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1 Introduction

It is a well-known fact that in the decomposition of the coordinate ring of a reductive complex
algebraic group G each irreducible algebraic representation occurs with multiplicity exactly
equal to its dimension. In fact,

C[G] = ⊕λ irrepC[G]λ � ⊕λ irrepVλ ⊗ V ∗
λ (1.1)

as a left×right representation of G × G (the sum is over equivalence classes of irreducible
representations). This result is closely related (via the so-called Weyl’s unitary trick) to the
Peter–Weyl theorem for compact Lie groups, which exhibits a similar decomposition of the
Hilbert space L2(G).

For Z = G/H, a homogeneous space of an algebraic subgroup H ⊂ G, it immediately
follows that

C[Z] � ⊕λ irrepVλ ⊗ V ∗H
λ , (1.2)

where V ∗H
λ ⊂ V ∗

λ denotes the space of H-fixed linear forms on Vλ. In particular, the multi-
plicity of an equivalence class λ in C[Z] is exactly the dimension of V ∗H

λ . Again an analogous
decomposition holds for the L2-Hilbert space of a homogeneous space of a compact Lie group,
and it represents the epitome of harmonic analysis on such spaces.

When it comes to homogeneous spaces of non-compact reductive Lie groups the harmonic
analysis is however much more complicated. A major complication comes already from the
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fact that irreducible representations are infinite dimensional in general. The decomposition
of L2(G), the so-called Plancherel formula, for a reductive real Lie group was the life time
achievement of Harish–Chandra, and the generalization to homogeneous spaces of G is still
far from being understood. However, recent investigations (see [13, 15]) suggest that if the
homogeneous space G/H is real spherical, then such a decomposition may be reachable.

It is the aim of these notes to explain some of the background for this development for readers
who are not well acquainted with the representation theory of real reductive Lie groups. In
particular, we will emphasize the geometric properties of real spherical spaces that are relevant.
The main results are taken from [3] and [15, 20].

Let us now be a bit more specific about the contents of this survey. In general, for a
homogeneous space Z = G/H with G-invariant measure one has an abstract Plancherel formula
for the left regular representation of G on L2(Z):

L2(Z) �
∫ ⊕

Ĝ

Hπ ⊗Mπ dμ(π). (1.3)

Here Ĝ is the unitary dual of G, the set of equivalence classes of irreducible unitary represen-
tations of G. This set carries a natural topology, and μ is a Radon measure on Ĝ, the so-called
Plancherel measure of Z. In case G is compact, we recall that Ĝ is discrete and taking G-finite
vectors in (1.3) yields (1.2). The multiplicity space Mπ corresponds to (V ∗

λ )H in (1.2), but
in general it is not (H∗

π)H or a subspace thereof. It is however contained in an enlarged dual
(H−∞

π )H , the space of H-invariant distribution vectors of the representation (π,Hπ). To be
more precise, H−∞

π is the strong dual of the space of smooth vectors H∞
π of the representation

(π,Hπ). As a topological vector space H∞
π is a so-called Fréchet space.

This article starts with a survey on topological vector spaces with an emphasis on Fréchet
spaces, and continues in Section 3 with a review of group representations on topological vector
spaces. In particular we explain smooth vectors. The representation of our concern is the left
regular representation of G on L2(Z). The characterization of its smooth vectors L2(Z)∞ is tied
to volume growth on the homogeneous space Z. This is the topic of Section 4. The main tool
is the invariant Sobolev lemma of Bernstein [3] of which we include a proof. From Section 5 on
we are more specific about our group G and request that is real reductive. We review the basic
representation theory of infinite dimensional representations, i.e., the theory of Harish–Chandra
modules and their smooth completions. Beginning with Section 6 we consider homogeneous
spaces Z = G/H for H < G a closed subgroup. Our first topic is of generalized matrix
coefficients for a representation (π,E): attached to a smooth vector v ∈ E∞ and η ∈ (E−∞)H

we form the function mv,η(g) = η(π(g−1)v) which descends to a smooth function on Z = G/H.
This gives us a large supply of smooth functions on Z. Smooth Frobenius reciprocity asserts
that (E−∞)H parametrizes HomG(E∞, C∞(Z)), i.e., the space of continuous G-equivariant
embeddings of E∞ into C∞(Z).

In Section 7 we introduce homogeneous real spherical spaces and review the local structure
theorem (LST). The LST allows us to attach certain geometric invariants to a real spherical
space, the real rank and a conjugacy class of a parabolic subgroup Q of G, called Z-adapted.
These geometric invariants are tied to representation theory as follows: one is led to consider
spherical pairs (V, η), that is, V is a Harish–Chandra module and η is a non-zero continuous
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H-invariant linear functional on V∞, the unique smooth moderate growth completion of V .
The spherical subrepresentation theorem then asserts that irreducible spherical pairs admit
embedding in induced modules for the parabolic Q. In addition there are sharp bounds for
the dimension of the space (V −∞)H ; in particular, the multiplicity spaces Mπ from above are
finite dimensional for a real spherical space.

In Section 8 we give a short introduction to direct integrals of Hilbert spaces and explain
the abstract Plancherel decomposition (1.3). The main goal of L2-harmonic analysis on Z is
the determination of the Plancherel measure μ. The first step is to determine the support
suppμ ⊂ Ĝ, a bit more precisely one should determine all spherical pairs (Vπ, η) where Vπ is
the Harish–Chandra module of Hπ, η ∈ Mπ and π ∈ supp(μ). Those pairs are called tempered.

It was realized by Bernstein, in a very general setup, that the determination of all tempered
real spherical pairs is tied to a certain Schwartz space C(Z) of smooth rapidly decreasing
functions on Z. In general the definition of C(Z) is based on the volume growth of Z. For a
real spherical space this growth can be exactly determined via the polar decomposition of Z.
This yields us very explicit families of semi-norms which determine the topology on the Fréchet
space C(Z). All that is explained in Section 9.

Our survey ends with a growth bound for generalized matrix coefficients for a tempered
spherical pair (V, η). Let us mention that this bound is the starting bound for the characteriza-
tion of the tempered spectrum of Z in terms of the relative discrete spectrum of certain satellites
of Z, called boundary degenerations (see [12]). As for harmonic analysis on real spherical spaces
this is the current state of the art.

For p-adic spherical spaces the theory is further developed and a Plancherel theorem is
established for an interesting class of spherical spaces, termed wave-front. This is the work of
Sakellaridis and Venkatesh, who in particular developed new geometric concepts for Plancherel
theory [22]. Presently it appears that part of their geometric ideas can be adapted to real
spherical spaces, but the analytic aspects of the discrete spectrum are not parallel. It is an
exciting topic for future research.

2 Topological Vector Spaces

2.1 Generalities

Let K be a field and E be a K-vector space. This means that we have two structures:
(i) scalar multiplication:

sc : K × E → E, (λ, x) �→ λx,

(ii) addition:
add : E × E → E, (x, y) �→ x+ y.

This gives a category VectK with morphisms the K-linear maps T : E1 → E2. Next we
want to explain

Topological linear algebra = functional analysis

The easiest vector space is E = K. We call K a topological field if it is endowed with
a topology such that for E = K the operations sc and add are continuous, and, in addition,
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the inversion on K× = K\{0} is continuous. The important examples are the local fields
K = R,C,Qp,Fq and Fq(X).

From now on we assume that K is a topological field. A topological vector space over K
is a K-vector space E which is endowed with a topology such that the structure operations
sc and add become continuous. This gives us a new category TopVectK with morphisms the
continuous K-linear maps.

The theory is sensitive on the nature of the topological field. For example there is no notion
of convexity if charK > 0. From now on we assume that K = C.

We request that E is separated (Hausdorff) which is equivalent to the fact that {0} is closed.
This already brings us a variety of problems.

Let E be a TVS (topological vector space) and F ⊂ E a subspace. Then:
• F endowed with its subspace topology is a TVS. Furthermore, F is separated.
• E/F endowed with the quotient topology is a TVS. However, E/F is separated iff F is

closed.
So we need to be careful with quotients, especially because the most interesting morphisms

of our category rarely have closed images. Note that non-separated spaces typically have little
meaning.

Also we request from now on that our TVS are separable, that is there exists a countable
dense subset.

2.2 Examples of TVS

2.2.1 Hilbert Spaces

Since all (separable) Hilbert spaces admit a countable orthonormal basis they are unitarily
isomorphic to either Cn or

�2(N0) =
{
x = (xn)n∈N0

∣∣∣∣xn ∈ C, 〈x, x〉 :=
∞∑

n=0

|xn|2 <∞
}
.

If M is a manifold endowed with a positive Radon measure μM , then L2(M,μM ) is a Hilbert
space. Often it is quite difficult, if not impossible to write down a concrete orthonormal basis
for L2(M,μM ). For example, if M = R and μ is the Lebesgue measure, you will already
find this a quite challenging task. One classical solution is given by the Hermite functions
Hn(x) = e−x2/2hn(x) with hn the Hermite-polynomials.

Later our concern will be with E = L2(G/H) where G/H is a unimodular real spherical
space.

In the context of Hilbert spaces we can already see that morphisms of Hilbert spaces gener-
ically have non-closed image. Consider

T : �2(N0) → �2(N0), (xn)n∈N0 �→
(

1
n+ 1

xn

)
n∈N0

.

Then yk := (1, 1
2 ,

1
3 , . . . ,

1
k , 0, 0, . . .) ∈ imT for every k ∈ N. Moreover, the (yk)k∈N form a

Cauchy-sequence with limit y = lim yk �∈ imT .

2.2.2 Banach Spaces

A vector space E endowed with a norm p is called a Banach space if (E, p) is a complete
topological space. Typical examples are �k(N) for 1 ≤ k ≤ ∞ and, more generally Lk(M) for



Harmonic Analysis for Real Spherical Spaces 345

any measure space M . Others are

Cb(M) := {f ∈ C(M) | f bounded}, C0(M) :=
{
f ∈ C(M)

∣∣∣ lim
m→∞ f(m) = 0

}

for a locally compact space M , with the uniform norm

p(f) := sup
m∈M

|f(m)|.

Here C(M) denotes the space of continuous functions, and the condition of vanishing limit at
infinity means that {m ∈M | |f(m)| ≥ c} is compact for all c > 0.

2.2.3 Fréchet Spaces

Contrary to what you might expect it is not the class of Banach spaces or Hilbert spaces which
is most important for the discussion of infinite dimensional representations but another more
flexible class which we introduce next.

Let E be a vector space. A function p : E → R≥0 is called a semi-norm provided that
• p(λx) = |λ|p(x) for all x ∈ E and λ ∈ C.
• p(x+ y) ≤ p(x) + p(y) for all x, y ∈ E.
Observe that we do not request p(x) = 0 ⇒ x = 0. For example let M be a locally compact

space and E = C(M). For a compact subset K ⊂M , set

p(f) := sup
m∈K

|f(m)|, f ∈ E.

Then p is a norm if and only if K = M .
A semi-normed space (E, p) is a typically non-separated TVS. However, it features a natural

completion Ep which is a Banach space. Concretely Ep can be constructed in two steps: i)
Note that F := {p = 0} is a closed subspace of E and Ẽ := E/F is separated. Furthermore,
p induces a norm p̃ on Ẽ so that we obtain a normed space (Ẽ, p̃); ii) The completion of the
normed space (Ẽ, p̃) then is the desired Banach space Ep.

In our example E = C(M) from above one has Ep = C(K) (a consequence of the Tietze
extension theorem).

Having introduced semi-normed spaces we can now define Fréchet spaces. Let E be a vector
space endowed with a countable family of semi-norms (pn)n∈N. We endow E with the coarsest
topology such that the diagonal embedding

E →
∏

n∈N

(E, pn)

becomes continuous (initial topology). An alternative description of this topology is given via
the semi-metric

d(x, y) :=
∞∑

n=1

1
2n

pn(x− y)
1 + pn(x− y)

, x, y ∈ E.

A vector space E endowed with a countable family of semi-norms (pn)n∈N is a Fréchet
space provided that (E, d) is a complete metric space. Note that E is a TVS. In applications
the topology on E can be introduced from different families of semi-norms (qn)n∈N. To get a
flavour, set qn := p1 + · · · + pn. Then the (qn)n induce the same topology as the (pn)n. In
particular, we can always assume that the family (pn)n is increasing.
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2.2.4 Examples of Fréchet Spaces

It is clear that Banach spaces are Fréchet spaces, but the converse is not true as the following
example shows.

Schwartz spaces on R
m. For every n ∈ N0 and every smooth function f ∈ C∞(Rm), set

pn(f) := sup
x∈Rm

(1 + ‖x‖)n
∑

α∈Nm
0

|α|≤n

|∂αf(x)| .

Then
S(Rm) := {f ∈ C∞(Rm) | ∀n ∈ N, pn(f) <∞}

is a Fréchet space, the so-called Schwartz space of smooth rapidly decreasing functions on R
m.

Later on our concern will be with C(G/H), the Harish–Chandra Schwartz space of a real
spherical space.

Exercise 2.1 (a) Show that S(Rm) has the Heine–Borel property: closed and bounded sets
are compact. Here a subset B ⊂ E is called bounded provided that there exists for all n ∈ N a
constant cn > 0 such that supv∈B pn(v) < cn. Hint: Show that every sequence in a closed and
bounded subset has a convergent subsequence.

(b) Conclude from (a) that S(Rm) is not a Banach space. Hint: A basic theorem of Riesz
asserts that a locally compact topological vector space is finite dimensional.

Continuous functions. A further typical example is E = C(M) for a manifold M with
compact exhaustion M =

⋃
n∈N

Kn and associated semi-norms pn(f) := supm∈Kn
|f(m)|. The

resulting topology is the one of locally uniform convergence.

Exercise 2.2 Define the natural Fréchet topology on C∞(M) for a manifold M .

2.3 Functional Analysis

Finally we come to the explanation why topological linear algebra is usually referred to as
functional analysis. The theory emerged as a theory of function spaces and linear operators
between them. The main examples of TVS are spaces of functions on manifolds, and many
abstract notions in the theory are motivated by that. For example there is the notion of a Montel
space, which is derived from Montel’s theorem about families of holomorphic functions. The
crowning achievement is perhaps Grothendieck’s notion of nuclear Fréchet spaces which puts
the Schwartz kernel theorem from (functional) analysis in a much wider and more transparent
context.

We conclude with an issue of functional analysis which will concern us later on (see Prob-
lem 7.5 below). We are interested in linear differential operators, i.e., operators which in their
simplest form are of the type

T : C∞(U) → C∞(U), f �→
∑
|α|≤n

aα∂
αf,

where U ⊂ R
N is an open set and aα are smooth coefficient functions. In particular we would

like to know whether such an operator is surjective or at least has closed range. Here is the
famous Lewy example which destroys all hopes for general results. Let U = R3 and

T = ∂x + i∂y − 2i(x+ iy)∂t.
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Then T (u) = f implies that f is analytic in t near t = 0. In particular, T is neither surjective
nor has closed range.

3 Group Representations

Let G be a locally compact group. For a topological vector space E, we set

GL(E) := {T : E → E | T linear, bijective; T, T−1 continuous}.

A group homomorphism π : G→ GL(E) is called a representation, provided that the associated
action map

G× E → E, (g, v) �→ π(g)v

is continuous.

Remark 3.1 This definition is not what you might expect. For example, if E is a normed
space, then Hom(E,E) is normed as well; if p is the norm on E, then the operator norm is
declared as

‖T‖ := sup
p(v)≤1

p(Tv), T ∈ Hom(E,E).

Now we could consider GL(E) ⊂ Hom(E,E) endowed with the subspace topology and
request that π : G→ GL(E) is continuous. As we will see soon this is a too strong requirement
which would exclude almost all interesting examples if dimE = ∞.

By a morphism between two G-representations (π1, E1) and (π2, E2) we understand a con-
tinuous linear map T : E1 → E2 which intertwines the G-action, i.e., T ◦ π1(g) = π2(g) ◦ T for
all g ∈ G.

If E is a Banach, resp. Fréchet, space, then we call (π,E) a Banach, resp. Fréchet, repre-
sentation. An application of the uniform boundedness principle then gives the following useful
criterion:

Lemma 3.2 Let E be a Banach space and π : G→ GL(E) be a group homomorphism. Then
the following are equivalent :

(1) (π,E) is a representation.
(2) For all v ∈ E, the orbit map fv : G→ E, g �→ π(g)v is continuous.

Proof The implication (1) ⇒ (2) is almost clear: If we restrict the continuous action map
G× E → E, to G× {v}, we obtain the orbit maps.

For the converse implication, let p be the norm of E. We observe that continuity of fv

implies that the map G � g �→ p(π(g)v) ∈ R≥0 is continuous and hence locally bounded for all
v ∈ E.

The uniform boundedness principle then implies that g �→ ‖π(g)‖ is locally bounded.
Now for g′ close to g and v′ close to v we obtain that

π(g)v − π(g′)v′ = (π(g)v − π(g′)v) + (π(g′)v − π(g′)v′)

= (fv(g) − fv(g′)) + π(g′)(v − v′)

and thus π(g)v is close to π(g′)v′. �

Example 3.3 (Exercise, left regular representation) Let G = (Rn,+) and E = Lp(Rn) for
1 ≤ p ≤ ∞.
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(a) Show that
L : G→ GL(E), x �→ L(x); L(x)f := f(· − x)

defines a group homomorphism with ‖L(x)‖ = 1 for all x ∈ G.
(b) Show that L : G → GL(E) is not continuous if GL(E) is endowed with the operator

topology.
(c) (L,E) is a representation if and only if p < ∞. (Hint: Use that Cc(Rn) is dense in E

for p <∞.)

The above example admits the following generalization. Let H < G be a closed subgroup
and form the homogeneous space Z := G/H. We assume that Z is unimodular, that is, Z
carries a positive G-invariant Radon measure. This measure is then unique up to scalar (Haar
measure). We write z0 = H for the standard base point of Z.

Then E = Lp(G/H) with 1 ≤ p <∞ is a Banach space and

L : G→ GL(E); L(g)f(z) = f(g−1z), f ∈ E, g ∈ G, z ∈ Z

defines a Banach representation.

3.1 Smooth Vectors

From now on we assume that G is a Lie group. Let (π,E) be a representation and v ∈ E. Call
v smooth provided that the vector valued orbit map fv : G→ E is smooth. We set

E∞ = {v ∈ E | v is smooth}

and observe that E∞ is a G-invariant subspace of E.

Exercise 3.4 Let (π,E) be a representation on a complete TVS. Consider the test functions
C∞

c (G) as an algebra under convolution:

(f1 ∗ f2)(g) =
∫

G

f1(x)f2(x−1g)dx,

where dx is a left Haar measure on G.
(a) Show that (π,E) gives rise to an algebra representation

Π : C∞
c (G) → End(E),

where
Π(f)v =

∫
G

f(x)π(x)v dx, f ∈ C∞
c (G), v ∈ E.

(Hint: Use Riemann sums and the completeness of E to show that the vector valued integrals
converge in E.)

(b) Suppose now that E is a Banach space. Show that:
(1) Π(C∞

c (G))E ⊂ E∞.
(2) E∞ ⊂ E is dense. (Hint: Use a Dirac sequence (φn)n of G centered at 1.)

Remark 3.5 A much stronger statement than (1) is true, namely E∞ = Π(C∞
c (G))E (The-

orem of Dixmier–Malliavin).

From now on we adopt the general convention that when a Lie group is denoted by an upper
case Latin letter, then the corresponding lower case German letter denotes the associated Lie
algebra. In particular g := Lie(G) is the Lie algebra of G.
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For X ∈ g and v ∈ E∞, the limit

dπ(X)v := lim
t→0

π(exp(tX))v − v

t

is defined and yields a Lie algebra representation

dπ : g → End(E∞) .

We let U(g) be the universal enveloping algebra of g and extend dπ to an algebra representation
of U(g).

Here is an example for E∞. We let E = Lp(G/H) as before. Then, the local Sobolev lemma
implies that

E∞ = {f ∈ C∞(Z) | ∀u ∈ U(g) dL(u)f ∈ E} .

In the next section we state a version of the Sobolev lemma which takes also the geometry into
account.

3.2 The Topology on Smooth Vectors

Let (π,E) be a Banach representation of G. Let p be the norm on E and fix a basis X1, . . . , Xn

of g. Define for every k ∈ N0 a norm pk on E∞ by

pk(v) :=
∑

α∈Nn
0

|α|≤k

p(dπ(Xα1
1 · · · · ·Xαn

n )v). (3.1)

We refer to pk as a k-th Sobolev norm of p.

Lemma 3.6 Let (π,E) be a Banach representation of G. Then the following assertions hold :
(1) The (pk)k∈N define a Fréchet topology on E∞ and the topology is independent of the

choice of the particular basis X1, . . . , Xn of g.
(2) The action G × E∞ → E∞ is continuous and gives rise to a Fréchet representation

(π∞, E∞) of G.

3.3 F and SF-representations

Let (π,E) be a Fréchet representation. We say that (π,E) is an F-representation provided that
there exists a family of semi-norms (pn)n∈N which induces the topology on E such that the
actions

G× (E, pn) → (E, pn)

are continuous for all n ∈ N.

Remark 3.7 The notion of F -representations is equivalent to the perhaps more familiar
notion of moderate growth Fréchet representations (see [4], Section 2.3.1 and in particular
Lemma 2.10).

An F -representation is called an SF-representation if all orbit maps are smooth. By a
morphism between two SF-representations (π1, E1) and (π2, E2) we understand a morphism
T : E1 → E2 such that for some fixed k ∈ N the induced linear maps (E1, p1,n) → (E2, p2,k+n)
are continuous for all n ∈ N.

Lemma 3.8 Let (π,E) be a Banach representation of G. Then (π∞, E∞) is an SF-representation
w.r.t. a family of Sobolev norms.
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4 Volume Weights on G/H

Let Z = G/H be a unimodular homogeneous space as before. By a weight on Z we understand
a locally bounded function w : Z → R>0 with the following property. For all compact subsets
Ω ⊂ G there exists a constant C > 0 such that

w(gz) ≤ Cw(z), z ∈ Z, g ∈ Ω. (4.1)

For later reference, we note that by applying (4.1) to the compact set Ω−1 we obtain as well
that there exists C ′ > 0 such that

w(gz) ≥ C ′w(z), z ∈ Z, g ∈ Ω. (4.2)

By a ball B ⊂ G we understand a compact symmetric neighborhood of 1 in G. Fix a ball
B and define

v(z) := volZ(Bz), z ∈ Z.

We refer to v as a volume weight.

Exercise 4.1 (a) Show that v is a weight.
(b) If B and B′ are balls in G and v and v′ are the associated volume weights, then v and

v′ are comparable, i.e., there exists a constant C > 0 such that

1
C

v(z) ≤ v′(z) ≤ Cv(z), z ∈ Z.

Given a homogeneous space Z = G/H the volume weight v is closely tied to the harmonic
analysis of Z. The next lemma gives a first flavor how geometry and analysis are linked.

Lemma 4.2 (Bernstein’s invariant Sobolev-lemma [3]) Let 1 ≤ p < ∞ and k > dim G
p . Fix a

ball B ⊂ G with associated volume weight v. Then there exists a constant CB > 0 such that

|f(z)| ≤ CBv(z)−
1
p ‖f‖p,k,Bz (4.3)

for all z ∈ Z and all smooth functions f on Z. Here ‖ · ‖p,k,Bz refers to a k-th Sobolev norm of
the Lp-norm ‖ · ‖p of Lp(Z) restricted to Bz.

Proof For fixed z the estimate (4.3) reduces to the classical Sobolev lemma, which is valid for
k > dim Z

p on any smooth manifold Z, since by means of local coordinates it can be reduced to
R

n.
We first consider the special case Z = G, say with the left action of G. For simplicity let us

assume that G is unimodular. Then the right invariance of Haar measure implies that v is a
constant function. Furthermore, in this case the right action allows us to immediately deduce
the global estimate from the local estimate at z = e (where e = 1 is the identity in the group).

Next we consider the general case of a unimodular homogeneous space G/H. Let F ∈
C∞(G) be the pull-back of f to G, then it follows from what was said above that

|F (x)| ≤ CB‖F‖p,k,Bx, x ∈ G.

Here the Sobolev norm is given by an Lp-integral of the derivatives of F over Bx ⊂ G, and
hence in order to relate to the corresponding integral for f , it suffices to show that∫

B

φ(g · z) dg ≤ Cv(z)−1

∫
Bz

φ(y) dy
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for all z ∈ Z and all measurable positive functions φ on Z, with a constant C which is inde-
pendent of z and φ.

In order to see this we assume, as we may, that φ is supported on Bz. For each y ∈ Bz, we
write z = b−1y and deduce∫

B

φ(gz) dg =
∫

Bb−1
φ(gy) dg ≤

∫
B2
φ(gy) dg.

By averaging this estimate over y ∈ Bz we obtain∫
B

φ(gz) dg ≤ 1
v(z)

∫
Bz

∫
B2
φ(gy) dg dy

and with Fubini and invariance of dy we conclude∫
B

φ(gz) dg ≤ volGB2

v(z)

∫
Bz

φ(y) dy

as claimed (in the last step it was used that suppφ ⊂ Bz). �
In general one would like to determine the growth behavior of the volume weight v. For that

one needs to understand the large scale geometry of the space Z. In case Z is a real spherical
space we will see later that this is in fact possible.

For homogeneous spaces there is the following general criterion.

Theorem 4.3 ([18]) Let G be a real reductive group and H < G a connected subgroup of G
with real algebraic Lie algebra. Then the following statements are equivalent :

(1) The volume weight v is bounded from below, i.e., there exists a c > 0 such that v(z) ≥ c

for all z ∈ Z.
(2) h is reductive in g, i.e., adg |h is completely reducible.

By a real reductive group we understand a real Lie group G with finitely many connected
components such that there is a Lie group morphism ι : G→ GL(n,R) with:

• ι(G) is closed and stable under matrix-transposition,
• ker ι is finite.

Exercise 4.4 Consider G = SL(2,R) and

H = N =

⎧⎨
⎩
⎛
⎝1 x

0 1

⎞
⎠ |x ∈ R

⎫⎬
⎭ .

(1) Show that there is a natural identification of Z = G/N with R2\{0} under which the
Haar measure on Z corresponds to the Lebesgue measure dx ∧ dy on R2\{0}.

(2) For t > 0 and at :=

(
t 0

0 1
t

)
show that

v(at · z0) � t2.

Hint: Take a ball B which is of the form B = Bt
NBABN where BN is a ball in N and BA is a

ball in the diagonal matrices.

Exercise 4.5 Use the invariant Sobolev lemma and Theorem 4.3 to deduce the following
vanishing result. For G real reductive and h < g algebraic and reductive in g one has

Lp(Z)∞ ⊂ C0(Z). (4.4)
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Remark 4.6 The converse is also true, i.e., (4.4) implies h is reductive in g, see [18].

5 Harish–Chandra Modules and Their Completions

Given a real reductive group G and a choice of morphism ι the prescription K := ι−1(O(n,R))
defines a maximal compact subgroup of G. We recall that all maximal compact subgroups of G
are conjugate (Cartan’s theorem). A choice of K yields an involutive automorphism θ : g → g,
called Cartan-involution, with fixed point algebra gθ = k. For example, for our above choice
of K = ι−1(O(n,R)) we would have θ(X) = −XT if we view g as a subalgebra of gl(n,R). In
general we denote by s ⊂ g the −1-eigenspace of θ and recall that the polar map

K × s → G, (k,X) �→ k exp(X)

is a diffeomorphism. In particular, K is a deformation retract of G and thus contains all
topological information of G.

We denote by K̂ the set of equivalence classes of irreducible representations of K. Given
an irreducible representation (π,E) we let [π] := [(π,E)] be its equivalence class. We adopt
the common abuse of notation and write π instead of [π]. Since K is compact its irreducible
representations are finite dimensional, and they are essentially parametrized by their highest
weights (there are some issues here if K is not connected).

Theorem 5.1 (Harish–Chandra) Let (π,E) be a unitary irreducible representation of G. Let

V := EK−fin := {v ∈ E | span
C
{π(K)v} is finite dimensional} .

Then the following assertions hold :
(1) V is dense in E,
(2) V ⊂ E∞ and V is g-stable,
(3) V is an irreducible module for U(g),
(4) For all τ ∈ K̂, one has

dim HomK(τ, V ) ≤ dim τ <∞.

In other words to an irreducible unitary G-representation (π,E) we associate a module V
for U(g) (and K) which is irreducible (and hence of countable dimension) and which is some
sort of skeleton of (π,E). Historically this result was the beginning of the algebraization of
representations of real reductive groups. Here are the suitable definitions.

Definition 5.2 A (g,K)-module V is a vector space endowed with two actions :

U(g) × V → V, (u, v) �→ u · v

K × V → V, (k, v) �→ k · v

such that the following conditions are satisfied :
• The K-action is algebraic, i.e., for all v ∈ V the space Vv := span{K · v} is finite

dimensional and the action of K on Vv is continuous.
• The two actions are compatible, i.e.,

k · (u · v) = (Ad(k)u) · (k · v), k ∈ K,u ∈ U(g), v ∈ V.
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• The derived action of K coincides with the U(g)-action when restricted to U(k) :

d

dt

∣∣∣∣
t=0

exp(tX) · v = X · v, X ∈ k.

Example 5.3 For every Banach representation (π,E) of G, the space

V := {v ∈ E∞ | v is K-finite}

is a (g,K)-module. Observe that smoothness of K-finite vectors is not automatic if the module
is not irreducible.

Definition 5.4 A (g,K)-module V is called a Harish–Chandra-module provided that
(1) V is admissible, that is, for all τ ∈ K̂ one has

dim HomK(τ, V ) <∞. (5.1)

(2) V has finite length as a U(g)-module, that is, there is a sequence of (g,K)-submodules

V0 = {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm = V

such that Vi+1/Vi is an irreducible U(g)-module for all 0 ≤ i ≤ m− 1.

Having this notion, Theorem 5.1 asserts in particular, that the K-finite vectors of an irre-
ducible unitary representation form a Harish–Chandra module.

Remark 5.5 (Rough classification of irreducible Harish–Chandra modules) Let us denote by
Z(g) the center of U(g). Recall that the Harish–Chandra isomorphism describes Z(g) as S(c)W

where c < gC is a Cartan subalgebra and W the associated Weyl-group.
We say that a (g,K)-module V admits an infinitesimal character, provided that there exists

a character χ : Z(g) → C such that z · v = χ(z)v for all z ∈ Z(g). It follows from Dixmier’s
version of Schur’s lemma (see [23, Lemma 0.5.1]) that every irreducible U(g)-module V admits
an infinitesimal character χV . Write now HCirr for the isomorphism classes of irreducible
Harish–Chandra modules. Then another theorem of Harish–Chandra asserts that the map

HCirr → Ẑ(g), V �→ χV

has finite fibers.

Definition 5.6 By a globalization of a Harish–Chandra module V we understand a G-represen-
tation (π,E) modelled on a complete TVS E, such that EK−fin �(g,K) V .

Globalizations of Harish–Chandra modules always exist. This is a consequence of the so-
called Casselman subrepresentation theorem which we review next.

5.1 The Subrepresentation Theorem

By a (real) parabolic subalgebra p < g we understand a subalgebra such that pC is a parabolic
subalgebra of gC. A parabolic subgroup P of G is the normalizer of a parabolic subalgebra p.

Our concern here is with minimal parabolic subalgebras of g and we recall their standard
construction. Recall the Cartan involution θ of g and its eigenspace decomposition g = k+s. Let
a ⊂ s be a maximal abelian subspace. In this context we record the Lie-theoretic generalization
of the spectral theorem for real symmetric matrices: all maximal abelian subspaces of s are
conjugate under K. Fix such a maximal abelian subspace a ⊂ s and let m := zk(a) be the
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centralizer of a in k. Note that zg(a) = a ⊕ m. Simultaneous diagonalization of adg |a then
yields the root space decomposition

g = a ⊕ m ⊕
⊕
α∈Σ

gα,

where Σ ⊂ a∗\{0} and

gα = {Y ∈ g | (∀X ∈ a) [X,Y ] = α(X)Y } �= {0} .

Observe that all root spaces gα are modules for a⊕m which are typically not one-dimensional.
However, Σ is a (possibly not reduced) root system and we let Σ+ be a choice of positive system.
Associated to Σ+ is the nilpotent subalgebra n :=

⊕
α∈Σ+ gα.

On the group level we define subgroups of G by A := exp(a), M := ZK(A) and N := exp(n).
We recall the Iwasawa decomposition of G which asserts that the map

K ×A×N → G, (k, a, n) �→ kan

is a diffeomorphism. It is of course not a homomorphism of groups, but the restriction to
(M × A) � N is, and the image P := MAN defines a minimal parabolic subgroup of G, to
which all other minimal parabolic subgroups are conjugate. The Iwasawa-decomposition implies
that M = P ∩K and G = KP .

Example 5.7 (a) For G = GL(n,R) one can take for P the upper triangular matrices
in G. Then N are the upper triangular unipotent matrices, A = diag(n,R>0), and M =
diag(n, {±1}).

(b) Given n ∈ N we let G = SOe(1, n) be the connected component of the invariance group
of the quadratic form q(x) = x2

0 − x2
1 − · · · − x2

n on R
n+1. Then K = SO(n,R) (standard

embedding in the lower right corner) is a maximal compact subgroup of G. Furthermore, one
can take

A =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

cosh t sinh t

1

sinh t cosh t

⎞
⎟⎟⎠ | t ∈ R

⎫⎪⎪⎬
⎪⎪⎭

� (R>0, ·) ,

M =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1

m

1

⎞
⎟⎟⎠ | m ∈ SO(n− 1,R)

⎫⎪⎪⎬
⎪⎪⎭

� SO(n− 1,R) ,

N =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 + 1
2‖v‖2 v −1

2‖v‖2

vt 1 −vt

1
2‖v‖2 v 1 − 1

2‖v‖2

⎞
⎟⎟⎠ | v ∈ R

n−1

⎫⎪⎪⎬
⎪⎪⎭

� (Rn−1,+) .

Next let σ : P → GL(W ) be a finite dimensional representation of P . Attached to σ is the
smooth induced representation, defined by

(IndG
P σ)∞ := {f : G→W | f smooth, f(gp) = σ(p)−1f(g)}.

Notice that there is a natural left action L of G on (IndG
P σ)∞ given by

L(g)f(x) := f(g−1x), g, x ∈ G, f ∈ (IndG
P σ)∞.
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Next we topologize (IndG
P σ)∞. Set

(IndK
M σ)∞ := {f : K →W | f smooth, f(km) = σ(m)−1f(k)}.

Let ‖ · ‖ be any norm on the finite dimensional space W and observe that

p(f) := sup
k∈K

‖f(k)‖

defines a norm on (IndK
M σ)∞ as K is compact. The left regular representation of K on

(IndK
M σ)∞ is continuous and a family of Sobolev norms (pk)k∈N then yields an SF-structure on

the K-module (IndK
M σ)∞.

Moreover, since G = KP with M = K ∩ P , the restriction map

Res : (IndG
P σ)∞ → (IndK

M σ)∞, f �→ f |K

is a K-equivariant bijection. Via this map we transport the Fréchet structure of (IndK
M σ)∞ to

(IndG
P σ)∞. It is not too difficult to show that:

Lemma 5.8 (L, (IndG
P σ)∞) is an SF-representation of G.

We write IndG
P σ for the space of K-finite vectors of (IndG

P σ)∞.

Lemma 5.9 IndG
P σ is a Harish–Chandra module.

Proof (Sketch) The map Res restricts to an isomorphism between IndG
P σ and the induced

representation space IndK
M σ of K-finite functions in (IndK

M σ)∞. It follows that IndG
P σ is

admissible. Next use a Jordan–Hölder series of W to reduce to the fact that σ is irreducible,
and in particular that σ|N is trivial. Then it is not too hard too see that IndG

P σ admits an
infinitesimal character. The assertion now follows from the general fact that an admissible
module which admits an infinitesimal character has finite length.

This brings us finally to the

Theorem 5.10 (Casselman subrepresentation theorem [6]) Let V be a Harish–Chandra mod-
ule. Then there exists a finite dimensional representation (σ,W ) of P and a (g,K)-embedding

V ↪→ IndG
P σ.

Remark 5.11 (a) The subrepresentation theorem implies in particular that every Harish–
Chandra module admits a globalization, even a Hilbert globalization. In fact, if we complete
IndG

P σ in L2(K,W ) we obtain a Hilbert globalization of IndG
P σ. The closure of V in L2(K,W )

then yields a Hilbert globalization of V . Other Banach globalizations are obtained by taking
the closures in Lp(K,W ).

(b) Let n be the Lie algebra of N , the unipotent radical of P . The subrepresentation
theorem is then a consequence of a non-vanishing result for Harish–Chandra modules V �= {0}:

V/nV �= {0} (5.2)

combined with a variant of Frobenius reciprocity (see [23, Th. 3.8.3 and Lemma 4.2.2]).

5.2 The Casselman–Wallach Globalization Theorem

Let V be a Harish–Chandra module, p a norm on the vector space V and Vp the Banach
completion of (V, p). According to [4] a norm p is called G-continuous provided the infinitesimal
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action of g on V exponentiates to a Banach representation of G on Vp. With this terminology
the globalization theorem can be phrased as follows:

Theorem 5.12 (Casselman–Wallach) Let V be a Harish–Chandra module and p, q two G-
continuous norms on V . Then

V∞
p �SF−rep V

∞
q .

In particular, each Harish–Chandra module admits a unique SF-globalization (up to isomorphism).

Proof See [24, Ch. 11] or [4].

Remark 5.13 An equivalent way to phrase the globalization theorem is as follows (see [4]).
Let V =

⊕
τ∈K̂ V [τ ] be the K-isotypical decomposition of V . For every τ ∈ K̂, let pτ := p|V [τ ]

and qτ := q|V [τ ]. For every τ ∈ K̂ let |τ | be the Cartan–Killing norm of the highest weight
which parametrizes τ . Then there exists a constant N ∈ N such that

pτ ≤ (1 + |τ |)Nqτ , τ ∈ K̂, (5.3)

that is, G-continuous norms are polynomially comparable on K-types.

6 Generalized Matrix Coefficients

6.1 Matrix Coefficients on Groups

Let G be a locally compact group and (π,Eπ) be a unitary representation on some Hilbert
space (Eπ, 〈·, ·〉). For all v, w ∈ Eπ we form the matrix-coefficient

mπ
v,w(g) := 〈π(g)v, w〉, g ∈ G.

Note that matrix-coefficients are continuous functions on G.
When G is compact the Peter–Weyl theorem asserts that the space of matrix coefficients is

uniformly dense in C(G), and hence also in L2(G). As a consequence one obtains that L2(G)
is the Hilbert space direct sum of its isotypic components L2(G)π, and that (v, w) �→ mπ

v,w

provides a G×G equivariant isomorphism Eπ ⊗ Eπ → L2(G)π.
In particular, the density in C(G) implies that the matrix coefficients separate points on G

(and vice versa, by the Stone–Weierstrass theorem). This result holds more generally without
assuming compactness of G. Let Ĝ denote the set of equivalence classes of unitary irreducible
representations of G.

Theorem 6.1 (Gelfand–Raikov) Let G be a locally compact group. Then the functions

{mπ
v,w | π ∈ Ĝ, v, w ∈ Eπ}

separate points on G.

Phrased loosely, the theorem says that the geometry of G is determined by its matrix
coefficients.

Let us now be more restrictive on the group G.

Theorem 6.2 (Howe–Moore) Let G be a non-compact Lie group with simple Lie algebra and
compact center. Let π ∈ Ĝ\{1}. Then, for all v, w ∈ Eπ,

mπ
v,w ∈ C0(G) =

{
f ∈ C(G)

∣∣∣ lim
g→∞ f(g) = 0

}
.
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This result has, at first glance, a quite frustrating corollary for “ordinary” matrix coefficients
on homogeneous spaces Z = G/H. Recall from (1.2) that for compact groups the Peter–Weyl
theorem implies the G-equivariant decomposition

L2(G/H) =
⊕̂

π∈Ĝ
Eπ ⊗ EH

π

so that EH
π controls the embeddings of π in L2(Z) (this could also be derived from the Frobenius

reciprocity theorem). However,

Corollary 6.3 Let G be as in Theorem 6.2 and let H < G be a closed and non-compact
subgroup of G. Then for all π ∈ Ĝ\{1} one has

EH
π := {v ∈ E | ∀h ∈ H,π(h)v = v} = {0}.

Proof Exercise.

6.2 Generalized Matrix Coefficients

Here we let G be a Lie group and H < G be a closed subgroup. We have already seen that for
a Banach representation (π,E) of G the chances that EH �= {0} are slim. Instead of looking at
EH we look at a larger space.

Let E−∞ be the strong dual of the Fréchet space E∞. We refer to E−∞ as the space of
distribution vectors of the representation (π,E). Then for every η ∈ (E−∞)H and v ∈ E∞ we
form the generalized matrix coefficient

mv,η(z) = η(π(g)−1v), z = gH, g ∈ G,

which is a smooth function on Z. Let us see in an example that in spite of Corollary 6.3 we
can obtain a huge supply of functions in that way.

Example 6.4 We assume that Z is unimodular and consider the left regular representation
L of G on E = Lp(Z) for 1 ≤ p <∞. We have already seen that there is a continuous inclusion
ι : E∞ ↪→ C∞(Z). Since evaluation at the base point

δz0 : C∞(Z) → C, f �→ f(z0)

is a continuous H-invariant functional, the composition η := δz0 ◦ ι defines an element of
(E−∞)H . Let now f ∈ E∞ be arbitrary.

Then we get for z = gH ∈ Z that

mf,η(z) = η(L(g)−1f) = η(f(g·)) = f(z),

that is, we recover f as a generalized matrix coefficient.

The argument in the preceding example can be formalized into a statement of Frobenius
reciprocity. Recall that for any Banach representation (π,E) we equipped E∞ with a Fréchet
topology. We can then consider the vector space Homcont

G (E∞, C∞(G/H)) of continuous inter-
twiners E∞ → C∞(G/H).

Lemma 6.5 (Smooth Frobenius reciprocity) Let (π,E) be a Banach representation of a Lie
group G and let H < G be a closed subgroup. Then

Homcont
G (E∞, C∞(G/H)) � (E−∞)H . (6.1)
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Proof Let S ∈ Homcont
G (E∞, C∞(G/H)) and δz0 : C∞(G/H) → C be the point evaluation

at z0 as before. As δz0 is continuous and H-invariant, we obtain via η := δz0 ◦ S a continuous
H-invariant functional on E∞, that is, η ∈ (E−∞)H .

Conversely, let η ∈ (E−∞)H be given. Then

Sη : E∞ → C∞(G/H), v �→ mv,η

is G-equivariant and continuous. The calculation in the example shows that if η = δz0 ◦S, then
Sη = S.

This result has a useful dual version. For a Banach representation (π,E) we denote by
(π′, E′) the dual representation on the dual Banach space E′, and recall that E is called reflexive
when the natural inclusion E → E′′ is an isomorphism.

Lemma 6.6 (Dual smooth Frobenius reciprocity) Let Z = G/H and let (π,E) be a reflexive
Banach representation. For each η ∈ (E−∞)H and f ∈ C∞

c (Z) the linear form

v �→
∫

Z

mv,η(z)f(z) dz (6.2)

on E∞ extends continuously to E and defines an element Tη(f) ∈ (E′)∞. The map η �→ Tη

then provides a linear isomorphism

(E−∞)H � Homcont
G (C∞

c (G/H), (E′)∞) . (6.3)

The extension Tηf of (6.2) is the Fourier transform of f at (π, η).
Proof The proof is essentially just by dualizing, but as it involves some non-trivial functional
analysis we provide the details.

Recall that the strong dual of C∞(Z) equals Dc(Z), the space of compactly supported
distributions. We let M∞

c (Z) ⊂ Dc(Z) denote the subspace of compactly supported smooth
measures, and note that M∞

c (Z) � C∞
c (Z) via a non-canonical isomorphism; for example if Z

is unimodular and dz is the invariant measure, then such an isomorphism would be given by

C∞
c (Z) → M∞

c (Z), f �→ f · dz,

but of course any positive measure in the Lebesgue measure class will do.
Let η ∈ (E−∞)H and define S = Sη ∈ Homcont

G (E∞, C∞(Z)) as in Lemma 6.5 by S(v) =
mv,η. The dual morphism S′ : Dc(Z) → E−∞ is then continuous and G-equivariant. We claim
that S′(M∞

c (Z)) ⊂ (E′)∞ and that

S′∣∣
M∞

c (Z)
: M∞

c (Z) → (E′)∞ (6.4)

is continuous.
To see that, let E−m be the strong dual of (E, pm) with m ∈ N0 (see (3.1)). Note that E−∞

equals the increasing union E−∞ =
⋃

m∈N
E−m, and that each E−m is a G-invariant Banach

subspace of E−∞ which is continuously included into E−∞. On the other hand fix a compact
set C ⊂ Z and denote by MC(Z) the space of finite Borel measures with support in C. Note
that MC(Z) is a Banach space which is continuously included in Dc(Z). Therefore we obtain
with

S′∣∣
MC(Z)

: MC(Z) → E−∞ =
⋃
n∈N

E−n
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a continuous linear map and we can apply the Grothendieck factorization theorem (cf. [8], Ch. 4.
Sect. 5., Th. 1): we obtain an m such that S′(MC(Z)) ⊂ E−m, slightly more precisely, the
map S′∣∣

MC(Z)
: MC(Z) → E−m is continuous. Now note that Mc(Z) can be obtained as the

linear span
Mc(Z) = span

C
{L(g)MC(Z) | g ∈ G}

by covering the support of any given compactly supported measure with finitely many G-
translates of the interior of C, and then applying an associated partition of unity. Hence the
fact that E−m is G-invariant implies that we obtain a continuous G-equivariant linear map:

TM := S′∣∣
Mc(Z)

: Mc(Z) → E−m .

On the other hand, taking smooth vectors of the G-modules Mc(Z) and E−m yields that
(Mc(Z))∞ = M∞

c (Z) and (E−m)∞ = (E′)∞. The claim (6.4) follows with Tη := T∞
M and the

continuous linear G-morphism

Tη : M∞
c (Z) → (E′)∞, μ �→

∫
Z

π(g)η dμ(gH).

In particular, we obtain the map Tη as a continuous extension of (6.2). It is easily seen that
η �→ Tη is injective.

Conversely, let T : M∞
c (Z) → (E′)∞ be a G-morphism. This G-morphism yields a G-

morphism T0 : M∞
c (Z) → E′. By the definition of the topology of M∞

c (Z) we obtain for every
compact set C ⊂ Z a k = k(C) ∈ N such that T0

∣∣
M∞

C (Z)
extends to a continuous linear map

TC,k : Mk
C(Z) → E′. As T0 was G-equivariant we obtain with partition of unity argument as

above a G-morphism Tk : Mk
c (Z) → E′. Since E is reflexive we obtain a G-morphism

(Tk)′ : E → Dk(Z)

by dualizing. Taking smooth vectors finally provides a continuous homomorphism

S : E∞ → Dk(Z)∞ = C∞(Z)

which by Lemma 6.5 equals Sη for some η ∈ (E−∞)H . It follows from this construction that
T = Tη, and thus the proof is complete. �

7 Real Spherical Spaces

We assume now that G is a connected reductive real algebraic group, that is, there exists a
complex reductive group GC attached to gC := g ⊗R C such that G is the analytic subgroup of
GC which is associated to the subalgebra g < gC.

Furthermore, we let H < G be an algebraic subgroup, that is, there is a complex algebraic
subgroup HC < GC such that HC ∩G = H. This way we obtain a G-equivariant embedding

Z = G/H ↪→ ZC = GC/HC,

gH �→ gHC,

Let now P < G be a minimal parabolic subgroup. We say that Z is real spherical provided
that the P -action on Z admits open orbits. Equivalently Z is real spherical if there exists a
minimal parabolic subalgebra p < g such that

g = p + h, (7.1)
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where the sum is not necessarily direct. If (7.1) is satisfied, then we refer to (g, h) as a real
spherical pair.

Remark 7.1 In case both g and h are complex, then a real spherical pair (g, h) is simply
called spherical. Spherical pairs with h reductive where classified by Krämer ([17] for g simple)
and by Brion and Mikityuk ([5, 21] for g semi-simple). It is easy to see that a real pair (g, h)
is real spherical if its complexification (gC, hC) is spherical, such pairs are said to be absolutely
spherical. The converse is not true, there exist many real spherical pairs which are not absolutely
spherical.

If n � p is the nilradical of p, then a real spherical subalgebra h must satisfy the dimension
bound

dim h ≥ dim n.

The dimension bound is a decisive tool in the classification of (complex) spherical pairs, but
due to the presence of large Levi-factors in real semi-simple Lie algebras the dimension bound
can become rather weak for real pairs. For example if g = so(1, n), then dim n = n− 1 is very
small. For that reason it might be a bit surprising that it is still possible to classify reductive
real spherical subalgebras (see [10, 11]).

7.1 Local Structure Theorem

If L is a real reductive group, then we denote by Ln � L the connected normal subgroup which
corresponds to the sum of all non-compact factors of l.

Theorem 7.2 (Local structure theorem [12]) Let Z = G/H be a real spherical space and
P < G be a minimal parabolic subgroup such that PH is open. Then there exists a unique
parabolic subgroup Q ⊃ P with Levi-decomposition Q = L� U such that

(1) PH = QH,
(2) Q ∩H = L ∩H,
(3) Ln ⊂ L ∩H,
(4) QH/H � U × L/L ∩H.

A parabolic Q as above will be called Z-adapted.

7.2 Spherical Representation Theory

Let V be a Harish–Chandra module and V∞ its unique SF-completion. We say that V is
spherical provided that (V −∞)H �= 0. If 0 �= η ∈ (V −∞)H , then we refer to (V, η) as a spherical
pair.

The Levi-decomposition Q = L�U defines us in particular an opposed parabolic subgroup
Q = LU to Q. Furthermore, we let G = KAN be an Iwasawa decomposition such that A ⊂ L

and N ⊂ Q.

Theorem 7.3 ([20]) The following assertions hold for a real spherical space :
(1) (Spherical subrepresentation theorem) Every irreducible spherical Harish–Chandra mod-

ule V admits a (g,K)-embedding
V ↪→ IndG

Q
σ

where σ is an irreducible finite dimensional representation of Q which is trivial on U and
Homl∩h,L∩H∩K(σ,C) �= {0}.
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(2) (Dimension bound) Let q1 := l ∩ h + u. Then

dim(V −∞)H ≤ dim(V/q1V )L∩H∩K <∞.

Remark 7.4 (a) The subrepresentation theorem for symmetric spaces (all of which are real
spherical) was proved by Delorme in [7]. We would like to point out that the proof of (1) in [20]
does not rely on the subrepresentation theorems of Casselman and Delorme.

(b) Since n ⊂ q1 the second inequality in (2) follows immediately from the Casselman–
Osborne lemma ([23, Prop. 3.7.1 with Cor. 3.7.2]) according to which the Jacquet module
J(V ) := V/nV is finite dimensional. The first inequality in (2) is generically sharp. A non-
effective bound with a different proof was obtained previously in [16]. For symmetric spaces,
the finite dimensionality was established in [2].

Proof We sketch a proof of Theorem 7.3 (2) for G = SL(2,R), based on the same ideas which
enter the general proof. For simplicity we assume also that h is one-dimensional. In this case
q = p and the bound amounts just to

dim(V −∞)H ≤ dimV/nV.

Let

E :=

⎛
⎝0 1

0 0

⎞
⎠ , F :=

⎛
⎝0 0

1 0

⎞
⎠ , Y :=

⎛
⎝1 0

0 −1

⎞
⎠

and set
n = RE, n = RF, a = RY.

Then p = a + n is a minimal parabolic subalgebra of g. We assume g = h + p. Hence h = RU

where U = F + cY + dE for some c, d ∈ R.
Let a− ⊂ g denote the closed half line R≤0Y , and consider its open neighborhoods a−ε :=

(−∞, ε)Y for each ε > 0. For t ∈ R set at := exp(tY ). Now if we choose the maximal compact
subalgebra to be k = R(E − F ), then

g = k + a + Ad(at)h (7.2)

except if e−4t = −d. It will be convenient for some ε > 0 to have (7.2) for all tY ∈ a−ε , and this
we accomplish by choosing instead k = R Ad(as)(E − F ) for some sufficiently large s ∈ R.

Now comes a piece of information which we use as a black box, the existence of convergent
asymptotic expansions of generalized matrix coefficients on the compression cone1) (see [20,
Sect. 5] and [13, Sect. 6]). When (7.2) is valid as above one can show that there is 0 < ε′ < ε,
a finite set of leading exponents E = E(V ) ⊂ C, and a number N = N(V ) ∈ N such that for all
v ∈ V one has absolutely convergent expansions:

mv,η(at) =
∑
λ∈E

∑
n∈N0

∑
0≤k≤N

et(λ+2n)tkck,n,λ, −∞ < t < ε′ (7.3)

with coefficients ck,n,λ ∈ C, depending linearly on v.
To the Harish–Chandra module V we associate the finite-dimensional space J(V ) = V/nV

(see Remark 7.4). Since n is an ideal of p = a + n, we see that J(V ) is a module for p. The

1) See Subsection 9.1 for the definition of the compression cone.
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a-spectrum of J(V ) is closely tied to the set of exponents, E(V ), introduced above (see [13,
Sect. 7] and the reasoning below). On the side we remark here that J(V ) is two-dimensional
for a generic irreducible Harish–Chandra module V . In order to avoid heavy notation involving
matrix exponential functions with Jordan blocks we assume here that J(V ) is one-dimensional.
Let v0 ∈ V be such that v0 := v0 + nV generates J(V ). As we assume that J(V ) is one-
dimensional we have Y v0 = −λv0 for some λ ∈ C.

Since J(V ) is one-dimensional we have to show that (V −∞)H is at most one-dimensional.
For η ∈ (V −∞)H and v ∈ V we set

fv(t) = mv,η(at) := η(a−1
t v)

with the simplified notation f := fv when v = v0. The one-dimensionality of (V −∞)H will be
established by showing that the number

c−∞ = lim
t→−∞ e−λtf(t) (7.4)

exists and determines η uniquely.
Let further w ∈ V be such that Y v0 = −λv0 + Fw and set u := Fw. Let r(t) := −fu(t).

We observe that f satisfies the first order differential equation

f ′(t) = λf(t) + r(t), t ∈ R

which features the general solution

f(t) = eλt

(
f(0) +

∫ t

0

e−sλr(s) ds
)
. (7.5)

We note that there is an a priori bound

|fv(t)| ≤ CveΛt, t ≤ 0 (7.6)

for some Λ ∈ R and Cv > 0. This is a simple consequence of the fact that η is a distribution
vector (see [19, (3.2) and (3.7)]), but it also follows from the asymptotic expansion (7.3). The
key observation is now that for u ∈ nV one then has an improved bound

|fu(t)| ≤ C ′
ue(Λ+2)t, t ≤ 0, u ∈ nV. (7.7)

In fact write u = Fw and note that

fu(t) = η(a−1
t Fw) = e2tη(Fa−1

t w) = e2tη((U − cY − dE)a−1
t w)

= −e2tη((cY + dE)a−1
t w) = −ce2tfY w(t) − de4tfEw(t)

and thus (7.7) follows from (7.6).
It is now a matter of simple combination of (7.5), (7.6) and (7.7) to deduce that (7.6) must

hold with Λ = Reλ. Then we also have (7.7) with that value of Λ, and the existence of (7.4)
follows from (7.5). Moreover we can write

f(t) = eλt

(
c−∞ +

∫ t

−∞
e−sλr(s) ds

)
. (7.8)

Observe that c−∞ depends linearly on η. Finally if c−∞ = 0, then (7.8) implies that
|f(t)| ≤ Ce(Re λ+2)t, which together with (7.7) allows us to replace Λ by Λ+2. Iterating we can
achieve Λ as large as we wish and thus conclude |f(t)| � etN for all t ≤ 0 and N > 0. Hence
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it follows from (7.3) that f ≡ 0. Since we may assume that v0 belongs to a K-type and KAH
has open interior on G we get that mv0,η ≡ 0 and thus η = 0. This proves that η �→ c−∞ is
injective. �

Problem 7.5 (Comparison conjectures) Let V be a Harish–Chandra module and V∞ its
unique SF-completion. Furthermore, let h < g be a real spherical subalgebra. Then for a
generic choice of K all homology groups Hp(V, h) are finite dimensional, see [1, Prop. 4.2.2].
The comparison conjecture of [1] (for h = n due to Casselman) asserts for all p ≥ 0 :

(1) Hp(V∞, h) is separated,
(2) Hp(V, h) � Hp(V∞, h).
Notice that (1) for p = 0 means that hV∞ is closed in V∞, in other words the first order

partial differential operator

h ⊗ V∞ → V∞, X ⊗ v �→ X · v

has closed range. This special case was established in [1] in case h is absolutely spherical, that
is hC is spherical in gC. An important application is presented in [13, Section 7].

8 Disintegration of Group Representations

8.1 Direct Integrals of Hilbert Spaces and the Theorem of Gelfand–Kostyuchenko

Let Λ be a topological space with countable basis and let μ be a σ-finite Borel measure on Λ.
Suppose that for each λ ∈ Λ we are given a Hilbert space Hλ with inner product 〈·, ·〉λ.

We identify
∏

λ Hλ with functions s : Λ →
∐

λ∈Λ Hλ which satisfy s(λ) ∈ Hλ. We refer to the
elements s ∈

∏
λ Hλ as sections.

By a measurable family of Hilbert spaces over Λ we understand a subspace of sections
F ⊂
∏

λ Hλ which satisfies the following axioms :
• For all s, t ∈ F , the map λ �→ 〈s(λ), t(λ)〉λ is measurable.
• If t ∈

∏
λ Hλ is a section such that λ �→ 〈t(λ), s(λ)〉λ is measurable for all s ∈ F , then

t ∈ F .
• There exists a countable subset (sn)n∈N ⊂ F such that for each λ ∈ Λ the values {sn(λ) |

n ∈ N} span a dense subspace in Hλ.
Given a measurable family of Hilbert spaces over Λ and s ∈ F , we call s square integrable

provided that ∫
Λ

〈s(λ), s(λ)〉λ dμ(λ) <∞ .

The space of square integrable sections (modulo a.e. equality) is denoted by∫ ⊕

Λ

Hλ dμ(λ)

and referred to as the direct integral of the measurable family (Hλ)λ. Given our assumptions
on Λ, the direct integral is a separable Hilbert space as well.

The basic example is where all Hλ = C and then the direct integral is simply L2(Λ, μ).
Let E be a topological vector space and T : E →

∫ ⊕
Λ

Hλ dμ(λ) be a continuous linear map.
We say that T is pointwise defined, provided that there exists for each λ ∈ Λ a continuous linear
map

evλ : E → Hλ, λ ∈ Λ
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such that for all v ∈ E,
T (v)(λ) = evλ(v), for a.e. λ ∈ Λ.

Example 8.1 The identity L2(R) → L2(R) is not pointwise defined. The inclusion S(R) →
L2(R) is pointwise defined.

Recall that a continuous linear map T : H1 → H2 between Hilbert spaces is called Hilbert–
Schmidt, provided that there exists an orthonormal basis (vn)n∈N of H1 such that

∑
n∈N

‖T (vn)‖2

<∞.

Theorem 8.2 (Gelfand–Kostyuchenko) Let T : H →
∫ ⊕
Λ

Hλ dμ(λ) be a Hilbert–Schmidt
operator. Then T is pointwise defined.

Proof [3, Th. 1.5]. Here is a sketch. Let (vn)n∈N be an ONB of H. Choose for each n a
representative sn for T (vn). Then,

∞ >
∑
n∈N

‖T (vn)‖2 =
∑
n∈N

∫
Λ\Λ1

‖sn(λ)‖2
λ dμ(λ) =

∫
Λ\Λ1

∑
n∈N

‖sn(λ)‖2
λ dμ(λ).

We conclude that there exists a set of measure zero Λ0 ⊂ Λ such that
∑
n∈N

‖sn(λ)‖2
λ <∞, λ ∈ Λ\Λ0.

Via Cauchy–Schwartz this allows us to define

evλ(v) :=
∑
n∈N

〈v, sn〉vn(λ), λ ∈ Λ\Λ0, v ∈ H;

evλ(v) := 0, otherwise.

Exercise 8.3 LetM be a manifold and let μ be a measure onM which is locally comparable to
the Euclidean measure, i.e., for allm ∈M there exists a neighborhood U ofM , a diffeomorphism
φ : U → V with V ⊂ Rn open such that φ∗μ = f dx for a measurable function f : V → R

which is bounded from above and below by positive constants. Let L2(M) =
∫ ⊕
Λ

Hλdμ(λ).
Show that the inclusion C∞

c (M) → L2(M) is pointwise defined. (Hint: Consider first the case
where M = (−1, 1)n ⊂ Rn and use the fact that a Sobolev space L of high enough order on M
gives a Hilbert–Schmidt embedding L → L2(M).)

8.2 Disintegration

Let G be a type I-Lie group (see [24, p. 333]). The precise definition is not important for us; it
is sufficient to know that real reductive Lie groups and nilpotent Lie groups are all type I.

The disintegration theorem for unitary representations (π,H) of a type I-group asserts that
([24, Thm. 14.10.5])

(π,H) �
(∫ ⊕

Λ

πλ dμ(λ),
∫ ⊕

Λ

Hλ dμ(λ)
)
, (8.1)

that is,
(1) H is unitarily isomorphic to a direct integral of Hilbert spaces

∫ ⊕
Λ

Hλ dμ(λ),
(2) (πλ,Hλ) is a unitary irreducible representation of G for each λ ∈ Λ,
(3) under the isomorphism H �

∫ ⊕
Λ

Hλ dμ(λ) the representation π “diagonalizes” to∫ ⊕
Λ
πλ dμ(λ).
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Furthermore, we note that the measure class of μ in (8.1) is unique.
Usually one prefers to combine equivalent representations and write (8.1) in the form

(π,H) �
(∫ ⊕

Ĝ

ρ⊗ id dμ(ρ),
∫ ⊕

Ĝ

Hρ ⊗Mρ dμ(ρ)
)
, (8.2)

where μ is a measure on the unitary dual Ĝ and Mρ is a Hilbert space which represents the
multiplicity of ρ in π.

We refer to (8.1) or (8.2) as the abstract Plancherel theorem of the unitary representation
(π,H).

Example 8.4 Consider G = (R,+). Then all unitary irreducible representation are one-
dimensional and

R → Ĝ, λ �→ χλ; χλ(x) = eiλx

identifies Ĝ with R. The regular representation (L,L2(R)) then decomposes as

(L,L2(R)) �
(∫ ⊕

R

χλ dλ,

∫ ⊕

R

Cλ dλ

)

with the isomorphism given by the Fourier-transform.

8.3 Abstract Plancherel Theory for L2(Z)

Our concern in these notes is with the unitary representation (L,L2(Z)) of G for a real spherical
space Z. The final objective is to establish a concrete Plancherel-theorem, that is an explicit
determination of the measure class of μ together with the corresponding multiplicity Hilbert
spaces Mρ. This however, is still an open problem.

The map

F : L2(Z) →
∫ ⊕

Λ

Hλ dμ(λ) (8.3)

is called the Fourier-transform. Let us try to understand the corresponding multiplicity spaces.
For that we note that the Fourier inclusion C∞

c (Z) →
∫ ⊕
Λ

Hλ dμ(λ) is pointwise defined (see
Exercise 8.3). Hence we obtain for all λ ∈ Λ a G-morphism

Tλ : C∞
c (Z) → Hλ .

Dualizing we obtain an antilinear G-morphism

Sλ : Hλ → D(Z)

with D(Z) the distributions. Now it follows from Lemma 6.6 that Sλ induces an antilinear
G-morphism S∞

λ : H∞
λ → C∞(Z). In particular,

ηλ : H∞
λ → C, v �→ S∞

λ (v)(z0)

yields a continuous H-equivariant linear functional.
To move on we need to describe the fibers of the map

Φ : Λ → Ĝ, λ �→ [πλ].

For that we recall from (8.2) the multiplicity Hilbert space Mρ for ρ ∈ Ĝ. For every ρ ∈ Ĝ we
let (vρ

j )1≤j≤nρ
be an orthonormal basis of Mρ where nρ ∈ N0 ∪ {∞}. Then Φ−1(ρ) � Nρ :=
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{vρ
1 , . . . , v

ρ
nρ
}. Moreover, outside a set of measure zero, the assignment

Φ−1(ρ) � λ �→ ηλ ∈ (H−∞
λ )H

extends to an injective linear map spanC Nρ ↪→ (H−∞
λ )H (essentially a consequence of the fact

that C∞
c (Z) is dense in L2(Z)). We recall from Theorem 7.3 that dim(H−∞

ρ )H <∞ and obtain
for the multiplicity version (8.2) of the abstract Plancherel-theorem that dimMρ <∞ and, as
a vector space,

Mρ ⊂ (H−∞
ρ )H , ρ ∈ Ĝ\Ĝ0,

where Ĝ0 = Λ0 is a subset of measure zero in Ĝ = Λ.
We also obtain a formula for the inverse Fourier-transform. For φ ∈ C∞

c (Z) with F(φ) =
(vλ)λ one has

φ =
∫

Λ

mvλ,ηλ
dμ(λ) (8.4)

understood as an identity of distributions, that is, for all ψ ∈ C∞
c (Z) one has

〈φ, ψ〉L2(Z) =
∫

Λ

〈mvλ,ηλ
, ψ〉L2(Z) dμ(λ) .

Indeed, let F(ψ) = (wλ)λ and observe that mvλ,ηλ
= S∞

λ (vλ) by the definition of ηλ. Hence∫
Λ

〈mvλ,ηλ
, ψ〉L2(Z) dμ(λ) =

∫
Λ

〈Sλ(vλ), ψ〉L2(Z) dμ(λ)

=
∫

Λ

〈vλ, Tλ(ψ)〉λ dμ(λ) =
∫

Λ

〈vλ, wλ〉λ dμ(λ)

which shows absolute convergence.

9 The Schwartz Space of a Real Spherical Space

9.1 The Polar Decomposition of a Real Spherical Space

Let Z = G/H be a real spherical space. We let P < G be a minimal parabolic such that PH
is open and let Q = LU ⊃ P be the associated Z-adapted parabolic subgroup.

Recall the connected split torus A ⊂ L and set AH := A ∩ H. Set AZ := A/AH . The
number

rankR Z := dimR aZ

is an invariant of Z and called the real rank of Z.
Let d := dimR h and write Grd(g) for the Grassmannian of d-dimensional subspaces of g.

Set hlim := l ∩ h + u (previously denoted q1).
We define an open cone a−−

Z in aZ by the property: X ∈ a−−
Z if and only if

lim
t→∞ et ad Xh = hlim

in Grd(g). The closure of a−−
Z is denoted by a−Z and called the compression cone. Set A−

Z :=
exp(a−Z ) ⊂ AZ .

Remark 9.1 The compression cone has the following universal property: Let (π, V ) be a finite
dimensional irreducible representation of G which is H-semi-spherical, that is, there exists a
vector 0 �= vH ∈ V such that π(h)v = χ(h)v for a character of H. Assume in addition that V
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is P -semi-spherical and let v0 ∈ V be a lowest weight vector. Then X ∈ a−−
Z if and only if for

all (H,P )-semi-spherical (π, V ) one has

lim
t→∞[π(exp(tX))vH ] = [v0]

as limit in P(V ) (see [14], Sect. 5 for more on this topic).

Notice that AZ = A/AH can be naturally identified with a subset of Z via aAH �→ a · z0.
Let AC = exp(aC) < GC and define AZ,C = AC/AC ∩ HC. We view AZ,C as a subset of ZC.
Note that AZ,C ∩ Z falls into finitely many AZ-orbits and we let W be a set of representatives
from exp(iaZ) · z0.
Theorem 9.2 (Polar decomposition [14]) There exists a compact set Ω ⊂ G such that

Z = ΩA−
ZW · z0 .

Moreover, there is a finite set F ⊂ G such that the above holds for Ω = FK.

The polar decomposition tells us that the large scale geometry of Z is determined by A−
Z×W .

9.2 The Canonical Weights on Z

Assume now that Z = G/H is unimodular. Let ρu ∈ a∗ be defined as ρu := 1
2 tr adu. Observe

that Z unimodular implies that ρu factors through a functional on aZ (see [15, Lemma 4.2]).
Having defined the polar decomposition we can now give sharp bounds on the volume weight.

Proposition 9.3 ([15, Prop. 4.3]) Let Z = ΩA−
ZW·z0. Then there exist constants C1, C2 > 0

such that for all z = ωaw · z0 ∈ Z with ω ∈ Ω, a ∈ A−
Z and w ∈ W one has

C1 · a−2ρu ≤ v(z) ≤ C2 · a−2ρu .

Together with the volume weight there is the radial weight function on Z which is defined
as

r(z) := sup
z=ωaw·z0

ω∈Ω,a∈A
−
Z

,w∈W

‖ log a‖

for Ω ⊂ G a sufficiently large compact set. This function is a weight on Z by [15, Prop. 3.4.]
Later we need the following property.

Lemma 9.4 Let s > dim aZ . Then∫
Z

(1 + r(z))−s v(z)−1 dz <∞.

Proof Let Γ ⊂ AZ be a lattice, that is log Γ ⊂ aZ is a lattice in the vector space aZ . Then∑
a∈Γ

(1 + ‖ log a‖)−s <∞. (9.1)

It follows from Theorem 9.2 that we can assume (after enlarging Ω) Z = ΩΓ−W · z0 where
Γ− := Γ ∩A−

Z . With this we have∫
Z

(1 + r(z))−s v(z)−1 dz ≤
∑

y∈Γ−W

∫
Ωy·z0

(1 + r(z))−s v(z)−1 dz.

By using (4.2) we find positive constants such that

r(z) ≥ c1r(y · z0), v(z) ≥ c2v(y · z0)
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for all z ∈ Ωy · z0, and hence∫
Ωy·z0

(1 + r(z))−s v(z)−1 dz ≤ C(1 + r(y · z0))−s volZ(Ωy · z0)
v(y · z0)

.

The ratio of volumes is bounded (see Exercise 4.1), and hence the lemma follows from the
definition of r and (9.1). �

9.3 Definition and Basic Properties of the Schwartz Space

Fix a basis X1, . . . , Xn of g. For α ∈ Nn
0 , setXα := Xα1

1 · · ·Xαn
n . For a test function f ∈ C∞

c (Z)
and m, k ∈ N0, we define norms

pm,k(f) := sup
z∈Z

(1 + r(z))m v(z)
1
2

∑
|α|≤k

|dL(Xα)f(z)|,

qm,k(f) :=
( ∑

|α|≤k

‖(1 + r)mdL(Xα)f‖2
L2(Z)

) 1
2

.

For each k ∈ N0, we denote by Ck
m(Z) and L2,k

m (Z) the completion of C∞
c (Z) with respect

to pm,k and qm,k, respectively. Note that L2,k
m (Z) is a Hilbert space, more precisely, a weighted

Sobolev space.
In this context we record (see [15, Prop. 5.1]):

Lemma 9.5 The two families (pm,k)m,k and (qm,k)m,k are equivalent, i.e., they define the
same topology on C∞

c (Z).

Proof Let l > dimG/2. Then for f ∈ C∞
c (Z),

|f(z)| ≤ CBv(z)−
1
2 ‖f‖2,l,Bz

by Lemma 4.2. By applying (4.2) to the weight r we easily see that

(1 + r(z))m‖f‖2,l,Bz ≤ Cqm,l(f)

for all z, all f ∈ C∞
c (Z), and some constant C > 0. Hence

(1 + r(z))m v(z)
1
2 |f(z)| ≤ CBCqm,l(f) (9.2)

and it follows that pm,k is dominated by qm,k+l. For the converse domination we use

qm,k(f)2 ≤
(∫

Z

(1 + r(z))2(m−n)v(z)−1 dz

)
· pm+n,k(f)2

and Lemma 9.4. �
This gives us in particular that

C(Z) :=
⋂
m,k

Ck
m(Z) =

⋂
m,k

L2,k
m (Z).

We call C(Z) the Harish–Chandra Schwartz-space of Z. Note that

C∞
c (Z) ⊂ C(Z) ⊂ C∞(Z) ∩ L2(Z) .

Building on the general theory developed in [3] it was shown in [15, Prop. 5.2]:

Proposition 9.6 Let m > 2 rankR Z and l > dim g
2 . Then the inclusion L2,l

m (Z) → L2(Z) is
Hilbert–Schmidt. In particular (by Theorem 8.2), the inclusion map C(Z) → L2(Z) composed
with the Fourier transform (8.3) is pointwise defined.
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Proof Let {ξn}n∈N be an orthonormal basis for L2,l
m (Z). We must show∑

n

‖ξn‖2
L2(Z) <∞.

By the Sobolev Lemma 4.2 the evaluation at z ∈ Z is a continuous linear form on L2,l
m (Z).

Hence there exists for each z ∈ Z a function κz ∈ L2,l
m (Z) such that f(z) = 〈f, κz〉m,l for all f ,

and it follows from (9.2) that

qm,l(κz) ≤ CBC(1 + r(z))−mv(z)−
1
2 .

Hence, ∑
n

∫
Z

|ξn(z)|2 dz =
∫

Z

∑
n

|〈ξn, κz〉m,l|2 dz =
∫

Z

qm,l(κz)2 dz <∞

by Lemma 9.4. �

10 The Notion of a Tempered Representation

We recall the abstract Plancherel theorem for the regular representation:

L2(G/H) �
∫

Ĝ

Hπ ⊗Mπ dμ(π)

with the finite dimensional multiplicity spaces Mπ ⊂ (H−∞
π )H .

We wish to give a necessary condition for a spherical pair (V, η) to contribute to this de-
composition of L2(Z), i.e., there exists a unitary representation π ∈ supp(μ), for which the
underlying Harish–Chandra module Vπ equals V , and an ηπ ∈ Mπ which is equal to η. Once
the theory is developed further it is expected that the condition below is also necessary.

Definition 10.1 Let V be a Harish–Chandra module and let η ∈ (V −∞)H . The spherical pair
(V, η) is called tempered if there exists m ∈ Z such that

sup
z∈Z

|mv,η(z)|
√

v(z)(1 + r(z))m <∞, v ∈ V∞.

Proposition 10.2 ([15, Prop. 5.5]) There exists a subset Ĝ0 ⊂ Ĝ of μ-measure zero such that
(Vπ, ηπ) is tempered for all π ∈ Ĝ\Ĝ0 and ηπ ∈ Mπ.

Proof The argument is parallel to the treatment in Subsection 8.3 with L2,k
m instead of C∞

c (Z).
We start with a continuous morphism Tπ : L2,k

m → Hπ and take its dual T ′
π : H′

π → (L2,k
m )′.

Now observe that there are natural G-equivariant anti-linear isomorphisms H′
π � Hπ and

(L2,k
m )′ � L2,−k

−m . Hence we obtain a linear G-morphism

Sπ : Hπ → L2,−k
−m .

Taking smooth vectors then yields a G-morphism S∞
π : H∞

π → L2,∞
−m . In analogy to Subsec-

tion 8.3 we have that S∞
π (v) = mv,ηπ

for all v ∈ H∞
π .

Finally we observe that q−m,k+l dominates p−m,k by the same argument as in the proof of
Lemma 9.5. �
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[11] Knop, F., Krötz, B., Pecher, T., et al.: Classification of reductive real spherical pairs II. The semisimple

case. arXiv: 1703.08048
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