Acta Mathematica Sinica, English Series Sep., 2017, Vol. 33, No. 9, pp. 1225–1241 Published online: June 28, 2017 DOI: 10.1007/s10114-017-6534-3 Http://www.ActaMath.com

Springer-Verlag Berlin Heidelberg & The Editorial Office of AMS 2017

Additive Preservers of Drazin Invertible Operators with Bounded Index

Mourad OUDGHIRI Khalid SOUILAH

Département Math-Info, Labo LAGA, Faculté des Sciences, Université Mohammed Premier, 60000 Oujda, Maroc E-mail: morad.oudghiri@gmail.com s.khalide@gmail.com

Abstract Let $\mathcal{B}(X)$ be the algebra of all bounded linear operators on an infinite-dimensional complex or real Banach space X. Given an integer $n \geq 1$, we show that an additive surjective map Φ on $\mathcal{B}(X)$ preserves Drazin invertible operators of index non-greater than n in both directions if and only if Φ is either of the form $\Phi(T) = \alpha ATA^{-1}$ or of the form $\Phi(T) = \alpha BT^*B^{-1}$ where α is a non-zero scalar, $A: X \to X$ and $B: X^* \to X$ are two bounded invertible linear or conjugate linear operators.

Keywords Linear preserver problems, Drazin inverse, ascent, descent

MR(2010) Subject Classification 47B49, 47L99, 47A55, 47B37

1 Introduction

Throughout this paper, X denotes an infinite-dimensional Banach space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let $\mathcal{B}(X)$ be the algebra of all bounded linear operators acting on X.

An operator $T \in \mathcal{B}(X)$ is called *Drazin invertible* if there exist $S \in \mathcal{B}(X)$ and a non-negative integer k such that

$$T^k ST = T^k, \quad STS = T \quad \text{and} \quad TS = ST.$$
 (1.1)

Such operator S is unique, it is called the *Drazin inverse* of T and denoted by T^{D} . The *Drazin index* of T, designated by i(T), is the smallest non-negative integer k satisfying (1.1). The concept of Drazin inverse was introduced in [5] and it has numerous applications in matrix theory, iterative methods, singular differential equations, and Markov chains, see for instance [1, 2, 4, 15] and the references therein.

Let Λ be a subset of $\mathcal{B}(X)$. An additive map $\Phi : \mathcal{B}(X) \to \mathcal{B}(X)$ is said to preserve Λ in both directions if for every $T \in \mathcal{B}(X)$,

$$T \in \Lambda$$
 if and only if $\Phi(T) \in \Lambda$.

In the last decades, there has been a remarkable interest in the so-called linear preserver problems which concern the question of characterizing linear, or additive, maps on Banach algebras that leave invariant a certain subset. For excellent expositions on linear preserver problems, the reader is referred to [7, 8, 12, 13, 18–20] and the references therein.

Received November 24, 2016, accepted February 13, 2017

One of the most famous problems in this direction is Kaplansky's conjecture [9] asking whether bijective unital linear maps Φ , between semi-simple Banach algebras, preserving invertibility in both directions are Jordan isomorphisms (i.e. $\Phi(a^2) = \Phi(a)^2$ for all a). The problem is still open even for C^* -algebras. However, in the case of the algebra $\mathcal{B}(X)$, Jafarian and Sourour establish in [8] that every unital surjective linear map Φ on $\mathcal{B}(X)$ preserving invertibility in both directions has one of the following two forms

$$T \mapsto ATA^{-1}$$
 or $T \mapsto AT^*A^{-1}$

where A is a bounded linear operator between suitable spaces. It is worth mentioning that an elegant proof of Jafarian-Sourour's result was given later by Šemrl in [19].

Following [17], we call an operator $T \in \mathcal{B}(X)$ group invertible if it is Drazin invertible with $i(T) \leq 1$. The term group refers to the fact that T and T^{D} generate an Abelian group with identity TT^{D} ; naturally T^{D} is called the group inverse of T. Note also that every invertible element is group invertible. Recently, it was shown in [14] that an additive surjective map $\Phi : \mathcal{B}(X) \to \mathcal{B}(X)$ preserves group invertible operators in both directions if and only if it has one of the following two forms

$$T \mapsto \alpha A T A^{-1}$$
 or $T \mapsto \alpha B T^* B^{-1}$

where $\alpha \in \mathbb{K}$ is non-zero, $A : X \to X$ and $B : X^* \to X$ are two bounded invertible linear or conjugate linear operators.

For an operator $T \in \mathcal{B}(X)$, write ker(T) for its kernel, ran(T) for its range and T^* for its adjoint on the topological dual space X^* . For each integer $n \ge 1$, let us introduce the following subset:

 $\mathcal{D}_n(X) = \{T \in \mathcal{B}(X) : T \text{ is Drazin invertible and } i(T) \le n\}.$

Clearly, $\mathcal{D}_n(X)$ includes every invertible operator and, more generally, every group invertible operator.

For $T \in \mathcal{B}(X)$, the hyper-kernel and the hyper-range are respectively the subspaces $\mathcal{N}^{\infty}(T) = \bigcup_k \ker(T^k)$ and $\mathcal{R}^{\infty}(T) = \bigcap_k \operatorname{ran}(T^k)$.

For each integer $n \ge 1$, let

 $\mathcal{B}_n(X) = \{T \in \mathcal{B}(X) : T \text{ is Drazin invertible and } \dim \mathcal{N}^\infty(T) \le n\}.$

This useful subset will permit, as will be seen subsequently, to reduce the problem of additive preservers of $\mathcal{D}_n(X)$ to those of $\mathcal{B}_n(X)$. For this, we provide an important characterization of the set $\mathcal{B}_n(X)$ via elements of $\mathcal{D}_n(X)$.

The purpose of this paper is to extend the main theorem of [14] to the setting of $\mathcal{D}_n(X)$. More precisely, the following theorem states the main result of this paper:

Theorem 1.1 Let $\Phi : \mathcal{B}(X) \to \mathcal{B}(X)$ be an additive surjective map, and let n be a positive integer. The following assertions are equivalent:

(i) Φ preserves $\mathcal{D}_n(X)$ in both directions;

(ii) Φ preserves $\mathcal{B}_n(X)$ in both directions;

(iii) There exist a non-zero scalar α , and either a bounded invertible linear, or conjugate linear, operator $A: X \to X$ such that

$$\Phi(T) = \alpha ATA^{-1} \quad for \ all \ T \in \mathcal{B}(X),$$

or, a bounded invertible linear, or conjugate linear, operator $B: X^* \to X$ such that

$$\Phi(T) = \alpha B T^* B^{-1} \quad for \ all \ T \in \mathcal{B}(X).$$

In the following we recapture, as an immediate consequence of the previous theorem, the main result in [14] that gives a characterization of the additive surjective maps preserving group invertible operators in both directions.

Corollary 1.2 Let $\Phi : \mathcal{B}(X) \to \mathcal{B}(X)$ be an additive surjective map. The following assertions are equivalent:

(i) Φ preserves group invertible operators in both directions;

(ii) There exist a non-zero scalar α , and either a bounded invertible linear, or conjugate linear, operator $A: X \to X$ such that

$$\Phi(T) = \alpha A T A^{-1} \quad for \ all \ T \in \mathcal{B}(X),$$

or, a bounded invertible linear, or conjugate linear, operator $B: X^* \to X$ such that

$$\Phi(T) = \alpha B T^* B^{-1} \quad for \ all \ T \in \mathcal{B}(X).$$

The paper is organized as follows. In the second section, we establish some useful results on finite rank perturbations of $\mathcal{B}_n(X)$, and we also show that $\mathcal{B}_n(X)$ is the topological interior of $\mathcal{D}_n(X)$. These results will be needed for proving our main result in the last section.

2 $\mathcal{B}_n(X)$ and Rank One Perturbations

Let $T \in \mathcal{B}(X)$ be non-zero. The ascent a(T) and descent d(T) of T are defined respectively by

$$\mathbf{a}(T) = \inf\{k \ge 0 : \ker(T^k) = \ker(T^{k+1})\} \quad \text{ and } \quad \mathbf{d}(T) = \inf\{k \ge 0 : \operatorname{ran}(T^k) = \operatorname{ran}(T^{k+1})\},$$

where the infimum over the empty subset is set to be infinite, see [16, 21]. It should be noted that for every non-negative integer m,

$$\dim \ker(T^{m+1}) \le m \Rightarrow a(T) \le m.$$
(2.1)

Indeed, if a(T) > m, there exists a vector $x \in ker(T^{m+1}) \setminus ker(T^m)$, and so $x, Tx, \ldots, T^m x$ are linearly independent vectors in $ker(T^{m+1})$. From (2.1), we easily obtain that the ascent and the hyper-kernel are related by the following inequality

$$a(T) \le \dim \mathcal{N}^{\infty}(T). \tag{2.2}$$

Remark 2.1 Let $T \in \mathcal{B}(X)$. Then T is Drazin invertible if and only if T has finite ascent and descent, see [10, Theorem 4]. Moreover, we have in this case the following well-known assertions (see [16, Corollary 20.5 and Theorem 22.10]):

- (i) i(T) = a(T) = d(T);
- (ii) $X = \ker(T^k) \oplus \operatorname{ran}(T^k)$ where k = i(T) and the direct sum is topological;
- (iii) $\mathcal{N}^{\infty}(T) = \ker(T^k), \ \mathcal{R}^{\infty}(T) = \operatorname{ran}(T^k) \ \text{and} \ T_{|\mathcal{R}^{\infty}(T)} \ \text{is invertible};$
- (iv) 0 is a pole of T of order k when $k \ge 1$.

Recall that an operator $T \in \mathcal{B}(X)$ is said to be *Fredholm* if both dim ker(T) and codim ran(T) are finite. For such operator T, the *index* is defined by

$$\operatorname{ind}(T) = \dim \operatorname{ker}(T) - \operatorname{codim} \operatorname{ran}(T).$$

It should be noted that an operator T is Fredholm if and only if T^k is Fredholm for any (some) integer $k \ge 1$, and in this case we have $\operatorname{ind}(T^k) = k.\operatorname{ind}(T)$ (see [16, Theorems 16.5, 16.6 and 16.12]). Consequently, it follows from Remark 2.1 (ii) that every operator in $\mathcal{B}_n(X)$ is Fredholm of index zero. We also mention that the set of Fredholm operators and the index are invariant under compact perturbations (see [16, Theorem 16.16]).

Proposition 2.2 $\mathcal{B}_n(X)$ is an open subset of $\mathcal{D}_n(X)$.

For proving this proposition, we need to establish the following lemma:

Lemma 2.3 Let $T \in \mathcal{B}(X)$ be a Fredholm operator of index zero. Then

(i) $T \in \mathcal{D}_n(X)$ if and only if $a(T) \leq n$.

(ii) $T \in \mathcal{B}_n(X)$ if and only if dim ker $(T^{n+1}) \leq n$.

Proof (i) The direct implication is an immediate consequence of Remark 2.1 (i). The converse follows from the fact that the descent and the ascent of a Fredholm operator of index zero are equal (see [13, Lemma 2.3]).

(ii) If $T \in \mathcal{B}_n(X)$ then dim ker $(T^{n+1}) \leq \dim \mathcal{N}^{\infty}(T) \leq n$. Conversely, suppose that dim ker $(T^{n+1}) \leq n$, then it follows by (2.1) that $a(T) \leq n$. Hence, dim $\mathcal{N}^{\infty}(T) = \dim \ker(T^{n+1}) \leq n$ and, by assertion (i), $T \in \mathcal{D}_n(X)$. Thus $T \in \mathcal{B}_n(X)$, which completes the proof. \Box

Note that from (2.2), we can easily see that for such operator T, we have also $T \in \mathcal{B}_n(X)$ if and only if dim $\mathcal{N}^{\infty}(T) \leq n$.

Proof of Proposition 2.2 Since every operator in $\mathcal{B}_n(X)$ is Fredholm of index zero, it easily follows from (2.2) and Lemma 2.3 (i) that $\mathcal{B}_n(X) \subset \mathcal{D}_n(X)$.

Let us show that $\mathcal{B}_n(X)$ is open. Let $S \in \mathcal{B}_n(X)$. Then dim ker $(S^{n+1}) \leq n$, and the operators S and S^{n+1} are Fredholm of index zero. Hence, it follows by [16, Theorems 16.11 and 16.17] that there exists $\eta > 0$ such that for all $T \in \mathcal{B}(X)$ with $|| T - S^{n+1} || < \eta$, we have T is Fredholm of index zero and

$$\dim \ker(T) \le \dim \ker(S^{n+1}) \le n.$$
(2.3)

On the other hand, since the map $T \mapsto T^{n+1}$ is continuous on $\mathcal{B}(X)$, there exists $\varepsilon > 0$ such that

 $|| T^{n+1} - S^{n+1} || < \eta \quad \text{for all } T \in \mathcal{B}(X) \quad \text{with } || T - S || < \varepsilon.$ (2.4)

Combining (2.4) and (2.3) we obtain that T^{n+1} , and hence T, is Fredholm of index zero, and

$$\dim \ker(T^{n+1}) \le \dim \ker(S^{n+1}) \le n$$

for every $T \in \mathcal{B}(X)$ with $||T-S|| < \varepsilon$. Thus, by Lemma 2.3 (ii), $T \in \mathcal{B}_n(X)$ for every $T \in \mathcal{B}(X)$ with $||T-S|| < \varepsilon$. This shows that $\mathcal{B}_n(X)$ is open, and the proof is complete.

Let $T \in \mathcal{B}(X)$. From [6, Lemma 1.1], given a non-negative integer d, we have

$$a(T) \le d \iff ker(T^m) \cap ran(T^d) = \{0\}$$
 for some (equivalently, all) $m \ge 1$, (2.5)

and

$$d(T) \le d \iff \ker(T^d) + \operatorname{ran}(T^m) = X \quad \text{for some (equivalently, all) } m \ge 1.$$
 (2.6)

In the next theorem, we provide a useful characterization that allows us to obtain the implication (i) \Rightarrow (ii) in Theorem 1.1.

Theorem 2.4 Let $T \in \mathcal{B}(X)$. Then the following assertions are equivalent:

(i) $T \in \mathcal{B}_n(X)$;

(ii) For every $S \in \mathcal{B}(X)$ there exists $\varepsilon_0 > 0$ such that $T + \varepsilon S \in \mathcal{D}_n(X)$ for all non-negative number (equivalently rational number) $\varepsilon < \varepsilon_0$.

Proof (i) \Rightarrow (ii) follows immediately from the openness of $\mathcal{B}_n(X)$.

(ii) \Rightarrow (i). We have in particular that $T \in \mathcal{D}_n(X)$. Suppose on the contrary that $T \notin \mathcal{B}_n(X)$. Then dim ker $(T^k) \ge n + 1$ where k = i(T), and so there exist linearly independent vectors $\{e_i : 0 \le i \le n\}$ such that $Te_0 = 0$ and $Te_i = \varepsilon_i e_{i-1}$ for $1 \le i \le n$, where $\varepsilon_i \in \{0, 1\}$. Indeed, if dim ker $(T^k) < \infty$, the existence of such vectors is obvious; otherwise, we obtain dim ker $(T) = \infty$ because dim ker $(T^k) \le k$ dim ker(T), see [3, Lemma 1], and so it suffices to take $e_i \in \text{ker}(T)$, $0 \le i \le n$. Consider the operator $S \in \mathcal{B}(X)$ given by $Se_0 = 0$ and $Se_i = e_{i-1}$ for $1 \le i \le n$. For any $\varepsilon \notin \{-1, 0\}$, we have

$$(T + \varepsilon S)e_0 = 0$$
 and $(T + \varepsilon S)e_i = (\varepsilon_i + \varepsilon)e_{i-1}$ for $1 \le i \le n$,

and hence $(T + \varepsilon S)^n e_n = \lambda e_0 \neq 0$ where $\lambda = (\varepsilon_n + \varepsilon) \dots (\varepsilon_1 + \varepsilon)$. Therefore $e_0 \in \ker(T + \varepsilon S) \cap \operatorname{ran}(T + \varepsilon S)^n$, and consequently $\operatorname{a}(T + \varepsilon S) \geq n + 1$ by (2.5), this contradiction finishes the proof.

For a subset $\Gamma \subseteq \mathcal{B}(X)$, we write $Int(\Gamma)$ for its interior.

Corollary 2.5 We have $Int(\mathcal{D}_n(X)) = \mathcal{B}_n(X)$.

Proof Note that $\mathcal{B}_n(X) \subseteq \operatorname{Int}(\mathcal{D}_n(X))$ because $\mathcal{B}_n(X)$ is open. Let $T \notin \mathcal{B}_n(X)$, then it follows by Theorem 2.4 that there exist an operator $S \in \mathcal{B}(X)$ and a sequence $(\varepsilon_k)_{k\geq 0}$ converging to zero such that $T + \varepsilon_k S \notin \mathcal{D}_n(X)$ for all $k \geq 0$. Consequently, $T \notin \operatorname{Int}(\mathcal{D}_n(X))$, as desired. The proof is complete.

Let $z \in X$ and $f \in X^*$ be non-zero. We will denote, as customary, by $z \otimes f$ the rank one operator defined by $(z \otimes f)(x) = f(x)z$ for all $x \in X$. Note that every rank one operator in $\mathcal{B}(X)$ can be written in this form.

The following theorem gives necessary and sufficient conditions for the stability of $\mathcal{B}_n(X)$ under rank one perturbations.

Theorem 2.6 Let $T \in \mathcal{B}_n(X)$, and let $p = n - \dim \mathcal{N}^{\infty}(T)$. If $z \in X$ and $f \in X^*$ then $T + z \otimes f \notin \mathcal{B}_n(X)$ if and only if the following assertions hold:

- (i) z = a + b where $a \in \mathcal{N}^{\infty}(T)$ and $b \in \mathcal{R}^{\infty}(T)$;
- (ii) $f(T^j a) = 0$ for all $j \ge 0$;
- (iii) $f(T_{o}^{-i}b) = -\delta_{i1}$ for $1 \le i \le p+1$ where $T_{o} = T_{|\mathcal{R}^{\infty}(T)}$.

Remark 2.7 Let $T \in \mathcal{B}(X)$ be a Fredholm operator of index zero. If dim ker $(T) \leq 1$, then dim ker $(T^k) \leq k$ for every integer $k \geq 0$, see [3, Lemma 1]. Moreover, in this case, $T \in \mathcal{B}_n(X)$ if and only if $a(T) \leq n$.

To prove Theorem 2.6, we need to establish the following two lemmas.

Lemma 2.8 Let $T \in \mathcal{B}_n(X)$ and $p = n - \dim \mathcal{N}^{\infty}(T)$. Let $F = z \otimes f$ be a rank one operator such that $\ker(T) \cap \ker(F) = \{0\}$. Then $T + z \otimes f \notin \mathcal{B}_n(X)$ if and only if $z \in \mathcal{R}^{\infty}(T)$ and $f(T_o^{-i}z) = -\delta_{i1}$ for $1 \leq i \leq p+1$, where $T_o = T_{|\mathcal{R}^{\infty}(T)}$. **Proof** Note that since T is a Fredholm operator of index zero, then so is T + F. Clearly, the restrictions of F to $\ker(T + F)$ and $\ker(T)$ are injective rank one operators because $\ker(T) \cap \ker(F) = \{0\}$. Hence, it follows that $\dim \ker(T+F) \leq 1$ and $\dim \ker(T) \leq 1$. If we let m = i(T), we get by the previous remark and (2.2) that $m = \dim \ker(T^m)$.

Suppose that $T + F \notin \mathcal{B}_n(X)$. Then $a(T + F) \ge n + 1$ by Remark 2.7, and hence it follows from [12, Lemma 2.2] that there exist linearly independent vectors $x_i, 0 \le i \le n$, and an integer $0 \le j \le n$ such that

$$(T+F)x_0 = 0$$
, $(T+F)x_i = x_{i-1}$ for $1 \le i \le n$, and $f(x_i) = \delta_{ij}$ for $0 \le i \le n$.

But, since $\ker(T) \cap \ker(F) = \{0\}$, we obtain that j = 0. Consequently, $Tx_0 = -z$ and $Tx_i = x_{i-1}$ for $1 \le i \le n$. From this, we get easily that

$$T^{i}x_{i-1} = Tx_0 = -z$$
 and $T^{n+1-i}x_n = x_{i-1}$ for $1 \le i \le n+1$.

Therefore $z = -T^{n+1}x_n \in \operatorname{ran}(T^{n+1}) = \operatorname{ran}(T^m)$, and since p = n - m, we also have $x_{i-1} \in \operatorname{ran}(T^{n+1-i}) = \operatorname{ran}(T^m)$ for $1 \le i \le p+1$. Thus, $T_o^{-i}z = -x_{i-1}$, and hence $f(T_o^{-i}z) = -\delta_{i1}$ for $1 \le i \le p+1$.

Conversely, suppose that $z \in \operatorname{ran}(T^m)$ and $f(T_o^{-i}z) = -\delta_{i1}$ for $1 \leq i \leq p+1$. Let $y_i = -T_o^{-(i+1)}z$ for $0 \leq i \leq p$. Clearly, we have

$$(T+F)y_0 = -(T+F)T_0^{-1}z = 0$$
 and $(T+F)y_i = Ty_i = y_{i-1}$ for $1 \le i \le p$.

Consequently, $(T+F)^p y_p = y_0 \neq 0$. Hence, $y_0 \in \operatorname{ran}(T+F)^p \cap \ker(T+F)$, and so $a(T+F) \geq p+1$ by (2.5). If T is invertible then p = n and $T + F \notin \mathcal{B}_n(X)$. Assume that T is not invertible. Since dim $\ker(T) = 1$, there is a basis $\{e_i : 0 \leq i \leq m-1\}$ of $\ker(T^m)$ such that $Te_0 = 0$ and $Te_i = e_{i-1}$ for $1 \leq i \leq m-1$. Since $\ker(T) \cap \ker(f) = \{0\}$, we infer that $f(e_0) \neq 0$. Without loss of generality, we may assume that $f(e_0) = 1$. Consider the complex numbers $c_0, c_1, \ldots, c_{m-1}$ defined inductively by

$$c_{0} = f(T_{o}^{-(p+2)}z),$$

$$c_{1} = -c_{0}f(e_{1}) + f(T_{o}^{-(p+3)}z),$$

$$c_{2} = -c_{1}f(e_{1}) - c_{0}f(e_{2}) + f(T_{o}^{-(p+4)}z),$$

$$\vdots$$

$$c_{m-1} = -c_{m-2}f(e_{1}) - \dots - c_{0}f(e_{m-1}) + f(T_{o}^{-(p+m+1)}z).$$

This means that we have

$$\sum_{k=1}^{i} c_{i-k} f(e_{k-1}) = f(T_{o}^{-(p+i+1)}z) \quad \text{for } 1 \le i \le m.$$
(2.7)

Let $y_{p+i} = \sum_{k=1}^{i} c_{i-k} e_{k-1} - T_0^{-(p+i+1)} z$ for $1 \le i \le m$. Clearly, from (2.7) we have $f(y_{p+i}) = 0$ for $1 \le i \le m$. Furthermore, since $Te_0 = 0$, we get that

$$(T+F)y_{p+1} = Ty_{p+1} = T(c_0e_0 - T_o^{-(p+2)}z) = -T_o^{-(p+1)}z = y_p,$$

and

$$(T+F)y_{p+i} = Ty_{p+i} = \sum_{k=2}^{i} c_{i-k}e_{k-2} - T_{o}^{-(p+i)}z = \sum_{s=1}^{i-1} c_{i-1-s}e_{s-1} - T_{o}^{-(p+i)}z = y_{p+i-1},$$

for $2 \leq i \leq m$. Hence, $(T+F)^m y_{p+m} = y_p$. But, since n = p + m and $(T+F)^p y_p = y_0$, we obtain that $(T+F)^n y_n = y_0 \neq 0$, and so $a(T+F) \geq n+1$. Thus, $T+F \notin \mathcal{B}_n(X)$. This completes the proof.

For $T, F \in \mathcal{B}(X)$, let

$$\mathcal{M}(T,F) = \{ x \in \mathcal{N}^{\infty}(T) : F(T^{i}x) = 0 \text{ for all } i \ge 0 \}.$$

Note that M(T, F) is a *T*-invariant subspace of $\mathcal{N}^{\infty}(T) \cap \ker(F)$. In the sequel, \tilde{T} and \tilde{F} shall denote the operators induced by T and F on X/M(T, F), respectively. Also we will write \tilde{x} for the class of x in X/M(T, F).

Lemma 2.9 Let $T, F \in \mathcal{B}(X)$ be non-zero. The following assertions hold:

(i) $\mathcal{N}^{\infty}(\tilde{T} + c\tilde{F}) = \mathcal{N}^{\infty}(T + cF)/\mathcal{M}(T, F)$ for all $c \in \mathbb{K}$; (ii) If $T \in \mathcal{B}_n(X)$ then $\tilde{T} \in \mathcal{B}_{n-q}(X/\mathcal{M}(T, F))$, where $q = \dim \mathcal{M}(T, F)$, and

$$\mathcal{R}^{\infty}(T) = (\mathcal{R}^{\infty}(T) \oplus \mathcal{M}(T,F)) / \mathcal{M}(T,F).$$

Proof (i) Fix an arbitrary $c \in \mathbb{K}$. We first claim that $M(T, F) \subseteq \mathcal{N}^{\infty}(T + cF)$. Let $x \in M(T, F)$ be arbitrary. Using the fact that $F(T^ix) = 0$ for all $i \geq 0$, one can easily verify that $(T + cF)^i x = T^i x$ for all $i \geq 0$. But, since $x \in \mathcal{N}^{\infty}(T)$, we have $T^j x = 0$ for some $j \geq 0$. Thus $(T + cF)^j x = T^j x = 0$, and so $x \in \mathcal{N}^{\infty}(T + cF)$.

Let $x \in X$, we have

$$\begin{split} \tilde{x} \in \mathcal{N}^{\infty}(\tilde{T} + c\tilde{F}) \Leftrightarrow \exists k \geq 0 : (T + cF)^{k} x \in \mathcal{M}(T, F) \subseteq \mathcal{N}^{\infty}(T + cF) \\ \Leftrightarrow x \in \mathcal{N}^{\infty}(T + cF) \\ \Leftrightarrow \tilde{x} \in \mathcal{N}^{\infty}(T + cF)/\mathcal{M}(T, F). \end{split}$$

This shows that $\mathcal{N}^{\infty}(\tilde{T} + c\tilde{F}) = \mathcal{N}^{\infty}(T + cF)/M(T, F).$

(ii) Suppose that $T \in \mathcal{B}_n(X)$, and let m = i(T). Since $M(T, F) \subseteq ker(T^m)$, one can easily check that

$$\operatorname{ran}(T^m) = (\operatorname{M}(T, F) \oplus \operatorname{ran}(T^m)) / \operatorname{M}(T, F).$$
(2.8)

Moreover, we have by the first assertion

$$\mathcal{N}^{\infty}(\tilde{T}) = \mathcal{N}^{\infty}(T)/\mathcal{M}(T,F) = \ker(T^m)/\mathcal{M}(T,F) \subseteq \ker(\tilde{T}^m).$$

Therefore, $\ker(\tilde{T}^m) = \mathcal{N}^{\infty}(\tilde{T}) = \ker(T^m)/\mathrm{M}(T, F)$. Hence, taking into account that $X = \ker(T^m) \oplus \operatorname{ran}(T^m)$, we get easily that $\ker(\tilde{T}^m) \oplus \operatorname{ran}(\tilde{T}^m) = X/\mathrm{M}(T, F)$. This shows that \tilde{T} is Drazin invertible with $i(\tilde{T}) \leq m$. In particular, it follows from (2.8) that

$$\mathcal{R}^{\infty}(T) = (\mathcal{R}^{\infty}(T) \oplus \mathcal{M}(T,F)) / \mathcal{M}(T,F).$$

Furthermore, since

$$\dim \ker(T^m) = \dim \ker(T^m) - \dim \mathcal{M}(T, F) \le n - q,$$

we obtain that $\tilde{T} \in \mathcal{B}_{n-q}(X/M(T,F))$. The proof is complete.

Proof of Theorem 2.6 Since $T \in \mathcal{B}_n(X)$, we have $\tilde{T} \in \mathcal{B}_{n-q}(X/M(T,F))$ by the previous lemma. Consequently, T and T + F are Fredholm of index zero. Let $q = \dim M(T,F)$, it

follows by the remark after Lemma 2.3 that

$$T + F \notin \mathcal{B}_n(X) \Leftrightarrow \dim \mathcal{N}^{\infty}(T + F) \ge n + 1$$
$$\Leftrightarrow \dim \mathcal{N}^{\infty}(\tilde{T} + \tilde{F}) \ge n - q + 1$$
$$\Leftrightarrow \tilde{T} + \tilde{F} \notin \mathcal{B}_{n-q}(X/\mathcal{M}(T, F)).$$

Moreover, since in this case $\tilde{F} \neq 0$, we get easily that $z \notin M(T, F)$, and for every $x \in X$, we have

$$\tilde{x} \in \ker(\tilde{T}) \cap \ker(\tilde{F}) \Leftrightarrow Tx \in \mathcal{M}(T, F)$$
 and $Fx = f(x)z \in \mathcal{M}(T, F)$
 $\Leftrightarrow Tx \in \mathcal{M}(T, F)$ and $f(x) = 0$
 $\Leftrightarrow x \in \mathcal{M}(T, F).$

Thus $\ker(\tilde{T}) \cap \ker(\tilde{F}) = \{0\}$. Therefore, using Lemma 2.8 and the fact that $n-q-\dim \mathcal{N}^{\infty}(\tilde{T}) = p$, we obtain that

$$\tilde{T} + \tilde{F} \notin \mathcal{B}_{n-q}(X/\mathcal{M}(T,F)) \Leftrightarrow \begin{cases} \tilde{z} \in \mathcal{R}^{\infty}(\tilde{T}), \\ \tilde{f}((\tilde{T}_{|\mathcal{R}^{\infty}(\tilde{T})})^{-i}\tilde{z}) = -\delta_{i1} & \text{for } 1 \leq i \leq p+1. \end{cases}$$

Let z = a + b where $a \in \mathcal{N}^{\infty}(T)$ and $b \in \mathcal{R}^{\infty}(T)$. Then $\tilde{z} = \tilde{a} + \tilde{b}$ and, by Lemma 2.9, $\tilde{a} \in \mathcal{N}^{\infty}(\tilde{T})$ and $\tilde{b} \in \mathcal{R}^{\infty}(\tilde{T})$. Therefore, since \tilde{T} is Drazin invertible, we have $\mathcal{N}^{\infty}(\tilde{T}) \cap \mathcal{R}^{\infty}(\tilde{T}) = \{0\}$, and so

$$\begin{split} \tilde{T} + \tilde{F} \notin \mathcal{B}_{n-q}(X/\mathcal{M}(T,F)) \Leftrightarrow \begin{cases} \tilde{a} = 0, \\ \tilde{f}((\tilde{T}_{|\mathcal{R}^{\infty}(\tilde{T})})^{-i}\tilde{b}) = -\delta_{i1} & \text{for } 1 \le i \le p+1 \end{cases} \\ \Leftrightarrow \begin{cases} a \in \mathcal{M}(T,F), \\ f(T_{o}^{-i}b) = -\delta_{i1} & \text{for } 1 \le i \le p+1. \end{cases} \end{split}$$

This completes the proof.

The following proposition, which is interesting in itself, will play a crucial role in the sequel.

Proposition 2.10 Let $F \in \mathcal{B}(X)$ be non-zero. Then the following assertions hold:

(i) There exists an invertible operator $T \in \mathcal{B}(X)$ such that $T + F \notin \mathcal{B}_n(X)$;

(ii) If dim ran $(F) \ge 2$ then there exists an invertible operator $T \in \mathcal{B}(X)$ such that $T + F \notin \mathcal{B}_n(X)$ and $T - F \notin \mathcal{B}_n(X)$.

Proof First, suppose that ran(F) has infinite-dimension. Then codim ker(F) = ∞ . Let x_i , $0 \le i \le 2n + 1$, be linearly independent vectors that generate a subspace having trivial intersection with ker(F). It follows that the vectors Fx_i , $0 \le i \le 2n + 1$, are linearly independent. Write

$$X = \operatorname{span}\{x_i : 0 \le i \le 2n+1\} \oplus Y = \operatorname{Span}\{Fx_i : 0 \le i \le 2n+1\} \oplus Z,$$

where Y, Z are two closed subspaces and $Y = F^{-1}Z$. Then there exists an invertible operator $T \in \mathcal{B}(X)$ such that TY = Z and $Tx_i = (-1)^i Fx_i$ for $0 \le i \le 2n+1$. Clearly, $x_{2i+1} \in \ker(T+F)$ and $x_{2i} \in \ker(T-F)$ for $0 \le i \le n$. Hence, dim $\ker(T \pm F) > n$, and so $T \pm F \notin \mathcal{B}_n(X)$. This establishes the assertions (i) and (ii).

Now suppose that F is finite-rank, and let $r = \min\{\dim \operatorname{ran}(F), 2\}$. Since ker(F) is infinitedimensional and $r \leq \dim \operatorname{ran}(F)$, there exist vectors $y_j \in X$, $0 \leq j \leq r-1$, such that the set $\{Fy_j : 0 \leq j \leq r-1\}$ is linearly independent. Perturbing y_j by suitable elements of $\ker(F)$ we may assume that the vectors $\{y_j, Fy_j : 0 \leq j \leq r-1\}$ are linearly independent. Consider also arbitrary vectors $z_{i,j} \in \ker(F)$, $0 \leq j \leq r-1$ and $1 \leq i \leq n$, such that the set $\{z_{i,j}, y_j, Fy_j : 0 \leq j \leq r-1, 1 \leq i \leq n\}$ is linearly independent. Let $T \in \mathcal{B}(X)$ be an arbitrary invertible operator satisfying

$$\begin{cases} Tz_{i,j} = z_{i-1,j} & \text{for } 0 \le j \le r-1 \text{ and } 2 \le i \le n, \\ Tz_{1,j} = y_j & \text{and} & Ty_j = (-1)^{j+1} Fy_j & \text{for } 0 \le j \le r-1. \end{cases}$$

It follows that

$$\begin{cases} (T \pm F)z_{i,j} = Tz_{i,j} = z_{i-1,j} & \text{for } 0 \le j \le r-1 \text{ and } 2 \le i \le n, \\ (T \pm F)z_{1,j} = Tz_{1,j} = y_j & \text{for } 0 \le j \le r-1. \end{cases}$$

From this, we get easily that $(T \pm F)^n z_{n,j} = y_j$ for $0 \le j \le r-1$. Hence, if r = 1 then $y_0 \in \operatorname{ran}(T+F)^n \cap \ker(T+F)$, and so $\operatorname{a}(T+F) > n$ and $T+F \notin \mathcal{B}_n(X)$. While, if r = 2 then $y_0 \in \operatorname{ran}(T+F)^n \cap \ker(T+F)$ and $y_1 \in \operatorname{ran}(T-F)^n \cap \ker(T-F)$, and hence $\operatorname{a}(T \pm F) > n$ and $T \pm F \notin \mathcal{B}_n(X)$. This completes the proof. \Box

In the following theorem we give a useful characterization of rank one operators in terms of elements of $\mathcal{B}_n(X)$.

Theorem 2.11 Let $F \in \mathcal{B}(X)$ be non-zero. The following assertions are equivalent:

(i) F is rank one;

(ii) For every $T \in \mathcal{B}_n(X)$, $\operatorname{Card}\{\lambda \in \mathbb{Q} : T + \lambda F \notin \mathcal{B}_n(X)\} \leq 1$.

Proof (i) \Rightarrow (ii). Write $F = z \otimes f$ with $z \in X$ and $f \in X^*$. Let $T \in \mathcal{B}_n(X)$. Then z = a + bwhere $a \in \mathcal{N}^{\infty}(T)$ and $b \in \mathcal{R}^{\infty}(T)$. If there exists $\alpha \in \mathbb{Q}$ such that $T + \alpha z \otimes f \notin \mathcal{B}_n(X)$, then it follows by Theorem 2.6 that $\alpha f(T_o^{-1}b) = -1$ where $T_o = T_{|\mathcal{R}^{\infty}(T)}$. This shows that $T + \lambda F \in \mathcal{B}_n(X)$ for all rational number $\lambda \neq \alpha$.

(ii) \Rightarrow (i) follows immediately from the second assertion of Proposition 2.10. The proof is finished.

Let $T = T_1 \oplus T_2$ be a diagonal operator with respect to a given decomposition of X. One can easily show that T is Drazin invertible if and only if T_1 and T_2 are Drazin invertible, and in this case $i(T) = \max\{i(T_1), i(T_2)\}$.

The following example shows that Theorem 2.11 does not hold if we replace $\mathcal{B}_n(X)$ by $\mathcal{D}_n(X)$. Note that a nilpotent operator T of order k is Drazin invertible of index k.

Example 2.12 Let $Y \subset X$ be a subspace of dimension n+1, and write $X = Y \oplus Z$ where Z is a closed subspace. With respect to an arbitrary basis of Y, consider the operators $T, F \in \mathcal{B}(X)$ given by

$$T = (J_n \oplus 0) \oplus I$$
 and $F = E_{n+1,n} \oplus 0$,

where J_n is the $n \times n$ nilpotent matrix with 1 in the diagonal directly below the main diagonal and 0 elsewhere, and $E_{n+1,n}$ is the $(n + 1) \times (n + 1)$ matrix whose unique non-zero entry is 1 in position (n + 1, n). Clearly, F is rank one and $T \in \mathcal{D}_n(X)$. However, the matrix $(J_n \oplus 0) + \alpha E_{n+1,n}$ is nilpotent of order n + 1, and so $T + \alpha F \notin \mathcal{D}_n(X)$ for every non-zero $\alpha \in \mathbb{C}$.

3 Proof of the Main Result

Combining Proposition 2.10 with Theorem 2.11, we obtain:

Corollary 3.1 Let $\Phi : \mathcal{B}(X) \to \mathcal{B}(X)$ be an additive surjective map. If Φ preserves $\mathcal{B}_n(X)$ in both directions then

- (i) Φ is injective;
- (ii) Φ preserves the set of rank one operators in both directions.

Proof (i) Suppose on the contrary that there exists $F \neq 0$ such that $\Phi(F) = 0$. Then by Proposition 2.10, there is an invertible operator $T \in \mathcal{B}(X)$ such that $T + F \notin \mathcal{B}_n(X)$. But, $\Phi(T + F) = \Phi(T) \in \mathcal{B}_n(X)$, the desired contradiction.

(ii) Let $F \in \mathcal{B}(X)$ be non-zero. Then $\Phi(F) \neq 0$. Note that every additive map is \mathbb{Q} -linear. Hence, since Φ is bijective and preserves $\mathcal{B}_n(X)$ in both directions, it follows by Theorem 2.11 that

$$\dim \operatorname{ran}(F) = 1 \Leftrightarrow \forall T \in \mathcal{B}_n(X) : \operatorname{Card}\{\lambda \in \mathbb{Q} : T + \lambda F \notin \mathcal{B}_n(X)\} \leq 1$$
$$\Leftrightarrow \forall S \in \mathcal{B}_n(X) : \operatorname{Card}\{\lambda \in \mathbb{Q} : S + \lambda \Phi(F) \notin \mathcal{B}_n(X)\} \leq 1$$
$$\Leftrightarrow \dim \operatorname{ran}(\Phi(F)) = 1.$$

This completes the proof.

Definition 3.2 Let $T, S \in \mathcal{B}(X)$. We will write $T \sim S$ if the following equivalence holds

 $T + F \in \mathcal{B}_n(X) \Leftrightarrow S + F \in \mathcal{B}_n(X)$

for every finite rank operator $F \in \mathcal{B}(X)$.

The following assertions follow immediately from the previous definition:

(i) (~) defines an equivalence relation on $\mathcal{B}(X)$.

- (ii) If $T \sim S$ then $T + F \sim S + F$ for all finite rank operator $F \in \mathcal{B}(X)$.
- (iii) If $T \sim S$ then $T \in \mathcal{B}_n(X)$ if and only if $S \in \mathcal{B}_n(X)$.

Proposition 3.3 Let $T, S \in \mathcal{B}(X)$ be two invertible operators. If $T \sim S$ then T = S.

Before proving this proposition, we need to establish two auxiliary lemmas.

For an operator $T \in \mathcal{B}(X)$ and $x \in X$, we write

$$\mathcal{M}_x(T) = \{ f \in X^* : T + x \otimes f \notin \mathcal{B}_n(X) \}.$$

Note that if $S \in \mathcal{B}(X)$ is an operator such that $T \sim S$, then $M_x(T) = M_x(S)$.

Remark 3.4 Let $T \in \mathcal{B}_n(X)$, $p = n - \dim \mathcal{N}^{\infty}(T)$, and x = a + b where $a \in \mathcal{N}^{\infty}(T)$ and $b \in \mathcal{R}^{\infty}(T)$. The following assertions follow immediately from Theorem 2.6:

(i) $f \in M_x(T)$ if and only if $f(T^j a) = 0$ for $j \ge 0$, and $f(T_o^{-i}b) = -\delta_{i1}$ for $1 \le i \le p+1$ where $T_o = T_{|\mathcal{R}^\infty(T)}$;

(ii) $M_a(T) = \emptyset$ and $M_x(T) \subseteq M_b(T)$.

Lemma 3.5 Let $T \in \mathcal{B}_n(X)$, $p = n - \dim \mathcal{N}^{\infty}(T)$, $x \in \mathcal{R}^{\infty}(T)$, and $T_o = T_{|\mathcal{R}^{\infty}(T)}$. Then

$$M_x(T) \neq \emptyset \Leftrightarrow \{T_o^{-i}x : 1 \le i \le p+1\}$$
 is linearly independent.

Moreover, in this case we have $M_y(T) \neq \emptyset$ for all $y \in \{T_o^i x : i \in \mathbb{Z}\}$.

Proof Suppose that $M_x(T)$ is not empty, and let $f \in M_x(T)$. Let α_i , $1 \le i \le p+1$, be scalars such that $\alpha_1 T_o^{-1} x + \cdots + \alpha_{p+1} T_o^{-(p+1)} x = 0$. The fact that $f(T_o^{-i} x) = -\delta_{i1}$ for $1 \le i \le p+1$ implies that $\alpha_1 = 0$. Hence, $\alpha_2 T_o^{-2} x + \cdots + \alpha_{p+1} T_o^{-(p+1)} x = 0$, and so $\alpha_2 T_o^{-1} x + \cdots + \alpha_{p+1} T_o^{-p} x = 0$. Using again f, we get that $\alpha_2 = 0$. By repeating the same argument, we obtain that $\alpha_3 = \cdots = \alpha_{p+1} = 0$, and hence $\{T_o^{-i} x : 1 \le i \le p+1\}$ is linearly independent

Conversely, suppose that $\{T_{o}^{-i}x: 1 \leq k \leq p+1\}$ is linearly independent. Then the existence of a linear form $g \in X^*$ satisfying $g(T_{o}^{-i}x) = -\delta_{i1}$ for $1 \leq i \leq p+1$ is obvious. Thus $g \in M_x(T)$.

Now, let $y = T_o^i x$ where *i* is an arbitrary integer. Since also the vectors $T_o^{-k} x$, $1 \le k \le p+1$, are linearly independent, we get that $M_y(T)$ is not empty. This finishes the proof. \Box

For a subset $M \subseteq X$, we denote by $M^{\perp} = \{f \in X^* : M \subseteq \ker(f)\}$ its annihilator.

Lemma 3.6 Let $T \in \mathcal{B}(X)$ be invertible, and let $S \in \mathcal{B}(X)$ be such that $T \sim S$. If there exists a vector x such that $\{x, Tx, \ldots, T^{2n}x\}$ is linearly independent then S is invertible and Ty = Sy for all $y \in \text{Span}\{T^ix : i \in \mathbb{Z}\}$.

Proof First, since $T \in \mathcal{B}_n(X)$ and $T \sim S$, we have $S \in \mathcal{B}_n(X)$. Suppose on the contrary that S is not invertible. Let x = a + b where $a \in \mathcal{N}^{\infty}(S)$ and $b \in \mathcal{R}^{\infty}(S)$, and let $S_o = S_{|\mathcal{R}^{\infty}(S)}$ and $p = n - \dim \mathcal{N}^{\infty}(S)$. Since $M_x(T) = M_x(S)$ is not empty, then so is $M_b(T) = M_b(S)$. Hence, by the previous lemma, the sets $\{T^{-i}b: 1 \leq i \leq n+1\}$ and $\{S_o^{-i}b: 1 \leq i \leq p+1\}$ are linearly independent. But, as p < n, there is $1 \leq k \leq n+1$ such that $\{T^{-k}b, S_o^{-i}b: 1 \leq i \leq p+1\}$ is a linearly independent set, and so there exists a linear form $\varphi \in X^*$ such that $\varphi(T^{-k}b) = 1$ and $\varphi(S_o^{-i}b) = -\delta_{i1}$ for $1 \leq i \leq p+1$. Thus, $\varphi \notin M_b(T)$ and $\varphi \in M_b(S)$; a contradiction.

Note that since $T^i x$ satisfies the same hypothesis as x for all $i \in \mathbb{Z}$, it suffices to show that $ST^{-(n+1)}x = T^{-n}x$. Let $y \in \{T^i x, S^i x : i \in \mathbb{Z}\}$. The fact that $M_x(T) = M_x(S)$ is not empty asserts that $M_{T^i x}(T)$ and $M_{S^i x}(S)$ are not empty for all $i \in \mathbb{Z}$. So that $M_y(T) = M_y(S)$ is not empty. Let $f \in M_y(T)$, and consider an arbitrary $g \in \{T^{-j}y : 2 \leq j \leq n+1\}^{\perp}$. Put $h = g + (g(T^{-1}y) + 1)f$. Clearly, we have

$$h(T^{-1}y) = -1$$
 and $h(T^{-i}y) = 0$ for $2 \le i \le n+1$,

and so $h \in M_y(T) = M_y(S)$. Hence, we get that $h(S^{-1}y) = -1$ and $h(S^{-i}y) = 0$ for $2 \le i \le n + 1$. Consequently, $g(S^{-1}y - T^{-1}y) = g(S^{-i}y) = 0$ for $2 \le i \le n + 1$. This implies that

$$\{S^{-1}y - T^{-1}y, S^{-i}y : 2 \le i \le n+1\} \subseteq \text{Span}\{T^{-j}y : 2 \le j \le n+1\}.$$
(3.1)

Let us show that

$$S^{-i}x - T^{-i}x \in \text{Span}\{T^{-k}x : i+1 \le k \le n+1\} \quad \text{for } 1 \le i \le n+1.$$
(3.2)

Clearly, replacing y by x in (3.1), we get that (3.2) is satisfied for i = 1. Suppose that (3.2) holds for i < n + 1. We have

$$S^{-(i+1)}x - T^{-(i+1)}x = S^{-1}(S^{-i}x - T^{-i}x) + S^{-1}T^{-i}x - T^{-1}T^{-i}x.$$

Using (3.2) and (3.1) for $y = T^{-k}x$, we get that

$$S^{-1}(S^{-i}x - T^{-i}x) \in \text{Span}\{S^{-1}T^{-k}x : i+1 \le k \le n+1\}$$
$$\subseteq \text{Span}\{T^{-(j+k)}x : 1 \le j \le n+1, \ i+1 \le k \le n+1\}$$

$$\subseteq \operatorname{Span}\{T^{-p}x: i+2 \le p \le 2n+2\}.$$

Moreover, the formula (3.1) for $y = T^{-i}x$ asserts that

$$S^{-1}T^{-i}x - T^{-1}T^{-i}x \in \text{Span}\{T^{-(j+i)}x : 2 \le j \le n+1\} \subseteq \text{Span}\{T^{-p}x : i+2 \le p \le 2n+2\}.$$

Thus, $S^{-(i+1)}x - T^{-(i+1)}x \in \text{Span}\{T^{-p}x : i+2 \le p \le 2n+2\}$. On the other hand, replacing y by x in (3.1), we recover that $S^{-(i+1)}x$ is a linear combination of $T^{-j}x$, $2 \le j \le n+1$, and hence so is $S^{-(i+1)}x - T^{-(i+1)}x$. Therefore,

$$S^{-(i+1)}x - T^{-(i+1)}x \in \text{Span}\{T^{-p}x : i+2 \le p \le 2n+2\} \cap \text{Span}\{T^{-j}x : 2 \le j \le n+1\}$$
$$\subseteq \text{Span}\{T^{-k}x : i+2 \le k \le n+1\},$$

which establishes (3.2). Hence, $S^{-(n+1)}x = T^{-(n+1)}x$ and $S^{-n}x = T^{-n}x + \beta T^{-(n+1)}x$ for some $\beta \in \mathbb{C}$. Moreover, it follows from (3.1) with $y = S^{-n}x$ that there exist complex numbers $\alpha_1, \ldots, \alpha_{n+1} \in \mathbb{C}$ such that $\alpha_1 = 1$ and

$$S^{-1}S^{-n}x = \sum_{j=1}^{n+1} \alpha_j T^{-j}S^{-n}x.$$

Therefore,

$$S^{-(n+1)}x = \sum_{j=1}^{n+1} \alpha_j T^{-j} (T^{-n}x + \beta T^{-(n+1)}x)$$

= $\sum_{j=1}^{n+1} \alpha_j (T^{-(n+j)}x + \beta T^{-(n+1+j)}x)$
= $T^{-(n+1)}x + (\alpha_1\beta + \alpha_2)T^{-(n+2)}x + \dots + (\alpha_n\beta + \alpha_{n+1})T^{-(2n+1)}x$
+ $\alpha_{n+1}\beta T^{-(2n+2)}x.$

Since $S^{-(n+1)}x = T^{-(n+1)}x$ and $\{T^{-(n+1)}x, \dots, T^{-(2n+2)}x\}$ is a linearly independent set, we infer that

$$\beta + \alpha_2 = \alpha_2 \beta + \alpha_3 = \dots = \alpha_n \beta + \alpha_{n+1} = \alpha_{n+1} \beta = 0.$$

So that $\beta = -\alpha_2$ and $\alpha_i = \alpha_2^{i-1}$ for $2 \le i \le n+1$. But, as $\alpha_{n+1}\beta = -\alpha_2^{n+1} = 0$, we obtain that $\beta = \alpha_i = 0$ for $2 \le i \le n+1$. Thus, $S^{-n}x = T^{-n}x$. Finally, we have $ST^{-(n+1)}x = SS^{-(n+1)}x = S^{-n}x = T^{-n}x$, as desired, and the proof is finished.

Proof of Proposition 3.3 Notice first that for a finite codimensional subspace Y of X, it is an elementary fact that

$$\dim(Y \cap T^{-1}Y \cap \dots \cap T^{-2n}Y) = \infty.$$

Let $x_0 \in X$ be non-zero, and let us show that $Tx_0 = Sx_0$. Let Y be a complement of $\text{Span}\{x_0, Tx_0, \ldots, T^{2n}x_0\}$. Then $Y \cap T^{-1}Y \cap \cdots \cap T^{-2n}Y$ contains a non-zero vector x_1 , and the sum

$$\operatorname{Span}\{x_0, Tx_0, \dots, T^{2n}x_0\} + \operatorname{Span}\{x_1, Tx_1, \dots, T^{2n}x_1\}$$

is direct. Repeating the same argument, we get the existence of non-zero vectors $x_2, \ldots, x_{2n} \in X$ such that the sum of the subspaces

$$Z_i = \operatorname{Span}\{x_i, Tx_i, \dots, T^{2n}x_i\}, \quad 0 \le i \le 2n,$$

is direct. Let $f_0, \ldots, f_{2n-1} \in X^*$ be such that $f_i \in Z_j^{\perp}$ for $i \neq j$, and $f_0(x_0) = f_i(Tx_i) = 1$ for $1 \leq i \leq 2n-1$. Consider also the operators $H, R \in \mathcal{B}(X)$ defined by

$$H = T + \sum_{i=1}^{2n} Tx_i \otimes f_{i-1} \quad \text{and} \quad R = S + \sum_{i=1}^{2n} Tx_i \otimes f_{i-1}.$$

Clearly, we have $H \sim R$. Note also that

$$I + \sum_{i=1}^{2n} x_i \otimes f_{i-1} = \prod_{i=1}^{2n} (I + x_i \otimes f_{i-1}),$$

and since $f_{i-1}(x_i) = 0$ for $1 \le i \le 2n$, we obtain that this operator is invertible. Therefore, H is invertible. Furthermore, one can easily verify that $H^k x_0 = v_{k-1} + Tx_k$ for $1 \le k \le 2n$, where $v_{k-1} \in Z_0 \oplus \cdots \oplus Z_{k-1}$. Consequently, the vectors $x_0, \ldots, H^{2n}x_0$ are linearly independent. Thus, $Hx_0 = Rx_0$ by Lemma 3.6. But, we have also $Hx_0 = Tx_0 + Tx_1$ and $Rx_0 = Sx_0 + Tx_1$. Hence, $Tx_0 = Sx_0$. This completes the proof.

Proposition 3.7 Let $\Phi : \mathcal{B}(X) \to \mathcal{B}(X)$ be an additive surjective map. If Φ preserves $\mathcal{B}_n(X)$ in both directions then there exists a non-zero $\alpha \in \mathbb{K}$ such that $\Phi(I) = \alpha I$.

Before proving this proposition, we need the following technical lemma:

Lemma 3.8 Let $U \in \mathcal{B}(X)$ be an invertible operator, and let $F \in \mathcal{B}(X)$ be such that $\dim \operatorname{ran}(F) \leq n$. If UF = F then $U + F \in \mathcal{B}_n(X)$.

Proof Note that U + F is a Fredholm operator of index zero, and hence, by Lemma 2.3, it suffices to show that dim ker $((U + F)^{n+1}) \leq n$. Under the assumption UF = F, one can easily get that $(U+F)^{n+1} = U^{n+1} + FV$ for some $V \in \mathcal{B}(X)$. Hence, it follows that ker $((U+F)^{n+1}) \subseteq U^{-(n+1)}$ ran(F). Thus dim ker $((U+F)^{n+1}) \leq n$, as desired. \Box

Proof of Proposition 3.7 Set $S = \Phi(I)$, note that $S \in \mathcal{B}_n(X)$ because $I \in \mathcal{B}_n(X)$. We begin by proving that $S + F \in \mathcal{B}_n(X)$ for every $F \in \mathcal{B}(X)$ such that dim $\operatorname{ran}(F) \leq n$. Let $F \in \mathcal{B}(X)$ with dim $\operatorname{ran}(F) \leq n$. By Corollary 3.1, Φ is bijective and preserves rank one operators in both directions, it follows that there exists $K \in \mathcal{B}(X)$ such that dim $\operatorname{ran}(K) \leq n$ and $\Phi(K) = F$. Thus, we get by the previous lemma that I + K, and hence $S + F = \Phi(I + K)$, belongs to $\mathcal{B}_n(X)$.

Now, suppose on the contrary that S is not scalar multiple of the identity. Then there exists $y_1 \in X$ such that the vectors y_1 and Sy_1 are linearly independent. Since $S \in \mathcal{B}_n(X)$, ran(S) is an infinite-dimensional subspace, and hence there exist vectors $y_i \in X$, $2 \leq i \leq n$, such that $\{y_1, Sy_i : 1 \leq i \leq n\}$ is a linearly independent set. Consider the linear forms $g_i \in X^*$, $1 \leq i \leq n$, given by

 $g_i(y_1) = 0$ and $g_i(Sy_j) = -\delta_{ij}$ for $1 \le i, j \le n$.

Let $F = \sum_{i=1}^{n} S^2 y_i \otimes g_i$. Clearly, we have $(S+F)Sy_j = 0$ for $1 \leq j \leq n$, and $(S+F)y_1 = Sy_1$, and so $Sy_1 \in \ker(S+F)^2$. Consequently, dim $\ker(S+F)^2 \geq n+1$, and hence $S+F \notin \mathcal{B}_n(X)$. This leads to a contradiction because dim $\operatorname{ran}(F) \leq n$. The proof is complete.

To give the proof of the main result, it remains only to establish the following two lemmas. Lemma 3.9 Let $x \in X$, $f \in X^*$, and let $x_1, \ldots, x_n \in \text{ker}(f)$ be linearly independent vectors. Then f(x) = -1 if and only if there exist $f_1, \ldots, f_n \in X^*$ such that

$$I + x \otimes f + x_1 \otimes f_1 + \dots + x_n \otimes f_n \notin \mathcal{B}_n(X).$$

Proof Let $S = I + x \otimes f$. Suppose that f(x) = -1. Then the vectors $\{x, x_1, \ldots, x_n\}$ are linearly independent, and hence there exist linear forms $f_1, \ldots, f_n \in X^*$ such that

$$f_i(x) = 0$$
 and $f_i(x_j) = -\delta_{ij}$ for $1 \le i, j \le n$.

If we let $F = x_1 \otimes f_1 + \cdots + x_n \otimes f_n$ we get easily that Fx = 0 and $Fx_i = -x_i$ for $1 \le i \le n$. So that $(S+F)x_i = (S+F)x = 0$ for $1 \le i \le n$. Thus, dim ker $(S+F) \ge n+1$, which implies that $S + F \notin \mathcal{B}_n(X)$.

Conversely, suppose that $f(x) \neq -1$. Let $f_1, \ldots, f_n \in X^*$ be arbitrary, and let $K = x_1 \otimes f_1 + \cdots + x_n \otimes f_n$. Then, S is invertible and dim ran $(K) \leq n$. Furthermore, we have SK = K, and so $S + K \in \mathcal{B}_n(X)$ by the previous lemma. This completes the proof. \Box

Let τ be a field automorphism of \mathbb{K} . An additive map $A: X \to Y$ defined between two Banach spaces will be called τ -semi linear if $A(\lambda x) = \tau(\lambda)Ax$ holds for all $x \in X$ and $\lambda \in \mathbb{K}$. Moreover, we say simply that A is conjugate linear when τ is the complex conjugation. Notice that if A is non-zero and bounded, then τ is continuous, and consequently, τ is either the identity or the complex conjugation, see [11, Theorem 14.4.2 and Lemma 14.5.1]. Moreover, in this case, the adjoint operator $A^*: Y^* \to X^*$, defined by

$$A^*(g) = \tau^{-1} \circ g \circ A \quad \text{for all } g \in Y^*,$$

is again τ -semi linear.

For a bounded linear operator T on X, we have

 $T \in \mathcal{B}_n(X)$ if and only if $T^* \in \mathcal{B}_n(X^*)$.

Indeed, it is well known that T is Drazin invertible if and only if T^* is Drazin invertible, and in this case $i(T) = i(T^*)$, see [16]. So, using [21, Theorem IV.8.4] we get easily the desired equivalence.

Lemma 3.10 Let $\Phi : \mathcal{B}(X) \to \mathcal{B}(X)$ be an additive surjective map. If Φ preserves $\mathcal{B}_n(X)$ in both directions, then there exists a non-zero $\alpha \in \mathbb{K}$ such that $\Phi(I) = \alpha I$, and either

(i) there exists an invertible bounded linear, or conjugate linear, operator $A: X \to X$ such that $\Phi(F) = \alpha AFA^{-1}$ for all finite rank operator $F \in \mathcal{B}(X)$, or

(ii) there exists an invertible bounded linear, or conjugate linear, operator $B: X^* \to X$ such that $\Phi(F) = \alpha BF^*B^{-1}$ for all finite rank operator $F \in \mathcal{B}(X)$. In this case, X is reflexive.

Proof The existence of a non-zero scalar α such that $\Phi(I) = \alpha I$ is ensured by Proposition 3.7. Clearly, we can assume without loss of generality that $\Phi(I) = I$. Since Φ is bijective and preserves the set of rank one operators in both directions, then by [18, Theorems 3.1 and 3.3], there exist a ring automorphism $\tau : \mathbb{K} \to \mathbb{K}$ and either two bijective τ -semi linear mappings $A: X \to X$ and $C: X^* \to X^*$ such that

$$\Phi(x \otimes f) = Ax \otimes Cf \quad \text{for all } x \in X \text{ and } f \in X^*,$$
(3.3)

or two bijective τ -semi linear mappings $B: X^* \to X$ and $D: X \to X^*$ such that

$$\Phi(x \otimes f) = Bf \otimes Dx \quad \text{for all } x \in X \text{ and } f \in X^*.$$
(3.4)

Suppose that Φ satisfies (3.3), and let us show that

$$C(f)(Ax) = \tau(f(x)) \quad \text{for all } x \in X \text{ and } f \in X^*.$$
(3.5)

Clearly, it suffices to establish that for all $x \in X$ and $f \in X^*$, f(x) = -1 if and only if C(f)(Ax) = -1. Let $x \in X$ and $f \in X^*$. Consider arbitrary linearly independent vectors z_i , $1 \le i \le n$, in ker $(f) \cap \text{ker}(C(f)A)$. Then, it follows from Lemma 3.9 that

$$f(x) = -1 \Leftrightarrow \exists \{g_i\}_{i=1}^n \subseteq X^* : I + x \otimes f + \sum_{i=1}^n z_i \otimes g_i \notin \mathcal{B}_n(X)$$
$$\Leftrightarrow \exists \{g_i\}_{i=1}^n \subseteq X^* : I + Ax \otimes Cf + \sum_{i=1}^n Az_i \otimes Cg_i \notin \mathcal{B}_n(X)$$
$$\Leftrightarrow C(f)(Ax) = -1.$$

Thus, Equation (3.5) holds, and arguing as in [18, p. 252], we get that τ , A, C are continuous, τ is the identity or the complex conjugation, and $C = (A^{-1})^*$. Therefore, $\tau^{-1} = \tau$ and, for every $u \in X$, we have

$$\Phi(x \otimes f)u = \tau(fA^{-1}u)Ax = A(f(A^{-1}u)x) = A(x \otimes f)A^{-1}u.$$

Thus, $\Phi(x \otimes f) = A(x \otimes f)A^{-1}$ for all $x \in X$ and $f \in X^*$; that is, $\Phi(F) = AFA^{-1}$ for all finite rank operator $F \in \mathcal{B}(X)$.

Now, suppose that Φ satisfies (3.4), and let us show that

$$D(x)(Bf) = \tau(f(x)) \quad \text{for all } x \in X \text{ and } f \in X^*.$$
(3.6)

Let $x \in X$ and $f \in X^*$. Let $h_1, \ldots, h_n \in X^*$ be linearly independent linear forms such that $h_i(x) = (D(x)B)(h_i) = 0$ for $1 \le i \le n$. Then, using the fact that D is bijective, it follows from Lemma 3.9 that

$$D(x)(Bf) = -1 \Leftrightarrow \exists \{u_i\}_{i=1}^n \subseteq X : I + Bf \otimes Dx + \sum_{i=1}^n Bh_i \otimes Du_i \notin \mathcal{B}_n(X)$$
$$\Leftrightarrow \exists \{u_i\}_{i=1}^n \subseteq X : I + x \otimes f + \sum_{i=1}^n u_i \otimes h_i \notin \mathcal{B}_n(X)$$
$$\Leftrightarrow \exists \{u_i\}_{i=1}^n \subseteq X : I + f \otimes Jx + \sum_{i=1}^n h_i \otimes Ju_i \notin \mathcal{B}_n(X^*)$$
$$\Leftrightarrow f(x) = -1,$$

where $J: X \to X^{**}$ is the natural embedding. Thus, Equation (3.6) holds, and arguing as in [18, p. 252], we get that τ , B, D are continuous, τ is the identity or the complex conjugation, and $D = (B^{-1})^* J$. But, since D and $(B^{-1})^*$ are bijective, J is bijective and X is reflexive. Furthermore, $\tau^{-1} = \tau$ and, for every $u \in X$, we have

$$\begin{split} \Phi(x \otimes f)u &= (Bf \otimes (B^{-1})^* \mathbf{J}(x))u = (B^{-1})^* \mathbf{J}(x)(u) \cdot Bf \\ &= \tau(\mathbf{J}(x)(B^{-1}u)) \cdot Bf = B(\mathbf{J}(x)(B^{-1}u)f) \\ &= B(f \otimes \mathbf{J}(x))B^{-1}u = B(x \otimes f)^*B^{-1}u. \end{split}$$

Thus, $\Phi(x \otimes f) = B(x \otimes f)^* B^{-1}$ for all $x \in X$ and $f \in X^*$. Hence, $\Phi(F) = BF^*B^{-1}$ for all finite rank operator $F \in \mathcal{B}(X)$. This finishes the proof.

With these results at hand, we are now ready to prove our main result.

Proof of Theorem 1.1 (i) \Rightarrow (ii). First, note that Φ is \mathbb{Q} -linear. Hence, using the fact that Φ is surjective, it follows by Theorem 2.4 that for every $T \in \mathcal{B}(X)$,

$$T \in \mathcal{B}_{n}(X) \Leftrightarrow \forall S, \exists \varepsilon_{0} > 0 : \{T + \varepsilon S : \varepsilon \in \mathbb{Q} \text{ and } 0 \leq \varepsilon < \varepsilon_{0}\} \subseteq \mathcal{D}_{n}(X)$$
$$\Leftrightarrow \forall S, \exists \varepsilon_{0} > 0 : \{\Phi(T) + \varepsilon \Phi(S) : \varepsilon \in \mathbb{Q} \text{ and } 0 \leq \varepsilon < \varepsilon_{0}\} \subseteq \mathcal{D}_{n}(X)$$
$$\Leftrightarrow \forall R, \exists \varepsilon_{0} > 0 : \{\Phi(T) + \varepsilon R : \varepsilon \in \mathbb{Q} \text{ and } 0 \leq \varepsilon < \varepsilon_{0}\} \subseteq \mathcal{D}_{n}(X)$$
$$\Leftrightarrow \Phi(T) \in \mathcal{B}_{n}(X).$$

Thus Φ preserves $\mathcal{B}_n(X)$ in both directions.

(ii) \Rightarrow (iii). Suppose that Φ preserves $\mathcal{B}_n(X)$ in both directions. It follows that Φ takes one of the two forms in Lemma 3.10.

Assume that $\Phi(F) = \alpha A F A^{-1}$ for all finite rank operator $F \in \mathcal{B}(X)$. Let

$$\Psi(T) = \alpha^{-1} A^{-1} \Phi(T) A \quad \text{for all } T \in \mathcal{B}(X).$$

Clearly, Ψ satisfies the same properties as Φ . Furthermore, $\Psi(I) = I$ and $\Psi(F) = F$ for all finite rank operator $F \in \mathcal{B}(X)$. Let $T \in \mathcal{B}(X)$, and choose an arbitrary rational number λ such that $T - \lambda$ and $\Psi(T) - \lambda$ are invertible. For every finite rank operator $F \in \mathcal{B}(X)$, we have

$$T - \lambda + F \in \mathcal{B}_n(X) \Leftrightarrow \Psi(T - \lambda) + F \in \mathcal{B}_n(X).$$

Hence, we get by Proposition 3.3 that $\Psi(T) = T$. This shows that $\Phi(T) = \alpha ATA^{-1}$ for all $T \in \mathcal{B}(X)$.

Now suppose that $\Phi(F) = \alpha BF^*B^{-1}$ for all finite rank operator $F \in \mathcal{B}(X)$. Then Lemma 3.10 ensures that X is reflexive. By considering

$$\Gamma(T) = \alpha^{-1} \mathbf{J}^{-1} (B^{-1} \Phi(T) B)^* \mathbf{J} \quad \text{for all } T \in \mathcal{B}(X),$$

we get in a similar way that $\Gamma(T) = T$ for all $T \in \mathcal{B}(X)$. Thus, $\Phi(T) = \alpha BT^*B^{-1}$ for all $T \in \mathcal{B}(X)$, as desired.

(iii) \Rightarrow (i) is obvious.

We close this paper by the following remark:

Remark 3.11 Let X and Y be infinite-dimensional Banach spaces over \mathbb{K} . Theorem 1.1 can be formulated without any change for additive surjective mappings $\Phi : \mathcal{B}(X) \to \mathcal{B}(Y)$ preserving Drazin invertible operators of index non-greater than n in both directions.

References

- Ben-Israel, A., Greville, T. N. E.: Generalised Inverses: Theory and Applications, Springer-Verlag, New York, 2003
- [2] Campbell, S. L., Meyer, C. D., Rose, N. J.: Applications of the Drazin inverse to linear systems of differential equations with singular constant cofficients. SIAM J. Appl. Math., 31, 411–425 (1976)
- [3] Caradus, S. R.: Operators with finite ascent and descent. Pacific J. Math., 18, 437–449 (1966)
- [4] da Silva Soares, A., Latouche, G.: The group inverse of finite homogeneous QBD processes. Stoch. Models, 18, 159–171 (2002)

- [5] Drazin, M. P.: Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly, 65, 506–514 (1958)
- [6] Grabiner, S., Zemánek, J.: Ascent, descent, and ergodic properties of linear operators. J. Operator Theory, 48, 69–81 (2002)
- [7] Guterman, A., Li, C. K., Šemrl, P.: Some general techniques on linear preserver problems. *Linear Algebra Appl.*, **315**, 61–81 (2000)
- [8] Jafarian, A. A., Sourour, A. R.: Spectrum-preserving linear maps. J. Funct. Anal., 66, 255–261 (1986)
- Kaplansky, I.: Algebraic and Analytic Aspects of Operator Algebras. Amer. Math. Soc., Providence, RI 1970
- [10] King, C. F.: A note on Drazin inverses. Pacific J. Math., 70, 383-390 (1977)
- [11] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe, Warszawa, 1985
- [12] Mbekhta, M., Müller, V., Oudghiri, M.: Additive preservers of the ascent, descent and related subsets. J. Operator Theory, 71, 63–83 (2014)
- [13] Mbekhta, M., Müller, V., Oudghiri, M.: On Additive preservers of semi-Browder operators. Rev. Romaine Math. Pures Appl., 59, 237–244 (2014)
- [14] Mbekhta, M., Oudghiri, M.: On additive preservers of group invertible operators. *Houston J. Math.*, (to appear)
- [15] Meyer Jr., C. D.: The role of the group generalized inverse in the theory of finite Markov chains. SIAM Rev., 17, 443–464 (1975)
- [16] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Second edition. Operator Theory: Advances and Applications, 139, Birkhäuser Verlag, Basel, 2007
- [17] Nashed, M. Z.: Generalized Inverses and Applications, Academic Press, New York, 1976
- [18] Omladič, M., Šemrl, P.: Additive mappings preserving operators of rank one. *Linear Algebra Appl.*, 182, 239–256 (1993)
- [19] Šemrl, P.: Invertibility preserving linear maps and algebraic reflexivity of elementary operators of length one. Proc. Amer. Math. Soc., 130, 769–772 (2001)
- [20] Sourour, A. R.: Invertibility preserving linear maps on $\mathcal{L}(X)$. Trans. Amer. Math. Soc., 348, 13–30 (1996)
- [21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis, Wiley, New York, 1980