Acta Mathematica Sinica, English Series Sep., 2017, Vol. 33, No. 9, pp. 1184–1192 Published online: June 25, 2017 DOI: 10.1007/s10114-017-6585-5 Http://www.ActaMath.com

Acta Mathematica Sinica. *<u>English Series</u> English Series* © Springer-Verlag Berlin Heidelberg & The Editorial Office of AMS 2017

Non-low2-ness and Computable Lipschitz Reducibility

Yun FAN

School of Mathematics, Southeast University, Nanjing 210096*, P. R. China E-mail* : *fanyun@seu.edu.cn*

Abstract In this paper, we prove that if a c.e. Turing degree **d** is non-low₂, then there are two left-c.e. reals β_0 , β_1 in **d**, such that, if β_0 is wtt-reducible to a left-c.e. real α , then β_1 is not computable Lipschitz (cl-) reducible to α . As a corollary, **d** contains a left-c.e. real which is not cl-reducible to any complex (wtt-complete) left-c.e. real.

Keywords Non-low2, computable Lipschitz (cl) reducibility, complex

MR(2010) Subject Classification 03D25, 03D30, 03D32, 68Q30

1 Introduction

Recall that all the reals we consider are in [0, 1], and are identified with elements of 2^{ω} and with subsets of N.

Martin–Löf randomness is a natural and robust notion of randomness in that it coincides with other methods of defining algorithmic randomness. Schnorrs theorem proved that A is Martin–Löf random if and only if for all x , $K(A \upharpoonright x) = x+O(1)$, where $A \upharpoonright x$ denotes the first x
bits of A and K denotes usefus for K -luce access same latter. Selon was the same suggests a natural bits of A and K denotes prefix-free Kolmogorov complexity. Schnorrs theorem suggests a natural method of calibrating randomness of reals: $A \leq_K B$ iff for all $x, K(A \upharpoonright x) \leq K(B \upharpoonright x) + O(1)$.
More assumes of addition and houses including this massume have have analyzed. Of interest Many measures of relative randomness implying this measure have been analysed. Of interest to us here is one inspired by strong reducibilities. In [5], a strengthening of weak truth table reducibility, namely computations where the use on the oracle on argument x is $x + c$ for some constant c, i.e., for any oracle query y, $y \leq x+c$, was suggested as a possible measure of relative randomness. This reducibility has appeared in the literature with various names, e.g. *strong weak truth table* [5], *computable Lipschitz* (due to a characterization of it in terms of effective Lipschitz functions) [2, 6] and *linear* [3]. We will adopt the terminology in [2, 6] and note it as \leq_{cl} . It is nearly obvious that \leq_{cl} is a measure of relative randomness. The identity bounded Turing reducibility (ibT or \leq_{ibT} for short) is a computable Lipschitz reduction for which the constant c is 0. It was introduced by Soare [10] in connection with applications of computability theory to differential geometry.

The cl-degrees are the equivalence classes under cl-reducibility. Notice that they either contain only random reals or only non-random reals. In [5], the structure of cl-degrees of left-c.e. reals (i.e. limits of computable increasing sequences of rationals) is neither a lower semi-lattice nor an upper semi-lattice. In [11], Yu and Ding proved that there are two left-c.e. reals which

Received December 23, 2016, revised March 13, 2017, accepted March 30, 2017 Supported by NSFC (Grant No. 11201065)

had no common upper bound in the cl-degrees. In [7], Fan and Yu improved this result that for any non-computable Δ_2^0 real α there is a left-c.e. real β such that both of them have no common
unper bound in left a a reals. In [6]. Downey and Himshfoldt proved the following result, there upper bound in left-c.e. reals. In [6], Downey and Hirschfeldt proved the following result: there is a real (not left-c.e.) which is not cl-reducible to any random real (indeed to any complex real). (In [9], a set A is called *complex* if there is an order (nondecreasing, unbounded, and computable) function h such that $K(A \upharpoonright x) > h(x)$ for all x.) In [1], Barmpalias and Lewis
legalized this possible that there is a left as a real which is not al reducible to any Martin Little localized this result that there is a left-c.e. real which is not cl-reducible to any Martin–Löf random left-c.e. real.

The interplay between Turing and stronger reducibilities, such as wtt, cl-reducibility, is a meaningful topic. The following results express that computable Lipschitz reducibility helps understand array-non-computability and the lowness notion. Recall that a degree **d** is array non-computable if for any total function $f \leq_{\text{wt}} \emptyset'$, there is a total function $g \leq_T d$ not
deminated by f_{tot} a degree d is non-law, if for any total function $f \leq \emptyset'$ there is a total dominated by f; a degree **d** is non-low₂ if for any total function $f \leq_T \mathcal{V}'$ there is a total
function $\mathcal{S} \leq \mathcal{A}$ and degree density for degree dispedded appendicular if $\mathcal{A}\mathcal{U} \leq (\mathcal{A} \setminus \mathcal{O})^{\prime}$. function $g \leq_T \mathbf{d}$ not dominated by f ; a degree **d** is called generalised low₂ if $\mathbf{d}'' \leq (\mathbf{d} \vee \mathbf{0}')'.$

Proposition 1.1 ([4]) *For a c.e. degree* **d***, the following are equivalent* :

(1) *There are left-c.e. reals* $\alpha, \beta \in \mathbf{d}$ *which have no common upper bound in the cl-degrees of left-c.e. reals.*

- (2) *There is a left-c.e. real* $\beta \in \mathbf{d}$ *which is not cl-reducible to any random left-c.e. real.*
- (3) *There is a set* $A \in \mathbf{d}$ *which is not cl-reducible to any random left-c.e. real.*
- (4) **d** *is array non-computable.*

Proposition 1.2 ([4]) *If* **d** *is not generalised low₂, there is some* $A \leq_T \mathbf{d}$ *which is not ibTreducible to any complex real.*

In [8], a uniform version of non-low2-ness was introduced: a Turing degree **d** is uniformly non-low₂ if for any total function $f \leq_T \theta'$, there is a uniform way to define a total function $g \leq_T \mathbf{d}$ such that g is not dominated by f. As a non-trivial subclass of non-low₂ degrees, Fan proved that:

Proposition 1.3 ([8]) *If a c.e. degree* **^d** *is uniformly non-*low2*, then for any non-computable* Δ_2^0 real α , there is a left-c.e. real $\beta \in \mathbf{d}$ such that α and β have no common upper bound in *left-c.e. reals under cl-reduciblity.*

Applying the proof method of Proposition 1.3, a c.e. Turing degree \bf{d} is non-low₂ if and only if for any Δ_2^0 real α , there is a real $\beta \in \mathbf{d}$ such that $\beta \nleq_{\text{cl}} \alpha$ (see [8]).

In this paper, we continue to study the relation between non-low₂-ness and cl-reducibility. We firstly construct two left-c.e. reals β_0 and β_1 which have a property as follows.

Theorem 1.4 *There are two left-c.e. reals* β_0 *and* β_1 *such that, for any left-c.e. real* α *, if* $\beta_0 \leq_{\text{wtt}} \alpha$ *, then* $\beta_1 \nleq_{\text{cl}} \alpha$ *.*

If a c.e. degree **d** is non-low₂, **d** can contain β_0 and β_1 in above theorem.

Theorem 1.5 *If a c.e. Turing degree* **d** *is non-low₂, then there are two left-c.e. reals* β_0 *and* β₁ *in* **d** *such that, for any left-c.e. real* α *, if* $\beta_0 \leq_{\text{wtt}} \alpha$ *, then* $\beta_1 \nleq_{\text{cl}} \alpha$ *.*

Now we can localize Proposition 1.2 in the c.e. Turing degrees.

Corollary 1.6 *If a c.e. Turing degree* **d** *is non-low*₂*, then there is a left-c.e. real in* **d***, which*

is not cl-reducible to any complex (*wtt-complete*) *left-c.e. real.*

Proof In [9], for any set, it is complex ⇔ it wtt-computes a DNR function; for any c.e. set, it is wtt-complete \Leftrightarrow it is complex. In [4], for any left-c.e. real γ , there is a c.e. set A such that $A \leq_{\text{cl}} \gamma$ and $\gamma \leq_{\text{tt}} A$. Then $\gamma =_{\text{wt}} A$. Therefore, γ is wtt-complete $\Leftrightarrow A$ is wtt-complete $\Leftrightarrow A$ wtt-computes a DNR function $\Leftrightarrow \gamma$ wtt-computes a DNR function $\Leftrightarrow \gamma$ is complex. Let $\beta_1 \in \mathbf{d}$ be the left-c.e. real in Theorem 1.5, this β_1 is not cl-reducible to any wtt-complete left-c.e. real and so it is not cl-reducible to any complex left-c.e. real. and so it is not cl-reducible to any complex left-c.e. real.

But we do not know if the converse of Corollary 1.6 holds, thereby giving a characterization of non-low2-ness in the property of cl-reducibility. We organize the paper as follows: in Section 2, we prove Theorem 1.4; in Section 3, we prove Theorem 1.5 by modifying the proof of Proposition 1.3. Here some notations should be mentioned.

Notation 1.7 For a real α , the digits on the right of the decimal point in its binary expansion are numbered as $1, 2, 3, \ldots$ from left to right; the digits on the left of the decimal point are numbered as $0, -1, -2, \ldots$ from right to left. Symbol $\alpha \restriction I$ is for those α -digits in interval I;
remarked $\alpha(\alpha)$ is for digit as for small of the form of the properties we have been to small of symbol $\alpha(a)$ is for digit a of α ; symbol b^k is for a string with k consecutive numbers b; symbol $1^i 0^\omega$ is simplified as 1^i .

Notice that if $\beta \leq_{cl} \alpha$ with constant c, then $\beta \leq_{ib} \alpha$ \geq_{c} . Although we recount our results in cl-reducibility, all "cl" can be substituted by "ibT". To make the technical details of the proofs slightly simpler, we work with ibT-reducibility during the whole construction.

2 One Property of Left-c.e. Reals Under cl-reducibility

To prove Theorem 1.4, it suffices to construct two left-c.e. reals β_0 and β_1 , meeting, for all Turing functionals Φ , all ibT-Turing functionals Γ, all left-c.e. reals α , and all partial computable functions f , (w.o.l.g, f is strictly increasing).

 $R_e: \beta_0 = \Phi_{e_2}^{\alpha_{e_1}}$ with a computable bound f_{e_0} on its use $\Rightarrow \beta_1 \neq \Gamma_{e_3}^{\alpha_{e_1}}$,

where $e = \langle e_0, e_1, e_2, e_3 \rangle$.

2.1 Proof Idea of Theorem 1.4

Inductively, we assume the sequences of intervals $\{I_e\}_{e \in \omega}$ by letting for $e \geq 0$, $x_0 = 1, I_e =$ $[x_e, x'_e] \subset \mathbb{N}, \quad x_{e+1} > x'_e.$

Now we assign $\beta_1 \restriction_{I_e}$ and $\beta_0 \restriction_{I_e}$ to meet R_e . From now on, the current value of candidates I_e, x_e etc. at stage s is denoted by putting one more index s. Let

$$
l(e,s) = \max\{y : (\forall y < x)[\beta_{0,s}(y) = \Phi_{e_2,s}^{\alpha_{e_1,s}}(y) \& \phi_{e_2,s}^{\alpha_{e_1,s}}(y) \le f_{e_0}(y) \downarrow \& \beta_{1,s}(y) = \Gamma_{e_3,s}^{\alpha_{e_1,s}}(y)]\}.
$$

For $s > e$, we say R_e *requires attention* at stage $s + 1$ if $l(e, s) \ge x'_{e,s}$. Then we make a change of $\beta_{0,s+1}$ $\upharpoonright_{I_{e,s}}$ or $\beta_{1,s+1}$ $\upharpoonright_{I_{e,s}}$. If R_e requires attention at stage $t > s + 1$ again, then either

(1) a change on $\beta_{0,s+1}(x)$ $(x \in I_{e,s})$ will cause $(\alpha_{e_1,s} \neq \alpha_{e_1,t})$ \upharpoonright $f_{e_0}(x)$; or

(2) a change on $\beta_{1,s+1}(x)$ ($x \in I_{e,s}$) will cause $(\alpha_{e_1,s} \neq \alpha_{e_1,t}) \upharpoonright x$.

The idea to meet R_e is: we set I_e long enough and change one appropriate β_i -digit $(i = 0, 1)$ when R_e requires attention. If R_e is not met when β_0 $\vert_{I_e} = \beta_1$ $\vert_{I_e} = 1^{x'_e - x_e}$, then the left-c.e. real α_{e_1} will be larger than 1, which is a contradiction.

2.2 The Modules

Now we make preparation for meeting R_e , which shows how to define I_e and arrange β_i -change when R_e requires attention.

Given a computable function f, we describe an ibT-wtt game amongst left-c.e. reals β_0 , β_1 and α in stages as follows:

- if β_0 changes on digit x, then α will change on some digit not larger than $f(x)$;
- if β_1 changes on digit x, then α will change on some digit not larger than x.

Following this game, real α wtt-computes β_0 and ibT-computes β_1 simultaneously. In this game, we say α follows the *least effort strategy* to ibT-compute β_1 , if α increases by the least amount 2^{-x} when β_1 changes on digit x.

Now we introduce the following lemmas without proof, which is quiet similar to the lemmas in [11].

Lemma 2.1 In an ibT-wtt-game amongst β_0 , β_1 and α , α has to follow instructions of the *type "change a digit at a position* $\leq f(x)$ " *if* β_0 *changes on* x *or "change a digit at a position* $\leq x^{\prime\prime}$ *if* β_1 *changes on* x. The least effort strategy is the best strategy for α . In other words, if *a* different strategy produces α' , then at each stage s of the game $\alpha_s \leq \alpha'_s$.

Lemma 2.2 *In the above* ibT*-wtt-game amongst* β_0 , β_1 *and* α , *although* $\alpha = 0$ *, some* α' *plays the same game while starting with* $\alpha'_0 = \sigma$ *for a finite binary expansion* σ *. If the strategies of* α , α' and the sense of instructions α- *are the same* (*i.e. the least effort strategy described above*) *and the sequence of instructions only ever demand change at digits* $> |\sigma|$ *, then at every stage s,* $\alpha_s' = \alpha_s + \sigma$ *.*

Suppose that α computes β_0 with a computable bound f on its use; let $\mathbb{A} = \{m, m + 2^{-1} :$ $m \in \mathbb{N}^+$ and $n \in \mathbb{A}$; and β_0 $\geq_a = \beta_1$ $\geq_a = \alpha$ $\geq_a = 0^\omega$ for $a \in \mathbb{N}^+$. We introduce a module $M(f, n, a)$ to define β_i $(i = 0, 1)$ by induction on n, and during it,

• only digits $\geq a$ of β_i change;

• if some β_i -change occurs, then α wtt-computes β_0 with a computable use f or follows the least strategy to ibT-compute β_1 instantly;

- if one β_i -change occurs, then until α codes this change no other β_i -changes occur;
- the left-c.e. real α satisfies $\alpha \geq n \cdot 2^{-a+1}$ when it ends.

Module 2.3 Given a computable function f , β_0 $\vert_{\geq a} = \beta_1$ $\vert_{\geq a} = \alpha$ $\vert_{\geq a} = 0^\omega$. The module $M(f, 1, a)$ is as follows:

- (1) Let $b = a + 1$;
- (2) Let $\beta_1(b) = 1$;
- (3) (a) If $b < f(a)$, then increase b by amount 1 and go back to (2);
	- (b) If $b = f(a)$, then go to (4);
- (4) Let $\beta_0(a) = 1$;
- (5) Let $\beta_1(a) = 1$ and clear all digits $>a$ to 0; end this module.

Lemma 2.4 *Following* $M(f, 1, a)$ *,* $\alpha \ge 2^{-a+1}$ *and* $\alpha \restriction_{\ge a} = 0^\omega$ *.*

Proof If let $\beta_1(b) = 1$, then to code it, $\alpha(b) = 1$. By induction on b, if β_0 $\gtrsim_a = \beta_1$ $\gtrsim_a = 1$
 $\frac{1}{2}$ $1^{f(a)-a}$, then α \uparrow _{2a} = $1^{f(a)-a}$. If let $\beta_0(a) = 1$, then α changes at a digit ≤ $f(a)$, which causes $\alpha \ge 2^{-a}$. If let $\beta_1(a) = 1$, then $\alpha \ge 2^{-a+1}$ and $\alpha \restriction_{\ge} a = 0^\omega$.

Module 2.5 Given a computable function $f, \beta_0 \geq a = \beta_1 \geq a = \alpha \geq a = 0^\omega$. Let $n \geq 1$ and digit $-k$ be the leftmost non-zero digit in n's binary representation. Suppose that $M(f, n, x)$ is well defined for each $x \in \mathbb{N}^+$, the module $M(f, n+2^{-1}, a)$ is as follows:

- (1) Let $i = 1$;
- (2) Perform the module $M(f, n, a + i);$
- (3) When $M(f, n, a + i)$ ends,
	- (a) If $i < f(2^{k+1} \cdot a) + k$, then increase i by amount 1 and go back to (2);
	- (b) If $i = f(2^{k+1} \cdot a) + k$, then go to (4);
- (4) Let $\beta_0(a) = 1$ and clear all digits $>a$ to 0;
- (5) Let $\beta_1(a) = 1$ and clear all digits $>a$ to 0; end this module.

Lemma 2.6 *Following* $M(f, n + 2^{-1}, a)$ *,* $\alpha \ge (n + 2^{-1}) \times 2^{-a+1}$ *and* $\alpha \ge (n + 2^{-1}) \times 2^{-a+1}$

Proof We prove by induction on *n*.

Case $n = 1$ Firstly, we claim that: if $M(f, 1, a + i)$ ends, then β_0 $\uparrow_{> a} = \beta_1$ $\uparrow_{> a} = 1^i$, $\alpha \geq 2^{-a} + \cdots + 2^{-a-i+1}$ and $\alpha \restriction_{\geq a+i+1} = 0^\omega$.

Fix i, assume that this claim holds for $\leq i$. If $M(f, 1, a+i)$ ends, then $\beta_0 \upharpoonright_{\geq a+i} = \beta_1 \upharpoonright_{\geq a+i} =$ 0^{ω} provides room to perform $M(f, 1, a + i + 1)$. By Lemmas 2.2 and 2.4, if $M(f, 1, a + i + 1)$ ends, then $\beta_0 \restriction_{> a} = \beta_1 \restriction_{> a} = 1^{i+1}, \ \alpha \geq 2^{-a} + \cdots + 2^{-a-i}$ and $\alpha \restriction_{\geq a+i+2} = 0^\omega$.

For $n = 1$, $k = 0$. Following the claim, if $i = f(2a)$, then β_0 $\zeta_{\alpha} = \beta_1$ $\zeta_{\alpha} = 1$ $f(2a)$ and $\alpha \geq 2^{-a} + \cdots + 2^{-a-f(2a)+1}$. If let $\beta_0(a) = 1$, then to code it, α changes at a digit $\leq f(a)$. For $a + f(2a) - 1 \ge f(a)$, it causes

$$
\alpha \ge 2^{-a} + \dots + 2^{-f(a)} + 2^{-f(a)} \ge 2^{-a+1}.
$$

If let $\beta_1(a) = 1$, then to code it, $\alpha \ge 2^{-a+1} + 2^{-a} = (1 + 2^{-1}) \cdot 2^{-a+1}$.

Case $n > 1$ Assume that Lemma 2.6 holds for all $m < n, a \in \mathbb{N}^+$. Firstly, we claim that: if $M(f, n, a+i)$ ends, then β_0 $\uparrow_{> a} = \beta_1$ $\uparrow_{> a} = 1^i$, $\alpha \ge n \cdot (2^{-a} + \cdots + 2^{-a-i+1})$ and α $\uparrow_{\ge a+i+1} = 0^\omega$.

Fix i, assume that this claim holds for $\leq i$. If $M(f, n, a+i)$ ends, then $\beta_0 \upharpoonright_{\geq a+i} = \beta_1 \upharpoonright_{\geq a+i} =$ 0^{ω} provides room to perform $M(f, n, a+i+1)$. By Lemma 2.2, if $M(f, n, a+i+1)$ ends, then β_0 $\uparrow_{> a} = \beta_1$ $\uparrow_{> a} = 1^{i+1}, \ \alpha \geq n \cdot (2^{-a} + \cdots + 2^{-a-i+1} + 2^{-a-i})$ and α $\uparrow_{\geq a+i+2} = 0^\omega$.

Following the claim, if $i = f(2^{k+1} \cdot a) + k$, then $\beta_0 \upharpoonright_{> a} = \beta_1 \upharpoonright_{> a} = 1^{f(2^{k+1} \cdot a) + k}$ and

$$
\alpha \ge n \cdot 2^{-a} + \dots + n \cdot 2^{-a - f(2^{k+1} \cdot a) - k + 1}
$$

= $2^{-a+1} \cdot n \cdot (1 - 2^{-f(2^{k+1} \cdot a) - k})$
= $(n - 2^{-1}) \cdot 2^{-a+1} + (2^{-a-1} + 2^{-a-2} + \dots + 2^{-a-f(2^{k+1} \cdot a) + 2})$
+ $(2^{-a-f(2^{k+1} \cdot a) + 2} - n \cdot 2^{-a-f(2^{k+1} \cdot a) - k + 1}).$

Note that $2^{-a-f(2^{k+1}\cdot a)+2} - n \cdot 2^{-a-f(2^{k+1}\cdot a)-k+1} > 0$, since $n \leq 2^{k+1}$.

If let $\beta_0(a) = 1$, then to code it, α changes at a digit $\leq f(a)$. For $a + f(2^{k+1} \cdot a) - 2 \geq f(a)$, it causes

$$
\alpha \ge (n - 2^{-1}) \cdot 2^{-a+1} + (2^{-a-1} + 2^{-a-2} + \dots + 2^{-f(a)}) + 2^{-f(a)} = n \cdot 2^{-a+1}.
$$

If let $\beta_1(a) = 1$, then to code it, $\alpha \ge (n + 2^{-1}) \cdot 2^{-a+1}$ and $\alpha \restriction_{\ge} a = 0$.

Remark 2.7 Let $I_{f,n,a}$ be the least interval which includes all digits of β_0 and β_1 mentioned during $M(f, n, a)$. By induction on n, the first changing digit in $M_{f,n,a}$ is $\beta_1(a + 2n - 1)$.

2.3 The Construction of β_0 and β_1 in Theorem 1.4

Now we recall R_e -requirement. If $\beta_0 = \Phi_{e_0}^{\alpha_{e_1}}$ with a computable bound f_{e_0} on its use, then we perform $M(f_{e_0}, 2^{x_e}, x_e)$ to make one change of β_0 or β_1 each time R_e requires attention. By Lemmas 2.1, 2.2 and 2.6, R_e is met. Otherwise $\alpha_{e_1} \geq 2^{x_e} \cdot 2^{-(x_e-1)} = 2$, which is a contradiction. However we can not tell whether f_{e_0} is total or not in advance. The following notation helps us to judge whether take f_{e_0} as a (total) computable function.

Notation 2.8 We define a set $D_{f,n,a}$ by induction as follows:

(1) $D_{f,1,a} = \{a : f(a) \downarrow\}$ (we say $D_{f,1,a}$ is well defined at stage s if $f_s(a) \downarrow$).

(2) Suppose that $D_{f,n,x}$ is defined for $x \in \mathbb{N}^+$ and digit $-k$ is the leftmost non-zero digit in n's binary representation. Let

$$
D_{f,n+2^{-1},a} = \bigcup_{1 \leq i \leq f(2^{k+1} \cdot a) + k} D_{f,n,a+i}.
$$

(We say $D_{f,n+2^{-1},a}$ is well defined at stage s if for all $i \in [1, f(2^{k+1} \cdot a) + k]$, $D_{f,n,a+i}$ is well defined at stage s.)

Given f_{e_0} , if $D_{f_{e_0},2^xe,x_e}$ is well defined, then we take f_{e_0} as a computable bound (Although it may be non-computable.); otherwise, f_{ϵ_0} is non-computable. Therefore, before performing $M(f_{e_0}, 2^{x_e}, x_e)$ to meet R_e , we ask for whether $D_{f_{e_0}, 2^{x_e}, x_e}$ is well defined or not. Furthermore, we show how to set the length of $I_{e,s} = [x_{e,s}, x'_{e,s}).$

Notation 2.9 At stage s, if $D_{f_{e_0},2^{x_{e,s}},x_{e,s}}$ is well defined, then we assign $I_{e,s}$ such that $|I_{e,s}|$ = $|I_{f_{e_0},2^{x_{e,s}},x_{e,s}}|$; otherwise, we assign $I_{e,s}$ such that $|I_{e,s}| = 2^{x_{e,s}+2}$ (By Remark 2.7, this assures that if $D_{f_{\epsilon_0},2^{x_{\epsilon,s}},x_{\epsilon,s}}$ is well defined and R_e requires attention at stage $s+1$, then we can perform the first action of $M(f_{e_0}, 2^{x_{e,s}}, x_{e,s})$ and reset $I_{e,s+1}$.).

Now we effectively order R_e -requirements in an increasing order of e, and give the construction in stages as follows.

Construction 2.10 Stage $s = 0$. Let $\beta_{0,0} = \beta_{1,0} = 0, x_{0,0} = 1$.

Stage $s + 1$. Choose the least $e \leq s$ so that R_e requires attention and $D_{f_{e_0},2^{xe,s},x_{e,s}}$ is well defined. Following $M(f_{e_0}, 2^{x_{e,s}}, x_{e,s})$, we make a corresponding change of $\beta_{i,s}, i = 0, 1$, keep $x_{e,s+1} = x_{e,s}$, and set $I_{e,s+1}$ such that $|I_{e,s+1}| = |I_{f_{e_0},2^{x_{e,s}},x_{e,s}}|$. Meanwhile, if $e' < e$, keep $x_{e',s+1} = x_{e',s}$ and $I_{e',s+1} = I_{e',s}$ for stronger requirement $R_{e'}$; and if $e' > e$, then initialize all weaker requirement $R_{e'}$, i.e., reassign $x_{e',s+1}$ to be larger than any number mentioned before, and set $I_{e',s+1}$ such that $|I_{e',s+1}| = 2^{x_{e',s+1}+2}$, consecutively in an increasing order of e' . Otherwise, if there is no such e , then keep all candidates unchanged.

Lemma 2.11 *Fix e, requirement* R_e *receives attention at most finitely often and is eventually satisfied.*

Proof Fix e and assume by induction that Lemma 2.11 holds for all $i < e$. Choose t minimal so that no R_i , $i < e$, receives attention after stage t. Hence, requirement R_e is not initialized after stage t and $x_e = x_{e,t}$.

Choose the least stage $s>t$ such that $D_{f_{e_0},2^x \epsilon,s}$, $x_{e,s}$ is well defined. If no such s exists, then f_{e_0} is not total and R_e is met. Otherwise, if R_e is not met, then by Lemmas 2.1, 2.2 and 2.6,
 $\alpha_e > 2^{x_e} \cdot 2^{-(x_e-1)} > 1$ after $M(f_{e_0}, 2^{x_e}, x_e)$ ends. It is a contradiction. $\alpha_{e_1} \geq 2^{x_e} \cdot 2^{-(x_e-1)} > 1$ after $M(f_{e_0}, 2^{x_e}, x_e)$ ends. It is a contradiction.

Remark 2.12 The interval I_e for R_e is fixed forever after some stage. Since I_e is initialized finitely often and after that it changes only at the first stage when $D_{f_{e_0},2^xe,x_e}$ is well defined and R_e requires attention. Hence $\{I_e\}_{e \in \omega}$ is T-reducible to \emptyset' .

3 Non-low2-ness: cl-reducibility

To prove Theorem 1.5, we can construct two left-c.e. reals β_0 , β_1 to meet the following requirements: for $i = 0, 1, P_i : \beta_i \leq_T D$ and $T_i : D \leq_T \beta_i$; and for $e \in \omega$,

$$
Q: \ \exists^\infty e \bigg[\ Q_e = \bigwedge_{0 \leq i \leq e} Q_{e,i} \bigg],
$$

which $Q_{e,i} = R_i$. Effectively order $Q_{e,i}$ -requirements (of order type ω) as follows: $Q_{e,i} < Q_{e',i'}$ if $e < e'$ or $e = e', i < i'.$

Inspired by the proof of Theorem 1.4, let $I_{e,i} = [x_{e,i}, x'_{e,i}),$ we perform $M(f_{i_0}, 2^{x_{e,i}}, x_{e,i})$ to change $\beta_0 \restriction_{I_{e,i}}$ or $\beta_1 \restriction_{I_{e,i}}$ to meet $Q_{e,i}$. Let $\mathbf{x}_e = x_{e,0}, \mathbf{x}'_e = x'_{e,e}, \mathbf{x}_{e+1} = \mathbf{x}'_e + 2$, we define

$$
\mathbb{I}_e = \bigcup_{0 \le i \le e} I_{e,i} = [\mathbf{x}_e, \mathbf{x}'_e].
$$

To meet T_i we define $\beta_i(\mathbf{x}'_e + 1) = 1$ if $e \in D$; otherwise, define $\beta_i(\mathbf{x}'_e + 1) = 0$.

In this way, both Q-requirements and T-requirements are met. Hence $\{\mathbb{I}_e\}_{e\in\omega}$ can be considered as the given one.

Now to meet P_i , we define

$$
m(e) = \mu s(\forall i \le e)[\alpha_{i,s} \upharpoonright \mathbf{x}'_{e,s} = \alpha_i \upharpoonright \mathbf{x}'_e].
$$

By Remark 2.12, $\{x'_e\}_{e \in \omega}$ is T-reducible to ∅-by the Limit Lemma. Hence, m is T-reducible to \emptyset' . Let D be a c.e. set in **d**, there is a total function Ψ^D so that $\exists^{\infty}e[\Psi^D(e) > m(e)]$ since **d** is non-low₂. We define a function g as follows: let $g_e(e) = 0$; for $e < s$, $g_s(e) = s$ if $\Psi_s^D(e) \downarrow \& D_s \upharpoonright \psi_{s-1}^D(e) \neq D_{s-1} \upharpoonright \psi_{s-1}^D(e);$ otherwise, $g_s(e) = g_{s-1}(e)$. We change $\beta_0 \upharpoonright_{\mathbb{I}_e}$ or $\beta_1 \restriction_{\mathbb{I}_e}$ only if $g_s(e) \neq g_{s-1}(e)$. Notice that $g \leq_T D$ for D is c.e., and it implies $\beta_i \leq_T D$. Then from the given $\{\mathbb{I}_{e}\}_{e\in\omega}$ and m, we begin our construction by the assumption that g is given.

Remark 3.1 Notice that if $Q_{e,i}$ requires attention at stage s but $g_s(e) = g_{s-1}(e)$, then the change of β_0 $\uparrow_{\mathbb{I}_{e,i}}$ or β_1 $\uparrow_{\mathbb{I}_{e,i}}$, following $M(f_{i_0}, 2^{x_{e,i}}, x_{e,i})$, does not occur at stage s. This β_i -
change will convent them the set which β_i (c) β_i and β_i meaning them to Therefo change will occur at stage $t>s$, which $g_t(e) \neq g_{t-1}(e)$ and $Q_{e,i}$ requires attention. Therefore, to assure $\beta_i \leq_T D$, performing $M(f_{i_0}, 2^{x_{e,i}}, x_{e,i})$ to meet $Q_{e,i}$ slows down. Moreover, although $I_{e,i}$ is given, we need to assure that $\beta_0 \upharpoonright_{I_{e,i}} = \beta_1 \upharpoonright_{I_{e,i}} = 0^{|I_{e,i}|}$ if we want to perform $M(f_{i_0}, 2^{x_{e,i}}, x_{e,i})$. To assure this happens may ask for $Q_{e'}$ ($e' < e$) to initialize Q_e , but $g(e')$ may not change instantly to allow such initialization. Therefore in the following construction, according to g we will define different candidates $\hat{I}_{e,i}$, \hat{I} , $\hat{x}_{e,i}$, $\hat{x}'_{e,i}$, \hat{x}_e in stages etc. to help meet $Q_{e,i}$. The current value of all these candidates at stage s is denoted by putting one more index s. If f_{i_0} is a computable bound, for $s > e$, we say $Q_{e,i}$ *requires attention* at stage $s + 1$ if $l(i, s) \geq \hat{\mathbf{x}}'_{e,s}$.

Construction 3.2 We give the construction in stages.

Stage $s = 0$. Let $\beta_{0,0} = \beta_{1,0} = 0$, and $\hat{x}_{0,0,0} = 1$.

Stage $s+1$. Choose the least $\langle e, i \rangle \leq s$ so that $Q_{e,i}$ requires attention, $D_{f_{i_0},2^{\hat{x}_{e,i,s},\hat{x}_{e,i,s}}$ is well defined and $g_{s+1}(e) \neq g_s(e)$. Following $M(f_{i_0}, 2^{\hat{x}_{e,i,s}}, \hat{x}_{e,i,s})$, we make a corresponding change of β_0 and β_1 , keep $\hat{x}_{e,i,s+1} = \hat{x}_{e,i,s}$, and set $\hat{I}_{e,i,s+1}$ such that $|\hat{I}_{e,i,s+1}| = |\hat{I}_{f_{i_0},2} \hat{I}_{e,i,s+1} \hat{I}_{e,i,s+1}|$. Moreover, if $e' < e$ or $e' = e, i' < i$, then keep $\hat{x}_{e',i',s+1} = \hat{x}_{e',i',s}, \hat{f}_{e',i',s+1} = I_{e',i',s}$ for stronger requirement $Q_{e',i'}$; and if $e < e'$ or $e = e', i < i'$, then initialize weaker requirement $Q_{e',i'}$, i.e., reassign $\hat{x}_{e',i',s+1}$ to be larger than any number mentioned before, keep $\hat{\mathbf{x}}_{e+1,s+1} = \hat{\mathbf{x}}'_{e,s+1} + 2$, and set $\hat{I}_{e',i',s+1}$ such that $|\hat{I}_{e',i',s+1}| = 2^{\hat{x}_{e',i',s+1}+2}$, consecutively in an increasing order of e', i' . Or else, if there is no such $\langle e, i \rangle$, then keep all candidates unchanged.

Experiments for $i = 0, 1, \text{ and } \text{free}$, \mathcal{C} , $(\mathcal{C}' \cup \{1\}) = 1$, if

Furthermore, for $i = 0, 1$, we define $\beta_{i,s+1}(\hat{\mathbf{x}}'_{e,s+1} + 1) = 1$ if $e \in D_{s+1}$; otherwise, let $\beta_{i,s+1}(\hat{\mathbf{x}}'_{e,s+1} + 1) = 0.$

Lemma 3.3 *For each e and* $0 \le i \le e$, $\hat{x}_{e,i} \le x_{e,i}$ *and* $\hat{x}'_{e,i} \le x'_{e,i}$.

Proof Fix e, i and assume by induction that Lemma 3.3 holds for all $e' < e$ or $e' = e, i' < i$. It is obvious that $\hat{x}_{e,i} \leq x_{e,i}$. By Module 2.5 and Lemma 2.6, if f_i is strictly increasing, then $|I(f_i, 2^{\hat{x}_{e,i}}, \hat{x}_{e,i})| \leq |I(f_i, 2^{x_{e,i}}, x_{e,i})|$. Hence $\hat{x}'_{e,i} \leq x'_{e,i}$. $|I(f_i, 2^{\hat{x}_{e,i}}, \hat{x}_{e,i})| \leq |I(f_i, 2^{x_{e,i}}, x_{e,i})|$. Hence $\hat{x}'_{e,i} \leq x'_{e,i}$ e_i .

Lemma 3.4 Q *is met, i.e.* $\exists^{\infty}e[Q_e \text{ is met }].$

Proof Fix $Q_{e,i}$, choose t minimal so that no stronger requirements than $Q_{e,i}$ ask for β_0 -change or β_1 -change or no $i < e$ is enumerated into D. Hence, requirement $Q_{e,i}$ is not initialized after stage t and $\hat{x}_{e,i} = \hat{x}_{e,i,t}$. Choose the least stage $s > t$ such that $D_{f_i_0,2} \hat{x}_{e,i} \hat{x}_{e,i}$ is well defined. If no such s exists, then f_{i_0} is not total and $Q_{e,i}$ is met. If such s exists, then $\hat{I}_{e,i} = \hat{I}_{e,i,s}$. If $Q_{e,i}$ requires attention after s, then we follow $M(f_{i_0}, 2^{\hat{x}_{e,i,s}}, \hat{x}_{e,i,s})$ to change $\beta_0 \restriction_{\hat{I}_{e,i}}$ or $\beta_1 \restriction_{\hat{I}_{e,i}}$. By Lemma 3.3, $\hat{\mathbf{x}}_e' \leq \mathbf{x}_e$. So $\alpha_{i,m(e)} \upharpoonright \hat{\mathbf{x}}_{e,m(e)}' = \alpha_i \upharpoonright \hat{\mathbf{x}}_e'$. We observe whether $Q_{e,i}$ requires attention at stage $m(e) > s$. If $Q_{e,i}$ does not require attention at $m(e)$, then $Q_{e,i}$ is met. If $Q_{e,i}$ requires attention at $m(e)$, then we continue to perform $M(f_{i_0}, 2^{\hat{x}_{e,i}}, \hat{x}_{e,i})$ after $m(e)$, since $M(f_{i_0}, 2^{\hat{x}_{e,i}}, \hat{x}_{e,i})$ will not end during the whole construction. Otherwise, if $M(f_{i_0}, 2^{\hat{x}_{e,i}}, \hat{x}_{e,i})$ ends, then $\alpha_{i_1} \geq 2^{\hat{x}_{e,i}} \cdot 2^{-(\hat{x}_{e,i}-1)} > 1$ by Lemmas 2.1, 2.2 and 2.6, which is a contradiction. In this way, $Q_{e,i}$ is met at stage $g(e)$ forever if $g(e) > m(e)$. For $\forall e[g(e) \geq \Phi^D(e)]$ and $\exists^{\infty}e[\Phi^D(e) > m(e)]$, there are infinitely many e such that $g(e) > m(e)$ and Q_e is met. $\exists^{\infty}e[\Phi^{D}(e) > m(e)],$ there are infinitely many e such that $g(e) > m(e)$ and Q_e is met.

Lemma 3.5 $\beta_i \equiv_T D \in \mathbf{d}$ *.*

Proof It is obvious that $D \leq_T \beta_i$. For $x \in \hat{\mathbb{I}}_e$, $\beta_{i,s+1}(x)$ changes implies $g_{s+1}(e)$ does. For D is c.e., $g \leq_T D$. Then $\beta_i \leq_T D$. is c.e., $g \leq_T D$. Then $\beta_i \leq_T D$.

Acknowledgements We thank the referees for their time and comments.

References

- [1] Barmpalias, G., Lewis, A.: A left-c.e. real that cannot be SW-computed by any Ω number. *Notre Dame J. Formal Logic*, **47**(2), 197–209 (2006)
- [2] Barmpalias, G., Lewis, A.: Random reals and Lipschitz continuity. *Math. Structures Computer Sci.*, **16**, 737–749 (2006)
- [3] Barmpalias, G., Lewis, A.: Randomness and the linear degrees of computability. *Ann. Pure Appl. Logic*, **145**, 252–257 (2007)
- [4] Barmpalias, G., Downey R., Greenberg, N.: Working with strong reducibilities above totally ω-c.e. degrees and array computable degrees. *Trans. Amer. Math. Soc.*, **362**(2), 777–813 (2010)
- [5] Downey, R., Hirschfeldt, D., LaForte, G.: Randomness and reducibility. Mathematical Foundations of Computer Science 2001, Lecture Notes in Computer Science, **2136**, 316–327 (2001); Final version in Journal of Computing and System Sciences, **68**, 96–114 (2004)
- [6] Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity, Springer-Verlag Monographs in Computer Science, New York, 2010
- [7] Fan, Y., Yu, L.: Maximal pairs of left-c.e. reals in the computably Lipschitz degrees. *Ann. Pure Appl. Logic*, **162**(5), 357–366 (2011)
- [8] Fan, Y.: A uniform version of non-low2-ness. *Ann. Pure Appl. Logic*, **168**(3), 738–748 (2017)
- [9] Kjos-Hanssen, K., Merkle, W., Stephan, F.: Kolmogorov complexity and the recursion theorem. Twenty-Third Annual Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23–25, 2006. *Proceedings, Springer Lecture Notes in Computer Science*, **3884**, 149–161 (2006)
- [10] Soare, R.: Computability theory and differential geometry. *Bull. Symbolic Logic*, **10**(4), 457–486 (2004)
- [11] Yu, L., Ding, D.: There is no SW-complete left-c.e. real. *J. Symbolic Logic*, **69**(4), 1163–1170 (2004)