|y|β+2

)
y, (1.2)

where yss is the second order derivative of y = y(s) with respect to s. We introduce λ = ( b
a )

1
β−α

and μ =
√
λ2+β/b and let y = λx, s = μt. Then (1.2) is reduced to

ẍ = −∇U(x) =
(
− α

|x|α+2
+

β

|x|β+2

)
x, (1.3)

where ẍ is the second order derivative of x = x(t) with respect to t and U(x) = 1
|x|β − 1

|x|α .
After the pioneer work [19] of Rabinowitz in 1978, many contributions have been devoted

to the singular Hamiltonian and Lagrangian systems via the variational method. To set up
the variational structure, in this paper, for τ > 0, let Xτ = W 1,2(Sτ ,R

n) with Sτ = R/(τZ),
equipped with the usual W 1,2-norm ‖ · ‖1 given by

‖x‖1 =
( ∫ τ

0

(|ẋ|2 + |x|2)dt
) 1

2

,

for x ∈ Xτ . We denote the usual L2-norm by ‖x‖L2 = (
∫ τ

0
|x|2dt) 1

2 . The action functional on
Xτ corresponding to the system (1.3) is defined by

fτ (x) =
∫ τ

0

(
1
2
|ẋ|2 − U(x)

)
dt, ∀x ∈ Xτ . (1.4)

Then it is well known that critical points of fτ on Xτ correspond to τ -periodic solutions of (1.3).
The Sτ -action on every x ∈ Xτ is defined by θ · x(t) = x(θ + t) as usual for θ ∈ Sτ . The

Z2-action on every x ∈ Xτ is defined by 0∗x(t) = x(t) and 1∗x(t) = x(τ − t) as usual for 0 and
1 ∈ Z2. The O(n)-action on every x ∈ Xτ is defined by (Mx)(t) = Mx(t) for M ∈ O(n). Note
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that fτ (x) is invariant under these group actions, i.e., fτ (θ · x) = fτ (1 ∗ x) = fτ (Mx) = fτ (x)
holds for any θ ∈ Sτ , M ∈ O(n) and x ∈ Xτ .

In [9] of 1988, Coti Zelati used Morse index theory to study a family of Lagrangian systems
with effective-like potential V satisfying Gordon’s strong force condition ([10]) and that the set
Zv ≡ {x ∈ R

n | ∇V (x) = 0} is finite and consists of only non-degenerate critical points. In [9]
he proved that there exists a constant τ0 > 0 such that the system possesses a non-constant τ -
periodic solution for every τ ≥ τ0. Note that the system (1.3) satisfies his conditions except that
on Zv. In [22] of 1990, Solimini studied periodic solutions of the forced singular systems, where
Theorem 3 in [22] with h = 0 includes (1.3) and proved the existence of τ -periodic solutions
for every τ > 0. In [23] of 1993, Terracini proved the existence and multiplicity of the periodic
solutions of repulsive systems in R

n with the singular set Kc containing at least two points.
In Ambrosetti and Coti Zelati [1, Chapter 9] a family of Lagrangian systems which is more
general than (1.2) with the strong force condition, i.e., β ≥ 2 there, was studied by mountain
pass theorem and the existence of at least one τ -periodic solution of (1.2) was proved for every
τ > 0. In [7, 8] of 2004, Corbera et al. studied the 2 and 3-body problems of the Lennard-
Jones system with α = 6, β = 12, a = 2, and b = 1, and specially its constant and circular
solutions and central configurations. In [4] of 2011, Bǎrbosu et al. studied the system (1.2)
in R

2 with 2 < α < β on the intersections of the level surfaces of the conserved Hamiltonian
energy and angular momentum. They described the behavior of constant solutions, circular
solutions, line periodic solutions and other non-periodic solutions by analyzing the flow defined
by the system (1.2). In [21] of 2014, Sbano and Southall proved the existence of τ -periodic
solutions of the N -body problems of the Lennard-Jones system for sufficiently large τ > 0 when
the potential satisfies the strong force condition 2 < α < β. In the strong force case, they also
proved that no τ -periodic solution exists when the period τ is too small. In [16] of 2015, Llibre
and Long studied the system (1.2) in R

n. Besides the constant solutions they characterized the
circular solutions for 0 < α < β, a > 0, and b ∈ R, and proved that τ/2-antiperiodic solutions
of (1.2) in R

n do not exist when τ > 0 is too small for 2 < α < β and a, b > 0.

This paper is devoted to the understanding of the solution structure of the system (1.3) in
R

n for all 0 < α < β, including specially the case of weak forces in the sense of Gordon [10].

In Section 2, we notice that if x(t) is a classical solution of (1.3) on the open interval
(t1, t2), x(t) must be a classical solution on the closed interval [t1, t2] and each solution of the
system (1.3) must be contained in a 2-dimensional sub-plane P (x) of R

n passing through the
origin such that x ∈ P (x) holds always. Therefore, we restrict our study from R

n to R
2 in

Sections 3 to 5. We can also obtain τ0 > 0 such that no periodic solutions exist when τ < τ0.

In Section 3, by computing the Morse indices and nullities of circular solutions of (1.3)
mentioned in [16], when 1 < α < β we obtain an explicit constant τ#

1 > 0 such that when
τ > τ#

1 the action functional fτ at one of the circular solutions which we denote by x2 possesses
Morse index i(x2) = 0 and nullity ν(x2) = 1, which is produced by the S1-invariance of fτ . All
the other circular solutions of (1.3) possess Morse indices at least 5 when τ ≥ τ#

1 . Therefore the
S1-orbit Sτ ·x2 of x2 forms a strictly local minimal non-degenerate critical manifold of fτ in Λ∗.
Here, Λ∗ consists of all τ -periodic curves x in W 1,2 satisfying deg(x, 0) 	= 0 and x(t) 	= 0 for all
t ∈ Sτ . Therefore in Theorem 3.8 below, for τ > τ#

1 we can apply the mountain pass theorem
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at Sτ · x2 and obtain a τ -periodic solution x = x(t) of (1.3), which satisfies fτ (x) > fτ (x2) and
possesses Morse index i(x) ≤ 1. Consequently x is not a circular solution of (1.3).

When the angular momentum c = 0, the system (1.3) degenerates to a 1-dimensional
problem. In Theorem 4.1 below we study the family of 1-dimensional solutions of (1.3) which
we call oscillating line solutions. Such a periodic solution always oscillates periodically on a ray
emanating from the origin 0 ∈ R

2 but never touches the origin 0. Specially we prove that there
exists a constant τos > 0 such that the period τ of any oscillating line solution must satisfy
τ ≥ τos. Since many classical books such as [2] and [15] have already provided the framework
for central force potential, we only list related results in Section 4.

Note that our above results already show that when τ > 0 is small enough, the τ -periodic
solution of the system (1.3) found by Ambrosetti and Coti Zelati in Theorem 9.1 of [1] must
be constant solutions (also Remark 9.5 of [1]). Note that the system (1.3) with the potential
function U(x) satisfies the conditions of Theorem 3 of [22] of Solimini in 1990 with h ≡ 0. Thus
for the period τ > 0 small enough, Theorem 3 with h = 0 in [22] yields also only constant
solutions of the system (1.3).

In Section 5, we study the solution structure of the system (1.3) when the angular momen-
tum c 	= 0. By fixing the angular momentum, we obtain that under certain conditions the
system possesses at least countably many periodic solutions with arbitrarily large topological
degree and infinitely many quasi-periodic solutions.

Furthermore, we also prove the existence of the so called asymptotic solution x = x(t)
of (1.3), which is asymptotic to two rays L±(x) starting from the origin in the plane P (x) as
t → ±∞ respectively. The minimal angle covered by x(t) between L+(x) and L−(x) is called
the asymptotic angle of the solution x. Because the system (1.3) is rotational invariant in the
plane P (x), the asymptotic property of x is determined by its asymptotic angle and its minimal
distance from the origin mint∈R |x(t)|.

In this paper, we use N, Z, R, R
+ and C to denote the sets of the positive integers, integers,

real numbers, positive real numbers and complex numbers respectively.

2 Non-collisions and Planar Motions

Let x = x(t) be a classical solution of the system (1.3). For all t in the domain of x, the
Hamiltonian energy H(x, ẋ) is defined by

H(x, ẋ) =
1
2
|ẋ(t)|2 +

1
|x(t)|β − 1

|x(t)|α . (2.1)

It is well known that the Hamiltonian energy H(x, ẋ) is conserved if x = x(t) is a solution
of (1.3). By this property, we have the following proposition.

Proposition 2.1 (i) Suppose x ∈ C2((t1, t2),Rn), x(t) 	= 0 for all t ∈ (t1, t2) and satis-
fies (1.3) on (t1, t2). Then x(t) can be extended to a function in C2([t1, t2],Rn) such that
x(t) 	= 0 for all t ∈ [t1, t2] and satisfies (1.3) on [t1, t2]. Consequently, any solution x(t) satis-
fying (1.3) on an open interval can be extended to all t ∈ R.

(ii) There exists a 2-dimensional sub-plane P (x) ⊂ R
n passing through the origin 0 such

that x(t) ∈ P (x) holds for all t ∈ R.

Proof (i) Since x(t) is a classical solution of (1.3) on (t1, t2), Hamiltonian energy H(x(t), ẋ(t))
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is a constant on (t1, t2), i.e., for t ∈ (t1, t2),

const. ≡ H(x(t), ẋ(t)) =
1
2
|ẋ(t)|2 +

1
|x(t)|β − 1

|x(t)|α

≥ 1
|x(t)|β − 1

|x(t)|α . (2.2)

If lim inft→t1+ |x(t)| = 0, the right side of (2.2) approaches +∞ along a subsequence. It
contradicts the conservation of Hamiltonian and thus there exists δ > 0 such that |x(t)| > δ for
all t ∈ (t1, 1

2 (t1 + t2)]. Since the right side of (1.3) is bounded on {x ∈ R
n : |x| ≥ δ}, we obtain

that x(t) is Cauchy as t → t1+ and thus limt→t1+ x(t) 	= 0 exists. Similarly, limt→t2− x(t) 	= 0
also exists. A standard continuation argument allows x(t) to be extended to a solution x(t) for
all t ∈ R.

(ii) The motion is contained in the plane P (x) which is spanned by initial conditions x(0)
and ẋ(0) in central force field. �

By Proposition 2.1, we restrict our attention to x ∈ C2(R,R2) in the rest of this paper.
Define the angular momentum of the system (1.3) as

c(x) = x(t) ∧ ẋ(t). (2.3)

When 2 < α < β, Sbano and Southall proved in [21, Propositions 3.4 and 5.13] that for the
tied homotopy class (Definition 5.6 of [21]) there exists a small τ0 > 0 such that the Lennard-
Jones system of N -bodies possesses no τ -periodic solution for τ ∈ (0, τ0). Their method of [21]
also works when 0 < α < β. By estimating the minimal period of periodic solutions of (1.3)
directly, we also obtain a similar result which is stated in Proposition 2.2. We omit the proof
here and refer readers to [14] for details.

Proposition 2.2 There exists a τ0 > 0 such that the system (1.3) possesses no τ -periodic
solutions with non-zero topological degree when 0 < τ < τ0.

3 Variational Properties of Circular Solutions and the Mountain Pass Solutions

3.1 Existence of the Circular Solution

In [16, Proposition 5], Llibre and Long gave a characterization of τ/2-antiperiodic circular
solutions of the system (1.3). In order to simplify the computations of the Morse indices of the
action functional at these circular solutions, we give an equivalent and slightly modified way to
characterize them by introducing a function p(r) for r > 0 instead of using the function ϕτ (r)
in [16]. This method gives more explicit representations for ri(τ ) with i = 0, 1, 2 than [16] and
simplifies the Morse index computation.

For τ > 0, r > 0 and t̂ ∈ [0, τ ], we write a circular motion as

x = x±,r,t̂(t) =
(
r cos

2π(t− t̂)
τ

,±r sin
2π(t− t̂)

τ

)
.

By direct computation, we have

ẍ(t) = −4π2

τ2
x(t). (3.1)
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Comparing (3.1) with (1.3) yields that x = x±,r,t̂(t) is a τ -periodic solution of (1.3) if and only
if r > 0 is a solution of the equation p(r) = 4π2

τ2 , where we define

p(r) =
α

rα+2
− β

rβ+2
, ∀ r > 0. (3.2)

p(r) possesses a unique maximal point at

r̂ =
(
β(β + 2)
α(α+ 2)

) 1
β−α

(3.3)

satisfying p′(r̂) = 0. Thus p′(r) > 0 for 0 < r < r̂ and p′(r) < 0 for r̂ < r < +∞.
As a remark, note that for the function ϕτ (r) = − 4π2

τ2 r
β+2 + αrβ−α − β with τ > 0 and

r > 0 defined in [16, Proposition 5], we have p(r) = ϕτ (r)r−β−2 + 4π2

τ2 . Thus r > 0 is a solution
of the equation

p(r) =
α

rα+2
− β

rβ+2
=

4π2

τ2
, (3.4)

if and only if r is a root of ϕτ (r) = 0, which is used in [16].
Let τ = τ̂ be the unique positive solution of the equation p(r̂) = 4π2

τ2 . We obtain

τ̂ = 2π

√
β + 2

α(β − α)
r̂(α+2)/2 = 2π

√
β + 2

α(β − α)

(
β(β + 2)
α(α+ 2)

) α+2
2(β−α)

. (3.5)

With these preparations, we can give the following equivalent version of [16, Proposition 5].

Proposition 3.1 ([16, Proposition 5]) If 0 < α < β, then the following results hold.
(i) When τ > τ̂ , the equation (3.4) possesses two solutions r = ri(τ ) with i = 1, 2 satisfying

0 < r1(τ ) < r̂ < r2(τ ) such that the system (1.3) possesses following τ/2-antiperiodic circular
solutions centered at the origin given by

x±,ri(τ),ti
(t) =

(
ri(τ ) cos

2π(t− ti)
τ

,±ri(τ ) sin
2π(t− ti)

τ

)
,

for ti ∈ [0, τ ] with i = 1 and 2.
(ii) For τ = τ̂ , the equation (3.4) possesses precisely one solution r = r̂ such that the

system (1.3) possesses following τ/2-antiperiodic circular solution centered at the origin given
by

x±,r̂,t0(t) =
(
r̂ cos

2π(t− t0)
τ

,±r̂ sin
2π(t− t0)

τ

)

with t0 ∈ [0, τ ].
(iii) For 0 < τ < τ̂ , the equation (3.4) possesses no positive solution and the system (1.3)

possesses no periodic circular solution centered at the origin.

Remark 3.2 For τ ≥ τ̂ , comparing the constants r1(τ ) and r2(τ ) defined in Proposition 3.1
with the constant

r0(τ ) =
(
τα(β − α)
4π2(β + 2)

) 1
α+2

defined by (9) in [16], we have

0 <
(
β

α

) 1
β−α

< r1(τ ) ≤ r̂ ≤ r0(τ ) ≤ r2(τ ) <∞. (3.6)

Note that the above third to the fifth inequalities become equalities simultaneously when τ = τ̂ .
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Note also that in the rest of this section, we always assume τ ≥ τ̂ as in Proposition 3.1.

3.2 Morse Indices of Circular Solutions

For (ρ, σ) ∈W 1,2(Sτ ,R
2), we write the Fourier expansions of ρ and σ as ρ =

∑
k≥0(ρkei 2kπt

τ +
ρ̄ke−i 2kπt

τ ) and σ =
∑

k≥0(σkei 2kπt
τ + σ̄ke−i 2kπt

τ ) with ρk and σk ∈ C and k ≥ 0. Then we have

W 1,2(Sτ ,R
2) =

{
(ρ, σ)

∣∣∣∣
∑
k≥0

(1 + k2)(|ρk|2 + |σk|2) <∞
}
.

Next we calculate the Morse indices of the functional fτ at the circular solutions using the
polar coordinates. By x = reiθ and ẋ = (ṙ + irθ̇)eiθ, the action functional (1.4) can be written
as

fτ (r, θ) =
∫ τ

0

(
1
2
(|ṙ|2 + r2θ̇2) − r−β + r−α

)
dt. (3.7)

Then the first variation of fτ (r, θ) at (r, θ) with respect to (ρ, σ) is given by

〈f ′τ (r, θ), (ρ, σ)〉 =
∫ τ

0

(ṙρ̇+ r2θ̇σ̇ + (rθ̇2 + βr−β−1 − αr−α−1)ρ)dt. (3.8)

The second variation of fτ at (r, θ) with respect to (ρ, σ) and (ξ, ς) is given by

〈f ′′τ (r, θ)(ξ, ς), (ρ, σ)〉 =
∫ τ

0

(ξ̇ρ̇+ 2rθ̇(ξσ̇ + ρς̇) + r2σ̇ς̇

+ (θ̇2 − β(β + 1)r−β−2 + α(α+ 1)r−α−2)ρξ)dt. (3.9)

We let μ = 2π
τ = θ̇ and simplify 〈f ′′τ (r, θ)(ρ, σ), (ρ, σ)〉 to

〈f ′′τ (r, θ)(ρ, σ), (ρ, σ)〉

=
∫ τ

0

(ρ̇2 + r2σ̇2 + 4rθ̇ρσ̇ + (θ̇2 − β(β + 1)r−β−2 + α(α+ 1)r−α−2)ρ2)dt

= τ (μ2 − β(β + 1)r−β−2 + α(α+ 1)r−α−2)ρ2
0 + 2τ

+∞∑
k=1

{r2μ2k2|σk|2

+ 4rμ2kIm(ρkσ̄k) + (μ2(k2 + 1) − β(β + 1)r−β−2 + α(α+ 1)r−α−2)|ρk|2}

= τμ2A0(r)ρ2
0 + 2τμ2

+∞∑
k=1

{|krσk − 2iρk|2 +Ak(r)|ρk|2}, (3.10)

where Ak(r) = k2 − 4+A0(r) and A0(r) = 1−μ−2(β(β+1)r−β−2 −α(α+1)r−α−2). By (3.4),
A0(r) can be rewritten as

A0(r) = β + 2 +
α(β − α)
βrα−β − α

, (3.11)

and for k ≥ 1, Ak(r) can be rewritten as

Ak(r) = k2 − 2 + β +
α(β − α)
βrα−β − α

. (3.12)

Lemma 3.3 (i) A0(r) > 0 if and only if

r > r̂2 =
(
β(β + 2)
α(α+ 2)

) 1
β−α

. (3.13)
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(ii) When 1 < α < β and k ≥ 1, Ak(r) > 0 if and only if

r > r̂k ≡
(
β(β + k2 − 2)
α(α+ k2 − 2)

) 1
β−α

, (3.14)

where r̂k decreases when k increases and limk→∞ r̂k = (β
α )

1
β−α .

This lemma can be obtained by direct computation. We omit it here.
Let Ek = {(ξei 2kπt

τ + ξ̄e−i 2kπt
τ , ςei 2kπt

τ + ς̄e−i 2kπt
τ ) | ξ, ς ∈ C} for all integer k ≥ 0. Then these

Eks are mutually W 1,2-orthogonal to each other, span W 1,2(Sτ ,R
2), and satisfy dimRE0 = 2

and dimREk = 4 for k ≥ 1.
We decompose E0 as E0 = E1

0 ⊕ E2
0 where E1

0 = span{(1, 0)} and E2
0 = span{(0, 1)}. For

k ≥ 1 and r > 0, we decompose each subspace Ek as Ek = E1
k(r) ⊕ E2

k(r) where

E1
k(r) = {(0, ςei 2kπt

τ + ς̄e−i 2kπt
τ ) ∈ Ek},

E2
k(r) =

{
(ξei 2kπt

τ + ξ̄e−i 2kπt
τ , ςei 2kπt

τ + ς̄e−i 2kπt
τ ) ∈ Ek

∣∣∣∣ ς =
2i
kr
ξ ∈ C

}
,

and then dimR E
1
k(r) = dimR E

2
k(r) = 2.

Lemma 3.4 (i) For k 	= j, Ek and Ej are f ′′τ (r, θ)-orthogonal. For given k ≥ 0 and r > 0,
E1

k(r) and E2
k(r) are f ′′τ (r, θ)-orthogonal.

(ii) E2
0 ⊂ ker f ′′τ (r, θ) holds.

(iii) If the radius of the circular solution r satisfies r > r̂2, f ′′τ (r, θ) is positive definite on
E1

0 ; if r < r̂2, f ′′τ (r, θ) is negative definite on E1
0 ; if r = r̂2, E0 ⊂ ker f ′′τ (r, θ).

(iv) When 1 < α < β and k ≥ 1, if r > r̂k, f ′′τ (r, θ) is positive definite on Ek; if r < r̂k,
f ′′τ (r, θ) is positive definite on E1

k(r) and is negative definite on E2
k(r); if r = r̂k, f ′′τ (r, θ) is

positive definite on E1
k(r) and E2

k(r) ⊂ ker f ′′τ (r, θ).

Proof By (3.9), one can directly verify that 〈f ′′τ (r, θ)(ξk, ςk), (ξj , ςj)〉 = 0 where (ξk, ςk) ∈ Ek,
(ξj , ςj) ∈ Ej with k 	= j. Similarly, E1

k(r) and E2
k(r) are f ′′τ (r, θ)-orthogonal by (3.9). This

yields (i) of this lemma.
Since E0 is f ′′τ (r, θ)-orthogonal to Ek for k > 0, we have 〈f ′′τ (r, θ)(0, 1), (ξk, ςk)〉 = 0. Ad-

ditionally, 〈f ′′τ (r, θ)(0, 1), (1, 0)〉 = 0 and 〈f ′′τ (r, θ)(0, 1), (0, 1)〉 = 0. Then we obtain (ii) of this
lemma. Note that E2

0 ⊂ ker f ′′τ (r, θ) corresponds to the degeneracy caused by the Sτ -symmetry
of fτ (x).

Suppose (ρ, σ) = (ρ0, σ0) ∈ E0 where ρ0, σ0 ∈ R. (3.10) can be simplified to

〈f ′′τ (r, θ)(ρ0, σ0), (ρ0, σ0)〉 = τμ2A0(r)ρ2
0. (3.15)

If A0(r) > 0, fτ (r, θ) is positive definite on E1
0 ⊂ E0; if A0(r) < 0, fτ (r, θ) is negative definite

on E1
0 ⊂ E0; if A0(r) = 0, E0 ⊂ ker f ′′τ (r, θ). Applying (i) of Lemma 3.3, we obtain (iii) of this

lemma.
Suppose (ρ, σ) = (ρkei 2πkt

τ + ρ̄ke−i 2πkt
τ , σkei 2πkt

τ + σ̄ke−i 2πkt
τ ) ∈ Ek where ρk, σk ∈ C. (3.10)

can be simplified to

〈f ′′τ (r, θ)(ρ, σ), (ρ, σ)〉 = 2τμ2{|krσk − 2iρk|2 +Ak(r)|ρk|2}. (3.16)

If Ak(r) > 0 for k > 0, f ′′τ (r, θ) is positive definite on the whole subspace Ek. If Ak(r) < 0,
f ′′τ (r, θ) is positive definite on E1

k(r) and negative definite on E2
k(r). If Ak(r) = 0, f ′′τ (r, θ) is
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positive definite on the subspace E1
k(r) and E2

k(r) ⊂ ker f ′′τ (r, θ). Applying (ii) of Lemma 3.3,
we obtain (iv) of this lemma. �

Because the functional fτ is O(2)-invariant, the Morse indices at the circular solutions in the
same O(2)-orbit are the same. Thus it suffices to compute the Morse indices for the following
circular solutions of (1.3) in Proposition 3.1,

xi(t) =
(
ri(τ ) cos

2πt
τ
, ri(τ ) sin

2πt
τ

)
,

for i = 0, 1 and 2 with r0(τ ) = r̂ in (ii), and r1(τ ) and r2(τ ) being given in (i) of Proposition 3.1.
Denote the Morse index and nullity of fτ at xi by i(xi) and ν(xi) for i = 1, 2 respectively.

For k ≥ 1 and 1 < α < β, we define τ#
k by

τ#
k =

2π√
β − α

(
βα+2(β + k2 − 2)β+2

αβ+2(α+ k2 − 2)α+2

) 1
2(β−α)

. (3.17)

One can directly verify that τ#
1 > τ#

2 = τ̂ and τ#
j > τ#

k if j > k ≥ 2.

Proposition 3.5 When τ > τ̂ and β > α > 1, the following conclusions on the Morse index
i(x2) and nullity ν(x2) of fτ at x2 hold.

(i) When τ > τ#
1 , the Morse index i(x2) and nullity ν(x2) satisfy

i(x2) = 0 and ν(x2) = 1. (3.18)

(ii) When τ = τ#
1 , the Morse index i(x2) and nullity ν(x2) satisfy

i(x2) = 0 and ν(x2) = 3. (3.19)

(iii) When τ̂ < τ < τ#
1 , the Morse index i(x2) and nullity ν(x2) satisfy

i(x2) = 2 and ν(x2) = 1. (3.20)

Proof By (3.6) and (3.14), we have r2 > r̂ = r̂2 > r̂k for all k > 2. Then by Lemma 3.4,
f ′′τ (r2, θ) is positive definite on E1

0 ⊕ (
⊕

k≥2Ek) and E2
0 ⊂ ker f ′′τ (r2, θ).

By p(r) = αr−α−2 − βr−β−2, we know that r2 > r̂1 if and only if

p(r̂1) = αr̂−α−2
1 − βr̂−β−2

1 > p(r2) =
4π2

τ2
. (3.21)

By solving the inequality (3.21), we obtain that r2 > r̂1 is equivalent to

τ > τ#
1 ≡ 2π√

β − α

(
βα+2(β − 1)β+2

αβ+2(α− 1)α+2

) 1
2(β−α)

, (3.22)

when β > α > 1.
By Lemma 3.4, if τ > τ#

1 , f ′′τ (r2, θ) is positive definite on E1
0⊕(

⊕
k≥1Ek) and ker f ′′τ (r2, θ) =

E2
0 . Thus, the Morse index and the nullity of fτ (x2) satisfy i(x2) = 0 and ν(x2) = 1. These

yield (i) of this proposition.
By Lemma 3.4, if τ = τ#

1 , A1(r2) = 0. This yields f ′′τ (r2, θ) is positive definite on E1
0 ⊕

E1
1(r2)⊕ (

⊕
k≥2Ek) and ker f ′′τ (r2, θ) = E2

0 ⊕E2
1(r2). Thus, the Morse index and the nullity of

fτ (x2) satisfy i(x2) = 0 and ν(x2) = 3. These yield (ii) of this proposition.
By Lemma 3.4, if τ̂ < τ < τ#

1 , f ′′τ (r2, θ) is still positive definite on E1
0⊕E1

1(r2)⊕(
⊕

k≥2Ek),
is negative definite on E2

1(r2) and ker f ′′τ (r2, θ) = E2
0 . Thus, the Morse index and the nullity of

fτ (x2) satisfy i(x2) = 2 and ν(x2) = 1. These yield (iii) of this proposition. �
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Proposition 3.6 When τ > τ̂ and β > α > 1, then the following two conclusions on the
Morse index i(x1) and nullity ν(x1) of fτ at x1 hold.

(i) When τ ∈ (τ#
j , τ

#
j+1) for some j ≥ 2, the Morse index i(x1) and nullity ν(x1) satisfy

i(x1) = 2j + 1 ≥ 5 and ν(x1) = 1. (3.23)

(ii) When τ = τ#
j for some j > 2, the Morse index i(x1) and nullity ν(x1) satisfy

i(x1) = 2j − 1 ≥ 5 and ν(x1) = 3. (3.24)

Proof By (3.6) and (3.14), we have r1 < r̂ = r̂2 < r̂1 when β > α > 1. By Lemma 3.4, f ′′τ (x1)
is negative definite on E1

0 ⊕ E2
1(r1) ⊕ E2

2(r1).
When j ≥ 2, Ak(r1) < 0 for all k ≤ j and Ak(r1) > 0 for all k ≥ j + 1 is equivalent to

r̂j+1 < r1 < r̂j . This is equivalent to p(r̂j+1) < 4π2

τ2 = p(r1) < p(r̂j). By direct computation,
we obtain r̂j+1 < r1 < r̂j if and only if

τ#
j < τ < τ#

j+1, (3.25)

where τ#
j is defined in (3.17).

By Lemma 3.4, if τ#
j < τ < τ#

j+1 for j ≥ 2, f ′′τ (r1, θ) is negative definite on E1
0 ⊕

(
⊕j

k=1E
2
k(r1)), is positive definite on (

⊕j
k=1E

1
k(r1)) ⊕ (

⊕
k≥j+1Ej) and ker f ′′τ (r1, θ) = E2

0 .
Therefore, we obtain Morse index and the nullity of fτ (x1) satisfy i(x1) = 2j+1 and ν(x1) = 1.
Then we obtain (i) of this lemma.

By Lemma 3.4, if τ = τ#
j for some j > 2, the kernel of f ′′τ (r1, θ) is E2

0⊕E2
j (r1). Furthermore,

f ′′τ (r1, θ) is negative definite E1
0 ⊕ (

⊕j−1
k=1E

2
k(r1)) and is positive definite on (

⊕j
k=1E

1
k(r1)) ⊕

(
⊕

k≥j+1Ej). These yield the Morse index and the nullity of fτ (x1) satisfy i(x1) = 2j − 1 and
ν(x1) = 3. Then we obtain (ii) of this lemma. �

Remark 3.7 For the case of j = 2 in (ii) of Proposition 3.6, i.e., when τ = τ̂ = τ#
2 , we

have x1 = x2 = x±,r̂,t0 where x±,r̂,t0 is defined in Proposition 3.1. We can proceed a similarly
calculation as in (ii) of Proposition 3.6 and obtain that the Morse index i(x±,r̂,t0) and nullity
ν(x±,r̂,t0) satisfy

i(x±,r̂,t0) = 3, and ν(x±,r̂,t0) = 3.

3.3 Application of the Mountain Pass Theorem

This subsection is devoted to the proof of the existence of a mountain pass solution of the
system (1.3). We define the subset Λ∗ of Xτ = W 1,2(Sτ ,R

2) by

Λ∗ = {x ∈ Xτ |x(t) 	∈ Kc, ∀ t ∈ [0, τ ] and deg(x, 0) 	= 0},
where Kc = {0} is the singular set of the system (1.3), and deg(x, 0) is the winding number of
x = x(t) with respect to the origin. We use the convention deg(x, 0) > 0 if x winds counter-
clockwise with respect to the origin, and deg(x, 0) < 0 if x winds clockwise with respect to the
origin.

Theorem 3.8 For every 1 < α < β and

τ > τ#
1 =

(
βα+2(β − 1)β+2

αβ+2(α− 1)α+2

) 1
2(β−α)

,
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which is defined in (3.17), there exists a smooth τ -periodic non-circular solution x = x(t) of the
system (1.3) with deg(x, 0) = 1.

Proof Fix a τ > τ#
1 . Let x2 = x+,r2(τ),0(t) be a circular solution with |x2(t)| = r2(τ ) given

by (i) of Proposition 3.1. We continue the proof in six steps.

Step 1 Properties of fτ near Sτ · x2.
By (i) of Proposition 3.5, Sτ ·x2 forms a strict local minimal non-degenerate critical manifold

of fτ in Xτ by the condition τ > τ#
1 . We let x−,2 = x−,r2(τ),0(t) defined in (i) of Proposition 3.1

Since x2 and x−,2 have different topological degrees 1 and −1 respectively, Sτ ·x2∩Sτ ·x−,2 = ∅
holds. Here we have

fτ (x2) =
∫ τ

0

(
1
2
|ẋ2(t)|2 +

1
|x2(t)|α − 1

|x2(t)|β
)
dt

>

∫ τ

0

(
1

|x2(t)|α − 1
|x2(t)|β

)
dt

=
τ

r2(τ )α

(
1 − 1

r2(τ )β−α

)
. (3.26)

By (i) of Proposition 3.1, (3.3) and (3.6), we obtain

r2(τ ) > r̂ =
(
β(β + 2)
α(α+ 2)

) 1
β−α

> 1.

Therefore the right hand side of (3.26) is positive and we obtain

fτ (x2) > 0. (3.27)

For any λ > 0, let Nλ(Sτ · x2) = {x ∈ Xτ | dist(x, Sτ · x2) < λ}, where we let dist(x,A) =
infy∈A ‖x− y‖1 for any subset A ⊂ Xτ .

For the given τ > τ#
1 , we have Ak(r2) > 0 for all k ≥ 0 because of Lemma 3.3. By (3.15)

and (3.16), there exists a constant C1 > 0 such that for any (ρ, σ) ∈ E1
0 ⊕ E1(r2) ⊕ E2(r2)

satisfying ‖(ρ, σ)‖1 = 1, 〈f ′′τ (x2)(ρ, σ), (ρ, σ)〉 ≥ C1 holds.
For k ≥ 3, suppose (ρ, σ) ∈ Ek(r2) with ρ = ξei 2kπt

τ + ξ̄e−i 2kπt
τ , σ = ςei 2kπt

τ + ς̄e−i 2kπt
τ and

‖(ρ, σ)‖1 = 1. Note that
1
2
k2r22|ς|2 + 8|ξ|2 − 4kr2Imξ̄ς ≥ 0.

By (3.16), the facts r2(τ ) > 1 and A1(r2) > 0 and direct computations, we have

〈f ′′τ (x2)(ρ, σ), (ρ, σ)〉 = 2τμ2{|kr2ς − 2iξ|2 +Ak(r)|ξ|2}

≥ 2τμ2

{
1
2
k2r22|ς|2 − 4|ξ|2 +A1(r2)|ξ|2 + (k2 − 1)|ξ|2

}

> τμ2{k2|ς|2 + (k2 − 5)|ξ|2}

>
τμ2(k2 − 5)
2(k2 + 1)

{2(k2 + 1)(|ξ|2 + |ς|2)}

≥ 2τμ2

10
.

Due to the f ′′τ (x2)-orthogonality among Ek(r2), there exists C2 > 0 such that

〈f ′′τ (x2)(ρ, σ), (ρ, σ)〉 ≥ C2‖(ρ, σ)‖2
1, ∀(ρ, σ) ∈ Y ≡ E1

0 ⊕
( ⊕

k≥1

Ek(r2)
)
.
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Due to the invariance of fτ under Sτ action, f ′τ (x2) = 0, and the above positivity of f ′′τ (x2) in
Y which is transversal to the orbit Sτ ·x2, we obtain some λ > 0 sufficiently small and an η > 0
such that

fτ (x) > fτ (x2), ∀x ∈ Nλ(Sτ · x2) \ Sτ · x2, (3.28)

fτ (x) ≥ fτ (x2) + η, ∀x ∈ ∂Nλ(Sτ · x2). (3.29)

Step 2 The mountain pass value of fτ .
For ε > 0 we define yε = εx2 ∈ Λ∗. Because

0 = 〈f ′τ (x2), x2〉 =
∫ τ

0

(
|ẋ2(t)|2 − α

|x2(t)|α +
β

|x2(t)|β
)
dt,

we obtain

fτ (yε) =
∫ τ

0

(
1
2
|ẏε(t)|2 +

1
|yε(t)|α − 1

|yε(t)|β
)
dt

=
∫ τ

0

(
ε2

2

(
α

|x2(t)|α − β

|x2(t)|β
)

+
1

εα|x2(t)|α − 1
εβ |x2(t)|β

)
dt

= τ

(
ε2

2

(
α

r2(τ )α
− β

r2(τ )β

)
+

1
εαr2(τ )α

− 1
εβr2(τ )β

)
.

Because 1 < α < β, we have

1
εαr2(τ )α

− 1
εβr2(τ )β

→ −∞, as ε→ 0.

Therefore we can fix an ε0 ∈ (0, r̄) sufficiently small such that

fτ (yε0) < 0. (3.30)

We define the path set Γ by

Γ = {γ ∈ C([0, 1],Λ∗) | γ(0) = x2, γ(1) = yε0}. (3.31)

Let γ(s) = (1 − s)x2 + syε0 = (1 − s+ sε0)x2 for every s ∈ [0, 1]. Then γ(s) ∈ Λ∗ for s ∈ [0, 1],
γ(0) = x2, and γ(1) = ε0x2 = yε0 . Thus γ ∈ Γ and Γ 	= ∅.

Now we define

κ = inf
γ∈Γ

max
s∈[0,1]

fτ (γ(s)). (3.32)

Here by (3.27) and (3.29), we have

κ ≥ fτ (x2) + η > fτ (x2) > 0. (3.33)

Step 3 fτ satisfies the (PS) condition on Λ∗ at every fτ -level κ 	= 0.
As usual, a sequence {x̂n}n≥1 ⊂ Λ∗ satisfying fτ (x̂n) → κ and ‖f ′τ (x̂n)‖1 → 0 as n→ +∞ is

called a Palais–Smale (PS) sequence in Λ∗. The functional fτ (x) is called to satisfy the Palais–
Smale condition (PS) in Λ∗, if every (PS) sequence {x̂n}n≥1 ⊂ Λ∗ possesses a convergent
subsequence in Λ∗.

Note first that because the L-J potential function U in (1.3) satisfies the conditions (V2)
and (V3) on p. 210 of [9], the first part of the proof of on [9, Lemma 3, pp. 211–212] can be
applied here for us to get that every (PS) sequence {x̂n}n≥1 ⊂ Λ∗ is bounded, and thus contains
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a subsequence, which is still denoted by {x̂n}n≥1 below, which converges to some x̂ weakly in
W 1,2(Sτ ,R

2) and strongly in C(Sτ ,R
2).

If x̂(t) = 0 for all t, then supt∈Sτ
|x̂n(t)| → 0 as n→ ∞ which contradicts the boundedness

of fτ (x̂n) and the boundedness ‖x̂n‖1. Therefore there exists a t0 ∈ Sτ such that x̂(t0) 	= 0.
Now we assume {t ∈ Sτ | x̂(t) = 0} 	= ∅. By the existence of the above t0 the set {t ∈

Sτ | x̂(t) 	= 0} is a non-empty open subset of Sτ . Consequently there exists a non-trivial open
interval (t1, t2) with t1 < t2 such that t0 ∈ (t1, t2), x̂(t) 	= 0 for all t ∈ (t1, t2), and x̂(t1) =
x̂(t2) = 0.

For any compact subinterval I ⊂ (t1, t2), let ψ ∈ W 1,2
0 (I,R2), and then ψ can be extended

trivially to a function in Xτ , i.e., set ψ(t) = 0 for all t ∈ Sτ \ I. Then because {x̂n} is a (PS)
sequence and converges to x̂ weakly in Xτ and strongly in C(Sτ ,R

2), we obtain∫
I

( ˙̂x · ψ̇ −∇U(x̂) · ψ)dt = 0.

Then x̂ is a classical solution of (1.3) on I by the theory of calculus of variations.
Consequently x̂ is a classical solution of (1.3) on the open interval (t1, t2). But then it

is a classical solution of (1.3) on [t1, t2] by Proposition 2.1. This contradicts the assumption
x̂(t1) = x̂(t2) = 0. Therefore the set {t ∈ Sτ | x̂(t) = 0} must be empty and x̂ is a classical
solution of (1.3) on Sτ .

Now by the part (ii) of the proof of Lemma 3 on [9, p. 213], {xn} converges to x̂ strongly in
Λ∗, i.e., the (PS) condition holds.

Step 4 The existence of mountain pass solution when β ≥ 2 and 1 < α < β.
When β ≥ 2 and 1 < α < β, the potential U(x) satisfies the strong force condition ([10, 21]).

If x satisfies fτ (x) = κ, we have that x ∈ Λ∗. Note that by the strong force condition,
the classical deformation flow ([6, 20]) pushes elements in Λ∗ into Λ∗ ([3, Proposition 1.17]).
Therefore κ is a critical value of fτ . Let x = x̂(t) be a critical point of fτ corresponding to κ,
which is a classical solution of (1.3) in Λ∗ by Step 3.

Step 5 The existence of mountain pass solution when 1 < α < β < 2.
When 1 < α < β < 2, the potential U(x) does not satisfy the strong force condition any

more. We further require ε0 < 1 given by (3.30). Inspired by [3], we define the perturbed
potential by

Uδ(x) = U(x) + g(|x|) δ

|x|4 =
1

|x|β − 1
|x|α + g(|x|) δ

|x|4 , (3.34)

where 0 < δ < 1 and g(r) ∈ C2([0,+∞),R) such that g(r) = 1 if r ≤ ε0
4 , g(r) = 0 if r ≥ ε0

2 and
g′(r) < 0 if r ∈ ( ε0

4 ,
ε0
2 ). Note that Uδ(x) ∈ C2(R2 \ {0},R) satisfies the strong force condition

for any 0 < δ < 1 and limδ→0 Uδ(x) = U(x) for x ∈ R
2 \ {0}.

For x satisfying 0 < |x| < ε0
2 , we have

0 < U(x ε0
2

) < U(x) < Uδ1(x) < Uδ2(x) < U1(x), (3.35)

where |x ε0
2
| = ε0

2 and 0 < δ1 < δ2 < 1. The first and the second inequalities of (3.35) hold
because U(x) is monotonically decreasing in |x| when 0 < |x| < ε0

2 < 1 and U(x) = 0 if |x| = 1.
The third to the fifth inequalities hold because of definition of Uδ(x).
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We calculate (∇Uδ(x), x) and obtain

(∇Uδ(x), x) = (∇U(x), x) + g′(|x|) δ

|x|3 − g(|x|) 4δ
|x|4 . (3.36)

For x satisfying 0 < |x| < ε0
2 , we have

(∇U1(x), x) < (∇Uδ2(x), x) < (∇Uδ1(x), x) < (∇U(x), x) < 0, (3.37)

where 0 < δ1 < δ2 < 1. The first to the third inequality of (3.37) hold because g′(r) < 0
when r ∈ ( ε0

4 ,
ε0
2 ) and g′(r) = 0, g(r) = 1 when r ∈ (0, ε0

4 ). The last inequality holds because
(∇U(x), x) = − β

|x|β + α
|x|α < 0 when |x| < ε0

2 .
When |x| ≥ ε0

2 , we have g(|x|) = 0, Uδ(x) = U(x) and (∇Uδ(x), x) = (∇U(x), x) for every
0 < δ < 1. By (∇U(x), x) → 0, U(x) → 0 as |x| → ∞, there exists an N0 sufficiently large such
that 0 < |(∇U(x), x)| < 1 and 0 < |U(x)| < 1 when |x| > N0. When ε0

2 ≤ |x| ≤ N0, both U(x)
and (∇U(x), x) are continuous. This yields that there exist ci, where i = 1, 2, 3, 4, such that
c1 ≤ U(x) ≤ c2 and c3 ≤ (∇U(x), x) ≤ c4. Then for every 0 < δ < 1, we have

min{c1,−1} ≤ Uδ(x) = U(x) ≤ max{c2, 1}, (3.38)

min{c3,−1} ≤ (∇Uδ(x), x) = (∇U(x), x) ≤ max{c4, 1}, (3.39)

when |x| ≥ ε0
2 . Note that ci and ε are independent of δ where i = 1, 2, 3, 4.

The perturbed action functional is defined by

fτ,δ(x) =
∫ τ

0

(
1
2
|ẋ|2 − Uδ(x)

)
dt. (3.40)

Then fτ,δ ∈ C2(Λ∗,R) and fτ (x) = fτ,δ(x) if mint∈Sτ
|x(t)| ≥ ε0

2 . Since |x2(t)| > |yε0(t)| =
ε0 >

ε0
2 for all t ∈ Sτ , both the Morse index and the nullity of the action functional fτ,δ(x) at

the circular solution x2 are the same as those of fτ (x) at x2, and fτ,δ(yε0) = fτ (yε0) < fτ (x2) =
fτ,δ(x2). Then the discussion of fτ in Step 1 to Step 4 are still valid for fτ,δ.

The critical value κ(δ) is defined by

κ(δ) = inf
γ∈Γ

max
s∈[0,1]

fτ,δ(γ(s)), (3.41)

where Γ is still defined by Γ = {γ ∈ C([0, 1],Λ∗) | γ(0) = x2, γ(1) = yε0}. By Step 1 to Step 4,
for each δ sufficiently small there exists an xδ ∈ Λ∗ satisfying fτ,δ(xδ) = κ(δ) such that xδ is a
critical point of fτ,δ.

We define κ̄ ≡ maxs∈[0,1] fτ,δ(sx2 + (1 − s)yε0) and κ ≡ fτ,δ(x2) > 0 where both κ and κ̄

are independent of δ by the definition of x2, yε0 and Uδ(x). (3.41) indicates that

0 < κ < κ(δ) ≤ κ̄. (3.42)

Note that |ẋδ(t)|2 ≥ 0 and (3.42) yield − ∫ τ

0
Uδ(xδ)dt ≤ κ̄. Since xδ is a critical point of

fτ,δ(x), we have that 〈f ′τ,δ(xδ), xδ〉 = 0, i.e,
∫ τ

0
|ẋδ|2dt =

∫ τ

0
(∇Uδ(xδ), xδ)dt. This yields

fτ,δ(xδ) =
∫ τ

0

(
1
2
|ẋδ|2 − Uδ(xδ)

)
dt

=
1
2

∫ τ

0

((∇Uδ(xδ), xδ) − 2Uδ(xδ))dt

=
1
2
(I1 + I2 + I3), (3.43)
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where we define

I1 ≡
∫
{t∈Sτ ;|xδ(t)|≥ ε0

2 }
((∇Uδ(xδ), xδ) − 2Uδ(xδ))dt;

I2 ≡
∫
{t∈Sτ ;

ε0
4 <|xδ(t)|< ε0

2 }
((∇Uδ(xδ), xδ) − 2Uδ(xδ))dt;

I3 ≡
∫
{t∈Sτ ;|xδ(t)|≤ ε0

4 }
((∇Uδ(xδ), xδ) − 2Uδ(xδ))dt.

By (3.38) and (3.39), we have (∇Uδ(x), x) ≤ max{c4, 1} and Uδ(x) ≥ min{c1,−1} when
|x(t)| ∈ [ ε0

2 ,+∞). Then

I1 =
∫
{t∈Sτ ;|xδ(t)|≥ ε0

2 }
((∇Uδ(xδ), xδ) − 2Uδ(xδ))dt < C1, (3.44)

where C1 ≡ τ (max{c4, 1} + max{−2c1, 2}) > 0 is a constant independently of δ. By (3.35)
and (3.37), (∇Uδ(x), x) < 0 and Uδ(x) > U(x ε0

2
) > 0 when |x(t)| ∈ ( ε0

4 ,
ε0
2 ). Then

I2 =
∫
{t∈Sτ ;

ε0
4 <|xδ(t)|< ε0

2 }
((∇Uδ(xδ), xδ) − 2Uδ(xδ))dt < 0. (3.45)

By (3.42), we have that I3 has a lower bound independently of δ namely I3 ≥ 2κ− C1.

I3 =
∫
{t∈Sτ ;|xδ(t)|≤ ε0

4 }
((∇Uδ(xδ), xδ) − 2Uδ(xδ))dt

=
∫
{t∈Sτ ;|xδ(t)|≤ ε0

4 }

(
− β

|x|β +
α

|x|α − 4δ
|x|4 − 2

|x|β +
2

|x|α − 2δ
|x|4

)
dt

= (α+ 2)
∫
{t∈Sτ ;|xδ(t)|≤ ε0

4 }

(
− β + 2
α+ 2

1
|x|β +

1
|x|α − 6δ

α+ 2
1

|x|4
)
dt

≤ (α+ 2)
∫
{t∈Sτ ;|xδ(t)|≤ ε0

4 }
−Uδ(xδ)dt. (3.46)

It yields that ∫
{t∈Sτ ;|x(t)|≤ ε0

4 }
−Uδ(xδ)dt ≥ 2κ− C1

α+ 2
. (3.47)

By (3.35), Uδ(x) ≤ U1(x) when ε0
4 ≤ |x| ≤ ε0

2 . Since U1(x) is monotonically decreasing along
the radial direction when ε0

4 < |x| < ε0
2 , we have Uδ(x) ≤ U1(x) ≤ U1(x ε0

4
) where |x ε0

4
| = ε0

4 .
When ε0

2 < |x| < ∞, by (3.38), Uδ(x) = U(x) ≤ max{c2, 1} holds. Then we have that
Uδ(x) ≤ C2 ≡ max{c2, 1, U1(x ε0

4
)} and C2 > 0 independently of δ when |x| ≥ ε0

4 . Then∫
{t∈Sτ ;|xδ(t)|≥ ε0

4 }
−Uδ(xδ)dt ≥ −τC2. (3.48)

By (3.48) and (3.49), ∫ τ

0

−Uδ(xδ)dt ≥ −τC2 +
2κ− C1

α+ 2
(3.49)

independently of δ.
By (3.42) and (3.49), ‖ẋδ‖L2 has an upper bound independently of δ. Note that ‖xδ‖L2

must be bounded independently of δ. Since for any 0 < t1 < t2 < τ ,

(t2 − t1)
∫ t2

t1

|ẋδ(t)|2dt ≥
( ∫ t2

t1

ẋδ(t)dt
)2

= |xδ(t2) − xδ(t1)|2,
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we have

|max
t∈Sτ

xδ(t) − min
t∈Sτ

xδ(t)| ≤
√
τ‖ẋδ‖L2 . (3.50)

If there exists a sequence {δi} satisfying δi → 0 as i→ +∞ such that ‖xδi
‖L2 → ∞ as i→ ∞.

Then by (3.50) and the boundedness of ‖ẋδ‖L2 , we obtain |xδi
(t)| → ∞ as i → ∞ uniformly

for all t ∈ Sτ . This yields that both Uδ(xδ) and (U ′
δ(xδ), xδ) tends to 0 as δ → 0 uniformly for

t ∈ [0, τ ]. By (3.43), when δ → 0, we have

fτ,δ(xδ) =
1
2

∫ τ

0

((∇Uδ(xδ), xδ) − 2Uδ(xδ))dt→ 0. (3.51)

This contradicts (3.42).
When δ is sufficiently small, ‖xδ‖1 are bounded independently of δ. Then we can choose a se-

quence {xδi
}∞i=1 such that {xδi

}∞i=1 converges weakly in W 1,2(Sτ ,R
2) and strongly in C(Sτ ,R

2)
to some x̂ ∈ Λ∗ as δi → 0.

Assume {t ∈ Sτ | x̂(t) = 0} 	= ∅. There exists at least a t0 ∈ Sτ such that x̂(t0) 	= 0.
If not, for any ε sufficiently small there exists a δ′ > 0 such that maxt∈Sτ

|xδ(t)| < ε when
0 < δ < δ′. Then mint∈Sτ

Uδ(xδ(t)) → +∞ as δ → 0. This contradicts that − ∫ τ

0
Uδ(xδ)dt is

lower bounded independently of δ given by (3.49). Thus there must exists a non-trivial open
interval (t0 − ε̄, t0 + ε̄) such that x̂(t) 	= 0 when t ∈ (t0 − ε̄, t0 + ε̄) and x̂(t0 − ε̄) = x̂(t0 + ε̄) = 0.
We proceed the computations as in Step 3 and obtain that x̂ is a classical solution of (1.3)
on the open interval (t0 − ε̄, t0 + ε̄). By Proposition 2.1, x̂ is a classical solution of (1.3) on
[t0− ε̄, t0+ ε̄] which yields a contradiction. Then {t ∈ Sτ | x̂(t) = 0} = ∅ and x̂ ∈ Λ∗ is a classical
solution of the system (1.3).

Step 6 Morse index and the topological degree of the mountain pass solution.
Because fτ (x̂) = κ > fτ (x2) = fτ (x−,2), we obtain x̂ 	∈ (Sτ · x2) ∪ (Sτ · x−,2). On the other

hand, by results of Hofer in [11] or Tian in [24], the Morse index i(x̂) of fτ at x̂ satisfies

i(x̂) ≤ 1. (3.52)

By Proposition 3.6, the Morse indices of fτ at every solution of (1.3) in Sτ · x1 is at least 5.
Therefore x̂ cannot be a circular solution of (1.3).

Note that deg(x̂, 0) = 1 holds, because x̂ is in the connected component of Λ∗ containing
x2 and deg(x, 0) is locally constant in Λ∗. This completes the proof. �

Remark 3.9 (i) The condition α > 1 is used only in the definition of τ#
1 , which is not used

in the above proof of the (PS) condition.
(ii) In this section, we have understood the variational properties of the circular solutions

and used the mountain pass theorem to find one non-circular solution with topological degree 1.
These variational properties will be useful in the later studies of the N -body problem of the
Lennard-Jones potential. The circular solutions and the mountain pass solutions are certainly
special cases of the solutions found in Section 5 below.

4 Zero Angular Momentum Solutions

We introduce the polar coordinates by setting

x(t) = r(t)eiθ(t), (4.1)
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and the system (1.3) is rewritten as⎧⎨
⎩

r̈ − rθ̇2 − β
rβ+1 + α

rα+1 = 0,

c = r2θ̇,
(4.2)

where c is the angular momentum of the solution x(t) of (1.3). When c = 0, the system
degenerates to a 1-dimensional problem and the topological degree of the solution is zero; when
c 	= 0, the solution is planar and the topological degree of the τ -periodic solutions are not zero.
In this section, we study the degenerate case. The study on the non-zero angular momentum
case is discussed in the next section.

If the angular momentum c = 0, (4.2) degenerates to

r̈ − β

rβ+1
+

α

rα+1
= 0. (4.3)

We define the potential U(x) in one dimension by

V (r) =
1
rβ

− 1
rα
,

where r ∈ R
+. V (r) attains its global minima at

r̄ =
(
β

α

) 1
β−α

.

Let rh,min and rh,max be the two solutions of V (r) − h = 0 where V (r̄) < h < 0 and rh,min <

r̄ < rh,max. Then we can state following standard results of the one dimension system of (4.3).
By x(t) = r(t)eiθ0 for some fixed θ0, the solution of (4.3) is equivalent to the solution of (1.3).

Theorem 4.1 (i-1) Suppose 0 < α < β. Then for every h ∈ (V (r̄), 0) and θ0 ∈ [0, 2π), the
given energy problem ⎧⎪⎪⎨

⎪⎪⎩
ẍ(t) = −∇U(x(t)),

H(x(t), ẋ(t)) = h,

x(τ ) = x(0), ẋ(τ ) = ẋ(0),

(4.4)

always possesses a periodic oscillating line solution (τ, x) such that x(t) = r(t)eiθ0 with r = r(t)
being a periodic solution of (4.3) possessing energy h, and the period τ = τ (h) is given by

τ (h) = 2
∫ rh,max

rh,min

1√
2(h− V (r))

dr, (4.5)

which is finite, positive, and depends on h continuously.
(i-2) limh→0− τ (h) = +∞ holds.
(i-3) limh→V (r̄)+ τ (h) = 2π√

V ′′(r̄)
= 2π√

β(β−α)
(β

α )
β+2

2(β−α) holds.

(i-4) There exists a constant τos = τos(α, β) ∈ (0, 2π√
V ′′(r̄)

] such that τ (h) ≥ τos for any

h ∈ [V (r̄), 0), i.e., τos > 0 is the maximal value such that there exists no τ -periodic oscillating
line solution for every τ ∈ [0, τos).

(i-5) For any given τ ≥ τos and θ0 ∈ [0, 2π), there exists a τ -periodic oscillating line solution
x(t) = r(t)eiθ0 possessing energy h such that τ (h) = τ .

(ii) For h = V (r̄) and θ0 ∈ [0, 2π), x(t) = r̄eiθ0 for t ∈ R is a constant solution xc of (1.3).
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(iii) For h < V (r̄) and θ0 ∈ [0, 2π), the system (1.3) possesses no solution.
(iv) For h ≥ 0 and θ0 ∈ [0, 2π), x(t) = r(t)eiθ0 for t ∈ R must be a non-periodic line solution

of the system (1.3) and the system (1.3) possesses no periodic oscillating line solutions.

Since the system degenerates to a 1-dimensional problem, we can get these results by direct
computations. Readers are referred to [2] and [15] for outlines of proof. The detailed proof can
be found in [14].

Remark 4.2 We also calculate the Morse index i(xc) and nullity ν(xc) of fτ at the constant
solution xc of (1.3) viewed as a τ -periodic solution and obtain

i(xc) = 1 + 2�− and ν(xc) =

⎧⎨
⎩

1, if τ
2π

√
β(β−α)

r̄β+2 	∈ N,

3, if τ
2π

√
β(β−α)

r̄β+2 ∈ N.
(4.6)

where

�− = �−(xc) = max
{
j ∈ N ∪ {0}

∣∣∣∣ j < τ

2π

√
β(β − α)
r̄β+2

}
. (4.7)

We refer readers to [14] for details of the proof.

Remark 4.3 (i) Using the method of Remark A.9 and 1◦ of Lemma A.10 of [17], it can be
proved that 0 < τos <

2π√
V ′′(r̄)

and there exists δ > 0 such that τ (h) is strictly decreasing for

h ∈ (V (r̄), V (r̄) + δ). Let hos = V (r̄) + δ. We tend to believe that τ (hos) = τos holds, and also
that τ (h) is strictly increasing for h ∈ [hos, 0). Namely, τ (h) changes monotonicity only once
on (V (r̄), 0).

(ii) Note that for every τ > 0, Ambrosetti and Coti Zelati found a τ -periodic solution of (1.3)
with β ≥ 2 in Theorem 9.1 of [1] via the mountain pass theorem. Proposition 2.2 and (i-4)
of Theorem 4.1 show that when τ is sufficiently small, this τ -periodic solution of (1.3) found
in [1] must be a constant solution (also [1, Remark 9.5]). By the same reason, when τ ∈ (0, τc),
Theorem 3 with h = 0 in [22] yields also only constant solutions of the system (1.3).

(iii) When τ > 2π√
β(β−α)

(β
α )

β+2
2(β−α) , by our Remark 4.2 a constant solution x possesses

Morse index i(x) ≥ 3 and thus cannot be a mountain pass solution. Then the τ -periodic
solution of (1.3) found in [1] must be a non-constant solution. It is interesting to understand
how this non-constant solution behaves, whether it is still an oscillating line solution, and how
the transition happens from constant solutions to non-constant solutions as τ increases.

5 Non-zero Angular Momentum Solutions

Since every solution x = x(t) of the system (1.3) is free from collision with the origin, r = |x(t)|
is never 0 if it is not initially. In this section, we always assume c 	= 0. By (4.2), we may justify
the change of the variable from t to θ as

d

dt
=
dθ

dt

d

dθ
=

c

r2
d

dθ
(5.1)

and obtain

c

r2
d

dθ

(
c

r2
d

dθ
r

)
− c2

r3
− β

rβ+1
+

α

rα+1
= 0. (5.2)
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Let u = 1
r 	= 0 and uθ = − 1

r2 rθ, and (5.2) is written as

−c2u2 d

dθ
uθ − c2u3 − βuβ+1 + αuα+1 = 0,

i.e.,

uθθ + u+
1
c2

(βuβ−1 − αuα−1) = 0. (5.3)

We define the effective potential F (u, c) by

F (u, c) =
1
2
u2 +

1
c2
uβ − 1

c2
uα,

where u > 0 and c is the angular momentum defined in (4.2). In rest of this section, when the
angular momentum c is fixed, we write F (u) instead of F (u, c), write F ′(u) instead of ∂F

∂u and
write F ′′(u) instead of ∂2F

∂u2 , if it does not cause any confusion.
For any fixed c, the Hamiltonian function of the system (5.3) is

H̄(u, uθ) =
1
2
|uθ|2 + F (u, c)

=
1
2
|uθ|2 +

1
2
u2 +

1
c2
uβ − 1

c2
uα. (5.4)

The Hamiltonian energy of (2.1) are related with the Hamiltonian energy of (5.3) by

H(x, ẋ) = c2H̄(u, uθ). (5.5)

Proposition 5.1 Suppose F (u) attains its critical value at u0 > 0 for some given angular
momentum c. The system (5.3) possesses a constant solution u(θ) ≡ u0 for all θ ∈ R. Corre-
spondingly, the system (1.3) possesses a circular solution

x(t) =
1
u0

(cosωt, sinωt), (5.6)

where ω = cu2
0.

Proof Since uθθ = −F ′(u0) = 0, u(θ) ≡ u0 for all θ ∈ R is a constant solution of the
system (5.3). Because the angular momentum c satisfies c = |x|2θ̇, we have θ̇ = cu2

0. Thus the
period of x(t) is τ = 2π

cu2
0
. Since |x| = 1

u0
, x(t) is a circular periodic solution given by

x(t) =
1
u0

(cosωt, sinωt),

where ω = cu2
0. �

If u is a solution of (5.3), its Hamiltonian energy h satisfies h = H̄(u, uθ). This yields that

dθ = ± du√
2(h− F (u, c))

. (5.7)

Integrating both sides of (5.7), let

θ(h, c) =
∫ u2

u1

du√
2(h− F (u, c))

, (5.8)

where u1 and u2 are two different solutions of F (u, c) = h satisfying F (u, c) < h when u1 <

u < u2.
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Proposition 5.2 For given angular momentum c and h = H̄(u, uθ), suppose u1 < u < u2

satisfy F (u, c) < h = F (u1, c) = F (u2, c), then there exists a periodic solution u(θ) with energy
h, period 2θ(h, c), minu(θ) = u1, and maxu(θ) = u2. If θ(h,c)

π is rational, u(θ) corresponds
to a periodic solution x(t) of (1.3); if θ(h,c)

π is irrational, u(θ) corresponds to a quasi-periodic
solution x(t) of (1.3) with two frequencies at the ratio θ(h,c)

π . More precisely, if u(θ) is a periodic
solution of (5.3) and θ(h,c)

π = q
p with (p, q) = 1, the corresponding configuration path of x(t)

in R
2 possesses the topological degree q with respect to the origin and achieves the maximal

distance to the origin p times.

Proof For such given c and h, from the standard ODE theory, the solution u(θ) with u(0) = u1,
uθ(0) = 0 is periodic and satisfies min u(θ) = u1 and maxu(θ) = u2, with period 2θ(h, c).

We express the configuration path x(t) ∈ R
2 of a solution to (1.2) in the form of the

parametric equation with the parameter θ as

x(θ) =
1

u(θ)
(cos θ, sin θ). (5.9)

The motion of u(θ) is oscillating between u1 and u2. The motion of x(t) is in the region of the
annulus whose the outer radius |x| = 1

u1
and the inner radius are |x| = 1

u2
. The half period

θ(h, c) of u(θ) is the angle of x in R
2 between consecutive 1

u2
and 1

u1
. If 2θ(h, c) dependents

rationally on 2π, i.e.,

q

p
· π = θ(h, c) =

∫ u2

u1

du√
2(h− F (u, c))

, (5.10)

where p and q are co-prime positive integers, x(θ) is a closed path of the system (1.3) in R
2

where p is the number of times of |x(θ)| realizing 1
u1

or 1
u2

in one period and q is the topological
degree of the orbit x(θ) with respect to the origin in one period.

If θ(h, c) satisfies

w · π = θ(h, c) =
∫ u2

u1

du√
2(h− F (u, c))

, (5.11)

where w is irrational, then x(t) is a quasi-periodic solution and orbit of x is dense in the annulus
of R

2. �

Remark 5.3 Let u(θ) be a periodic solution of (5.3) with H̄(u, uθ) = h, whose period is given
by 2θ(h, c). Let θ(t) be the solution of

θ̇ = cu(θ)2, θ(0) = 0.

Clearly

θ(t+ T ) = θ(t) + 2θ(h, c), ∀t ∈ R, where T = min{t > 0 | θ(t) = 2θ(h, c)} > 0.

From (5.1) and the definition of u(θ), if we identify R
2 with C,

x(t) =
1

u(θ(t))
eiθ(t), ẋ(t) = c(iu(θ(t))− uθ(θ(t)))eiθ(t) (5.12)

is a solution of (1.3). The orbits of its all phase rotations (eiθ0x(t), eθ0 ẋ(t)) foliate the invariant
torus T(h, c) = Ψ(T2) of (1.3), where T

2 is the standard 2-dimensional torus with period 2π
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and Ψ : T
2 → R

2 × R
2 is given by

Ψ(s1, s2) =
(

1
u(θ( T

2π s1))
, c

(
iu

(
θ

(
T

2π
s1

))
− uθ

(
θ

(
T

2π
s1

))))
ei(s2+θ̃( T

2π s1)),

where θ̃(t) = θ(t) − 2θ(h,c)
T t is T -periodic. In terms of Ψ we can write

(x(t), ẋ(t)) = Ψ
(

2π
T
t,

2θ(h, c)
T

t

)
.

If θ(h,c)
π is irrational, this solution is quasi-periodic with two frequencies at the ratio θ(h,c)

π .
Finally we note that the invariant torus T(h, c) is actually the intersection of a level surface

of the energy and a level surface of the angular momentum of (1.3). We refer readers to [4]
for discussions on solutions of (1.3) on such surfaces with constant Hamiltonian energy and
constant angular momentum.

Corollary 5.4 For given c, if the range of θ(c, h) has a non-empty interior, then the sys-
tem (5.3) possesses infinitely many periodic solutions. Correspondingly, the system (1.3) pos-
sesses at least countably many periodic solutions with arbitrarily large topological degree and
uncountably many quasi-periodic solutions with constant angular momentum.

Proof For a given constant c, if the range of θ(h, c) contains an open interval I, there are
countably many rational numbers q

p ∈ I satisfying q and p are co-prime integers, i.e., (q, p) = 1,
such that (5.10) holds. Different such fractions q

p correspond to different solutions of (5.3). By
Proposition 5.2, (1.3) possesses at least countably many distinct periodic solutions with distinct
energy. Furthermore, q can be arbitrarily large in the interval I. This indicates that the degree
of the solution of (1.3) can be arbitrarily large.

Similarly, if the range of θ(h, c) contains an open interval I, there are uncountably many
irrational numbers w ∈ I such that (5.11) holds. This implies that the system (1.3) possesses
uncountably many quasi-periodic solutions. �

Proposition 5.5 If there exists some uh > 0 such that h = F (uh) > 0, F ′(uh) > 0, and
F (u) < h for all u ∈ (0, uh), then there exists a solution u = u(θ) of (5.3) satisfying u(0) = uh

and H̄(u, uθ) = h. Furthermore, the solution u(θ) exists only on the open interval (−θ0, θ0)
for some θ0 > 0 such that u(θ) converges to 0 when θ converges to ±θ0. This solution u =
u(θ) corresponds to an asymptotic solution x = x(t) of the system (1.3) given by (5.12) with
asymptotic angle 2θ0 and mint∈R |x(t)| = 1

uh
.

Proof Extend F (u) as an even function. Then h = F (uh) = F (−uh) > 0, F ′(uh) > 0,
F ′(−uh) < 0 and F (u) < h for all u ∈ (−uh, uh). Note first that the energy equation H̄(u, uθ) =
h > 0 defines a closed curve in the (u, uθ) space U around the origin (0, 0) ∈ U if we allow
u ∈ R, and this curve defines a periodic solution u = u(θ) of (5.3). Without loss of generality,
we suppose u(0) = uh > 0. By (5.4), this curve is symmetric about the u-axis and u(θ) = u(−θ)
and uθ(−θ) = −uθ(θ) hold for all θ > 0. Thus there exists a unique θ0 > 0 such that u(±θ0) = 0.

Whenever u(θ) > 0, (5.9) defines a function x = x(θ). Using the function θ = θ(t) defined
in Remark 5.3, we obtain a solution x(t) = x(θ(t)) of (1.3) given by (5.12) with limt→±∞ θ(t) =
±θ0. Correspondingly, x = x(t) satisfies mint∈R |x(t)| = 1

uh
and limθ→±θ0 = |x(θ)| = ∞.

Therefore, the asymptotic angle of x(t) is 2θ0. �
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5.1 The Solutions When 0 < α < 2

When 0 < α < 2 and 0 < α < β, F (u, c) = 1
c2u

β + 1
2u

2 − 1
c2u

α. For any given c satisfying
0 < c < +∞, F (u) = 0 has exact one positive root denoted by uc. And F ′(u) = 0 has only one
positive root denoted by umin which is the local minima of F (u). Furthermore, 0 < umin < uc

and F ′(uc) > 0. When 0 < u < umin, F ′(u) < 0 and when u > umin, F ′(u) > 0 and
limu→∞ F (u) = ∞.

Proposition 5.6 When 0 < α < 2, 0 < α < β and c 	= 0,
(i) if h = F (umin), the system (5.3) possesses one constant solution u(θ) ≡ umin where umin

is the unique global minimizer of F (u). Correspondingly, the system (1.3) possesses one circular
solution

x(t) =
1

umin
(cosωt, sinωt),

where ω = cu2
min;

(ii) any solution of (1.3) with energy h > 0 is an asymptotic solution.

Proof (i) Since F ′(umin) = 0, we can apply Proposition 5.1 and obtain the results directly.
(ii) Suppose that uh > uc satisfying F (uh) = h > 0. By the monotonicity of F (u), F ′(uh) >

0 and F (u) < F (uh) when 0 < u < uh. Then we can apply Proposition 5.5 and obtain the
results directly. �

By Proposition 5.6, the Hamiltonian energy h of (5.3) satisfies F (umin) ≤ h < 0 is a
necessary condition for the solution x(t) of (1.3) to be globally bounded when 0 < α < 2 and
0 < α < β.

Theorem 5.7 When 0 < α < 2, 0 < α < β, α 	= 1, |c| is sufficiently large and h ∈
(F (umin), 0), all solutions u(θ) of (5.3) are periodic in θ. They correspond to at least countably
many periodic solutions of (1.3) with arbitrarily large topological degree and uncountably many
quasi-periodic solutions.

Proof When 0 < α < 2 and 0 < α < β, for any given c 	= 0, F (u) = 0 has only one positive
root uc.

F (uc) =
1
c2
uβ

c +
1
2
u2

c −
1
c2
uα

c = 0. (5.13)

Because F (1) > 0, we have 0 < uc < 1. We rewrite (5.13) as

1
2
u2−α

c =
1
c2

− 1
c2
uβ−α

c . (5.14)

We obtain limc→∞ uc = 0. Since 0 < uc < 1 for any given c 	= 0, we have

0 < uc <

(
c2

2

) 1
α−2

.

Furthermore, by (5.14), when |c| tends to infinity,

uc =
(
c2

2

) 1
α−2

− o

(
c2

2

) 1
α−2

. (5.15)

When h = 0, we calculate the lim|c|→∞ θ(0, c) as

lim
|c|→∞

θ(0, c) = lim
|c|→∞

∫ uc

0

du√
2(0 − F (u, c))
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= lim
|c|→∞

1√
2

∫ uc

0

du√
− 1

c2uβ − 1
2u

2 + 1
c2uα

. (5.16)

We change the variable u to s and uc to sc by following two equalities,

u =
(
c2

2

) 1
α−2

s
1

2−α and uc =
(
c2

2

) 1
α−2

s
1

2−α
c . (5.17)

By (5.15) and (5.17), 0 < sc < 1 for any given c and limc→∞ sc = 1. Plugging (5.17) into (5.16),
we have

lim
|c|→∞

θ(0, c) =
1√

2(2 − α)
lim

c→∞

∫ sc

0

ds√
−c 2(β−α)

α−2 2
β−2
2−α s

β+2−2α
2−α − 1

2s
2 + 1

2s

. (5.18)

To simplify the notations, let Ac ≡ c
2(β−α)

α−2 2
β−2
2−α > 0 satisfying limc→∞Ac = 0. Since uc is the

only positive root of F (u) = 0, sc satisfies that

−Acs
β+2−2α

2−α
c − 1

2
s2c +

1
2
sc = 0. (5.19)

Let s = sct and t ∈ [0, 1]. Then (5.18) can be written as

lim
c→∞ θ(0, c) =

1√
2(2 − α)

lim
c→∞

∫ 1

0

scdt√
−Ac(sct)

β+2−2α
2−α − 1

2s
2
ct

2 + 1
2sct

. (5.20)

By (5.18), when t = 0 or 1,

−
(
s2c
2

− 1
4

)
t2 −Ac(sct)

β+2−2α
2−α +

(
sc

2
− 1

4

)
t = 0. (5.21)

When sc is sufficiently close to 1, −( s2
c

2 − 1
4 ) < 0, −Acs

β+2−2α
2−α

c < 0 and sc

2 − 1
4 > 0. By the

generalized Descartes’ rule of signs in [12], we know that t = 1 is the only positive root of (5.21).
Additionally,

−
(
s2c
2

− 1
4

)
t2 −Ac(sct)

β+2−2α
2−α +

(
sc

2
− 1

4

)
t > 0, (5.22)

when t > 0 is sufficiently small. Therefore, (5.22) holds for all t ∈ (0, 1). Then (5.22) implies
that

1
2
sct− 1

2
s2ct

2 −Ac(sct)
β+2−2α

2−α >
1
4
(t− t2) > 0, (5.23)

for all t ∈ (0, 1). When 1√
2
< sc ≤ 1 and Ac > 0,

sc√
1
2sct− 1

2s
2
ct

2 −Ac(sct)
β+2−2α

2−α

<
1√

1
4 t− 1

4 t
2

(5.24)

holds for all t ∈ (0, 1). Furthermore, the right hand of (5.24) is integrable. By the dominated
convergence theorem, we obtain

lim
c→∞ θ(0, c) =

1√
2(2 − α)

lim
c→∞

∫ 1

0

scdt√
−Ac(sct)

β+2−2α
2−α − 1

2s
2
ct

2 + 1
2sct

=
1√

2(2 − α)

∫ 1

0

dt√
1
2 t− 1

2 t
2

=
π

2 − α
. (5.25)
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When 0 < α < 2, umin 	= 0 is the solution of F ′(u) = 0. By limc→∞ uc = 0 and 0 < umin <

uc, we obtain limc→∞ umin = 0. When h tends to F (umin), for any given c 	= 0, the half period
of the system (5.3) can be computed as

lim
h→F (umin)

θ(h, c) =
π√

F ′′(umin)
(5.26)

and it is well defined because F (umin) is a non-degenerate local minima. Therefore we obtain

lim
c→∞ lim

h→F (umin)
θ(h, c) = lim

c→∞
π√

F ′′(umin)

= lim
c→∞

cπ√
β(β − 1)uβ−2

min + c2 − α(α− 1)uα−2
min

. (5.27)

For any given c 	= 0, umin satisfies F ′(umin) = 0. We plug αuα−2
min = βuβ−2

min + c2 into (5.27) and
obtain

lim
c→∞ lim

h→F (umin)
θ(h, c) = lim

c→∞
cπ√

β(β − α)uβ−2
min + (2 − α)c2

=
π√

2 − α
. (5.28)

If α 	= 1, by the two results (5.25) and (5.28), we have

lim
c→∞ θ(0, c) 	= lim

c→∞ lim
h→F (umin)

θ(h, c). (5.29)

Thus, when |c| is sufficiently large, we still have

θ(0, c) 	= lim
h→F (umin)

θ(h, c). (5.30)

Therefore, when |c| is sufficiently large, the range of θ(h, c) denoted by Ic,∞ contains a non-
empty interval. By Proposition 5.2 and Corollary 5.4, for any given |c| large enough, the
system (1.3) possesses infinitely many periodic solutions with arbitrarily large topological degree
and infinitely many quasi-periodic solutions. �

Before proving Theorem 5.9, we prove Lemma 5.8 as a preparation. We use B(·, ·) to denote
the Beta function.

Lemma 5.8 If 0 < α < 2 and 0 < α < β,

1√
2(β − α)

B

(
2 − α

2(β − α)
,
1
2

)
=

π√
β(β − α)

(
β

α

) β−2
2(β−α)

(5.31)

holds on a zero measure set B of α and β in R
2.

Proof (5.31) is equivalent to

B

(
2 − α

2(β − α)
,
1
2

)
=

√
2π

√
β

α
− 1

(
β

α

) α−2
2(β−α)

. (5.32)

We define

p =
2 − α

2(β − α)
and q =

β

α
. (5.33)
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(5.32) can be rewritten as

B

(
p,

1
2

)
=

√
2π

√
q − 1q−p. (5.34)

Define
ϕ =

√
q − 1q−p.

For any fixed p, 1√
2π
B(p, 1

2 ) is a constant. Take the derivative of ϕ with respect to q and obtain

ϕq =
(1 − 2p)q + 2p
2qp+1

√
q − 1

.

If 1 − 2p = 0, i.e., β = 2, it yields ϕq = 2p
2qp+1

√
q−1

	= 0 when 0 < α < 2. When β = 2, we have
p = 1

2 , q = 2
α and ϕ =

√
1 − α

2 . Therefore, (5.34) holds when α = 1 and β = 2.
When β 	= 2, ϕq = 0 if and only if

q =
2p

2p− 1
. (5.35)

Plugging (5.33) into (5.35), we obtain

β

α
=

2 − α

2 − β
. (5.36)

Since 0 < α < 2 and 0 < α < β, (5.36) holds when

0 < α < 1 and β = 2 − α. (5.37)

Above all, (5.31) holds at most on a zero measure set. We define B as the zero measure set
such that (5.31) holds. �

Theorem 5.9 When 0 < α < 2, 0 < α < β, α, β /∈ B, |c| is sufficiently small and h ∈
(F (umin), 0), all solutions of (5.3) are periodic in θ. They correspond to at least countably
many periodic solutions of (1.3) with arbitrarily large topological degree and uncountably many
quasi-periodic solutions.

Proof When |c| is sufficiently small, it happens that

lim
|c|→0

θ(0, c) = lim
|c|→0

lim
h→F (umin)

θ(h, c) = 0. (5.38)

To distinguish the two values of limc→0 θ(0, c) and limc→0 limh→F (umin) θ(h, c) when |c| is suffi-
ciently small, we change the system (5.3) to

c2uθθ + c2u+ βuβ−1 − αuα−1 = 0.

Setting d
dτ = c d

dθ , we have

uττ + c2u+ βuβ−1 − αuα−1 = 0. (5.39)

We define the effective potential of (5.39) by

G(u, c) ≡ c2

2
u2 + uβ − uα.

For simplicity, we often use G(u) to denote G(u, c), use G′(u) to denote ∂G
∂u , and use G′′(u) to

denote ∂2G
∂u2 when c is given.
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For any given c 	= 0, G(u) = 0 has only one positive root denoted by uc and G′(u) = 0 has
only one positive root denoted by umin. Since G(1) > 0 when c 	= 0, we have 0 < uc < 1. From
G(uc) = 0, we have 1 − uβ−α

c = c2

2 u
2−α
c → 0 as c→ 0. Then we have limc→0 uc = 1.

The corresponding Hamiltonian energy of (5.39) is

h =
1
2
|uτ |2 +G(u, c). (5.40)

For any given sufficiently small |c| and h ∈ (G(umin), 0), the half period τ (h, c) of (5.39) is given
by

τ (h, c) =
∫ u2

u1

du√
2(h−G(u, c))

, (5.41)

where u1 and u2 are two consecutive different roots of G(u, c) − h = 0 where u1 < u2.
In this proof, the calculations proceed similarly as in the proof of Theorem 5.7. We consider

τ (h, c) when h = 0 and c tends to 0.

lim
c→0

τ (0, c) = lim
c→0

∫ uc

0

du√
2(0 −G(u, c))

=
1√
2

lim
c→0

∫ uc

0

du√
−uβ − c2

2 u
2 + uα

=
1√
2

∫ 1

0

du√
uα − uβ

=
1√

2(β − α)
B

(
2 − α

2(β − α)
,
1
2

)
. (5.42)

When h tends to G(umin) and c tends to 0, we have

lim
c→0

lim
h→G′′(umin)

τ (h, c) = lim
c→0

π√
G′′(umin)

= lim
c→0

π√
β(β − 1)uβ−2

min + c2 − α(α− 1)uα−2
min

. (5.43)

Since G′(umin) = c2umin + βuβ−1
min − αuα−1

min = 0 and 0 < umin < uc < 1, from 1 − β
αu

β−α
min =

c2

α u
2−α
min → 0 as c→ 0, we have

lim
c→0

umin =
(
α

β

) 1
β−α

. (5.44)

Plugging (5.44) into (5.43), we obtain

lim
c→0

lim
h→G′′(umin)

τ (h, c) =
π√

β(β − 1)(α
β )

β−2
β−α − α(α− 1)(α

β )
α−2
β−α

=
π√

β(β − α)

(
β

α

) β−2
2(β−α)

. (5.45)

By Lemma 5.8, if α, β /∈ B, we obtain

lim
c→0

τ (0, c) 	= lim
c→0

lim
h→G′′(umin)

τ (h, c).
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Therefore, when |c| is sufficiently small

τ (0, c) 	= lim
h→G′′(umin)

τ (h, c). (5.46)

The range of τ (h, c) denoted by Ic,0 contains a nontrivial open interval when |c| is sufficiently
small. By Proposition 5.2 and Corollary 5.4, when |c| is sufficiently small, the system (1.3) pos-
sesses infinitely many periodic solutions with arbitrarily large topological degree and infinitely
many quasi-periodic solutions. �

5.2 The Solutions When 2 = α < β

When α = 2 and 0 < α < β, F (u, c) can be written in descending order as

F (u, c) =
1
c2
uβ +

(
1
2
− 1
c2

)
u2.

Proposition 5.10 If 2 = α < β and |c| ≥ √
2, the system (1.3) possesses only asymptotic

solutions.

Proof When α = 2 and |c| ≥ √
2, we have 1

2 >
1
c2 and F (u) is a monotonically increasing func-

tion and F (u) > 0 for u ∈ (0,+∞). By Proposition 5.5, we can conclude that the system (1.3)
possesses only asymptotic solutions. �

In the rest of this section, we assume that 0 < |c| < √
2 and F (u) attains its unique local

minima at umin. When 0 < u < umin, F (u) is monotonically increasing, and when u > umin,
F (u) is monotonically decreasing.

Theorem 5.11 Let 2 = α < β and h = H̄(u, uθ). If the given c satisfies 0 < |c| < √
2,

(i) for h > 0, the system (1.3) possesses only asymptotic solutions;
(ii) for h = F (umin) of (5.3), the system (5.3) possesses a constant solution. Correspond-

ingly, the system (1.3) possesses a circular solution;
(iii) for F (umin) < h < 0, all solutions of (5.3) are periodic in θ. They correspond to

at least countably many periodic solutions of (1.3) with arbitrarily large topological degree and
uncountably many quasi-periodic solutions.

Proof (i) When the Hamiltonian energy h > 0, F (u)−h = 0 has only one positive root uh > 0
and F ′(uh) > 0. By the monotonicity of F (u), F (u) < F (uh) when 0 < u < uh. Then we can
apply Proposition 5.5 and obtain infinitely many asymptotic solutions.

(ii) Since F (u) attains its local minima at umin, we can obtain a constant solution u(θ) ≡
umin for all θ ∈ R. By Proposition 5.1, we obtain the circular solution of (1.3) as

x(t) =
1

umin
(cosωt, sinωt),

where ω = cu2
min.

(iii) If 0 < |c| < √
2, i.e., 1

2 < 1
c2 , umin = ( 2−c2

β )
1

β−2 and uc = ( 2−c2

2 )
1

β−2 . We have half
period of (5.3) satisfies

lim
h→F (umin)

θ(h, c) =
π√

F ′′(umin)
=

πc√
β(β − 1)uβ−2

min + c2 − 2
=

cπ√
(β − 2)(2 − c2)

. (5.47)

When h = 0, we have

θ(0, c) =
∫ uc

0

du√
2(0 − F (u))

=
∫ uc

0

cdu√
(2 − c2)u2 − 2uβ

. (5.48)
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We let u = uct and obtain

θ(0, c) =
∫ 1

0

√
2cucdt√

(2 − c2)(uct)2 − 2(uct)β
≥

∫ 1

0

cdt√
(2 − c2)t2

= +∞. (5.49)

For any given c satisfying 0 < |c| < √
2, (5.47) and (5.49) yield the range of θ(h, c) denoted by

Ic satisfies (
cπ√

(β − 2)(2 − c2)
,+∞

)
⊂ Ic. (5.50)

By the Proposition 5.2 and Corollary 5.4, for any given c satisfying 0 < |c| < √
2, the sys-

tem (1.3) possesses at least countably many periodic solutions with arbitrarily large topological
degree and uncountably many quasi-periodic solutions. �

5.3 The Solutions When 2 < α < β

When 2 < α < β, we rewrite F (u, c) in descending order of u as

F (u, c) =
1
c2
uβ − 1

c2
uα +

1
2
u2.

Lemma 5.12 If 2 < α < β and c satisfies

0 < |c| <
(
α(α− 2)
β(β − 2)

) α−2
2(β−α)

√
α(β − α)
β − 2

, (5.51)

F (u) has one local minima attained at umin and one local maxima attained at umax. When
0 < u < umax, F (u) is monotonically increasing; when umax < u < umin, F (u) is monotonically
decreasing; when u > umin, F (u) is monotonically increasing. If (5.51) does not hold, F (u) is
a monotonically increasing function.

Proof The derivative of F (u) is

F ′(u) =
β

c2
uβ−1 − α

c2
uα−1 + u = u

(
β

c2
uβ−2 − α

c2
uα−2 + 1

)
.

F ′(u) < 0 for some u > 0 if and only if there exist some u such that c2 < αuα−2−βuβ−2 holds.
We define g(u) as

g(u) ≡ αuα−2 − βuβ−2. (5.52)

g(u) attains its global maxima at ug,max = (α(α−2)
β(β−2) )

1
β−α . Therefore, when

0 < |c| <
√
g(ug,max) =

(
α(α− 2)
β(β − 2)

) α−2
2(β−α)

√
α(β − α)
β − 2

,

g(u) = c2 has two roots umax and umin where umax < ug,max < umin. When umax < u < umin,
we have g(u) > c2. This yields that F ′(u) < 0. Then when 0 < u < umax, F (u) is monotonically
increasing; when umax < u < umin, F (u) is monotonically decreasing; when u > umin, F (u)
is monotonically increasing. Furthermore, F (u) has one local maxima at umax and one local
minima at umin. �

Proposition 5.13 If 2 < α < β and

|c| >
(
α(α− 2)
β(β − 2)

) α−2
2(β−α)

√
α(β − α)
β − 2

,
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the system (1.3) possesses only asymptotic solutions.

Proof If |c| > √
g(ug,max), it yields F ′(u) > 0 and F (u) is a monotonically increasing function

for all u > 0. By Proposition 5.5, the system (1.3) possesses only asymptotic solutions. �

Theorem 5.14 If 2 < α < β and

|c| =
(
α(α− 2)
β(β − 2)

) α−2
2(β−α)

√
α(β − α)
β − 2

, (5.53)

the system (5.3) possesses a constant solution. Correspondingly, the system (1.3) possesses a
circular solution. Furthermore, the system (1.3) possesses infinitely many asymptotic solutions.

Proof When (5.53) holds, F ′(u) = 0 if u = ug,max and F ′(u) > 0 when u 	= ug,max. Then the
system (5.3) a constant solution u(θ) ≡ ug,max for all θ ∈ R. By Proposition 5.1, we obtain the
circular solution of (1.3) as

x(t) =
1

ug,max
(cosωt, sinωt) (5.54)

where ω = cu2
g,max.

If u 	= ug,max, F ′(u) > 0 and the condition of Proposition 5.5 is satisfied. The system (1.3)
possesses only asymptotic solutions. �

In the rest of this subsection, we always assume (5.51) holds.
If the given c satisfies (5.51), there exists only one uc satisfying uc > umax such that

F (uc) − F (umax) = 0 holds because of the monotonicity of F (u) discussed in Lemma 5.12.
Again by Lemma 5.12, we have uc ≥ umin and F ′(uc) > 0.

(a) (b)

Figure 1 Figure (a) shows the graph of F (u) = 1.6u10 − 1.6u5 + 1
2
u2 where we have α = 5,

β = 10, and c2 = 5
8
. Figure (b) shows the phase curves of (5.3) with the effective potential F (u) =

1.6u10 − 1.6u5 + 1
2
u2. umax of F (u) in (a) corresponds to the saddle point (umax, 0) in (b) and umin

of F (u) corresponds to the center point (umin, 0) in (b). The arrows show the directions of flows at

(u, uθ). Along each flow line, (u, uθ) possesses the same Hamiltonian energy.

Theorem 5.15 When 2 < α < β , h = H̄(u, uθ) and c satisfies (5.51), every solution of (1.3)
satisfying one of the following conditions must be an asymptotic solution:

(i) the Hamiltonian energy h satisfies h > F (umax), or
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(ii) the Hamiltonian energy h satisfies 0 < h < F (umax) and 0 < u(0) < umax.

Proof When condition (i) holds, we suppose F (uh) = h. By the monotonicity of F (u), we
have that F ′(uh) > 0 and F (u) < h for all u ∈ (0, uh). Then we can apply Proposition 5.5
and conclude that the solution is an asymptotic solution of (1.3) on each Hamiltonian energy
surface.

If condition (ii) holds, F (u) is in the monotonically increasing interval. If we define uh

by F (uh) = h and 0 < uh < umax, then h > F (u) when u ∈ (0, uh). We also can apply
Proposition 5.5 to obtain that the solution is an asymptotic solution of (1.3) on each Hamiltonian
energy surface. �

For any given c satisfying (5.51), when the Hamiltonian energy of (5.3) h satisfying F (umin) ≤
h ≤ F (umax) and umax < u < uc, there may exist the periodic solutions or quasi-periodic solu-
tions. When F (umin) < 0, the figure of F (u) is shown in Figure 5.1.

Theorem 5.16 For 2 < α < β, h = H̄(u, uθ) and any given c satisfies (5.51), the followings
hold.

(i) If h = F (umin) or h = F (umax), the system (5.3) possesses one constant solution. The
constant solution corresponds to a circular solution of system (1.3);

(ii) if F (umin) < h < F (umax) and umax < u < uc, all solutions of (5.3) are periodic in
θ. They correspond to at least countably many periodic solutions of (1.3) with arbitrarily large
topological degree and uncountably many quasi-periodic solutions;

(iii) there exists an orbit which is homoclinic to (umax, 0) on the Hamiltonian energy surface
h = F (umax).

Proof Since F ′(u) = 0 when u = umin (or u = umax), we apply the Proposition 5.1 and obtain
the constant solution of (5.3) and the corresponding circular solution of (1.3):

x(t) =
1
u

(cosωt, sinωt),

where u = umin (or u = umax) and ω = cu2
min (or ω = cu2

max).
When c satisfies (5.51), F (u) − F (umax) = 0 has two roots umax and uc. According to

Theorem 5.14, we consider this theorem in the invariant subset {(u, uθ) : h < F (umax), u ∈
(umax, uc)} in the phase space of (5.3).

For any given c satisfies (5.51), when h tends to F (umin), we calculate limh→F (umin) θ(h, c)
as

lim
h→F (umin)

θ(h, c) =
π√

F ′′(umin)
=

πc√
β(β − 1)uβ−2

min + c2 − α(α− 1)uα−2
min

. (5.55)

Since F (u) attains a non-degenerate local minima at umin, F ′(umin) = β
c2u

β−1
min − α

c2u
α−1
min +

umin = 0 and F ′′(umin) > 0. Then limh→F (umin) θ(h, c) is finite.
Next, we calculate limh→F (umax) θ(h, c). Since F ′(umax) = 0, u(θ) ≡ umax for all θ ∈ R is a

constant solution of the system (5.3). One may verify that F ′′(umax) < 0. Therefore u = umax

is a saddle equilibrium point in the phase space.
We define Γh = {(u, uθ) |H(u, uθ) = h} is the level set of the energy of (5.3). When h =

F (umax), the connect component of ΓF (umax)\(umax, 0) containing (uc, 0) does not contain any
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equilibrium and (umax, 0) is its only boundary point. Since u = umax is an saddle equilibrium
point in the phase space, the orbit of initial value problem

uθθ = −F ′′(u); (5.56)

uθ(0) = 0, u(0) = uc (5.57)

is homoclinic to (umax, 0), i.e.,

lim
θ→+∞

u(θ) = umax and lim
θ→−∞

u(θ) = umax.

Therefore, the periodic θ(F (umax), c) of the initial value problem (5.56)–(5.57)satisfies

lim
h→F (umax)

θ(h, c) = +∞. (5.58)

By (5.55), (5.58) and the continuity of θ(h, c), the range of θ(h, c) contains the open interval
(limh→F (umin) θ(h, c),+∞) for any fixed c satisfies (5.51). By Proposition 5.2 and Corollary 5.4,
the system (1.3) possesses at least countably many periodic solutions with arbitrarily large
topological degree and uncountably many quasi-periodic solutions. �
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