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Abstract In this paper, we prove that if a c.e. Turing degree d is non-low2, then there are two
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1 Introduction

Recall that all the reals we consider are in [0, 1], and are identified with elements of 2ω and
with subsets of N.

Martin–Löf randomness is a natural and robust notion of randomness in that it coincides
with other methods of defining algorithmic randomness. Schnorrs theorem proved that A is
Martin–Löf random if and only if for all x, K(A �� x) = x+O(1), where A �� x denotes the first x
bits ofA andK denotes prefix-free Kolmogorov complexity. Schnorrs theorem suggests a natural
method of calibrating randomness of reals: A ≤K B iff for all x, K(A �� x) ≤ K(B �� x)+O(1).
Many measures of relative randomness implying this measure have been analysed. Of interest
to us here is one inspired by strong reducibilities. In [5], a strengthening of weak truth table
reducibility, namely computations where the use on the oracle on argument x is x+ c for some
constant c, i.e., for any oracle query y, y ≤ x+c, was suggested as a possible measure of relative
randomness. This reducibility has appeared in the literature with various names, e.g. strong
weak truth table [5], computable Lipschitz (due to a characterization of it in terms of effective
Lipschitz functions) [2, 6] and linear [3]. We will adopt the terminology in [2, 6] and note it as
≤cl. It is nearly obvious that ≤cl is a measure of relative randomness. The identity bounded
Turing reducibility (ibT or ≤ibT for short) is a computable Lipschitz reduction for which the
constant c is 0. It was introduced by Soare [10] in connection with applications of computability
theory to differential geometry.

The cl-degrees are the equivalence classes under cl-reducibility. Notice that they either
contain only random reals or only non-random reals. In [5], the structure of cl-degrees of left-c.e.
reals (i.e. limits of computable increasing sequences of rationals) is neither a lower semi-lattice
nor an upper semi-lattice. In [11], Yu and Ding proved that there are two left-c.e. reals which
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had no common upper bound in the cl-degrees. In [7], Fan and Yu improved this result that for
any non-computable Δ0

2 real α there is a left-c.e. real β such that both of them have no common
upper bound in left-c.e. reals. In [6], Downey and Hirschfeldt proved the following result: there
is a real (not left-c.e.) which is not cl-reducible to any random real (indeed to any complex
real). (In [9], a set A is called complex if there is an order (nondecreasing, unbounded, and
computable) function h such that K(A �� x) > h(x) for all x.) In [1], Barmpalias and Lewis
localized this result that there is a left-c.e. real which is not cl-reducible to any Martin–Löf
random left-c.e. real.

The interplay between Turing and stronger reducibilities, such as wtt, cl-reducibility, is a
meaningful topic. The following results express that computable Lipschitz reducibility helps
understand array-non-computability and the lowness notion. Recall that a degree d is array
non-computable if for any total function f ≤wtt ∅′, there is a total function g ≤T d not
dominated by f ; a degree d is non-low2 if for any total function f ≤T ∅′ there is a total
function g ≤T d not dominated by f ; a degree d is called generalised low2 if d′′ ≤ (d ∨ 0′)′.

Proposition 1.1 ([4]) For a c.e. degree d, the following are equivalent :
(1) There are left-c.e. reals α, β ∈ d which have no common upper bound in the cl-degrees

of left-c.e. reals.
(2) There is a left-c.e. real β ∈ d which is not cl-reducible to any random left-c.e. real.
(3) There is a set A ∈ d which is not cl-reducible to any random left-c.e. real.
(4) d is array non-computable.

Proposition 1.2 ([4]) If d is not generalised low2, there is some A ≤T d which is not ibT-
reducible to any complex real.

In [8], a uniform version of non-low2-ness was introduced: a Turing degree d is uniformly
non-low2 if for any total function f ≤T ∅′, there is a uniform way to define a total function
g ≤T d such that g is not dominated by f . As a non-trivial subclass of non-low2 degrees, Fan
proved that:

Proposition 1.3 ([8]) If a c.e. degree d is uniformly non-low2, then for any non-computable
Δ0

2 real α, there is a left-c.e. real β ∈ d such that α and β have no common upper bound in
left-c.e. reals under cl-reduciblity.

Applying the proof method of Proposition 1.3, a c.e. Turing degree d is non-low2 if and
only if for any Δ0

2 real α, there is a real β ∈ d such that β �≤cl α (see [8]).
In this paper, we continue to study the relation between non-low2-ness and cl-reducibility.

We firstly construct two left-c.e. reals β0 and β1 which have a property as follows.

Theorem 1.4 There are two left-c.e. reals β0 and β1 such that, for any left-c.e. real α, if
β0 ≤wtt α, then β1 �≤cl α.

If a c.e. degree d is non-low2, d can contain β0 and β1 in above theorem.

Theorem 1.5 If a c.e. Turing degree d is non-low2, then there are two left-c.e. reals β0 and
β1 in d such that, for any left-c.e. real α, if β0 ≤wtt α, then β1 �≤cl α.

Now we can localize Proposition 1.2 in the c.e. Turing degrees.

Corollary 1.6 If a c.e. Turing degree d is non-low2, then there is a left-c.e. real in d, which
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is not cl-reducible to any complex (wtt-complete) left-c.e. real.

Proof In [9], for any set, it is complex ⇔ it wtt-computes a DNR function; for any c.e. set, it
is wtt-complete ⇔ it is complex. In [4], for any left-c.e. real γ, there is a c.e. set A such that
A ≤cl γ and γ ≤tt A. Then γ =wtt A. Therefore, γ is wtt-complete ⇔ A is wtt-complete ⇔ A

wtt-computes a DNR function ⇔ γ wtt-computes a DNR function ⇔ γ is complex. Let β1 ∈ d
be the left-c.e. real in Theorem 1.5, this β1 is not cl-reducible to any wtt-complete left-c.e. real
and so it is not cl-reducible to any complex left-c.e. real. �

But we do not know if the converse of Corollary 1.6 holds, thereby giving a characteriza-
tion of non-low2-ness in the property of cl-reducibility. We organize the paper as follows: in
Section 2, we prove Theorem 1.4; in Section 3, we prove Theorem 1.5 by modifying the proof
of Proposition 1.3. Here some notations should be mentioned.

Notation 1.7 For a real α, the digits on the right of the decimal point in its binary expansion
are numbered as 1, 2, 3, . . . from left to right; the digits on the left of the decimal point are
numbered as 0,−1,−2, . . . from right to left. Symbol α �I is for those α-digits in interval I;
symbol α(a) is for digit a of α; symbol bk is for a string with k consecutive numbers b; symbol
1i0ω is simplified as 1i.

Notice that if β ≤cl α with constant c, then β ≤ibT α �≥c. Although we recount our results
in cl-reducibility, all “cl” can be substituted by “ibT”. To make the technical details of the
proofs slightly simpler, we work with ibT-reducibility during the whole construction.

2 One Property of Left-c.e. Reals Under cl-reducibility

To prove Theorem 1.4, it suffices to construct two left-c.e. reals β0 and β1, meeting, for all
Turing functionals Φ, all ibT-Turing functionals Γ, all left-c.e. reals α, and all partial computable
functions f , (w.o.l.g, f is strictly increasing).

Re : β0 = Φαe1
e2 with a computable bound fe0 on its use ⇒ β1 �= Γαe1

e3 ,

where e = 〈e0, e1, e2, e3〉.
2.1 Proof Idea of Theorem 1.4

Inductively, we assume the sequences of intervals {Ie}e∈ω by letting for e ≥ 0, x0 = 1, Ie =
[xe, x

′
e) ⊂ N, xe+1 > x′e.

Now we assign β1 �Ie
and β0 �Ie

to meet Re. From now on, the current value of candidates
Ie, xe etc. at stage s is denoted by putting one more index s. Let

l(e, s) = max{y : (∀y < x)[β0,s(y) = Φαe1,s
e2,s (y) & φ

αe1,s
e2,s (y) ≤ fe0(y) ↓ & β1,s(y) = Γαe1,s

e3,s (y)]}.
For s > e, we say Re requires attention at stage s+ 1 if l(e, s) ≥ x′e,s. Then we make a change
of β0,s+1 �Ie,s

or β1,s+1 �Ie,s
. If Re requires attention at stage t > s+ 1 again, then either

(1) a change on β0,s+1(x) (x ∈ Ie,s) will cause (αe1,s �= αe1,t) �� fe0(x); or
(2) a change on β1,s+1(x)(x ∈ Ie,s) will cause (αe1,s �= αe1,t) �� x.
The idea to meet Re is: we set Ie long enough and change one appropriate βi-digit (i = 0, 1)

when Re requires attention. If Re is not met when β0 �Ie
= β1 �Ie

= 1x′
e−xe , then the left-c.e.

real αe1 will be larger than 1, which is a contradiction.
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2.2 The Modules

Now we make preparation for meeting Re, which shows how to define Ie and arrange βi-change
when Re requires attention.

Given a computable function f , we describe an ibT-wtt game amongst left-c.e. reals β0, β1

and α in stages as follows:
• if β0 changes on digit x, then α will change on some digit not larger than f(x);
• if β1 changes on digit x, then α will change on some digit not larger than x.
Following this game, real α wtt-computes β0 and ibT-computes β1 simultaneously. In this

game, we say α follows the least effort strategy to ibT-compute β1, if α increases by the least
amount 2−x when β1 changes on digit x.

Now we introduce the following lemmas without proof, which is quiet similar to the lemmas
in [11].

Lemma 2.1 In an ibT-wtt-game amongst β0, β1 and α, α has to follow instructions of the
type “change a digit at a position ≤ f(x)” if β0 changes on x or “change a digit at a position
≤ x” if β1 changes on x. The least effort strategy is the best strategy for α. In other words, if
a different strategy produces α′, then at each stage s of the game αs ≤ α′

s.

Lemma 2.2 In the above ibT-wtt-game amongst β0, β1 and α, although α = 0, some α′ plays
the same game while starting with α′

0 = σ for a finite binary expansion σ. If the strategies of α,
α′ are the same (i.e. the least effort strategy described above) and the sequence of instructions
only ever demand change at digits > |σ|, then at every stage s, α′

s = αs + σ.

Suppose that α computes β0 with a computable bound f on its use; let A = {m,m+ 2−1 :
m ∈ N

+} and n ∈ A; and β0 �≥a= β1 �≥a= α �≥a= 0ω for a ∈ N
+. We introduce a module

M(f, n, a) to define βi (i = 0, 1) by induction on n, and during it,
• only digits ≥ a of βi change;
• if some βi-change occurs, then α wtt-computes β0 with a computable use f or follows the

least strategy to ibT-compute β1 instantly;
• if one βi-change occurs, then until α codes this change no other βi-changes occur;
• the left-c.e. real α satisfies α ≥ n · 2−a+1 when it ends.

Module 2.3 Given a computable function f , β0 �≥a= β1 �≥a= α �≥a= 0ω. The module
M(f, 1, a) is as follows:

(1) Let b = a+ 1;
(2) Let β1(b) = 1;
(3) (a) If b < f(a), then increase b by amount 1 and go back to (2);

(b) If b = f(a), then go to (4);
(4) Let β0(a) = 1;
(5) Let β1(a) = 1 and clear all digits > a to 0; end this module.

Lemma 2.4 Following M(f, 1, a), α ≥ 2−a+1 and α �≥a= 0ω.

Proof If let β1(b) = 1, then to code it, α(b) = 1. By induction on b, if β0 �>a= β1 �>a=
1f(a)−a, then α �>a= 1f(a)−a. If let β0(a) = 1, then α changes at a digit ≤ f(a), which causes
α ≥ 2−a. If let β1(a) = 1, then α ≥ 2−a+1 and α �≥a= 0ω. �
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Module 2.5 Given a computable function f , β0 �≥a= β1 �≥a= α �≥a= 0ω. Let n ≥ 1 and
digit −k be the leftmost non-zero digit in n’s binary representation. Suppose that M(f, n, x)
is well defined for each x ∈ N

+, the module M(f, n+ 2−1, a) is as follows:
(1) Let i = 1;
(2) Perform the module M(f, n, a+ i);
(3) When M(f, n, a+ i) ends,

(a) If i < f(2k+1 · a) + k, then increase i by amount 1 and go back to (2);
(b) If i = f(2k+1 · a) + k, then go to (4);

(4) Let β0(a) = 1 and clear all digits > a to 0;
(5) Let β1(a) = 1 and clear all digits > a to 0; end this module.

Lemma 2.6 Following M(f, n+ 2−1, a), α ≥ (n+ 2−1) × 2−a+1 and α �≥a= 0ω.

Proof We prove by induction on n.

Case n = 1 Firstly, we claim that: if M(f, 1, a + i) ends, then β0 �>a= β1 �>a= 1i,
α ≥ 2−a + · · · + 2−a−i+1 and α �≥a+i+1= 0ω.

Fix i, assume that this claim holds for ≤ i. If M(f, 1, a+ i) ends, then β0 �>a+i= β1 �>a+i=
0ω provides room to perform M(f, 1, a + i + 1). By Lemmas 2.2 and 2.4, if M(f, 1, a+ i + 1)
ends, then β0 �>a= β1 �>a= 1i+1, α ≥ 2−a + · · · + 2−a−i and α �≥a+i+2= 0ω.

For n = 1, k = 0. Following the claim, if i = f(2a), then β0 �>a= β1 �>a= 1f(2a) and
α ≥ 2−a + · · ·+ 2−a−f(2a)+1. If let β0(a) = 1, then to code it, α changes at a digit ≤ f(a). For
a+ f(2a) − 1 ≥ f(a), it causes

α ≥ 2−a + · · · + 2−f(a) + 2−f(a) ≥ 2−a+1.

If let β1(a) = 1, then to code it, α ≥ 2−a+1 + 2−a = (1 + 2−1) · 2−a+1.

Case n > 1 Assume that Lemma 2.6 holds for all m < n, a ∈ N
+. Firstly, we claim that: if

M(f, n, a+ i) ends, then β0 �>a= β1 �>a= 1i, α ≥ n · (2−a + · · ·+2−a−i+1) and α �≥a+i+1= 0ω.
Fix i, assume that this claim holds for ≤ i. If M(f, n, a+i) ends, then β0 �>a+i= β1 �>a+i=

0ω provides room to perform M(f, n, a+ i+ 1). By Lemma 2.2, if M(f, n, a+ i+ 1) ends, then
β0 �>a= β1 �>a= 1i+1, α ≥ n · (2−a + · · · + 2−a−i+1 + 2−a−i) and α �≥a+i+2= 0ω.

Following the claim, if i = f(2k+1 · a) + k, then β0 �>a= β1 �>a= 1f(2k+1·a)+k and

α ≥ n · 2−a + · · · + n · 2−a−f(2k+1·a)−k+1

= 2−a+1 · n · (1 − 2−f(2k+1·a)−k)

= (n− 2−1) · 2−a+1 + (2−a−1 + 2−a−2 + · · · + 2−a−f(2k+1·a)+2)

+ (2−a−f(2k+1·a)+2 − n · 2−a−f(2k+1·a)−k+1).

Note that 2−a−f(2k+1·a)+2 − n · 2−a−f(2k+1·a)−k+1 ≥ 0, since n ≤ 2k+1.
If let β0(a) = 1, then to code it, α changes at a digit ≤ f(a). For a+ f(2k+1 ·a)− 2 ≥ f(a),

it causes

α ≥ (n− 2−1) · 2−a+1 + (2−a−1 + 2−a−2 + · · · + 2−f(a)) + 2−f(a) = n · 2−a+1.

If let β1(a) = 1, then to code it, α ≥ (n+ 2−1) · 2−a+1 and α �≥a= 0. �
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Remark 2.7 Let If,n,a be the least interval which includes all digits of β0 and β1 mentioned
during M(f, n, a). By induction on n, the first changing digit in Mf,n,a is β1(a+ 2n− 1).

2.3 The Construction of β0 and β1 in Theorem 1.4

Now we recall Re-requirement. If β0 = Φαe1
e0 with a computable bound fe0 on its use, then we

perform M(fe0 , 2
xe , xe) to make one change of β0 or β1 each time Re requires attention. By

Lemmas 2.1, 2.2 and 2.6, Re is met. Otherwise αe1 ≥ 2xe ·2−(xe−1) = 2, which is a contradiction.
However we can not tell whether fe0 is total or not in advance. The following notation helps
us to judge whether take fe0 as a (total) computable function.

Notation 2.8 We define a set Df,n,a by induction as follows:

(1) Df,1,a = {a : f(a) ↓} (we say Df,1,a is well defined at stage s if fs(a) ↓).
(2) Suppose that Df,n,x is defined for x ∈ N

+ and digit −k is the leftmost non-zero digit in
n’s binary representation. Let

Df,n+2−1,a =
⋃

1≤i≤f(2k+1·a)+k

Df,n,a+i.

(We say Df,n+2−1,a is well defined at stage s if for all i ∈ [1, f(2k+1 · a) + k], Df,n,a+i is well
defined at stage s.)

Given fe0 , if Dfe0 ,2xe ,xe
is well defined, then we take fe0 as a computable bound (Although

it may be non-computable.); otherwise, fe0 is non-computable. Therefore, before performing
M(fe0 , 2

xe , xe) to meet Re, we ask for whether Dfe0 ,2xe ,xe
is well defined or not. Furthermore,

we show how to set the length of Ie,s = [xe,s, x
′
e,s).

Notation 2.9 At stage s, if Dfe0 ,2xe,s ,xe,s
is well defined, then we assign Ie,s such that |Ie,s| =

|Ife0 ,2xe,s ,xe,s
|; otherwise, we assign Ie,s such that |Ie,s| = 2xe,s+2 (By Remark 2.7, this assures

that if Dfe0 ,2xe,s ,xe,s
is well defined and Re requires attention at stage s+1, then we can perform

the first action of M(fe0 , 2
xe,s , xe,s) and reset Ie,s+1.).

Now we effectively order Re-requirements in an increasing order of e, and give the construc-
tion in stages as follows.

Construction 2.10 Stage s = 0. Let β0,0 = β1,0 = 0, x0,0 = 1.

Stage s+ 1. Choose the least e ≤ s so that Re requires attention and Dfe0 ,2xe,s ,xe,s
is well

defined. Following M(fe0 , 2
xe,s , xe,s), we make a corresponding change of βi,s, i = 0, 1, keep

xe,s+1 = xe,s, and set Ie,s+1 such that |Ie,s+1| = |Ife0 ,2xe,s ,xe,s
|. Meanwhile, if e′ < e, keep

xe′,s+1 = xe′,s and Ie′,s+1 = Ie′,s for stronger requirement Re′ ; and if e′ > e, then initialize
all weaker requirement Re′ , i.e., reassign xe′,s+1 to be larger than any number mentioned
before, and set Ie′,s+1 such that |Ie′,s+1| = 2xe′,s+1+2, consecutively in an increasing order of
e′. Otherwise, if there is no such e, then keep all candidates unchanged.

Lemma 2.11 Fix e, requirement Re receives attention at most finitely often and is eventually
satisfied.

Proof Fix e and assume by induction that Lemma 2.11 holds for all i < e. Choose t minimal
so that no Ri, i < e, receives attention after stage t. Hence, requirement Re is not initialized
after stage t and xe = xe,t.
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Choose the least stage s > t such that Dfe0 ,2xe,s ,xe,s
is well defined. If no such s exists, then

fe0 is not total and Re is met. Otherwise, if Re is not met, then by Lemmas 2.1, 2.2 and 2.6,
αe1 ≥ 2xe · 2−(xe−1) > 1 after M(fe0 , 2

xe , xe) ends. It is a contradiction. �

Remark 2.12 The interval Ie for Re is fixed forever after some stage. Since Ie is initialized
finitely often and after that it changes only at the first stage when Dfe0 ,2xe ,xe

is well defined
and Re requires attention. Hence {Ie}e∈ω is T-reducible to ∅′.

3 Non-low2-ness: cl-reducibility

To prove Theorem 1.5, we can construct two left-c.e. reals β0, β1 to meet the following require-
ments: for i = 0, 1, Pi : βi ≤T D and Ti : D ≤T βi; and for e ∈ ω,

Q : ∃∞e
[
Qe =

∧

0≤i≤e

Qe,i

]
,

which Qe,i = Ri. Effectively order Qe,i-requirements (of order type ω) as follows: Qe,i < Qe′,i′

if e < e′ or e = e′, i < i′.
Inspired by the proof of Theorem 1.4, let Ie,i = [xe,i, x

′
e,i), we perform M(fi0 , 2

xe,i , xe,i) to
change β0 �Ie,i

or β1 �Ie,i
to meet Qe,i. Let xe = xe,0,x′

e = x′e,e,xe+1 = x′
e + 2, we define

Ie =
⋃

0≤i≤e

Ie,i = [xe,x′
e].

To meet Ti we define βi(x′
e + 1) = 1 if e ∈ D; otherwise, define βi(x′

e + 1) = 0.
In this way, both Q-requirements and T -requirements are met. Hence {Ie}e∈ω can be

considered as the given one.
Now to meet Pi, we define

m(e) = μs(∀i ≤ e)[αi,s �� x′
e,s = αi �� x′

e].

By Remark 2.12, {x′
e}e∈ω is T-reducible to ∅′ by the Limit Lemma. Hence, m is T-reducible

to ∅′. Let D be a c.e. set in d, there is a total function ΨD so that ∃∞e[ΨD(e) > m(e)]
since d is non-low2. We define a function g as follows: let ge(e) = 0; for e < s, gs(e) = s if
ΨD

s (e) ↓ & Ds � ψD
s−1(e) �= Ds−1 � ψD

s−1(e); otherwise, gs(e) = gs−1(e). We change β0 �Ie
or

β1 �Ie
only if gs(e) �= gs−1(e). Notice that g ≤T D for D is c.e., and it implies βi ≤T D. Then

from the given {Ie}e∈ω and m, we begin our construction by the assumption that g is given.

Remark 3.1 Notice that if Qe,i requires attention at stage s but gs(e) = gs−1(e), then the
change of β0 �Ie,i

or β1 �Ie,i
, following M(fi0 , 2

xe,i , xe,i), does not occur at stage s. This βi-
change will occur at stage t > s, which gt(e) �= gt−1(e) and Qe,i requires attention. Therefore, to
assure βi ≤T D, performing M(fi0 , 2

xe,i , xe,i) to meet Qe,i slows down. Moreover, although Ie,i

is given, we need to assure that β0 �Ie,i
= β1 �Ie,i

= 0|Ie,i| if we want to perform M(fi0 , 2
xe,i , xe,i).

To assure this happens may ask for Qe′ (e′ < e) to initialize Qe, but g(e′) may not change
instantly to allow such initialization. Therefore in the following construction, according to g we
will define different candidates Îe,i, Î, x̂e,i, x̂′e,i, x̂e in stages etc. to help meet Qe,i. The current
value of all these candidates at stage s is denoted by putting one more index s. If fi0 is a
computable bound, for s > e, we say Qe,i requires attention at stage s+ 1 if l(i, s) ≥ x̂′

e,s.

Construction 3.2 We give the construction in stages.
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Stage s = 0. Let β0,0 = β1,0 = 0, and x̂0,0,0 = 1.
Stage s+1. Choose the least 〈e, i〉 ≤ s so that Qe,i requires attention, Dfi0 ,2x̂e,i,s ,x̂e,i,s

is well
defined and gs+1(e) �= gs(e). Following M(fi0 , 2

x̂e,i,s , x̂e,i,s), we make a corresponding change
of β0 and β1, keep x̂e,i,s+1 = x̂e,i,s, and set Îe,i,s+1 such that |Îe,i,s+1| = |Îfi0 ,2x̂e,i,s+1 ,x̂e,i,s+1

|.
Moreover, if e′ < e or e′ = e, i′ < i, then keep x̂e′,i′,s+1 = x̂e′,i′,s, Îe′,i′,s+1 = Ie′,i′,s for stronger
requirement Qe′,i′ ; and if e < e′ or e = e′, i < i′, then initialize weaker requirement Qe′,i′ , i.e.,
reassign x̂e′,i′,s+1 to be larger than any number mentioned before, keep x̂e+1,s+1 = x̂′

e,s+1 + 2,
and set Îe′,i′,s+1 such that |Îe′,i′,s+1| = 2x̂e′,i′,s+1+2, consecutively in an increasing order of e′, i′.
Or else, if there is no such 〈e, i〉, then keep all candidates unchanged.

Furthermore, for i = 0, 1, we define βi,s+1(x̂
′
e,s+1 + 1) = 1 if e ∈ Ds+1; otherwise, let

βi,s+1(x̂
′
e,s+1 + 1) = 0.

Lemma 3.3 For each e and 0 ≤ i ≤ e, x̂e,i ≤ xe,i and x̂′e,i ≤ x′e,i.

Proof Fix e, i and assume by induction that Lemma 3.3 holds for all e′ < e or e′ = e, i′ < i.
It is obvious that x̂e,i ≤ xe,i. By Module 2.5 and Lemma 2.6, if fi is strictly increasing, then
|I(fi, 2x̂e,i , x̂e,i)| ≤ |I(fi, 2xe,i , xe,i)|. Hence x̂′e,i ≤ x′e,i. �

Lemma 3.4 Q is met, i.e. ∃∞e[Qe is met ].

Proof Fix Qe,i, choose t minimal so that no stronger requirements than Qe,i ask for β0-change
or β1-change or no i < e is enumerated into D. Hence, requirement Qe,i is not initialized after
stage t and x̂e,i = x̂e,i,t. Choose the least stage s > t such that Dfi0 ,2x̂e,i ,x̂e,i

is well defined.

If no such s exists, then fi0 is not total and Qe,i is met. If such s exists, then Îe,i = Îe,i,s. If
Qe,i requires attention after s, then we follow M(fi0 , 2

x̂e,i,s , x̂e,i,s) to change β0 �Îe,i
or β1 �Îe,i

.
By Lemma 3.3, x̂′

e ≤ xe. So αi,m(e) �� x̂′
e,m(e) = αi �� x̂′

e. We observe whether Qe,i requires
attention at stage m(e) > s. If Qe,i does not require attention at m(e), then Qe,i is met. If
Qe,i requires attention at m(e), then we continue to perform M(fi0 , 2

x̂e,i , x̂e,i) after m(e), since
M(fi0 , 2

x̂e,i , x̂e,i) will not end during the whole construction. Otherwise, if M(fi0 , 2
x̂e,i , x̂e,i)

ends, then αi1 ≥ 2x̂e,i · 2−(x̂e,i−1) > 1 by Lemmas 2.1, 2.2 and 2.6, which is a contradiction.
In this way, Qe,i is met at stage g(e) forever if g(e) > m(e). For ∀e[g(e) ≥ ΦD(e)] and
∃∞e[ΦD(e) > m(e)], there are infinitely many e such that g(e) > m(e) and Qe is met. �

Lemma 3.5 βi ≡T D ∈ d.

Proof It is obvious that D ≤T βi. For x ∈ Îe, βi,s+1(x) changes implies gs+1(e) does. For D
is c.e., g ≤T D. Then βi ≤T D. �
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