
Acta Mathematica Sinica, English Series

Sep., 2017, Vol. 33, No. 9, pp. 1225–1241

Published online: June 28, 2017

DOI: 10.1007/s10114-017-6534-3

Http://www.ActaMath.com

Acta Mathematica Sinica, 
English Series
© Springer-Verlag Berlin Heidelberg & 
      The Editorial Office of  AMS  2017

Additive Preservers of Drazin Invertible Operators

with Bounded Index

Mourad OUDGHIRI Khalid SOUILAH
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Abstract Let B(X) be the algebra of all bounded linear operators on an infinite-dimensional complex

or real Banach space X. Given an integer n ≥ 1, we show that an additive surjective map Φ on B(X)

preserves Drazin invertible operators of index non-greater than n in both directions if and only if Φ is

either of the form Φ(T ) = αATA−1 or of the form Φ(T ) = αBT ∗B−1 where α is a non-zero scalar,

A : X → X and B : X∗ → X are two bounded invertible linear or conjugate linear operators.
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1 Introduction

Throughout this paper, X denotes an infinite-dimensional Banach space over K = R or C. Let
B(X) be the algebra of all bounded linear operators acting on X.

An operator T ∈ B(X) is called Drazin invertible if there exist S ∈ B(X) and a non-negative
integer k such that

T kST = T k, STS = T and TS = ST. (1.1)

Such operator S is unique, it is called the Drazin inverse of T and denoted by TD. The Drazin
index of T , designated by i(T ), is the smallest non-negative integer k satisfying (1.1). The
concept of Drazin inverse was introduced in [5] and it has numerous applications in matrix
theory, iterative methods, singular differential equations, and Markov chains, see for instance
[1, 2, 4, 15] and the references therein.

Let Λ be a subset of B(X). An additive map Φ : B(X) → B(X) is said to preserve Λ in
both directions if for every T ∈ B(X),

T ∈ Λ if and only if Φ(T ) ∈ Λ.

In the last decades, there has been a remarkable interest in the so-called linear preserver
problems which concern the question of characterizing linear, or additive, maps on Banach
algebras that leave invariant a certain subset. For excellent expositions on linear preserver
problems, the reader is referred to [7, 8, 12, 13, 18–20] and the references therein.
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One of the most famous problems in this direction is Kaplansky’s conjecture [9] asking
whether bijective unital linear maps Φ, between semi-simple Banach algebras, preserving in-
vertibility in both directions are Jordan isomorphisms (i.e. Φ(a2) = Φ(a)2 for all a). The
problem is still open even for C∗-algebras. However, in the case of the algebra B(X), Jafar-
ian and Sourour establish in [8] that every unital surjective linear map Φ on B(X) preserving
invertibility in both directions has one of the following two forms

T �→ ATA−1 or T �→ AT ∗A−1,

where A is a bounded linear operator between suitable spaces. It is worth mentioning that an
elegant proof of Jafarian-Sourour’s result was given later by Šemrl in [19].

Following [17], we call an operator T ∈ B(X) group invertible if it is Drazin invertible with
i(T ) ≤ 1. The term group refers to the fact that T and TD generate an Abelian group with
identity TTD; naturally TD is called the group inverse of T . Note also that every invertible
element is group invertible. Recently, it was shown in [14] that an additive surjective map
Φ : B(X) → B(X) preserves group invertible operators in both directions if and only if it has
one of the following two forms

T �→ αATA−1 or T �→ αBT ∗B−1

where α ∈ K is non-zero, A : X → X and B : X∗ → X are two bounded invertible linear or
conjugate linear operators.

For an operator T ∈ B(X), write ker(T ) for its kernel, ran(T ) for its range and T ∗ for its
adjoint on the topological dual space X∗. For each integer n ≥ 1, let us introduce the following
subset:

Dn(X) = {T ∈ B(X) : T is Drazin invertible and i(T ) ≤ n}.
Clearly, Dn(X) includes every invertible operator and, more generally, every group invertible
operator.

For T ∈ B(X), the hyper-kernel and the hyper-range are respectively the subspaces N∞(T )
=

⋃
k ker(T k) and R∞(T ) =

⋂
k ran(T k).

For each integer n ≥ 1, let

Bn(X) = {T ∈ B(X) : T is Drazin invertible and dimN∞(T ) ≤ n}.
This useful subset will permit, as will be seen subsequently, to reduce the problem of additive
preservers of Dn(X) to those of Bn(X). For this, we provide an important characterization of
the set Bn(X) via elements of Dn(X).

The purpose of this paper is to extend the main theorem of [14] to the setting of Dn(X).
More precisely, the following theorem states the main result of this paper:

Theorem 1.1 Let Φ : B(X) → B(X) be an additive surjective map, and let n be a positive
integer. The following assertions are equivalent :

(i) Φ preserves Dn(X) in both directions ;
(ii) Φ preserves Bn(X) in both directions ;
(iii) There exist a non-zero scalar α, and either a bounded invertible linear, or conjugate

linear, operator A : X → X such that

Φ(T ) = αATA−1 for all T ∈ B(X),
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or, a bounded invertible linear, or conjugate linear, operator B : X∗ → X such that

Φ(T ) = αBT ∗B−1 for all T ∈ B(X).

In the following we recapture, as an immediate consequence of the previous theorem, the
main result in [14] that gives a characterization of the additive surjective maps preserving group
invertible operators in both directions.

Corollary 1.2 Let Φ : B(X) → B(X) be an additive surjective map. The following assertions
are equivalent :

(i) Φ preserves group invertible operators in both directions ;
(ii) There exist a non-zero scalar α, and either a bounded invertible linear, or conjugate

linear, operator A : X → X such that

Φ(T ) = αATA−1 for all T ∈ B(X),

or, a bounded invertible linear, or conjugate linear, operator B : X∗ → X such that

Φ(T ) = αBT ∗B−1 for all T ∈ B(X).

The paper is organized as follows. In the second section, we establish some useful results
on finite rank perturbations of Bn(X), and we also show that Bn(X) is the topological interior
of Dn(X). These results will be needed for proving our main result in the last section.

2 Bn(X) and Rank One Perturbations

Let T ∈ B(X) be non-zero. The ascent a(T ) and descent d(T ) of T are defined respectively by

a(T ) = inf{k ≥ 0 : ker(T k) = ker(T k+1)} and d(T ) = inf{k ≥ 0 : ran(T k) = ran(T k+1)},
where the infimum over the empty subset is set to be infinite, see [16, 21]. It should be noted
that for every non-negative integer m,

dim ker(Tm+1) ≤ m ⇒ a(T ) ≤ m. (2.1)

Indeed, if a(T ) > m, there exists a vector x ∈ ker(T m+1) \ ker(Tm), and so x, Tx, . . . , Tmx are
linearly independent vectors in ker(Tm+1). From (2.1), we easily obtain that the ascent and
the hyper-kernel are related by the following inequality

a(T ) ≤ dimN∞(T ). (2.2)

Remark 2.1 Let T ∈ B(X). Then T is Drazin invertible if and only if T has finite ascent and
descent, see [10, Theorem 4]. Moreover, we have in this case the following well-known assertions
(see [16, Corollary 20.5 and Theorem 22.10]):

(i) i(T ) = a(T ) = d(T );
(ii) X = ker(T k) ⊕ ran(T k) where k = i(T ) and the direct sum is topological;
(iii) N∞(T ) = ker(T k), R∞(T ) = ran(T k) and T|R∞(T ) is invertible;
(iv) 0 is a pole of T of order k when k ≥ 1.

Recall that an operator T ∈ B(X) is said to be Fredholm if both dim ker(T ) and codim ran(T )
are finite. For such operator T , the index is defined by

ind(T ) = dim ker(T ) − codim ran(T ).
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It should be noted that an operator T is Fredholm if and only if T k is Fredholm for any (some)
integer k ≥ 1, and in this case we have ind(T k) = k.ind(T ) (see [16, Theorems 16.5, 16.6 and
16.12]). Consequently, it follows from Remark 2.1 (ii) that every operator in Bn(X) is Fredholm
of index zero. We also mention that the set of Fredholm operators and the index are invariant
under compact perturbations (see [16, Theorem 16.16]).

Proposition 2.2 Bn(X) is an open subset of Dn(X).

For proving this proposition, we need to establish the following lemma:

Lemma 2.3 Let T ∈ B(X) be a Fredholm operator of index zero. Then
(i) T ∈ Dn(X) if and only if a(T ) ≤ n.
(ii) T ∈ Bn(X) if and only if dim ker(Tn+1) ≤ n.

Proof (i) The direct implication is an immediate consequence of Remark 2.1 (i). The converse
follows from the fact that the descent and the ascent of a Fredholm operator of index zero are
equal (see [13, Lemma 2.3]).

(ii) If T ∈ Bn(X) then dim ker(Tn+1) ≤ dimN∞(T ) ≤ n. Conversely, suppose that
dim ker(Tn+1) ≤ n, then it follows by (2.1) that a(T ) ≤ n. Hence, dimN∞(T ) = dim ker(Tn+1)
≤ n and, by assertion (i), T ∈ Dn(X). Thus T ∈ Bn(X), which completes the proof. �

Note that from (2.2), we can easily see that for such operator T , we have also T ∈ Bn(X)
if and only if dimN∞(T ) ≤ n.

Proof of Proposition 2.2 Since every operator in Bn(X) is Fredholm of index zero, it easily
follows from (2.2) and Lemma 2.3 (i) that Bn(X) ⊂ Dn(X).

Let us show that Bn(X) is open. Let S ∈ Bn(X). Then dim ker(Sn+1) ≤ n, and the
operators S and Sn+1 are Fredholm of index zero. Hence, it follows by [16, Theorems 16.11
and 16.17] that there exists η > 0 such that for all T ∈ B(X) with ‖ T − Sn+1 ‖< η, we have
T is Fredholm of index zero and

dim ker(T ) ≤ dim ker(Sn+1) ≤ n. (2.3)

On the other hand, since the map T �→ Tn+1 is continuous on B(X), there exists ε > 0 such
that

‖ Tn+1 − Sn+1 ‖< η for all T ∈ B(X) with ‖ T − S ‖< ε. (2.4)

Combining (2.4) and (2.3) we obtain that Tn+1, and hence T , is Fredholm of index zero, and

dim ker(Tn+1) ≤ dim ker(Sn+1) ≤ n

for every T ∈ B(X) with ‖ T−S ‖< ε. Thus, by Lemma 2.3 (ii), T ∈ Bn(X) for every T ∈ B(X)
with ‖ T − S ‖< ε. This shows that Bn(X) is open, and the proof is complete.

Let T ∈ B(X). From [6, Lemma 1.1], given a non-negative integer d, we have

a(T ) ≤ d ⇔ ker(Tm) ∩ ran(T d) = {0} for some (equivalently, all) m ≥ 1, (2.5)

and

d(T ) ≤ d ⇔ ker(T d) + ran(Tm) = X for some (equivalently, all) m ≥ 1. (2.6)

In the next theorem, we provide a useful characterization that allows us to obtain the
implication (i) ⇒ (ii) in Theorem 1.1.



Additive Preservers of Drazin Invertible Operators with Bounded Index 1229

Theorem 2.4 Let T ∈ B(X). Then the following assertions are equivalent :

(i) T ∈ Bn(X) ;

(ii) For every S ∈ B(X) there exists ε0 > 0 such that T + εS ∈ Dn(X) for all non-negative
number (equivalently rational number) ε < ε0.

Proof (i) ⇒ (ii) follows immediately from the openness of Bn(X).

(ii) ⇒ (i). We have in particular that T ∈ Dn(X). Suppose on the contrary that T /∈ Bn(X).
Then dim ker(T k) ≥ n + 1 where k = i(T ), and so there exist linearly independent vectors
{ei : 0 ≤ i ≤ n} such that Te0 = 0 and Tei = εiei−1 for 1 ≤ i ≤ n, where εi ∈ {0, 1}. Indeed, if
dim ker(T k) < ∞, the existence of such vectors is obvious; otherwise, we obtain dim ker(T ) = ∞
because dim ker(T k) ≤ k dim ker(T ), see [3, Lemma 1], and so it suffices to take ei ∈ ker(T ),
0 ≤ i ≤ n. Consider the operator S ∈ B(X) given by Se0 = 0 and Sei = ei−1 for 1 ≤ i ≤ n.
For any ε /∈ {−1, 0}, we have

(T + εS)e0 = 0 and (T + εS)ei = (εi + ε)ei−1 for 1 ≤ i ≤ n,

and hence (T + εS)nen = λe0 �= 0 where λ = (εn + ε) . . . (ε1 + ε). Therefore e0 ∈ ker(T +
εS) ∩ ran(T + εS)n, and consequently a(T + εS) ≥ n + 1 by (2.5), this contradiction finishes
the proof. �

For a subset Γ ⊆ B(X), we write Int(Γ) for its interior.

Corollary 2.5 We have Int(Dn(X)) = Bn(X).

Proof Note that Bn(X) ⊆ Int(Dn(X)) because Bn(X) is open. Let T /∈ Bn(X), then it follows
by Theorem 2.4 that there exist an operator S ∈ B(X) and a sequence (εk)k≥0 converging to
zero such that T + εkS /∈ Dn(X) for all k ≥ 0. Consequently, T /∈ Int(Dn(X)), as desired. The
proof is complete. �

Let z ∈ X and f ∈ X∗ be non-zero. We will denote, as customary, by z ⊗ f the rank one
operator defined by (z ⊗ f)(x) = f(x)z for all x ∈ X. Note that every rank one operator in
B(X) can be written in this form.

The following theorem gives necessary and sufficient conditions for the stability of Bn(X)
under rank one perturbations.

Theorem 2.6 Let T ∈ Bn(X), and let p = n − dimN∞(T ). If z ∈ X and f ∈ X∗ then
T + z ⊗ f /∈ Bn(X) if and only if the following assertions hold :

(i) z = a + b where a ∈ N∞(T ) and b ∈ R∞(T ) ;

(ii) f(T ja) = 0 for all j ≥ 0 ;

(iii) f(T−i
o b) = −δi1 for 1 ≤ i ≤ p + 1 where To = T|R∞(T ).

Remark 2.7 Let T ∈ B(X) be a Fredholm operator of index zero. If dim ker(T ) ≤ 1, then
dim ker(T k) ≤ k for every integer k ≥ 0, see [3, Lemma 1]. Moreover, in this case, T ∈ Bn(X)
if and only if a(T ) ≤ n.

To prove Theorem 2.6, we need to establish the following two lemmas.

Lemma 2.8 Let T ∈ Bn(X) and p = n− dimN∞(T ). Let F = z ⊗ f be a rank one operator
such that ker(T ) ∩ ker(F ) = {0}. Then T + z ⊗ f /∈ Bn(X) if and only if z ∈ R∞(T ) and
f(T−i

o z) = −δi1 for 1 ≤ i ≤ p + 1, where To = T|R∞(T ).
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Proof Note that since T is a Fredholm operator of index zero, then so is T + F . Clearly, the
restrictions of F to ker(T + F ) and ker(T ) are injective rank one operators because ker(T ) ∩
ker(F ) = {0}. Hence, it follows that dim ker(T +F ) ≤ 1 and dim ker(T ) ≤ 1. If we let m = i(T ),
we get by the previous remark and (2.2) that m = dim ker(T m).

Suppose that T + F /∈ Bn(X). Then a(T + F ) ≥ n + 1 by Remark 2.7, and hence it follows
from [12, Lemma 2.2] that there exist linearly independent vectors xi, 0 ≤ i ≤ n, and an integer
0 ≤ j ≤ n such that

(T + F )x0 = 0, (T + F )xi = xi−1 for 1 ≤ i ≤ n, and f(xi) = δij for 0 ≤ i ≤ n.

But, since ker(T ) ∩ ker(F ) = {0}, we obtain that j = 0. Consequently, Tx0 = −z and
Txi = xi−1 for 1 ≤ i ≤ n. From this, we get easily that

T ixi−1 = Tx0 = −z and Tn+1−ixn = xi−1 for 1 ≤ i ≤ n + 1.

Therefore z = −Tn+1xn ∈ ran(Tn+1) = ran(Tm), and since p = n − m, we also have xi−1 ∈
ran(Tn+1−i) = ran(Tm) for 1 ≤ i ≤ p + 1. Thus, T−i

o z = −xi−1, and hence f(T−i
o z) = −δi1 for

1 ≤ i ≤ p + 1.
Conversely, suppose that z ∈ ran(Tm) and f(T−i

o z) = −δi1 for 1 ≤ i ≤ p + 1. Let
yi = −T

−(i+1)
o z for 0 ≤ i ≤ p. Clearly, we have

(T + F )y0 = −(T + F )T−1
o z = 0 and (T + F )yi = Tyi = yi−1 for 1 ≤ i ≤ p.

Consequently, (T+F )pyp = y0 �= 0. Hence, y0 ∈ ran(T+F )p∩ker(T+F ), and so a(T+F ) ≥ p+1
by (2.5). If T is invertible then p = n and T + F /∈ Bn(X). Assume that T is not invertible.
Since dim ker(T ) = 1, there is a basis {ei : 0 ≤ i ≤ m − 1} of ker(Tm) such that Te0 = 0 and
Tei = ei−1 for 1 ≤ i ≤ m−1. Since ker(T )∩ker(f) = {0}, we infer that f(e0) �= 0. Without loss
of generality, we may assume that f(e0) = 1. Consider the complex numbers c0, c1, . . . , cm−1

defined inductively by

c0 = f(T−(p+2)
o z),

c1 = −c0f(e1) + f(T−(p+3)
o z),

c2 = −c1f(e1) − c0f(e2) + f(T−(p+4)
o z),

...

cm−1 = −cm−2f(e1) − · · · − c0f(em−1) + f(T−(p+m+1)
o z).

This means that we have
i∑

k=1

ci−kf(ek−1) = f(T−(p+i+1)
o z) for 1 ≤ i ≤ m. (2.7)

Let yp+i =
∑i

k=1 ci−kek−1−T
−(p+i+1)
o z for 1 ≤ i ≤ m. Clearly, from (2.7) we have f(yp+i) = 0

for 1 ≤ i ≤ m. Furthermore, since Te0 = 0, we get that

(T + F )yp+1 = Typ+1 = T (c0e0 − T−(p+2)
o z) = −T−(p+1)

o z = yp,

and

(T + F )yp+i = Typ+i =
i∑

k=2

ci−kek−2 − T−(p+i)
o z =

i−1∑

s=1

ci−1−ses−1 − T−(p+i)
o z = yp+i−1,
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for 2 ≤ i ≤ m. Hence, (T + F )myp+m = yp. But, since n = p + m and (T + F )pyp = y0, we
obtain that (T + F )nyn = y0 �= 0, and so a(T + F ) ≥ n + 1. Thus, T + F /∈ Bn(X). This
completes the proof. �

For T, F ∈ B(X), let

M(T, F ) = {x ∈ N∞(T ) : F (T ix) = 0 for all i ≥ 0}.
Note that M(T, F ) is a T -invariant subspace of N∞(T ) ∩ ker(F ). In the sequel, T̃ and F̃ shall
denote the operators induced by T and F on X/M(T, F ), respectively. Also we will write x̃ for
the class of x in X/M(T, F ).

Lemma 2.9 Let T, F ∈ B(X) be non-zero. The following assertions hold :
(i) N∞(T̃ + cF̃ ) = N∞(T + cF )/M(T, F ) for all c ∈ K ;
(ii) If T ∈ Bn(X) then T̃ ∈ Bn−q(X/M(T, F )), where q = dim M(T, F ), and

R∞(T̃ ) = (R∞(T ) ⊕ M(T, F ))/M(T, F ).

Proof (i) Fix an arbitrary c ∈ K. We first claim that M(T, F ) ⊆ N∞(T + cF ). Let x ∈
M(T, F ) be arbitrary. Using the fact that F (T ix) = 0 for all i ≥ 0, one can easily verify that
(T + cF )ix = T ix for all i ≥ 0. But, since x ∈ N∞(T ), we have T jx = 0 for some j ≥ 0. Thus
(T + cF )jx = T jx = 0, and so x ∈ N∞(T + cF ).

Let x ∈ X, we have

x̃ ∈ N∞(T̃ + cF̃ ) ⇔ ∃k ≥ 0 : (T + cF )kx ∈ M(T, F ) ⊆ N∞(T + cF )

⇔ x ∈ N∞(T + cF )

⇔ x̃ ∈ N∞(T + cF )/M(T, F ).

This shows that N∞(T̃ + cF̃ ) = N∞(T + cF )/M(T, F ).
(ii) Suppose that T ∈ Bn(X), and let m = i(T ). Since M(T, F ) ⊆ ker(Tm), one can easily

check that

ran(T̃m) = (M(T, F ) ⊕ ran(Tm))/M(T, F ). (2.8)

Moreover, we have by the first assertion

N∞(T̃ ) = N∞(T )/M(T, F ) = ker(Tm)/M(T, F ) ⊆ ker(T̃m).

Therefore, ker(T̃m) = N∞(T̃ ) = ker(Tm)/M(T, F ). Hence, taking into account that X =
ker(Tm) ⊕ ran(Tm), we get easily that ker(T̃m) ⊕ ran(T̃m) = X/M(T, F ). This shows that T̃

is Drazin invertible with i(T̃ ) ≤ m. In particular, it follows from (2.8) that

R∞(T̃ ) = (R∞(T ) ⊕ M(T, F ))/M(T, F ).

Furthermore, since

dim ker(T̃m) = dim ker(Tm) − dim M(T, F ) ≤ n − q,

we obtain that T̃ ∈ Bn−q(X/M(T, F )). The proof is complete. �

Proof of Theorem 2.6 Since T ∈ Bn(X), we have T̃ ∈ Bn−q(X/M(T, F )) by the previous
lemma. Consequently, T and T + F are Fredholm of index zero. Let q = dim M(T, F ), it
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follows by the remark after Lemma 2.3 that

T + F /∈ Bn(X) ⇔ dimN∞(T + F ) ≥ n + 1

⇔ dimN∞(T̃ + F̃ ) ≥ n − q + 1

⇔ T̃ + F̃ /∈ Bn−q(X/M(T, F )).

Moreover, since in this case F̃ �= 0, we get easily that z /∈ M(T, F ), and for every x ∈ X, we
have

x̃ ∈ ker(T̃ ) ∩ ker(F̃ ) ⇔ Tx ∈ M(T, F ) and Fx = f(x)z ∈ M(T, F )

⇔ Tx ∈ M(T, F ) and f(x) = 0

⇔ x ∈ M(T, F ).

Thus ker(T̃ )∩ker(F̃ ) = {0}. Therefore, using Lemma 2.8 and the fact that n−q−dimN∞(T̃ ) =
p, we obtain that

T̃ + F̃ /∈ Bn−q(X/M(T, F )) ⇔
⎧
⎨

⎩

z̃ ∈ R∞(T̃ ),

f̃((T̃|R∞(T̃ ))
−iz̃) = −δi1 for 1 ≤ i ≤ p + 1.

Let z = a+b where a ∈ N∞(T ) and b ∈ R∞(T ). Then z̃ = ã+b̃ and, by Lemma 2.9, ã ∈ N∞(T̃ )
and b̃ ∈ R∞(T̃ ). Therefore, since T̃ is Drazin invertible, we have N∞(T̃ ) ∩R∞(T̃ ) = {0}, and
so

T̃ + F̃ /∈ Bn−q(X/M(T, F )) ⇔
⎧
⎨

⎩

ã = 0,

f̃((T̃|R∞(T̃ ))
−ib̃) = −δi1 for 1 ≤ i ≤ p + 1

⇔
⎧
⎨

⎩

a ∈ M(T, F ),

f(T−i
o b) = −δi1 for 1 ≤ i ≤ p + 1.

This completes the proof.
The following proposition, which is interesting in itself, will play a crucial role in the sequel.

Proposition 2.10 Let F ∈ B(X) be non-zero. Then the following assertions hold :
(i) There exists an invertible operator T ∈ B(X) such that T + F /∈ Bn(X) ;
(ii) If dim ran(F ) ≥ 2 then there exists an invertible operator T ∈ B(X) such that T + F /∈

Bn(X) and T − F /∈ Bn(X).

Proof First, suppose that ran(F ) has infinite-dimension. Then codim ker(F ) = ∞. Let xi,
0 ≤ i ≤ 2n + 1, be linearly independent vectors that generate a subspace having trivial inter-
section with ker(F ). It follows that the vectors Fxi, 0 ≤ i ≤ 2n + 1, are linearly independent.
Write

X = span{xi : 0 ≤ i ≤ 2n + 1} ⊕ Y = Span{Fxi : 0 ≤ i ≤ 2n + 1} ⊕ Z,

where Y, Z are two closed subspaces and Y = F−1Z. Then there exists an invertible operator
T ∈ B(X) such that TY = Z and Txi = (−1)iFxi for 0 ≤ i ≤ 2n+1. Clearly, x2i+1 ∈ ker(T+F )
and x2i ∈ ker(T − F ) for 0 ≤ i ≤ n. Hence, dim ker(T ± F ) > n, and so T ± F /∈ Bn(X). This
establishes the assertions (i) and (ii).

Now suppose that F is finite-rank, and let r = min{dim ran(F ), 2}. Since ker(F ) is infinite-
dimensional and r ≤ dim ran(F ), there exist vectors yj ∈ X, 0 ≤ j ≤ r − 1, such that the
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set {Fyj : 0 ≤ j ≤ r − 1} is linearly independent. Perturbing yj by suitable elements of
ker(F ) we may assume that the vectors {yj , Fyj : 0 ≤ j ≤ r − 1} are linearly independent.
Consider also arbitrary vectors zi,j ∈ ker(F ), 0 ≤ j ≤ r − 1 and 1 ≤ i ≤ n, such that the set
{zi,j , yj , Fyj : 0 ≤ j ≤ r− 1, 1 ≤ i ≤ n} is linearly independent. Let T ∈ B(X) be an arbitrary
invertible operator satisfying

⎧
⎨

⎩

Tzi,j = zi−1,j for 0 ≤ j ≤ r − 1 and 2 ≤ i ≤ n,

Tz1,j = yj and Tyj = (−1)j+1Fyj for 0 ≤ j ≤ r − 1.

It follows that
⎧
⎨

⎩

(T ± F )zi,j = Tzi,j = zi−1,j for 0 ≤ j ≤ r − 1 and 2 ≤ i ≤ n,

(T ± F )z1,j = Tz1,j = yj for 0 ≤ j ≤ r − 1.

From this, we get easily that (T ± F )nzn,j = yj for 0 ≤ j ≤ r − 1. Hence, if r = 1 then
y0 ∈ ran(T + F )n ∩ ker(T + F ), and so a(T + F ) > n and T + F /∈ Bn(X). While, if r = 2 then
y0 ∈ ran(T + F )n ∩ ker(T + F ) and y1 ∈ ran(T − F )n ∩ ker(T − F ), and hence a(T ± F ) > n

and T ± F /∈ Bn(X). This completes the proof. �
In the following theorem we give a useful characterization of rank one operators in terms of

elements of Bn(X).

Theorem 2.11 Let F ∈ B(X) be non-zero. The following assertions are equivalent :
(i) F is rank one ;
(ii) For every T ∈ Bn(X), Card{λ ∈ Q : T + λF /∈ Bn(X)} ≤ 1.

Proof (i) ⇒ (ii). Write F = z ⊗ f with z ∈ X and f ∈ X∗. Let T ∈ Bn(X). Then z = a + b

where a ∈ N∞(T ) and b ∈ R∞(T ). If there exists α ∈ Q such that T + αz ⊗ f /∈ Bn(X),
then it follows by Theorem 2.6 that αf(T−1

o b) = −1 where To = T|R∞(T ). This shows that
T + λF ∈ Bn(X) for all rational number λ �= α.

(ii) ⇒ (i) follows immediately from the second assertion of Proposition 2.10. The proof is
finished. �

Let T = T1 ⊕ T2 be a diagonal operator with respect to a given decomposition of X. One
can easily show that T is Drazin invertible if and only if T1 and T2 are Drazin invertible, and
in this case i(T ) = max{i(T1), i(T2)}.

The following example shows that Theorem 2.11 does not hold if we replace Bn(X) by
Dn(X). Note that a nilpotent operator T of order k is Drazin invertible of index k.

Example 2.12 Let Y ⊂ X be a subspace of dimension n+1, and write X = Y ⊕Z where Z is
a closed subspace. With respect to an arbitrary basis of Y , consider the operators T, F ∈ B(X)
given by

T = (Jn ⊕ 0) ⊕ I and F = En+1,n ⊕ 0,

where Jn is the n×n nilpotent matrix with 1 in the diagonal directly below the main diagonal
and 0 elsewhere, and En+1,n is the (n + 1) × (n + 1) matrix whose unique non-zero entry
is 1 in position (n + 1, n). Clearly, F is rank one and T ∈ Dn(X). However, the matrix
(Jn ⊕ 0) + αEn+1,n is nilpotent of order n + 1, and so T + αF /∈ Dn(X) for every non-zero
α ∈ C.
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3 Proof of the Main Result

Combining Proposition 2.10 with Theorem 2.11, we obtain :

Corollary 3.1 Let Φ : B(X) → B(X) be an additive surjective map. If Φ preserves Bn(X) in
both directions then

(i) Φ is injective ;
(ii) Φ preserves the set of rank one operators in both directions.

Proof (i) Suppose on the contrary that there exists F �= 0 such that Φ(F ) = 0. Then by
Proposition 2.10, there is an invertible operator T ∈ B(X) such that T + F /∈ Bn(X). But,
Φ(T + F ) = Φ(T ) ∈ Bn(X), the desired contradiction.

(ii) Let F ∈ B(X) be non-zero. Then Φ(F ) �= 0. Note that every additive map is Q-linear.
Hence, since Φ is bijective and preserves Bn(X) in both directions, it follows by Theorem 2.11
that

dim ran(F ) = 1 ⇔ ∀T ∈ Bn(X) : Card{λ ∈ Q : T + λF /∈ Bn(X)} ≤ 1

⇔ ∀S ∈ Bn(X) : Card{λ ∈ Q : S + λΦ(F ) /∈ Bn(X)} ≤ 1

⇔ dim ran(Φ(F )) = 1.

This completes the proof. �

Definition 3.2 Let T, S ∈ B(X). We will write T ∼ S if the following equivalence holds

T + F ∈ Bn(X) ⇔ S + F ∈ Bn(X)

for every finite rank operator F ∈ B(X).

The following assertions follow immediately from the previous definition:
(i) (∼) defines an equivalence relation on B(X).
(ii) If T ∼ S then T + F ∼ S + F for all finite rank operator F ∈ B(X).
(iii) If T ∼ S then T ∈ Bn(X) if and only if S ∈ Bn(X).

Proposition 3.3 Let T, S ∈ B(X) be two invertible operators. If T ∼ S then T = S.

Before proving this proposition, we need to establish two auxiliary lemmas.
For an operator T ∈ B(X) and x ∈ X, we write

Mx(T ) = {f ∈ X∗ : T + x ⊗ f /∈ Bn(X)}.
Note that if S ∈ B(X) is an operator such that T ∼ S, then Mx(T ) = Mx(S).

Remark 3.4 Let T ∈ Bn(X), p = n − dimN∞(T ), and x = a + b where a ∈ N∞(T ) and
b ∈ R∞(T ). The following assertions follow immediately from Theorem 2.6 :

(i) f ∈ Mx(T ) if and only if f(T ja) = 0 for j ≥ 0, and f(T−i
o b) = −δi1 for 1 ≤ i ≤ p + 1

where To = T|R∞(T );
(ii) Ma(T ) = ∅ and Mx(T ) ⊆ Mb(T ).

Lemma 3.5 Let T ∈ Bn(X), p = n − dimN∞(T ), x ∈ R∞(T ), and To = T|R∞(T ). Then

Mx(T ) �= ∅ ⇔ {T−i
o x : 1 ≤ i ≤ p + 1} is linearly independent.

Moreover, in this case we have My(T ) �= ∅ for all y ∈ {T i
ox : i ∈ Z}.
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Proof Suppose that Mx(T ) is not empty, and let f ∈ Mx(T ). Let αi, 1 ≤ i ≤ p + 1,
be scalars such that α1T

−1
o x + · · · + αp+1T

−(p+1)
o x = 0. The fact that f(T−i

o x) = −δi1 for
1 ≤ i ≤ p + 1 implies that α1 = 0. Hence, α2T

−2
o x + · · · + αp+1T

−(p+1)
o x = 0, and so

α2T
−1
o x + · · · + αp+1T

−p
o x = 0. Using again f , we get that α2 = 0. By repeating the same

argument, we obtain that α3 = · · · = αp+1 = 0, and hence {T−i
o x : 1 ≤ i ≤ p + 1} is linearly

independent
Conversely, suppose that {T−i

o x : 1 ≤ k ≤ p+1} is linearly independent. Then the existence
of a linear form g ∈ X∗ satisfying g(T−i

o x) = −δi1 for 1 ≤ i ≤ p+1 is obvious. Thus g ∈ Mx(T ).
Now, let y = T i

ox where i is an arbitrary integer. Since also the vectors T−k
o x, 1 ≤ k ≤ p+1,

are linearly independent, we get that My(T ) is not empty. This finishes the proof. �
For a subset M ⊆ X, we denote by M⊥ = {f ∈ X∗ : M ⊆ ker(f)} its annihilator.

Lemma 3.6 Let T ∈ B(X) be invertible, and let S ∈ B(X) be such that T ∼ S. If there exists
a vector x such that {x, Tx, . . . , T 2nx} is linearly independent then S is invertible and Ty = Sy

for all y ∈ Span{T ix : i ∈ Z}.
Proof First, since T ∈ Bn(X) and T ∼ S, we have S ∈ Bn(X). Suppose on the contrary that
S is not invertible. Let x = a + b where a ∈ N∞(S) and b ∈ R∞(S), and let So = S|R∞(S) and
p = n − dimN∞(S). Since Mx(T ) = Mx(S) is not empty, then so is Mb(T ) = Mb(S). Hence,
by the previous lemma, the sets {T−ib : 1 ≤ i ≤ n + 1} and {S−i

o b : 1 ≤ i ≤ p + 1} are linearly
independent. But, as p < n, there is 1 ≤ k ≤ n + 1 such that {T−kb, S−i

o b : 1 ≤ i ≤ p + 1} is a
linearly independent set, and so there exists a linear form ϕ ∈ X∗ such that ϕ(T−kb) = 1 and
ϕ(S−i

o b) = −δi1 for 1 ≤ i ≤ p + 1. Thus, ϕ /∈ Mb(T ) and ϕ ∈ Mb(S); a contradiction.
Note that since T ix satisfies the same hypothesis as x for all i ∈ Z, it suffices to show that

ST−(n+1)x = T−nx. Let y ∈ {T ix, Six : i ∈ Z}. The fact that Mx(T ) = Mx(S) is not empty
asserts that MT ix(T ) and MSix(S) are not empty for all i ∈ Z. So that My(T ) = My(S) is
not empty. Let f ∈ My(T ), and consider an arbitrary g ∈ {T−jy : 2 ≤ j ≤ n + 1}⊥. Put
h = g + (g(T−1y) + 1)f . Clearly, we have

h(T−1y) = −1 and h(T−iy) = 0 for 2 ≤ i ≤ n + 1,

and so h ∈ My(T ) = My(S). Hence, we get that h(S−1y) = −1 and h(S−iy) = 0 for 2 ≤ i ≤
n + 1. Consequently, g(S−1y − T−1y) = g(S−iy) = 0 for 2 ≤ i ≤ n + 1. This implies that

{S−1y − T−1y, S−iy : 2 ≤ i ≤ n + 1} ⊆ Span{T−jy : 2 ≤ j ≤ n + 1}. (3.1)

Let us show that

S−ix − T−ix ∈ Span{T−kx : i + 1 ≤ k ≤ n + 1} for 1 ≤ i ≤ n + 1. (3.2)

Clearly, replacing y by x in (3.1), we get that (3.2) is satisfied for i = 1. Suppose that (3.2)
holds for i < n + 1. We have

S−(i+1)x − T−(i+1)x = S−1(S−ix − T−ix) + S−1T−ix − T−1T−ix.

Using (3.2) and (3.1) for y = T−kx, we get that

S−1(S−ix − T−ix) ∈ Span{S−1T−kx : i + 1 ≤ k ≤ n + 1}
⊆ Span{T−(j+k)x : 1 ≤ j ≤ n + 1, i + 1 ≤ k ≤ n + 1}
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⊆ Span{T−px : i + 2 ≤ p ≤ 2n + 2}.
Moreover, the formula (3.1) for y = T−ix asserts that

S−1T−ix − T−1T−ix ∈ Span{T−(j+i)x : 2 ≤ j ≤ n + 1} ⊆ Span{T−px : i + 2 ≤ p ≤ 2n + 2}.
Thus, S−(i+1)x − T−(i+1)x ∈ Span{T−px : i + 2 ≤ p ≤ 2n + 2}. On the other hand, replacing
y by x in (3.1), we recover that S−(i+1)x is a linear combination of T−jx, 2 ≤ j ≤ n + 1, and
hence so is S−(i+1)x − T−(i+1)x. Therefore,

S−(i+1)x − T−(i+1)x ∈ Span{T−px : i + 2 ≤ p ≤ 2n + 2} ∩ Span{T−jx : 2 ≤ j ≤ n + 1}
⊆ Span{T−kx : i + 2 ≤ k ≤ n + 1},

which establishes (3.2). Hence, S−(n+1)x = T−(n+1)x and S−nx = T−nx + βT−(n+1)x for
some β ∈ C. Moreover, it follows from (3.1) with y = S−nx that there exist complex numbers
α1, . . . , αn+1 ∈ C such that α1 = 1 and

S−1S−nx =
n+1∑

j=1

αjT
−jS−nx.

Therefore,

S−(n+1)x =
n+1∑

j=1

αjT
−j(T−nx + βT−(n+1)x)

=
n+1∑

j=1

αj(T−(n+j)x + βT−(n+1+j)x)

= T−(n+1)x + (α1β + α2)T−(n+2)x + · · · + (αnβ + αn+1)T−(2n+1)x

+ αn+1βT−(2n+2)x.

Since S−(n+1)x = T−(n+1)x and {T−(n+1)x, . . . , T−(2n+2)x} is a linearly independent set, we
infer that

β + α2 = α2β + α3 = · · · = αnβ + αn+1 = αn+1β = 0.

So that β = −α2 and αi = αi−1
2 for 2 ≤ i ≤ n + 1. But, as αn+1β = −αn+1

2 = 0, we obtain
that β = αi = 0 for 2 ≤ i ≤ n + 1. Thus, S−nx = T−nx. Finally, we have ST−(n+1)x =
SS−(n+1)x = S−nx = T−nx, as desired, and the proof is finished. �

Proof of Proposition 3.3 Notice first that for a finite codimensional subspace Y of X, it is an
elementary fact that

dim(Y ∩ T−1Y ∩ · · · ∩ T−2nY ) = ∞.

Let x0 ∈ X be non-zero, and let us show that Tx0 = Sx0. Let Y be a complement of
Span{x0, Tx0, . . . , T

2nx0}. Then Y ∩ T−1Y ∩ · · · ∩ T−2nY contains a non-zero vector x1, and
the sum

Span{x0, Tx0, . . . , T
2nx0} + Span{x1, Tx1, . . . , T

2nx1}
is direct. Repeating the same argument, we get the existence of non-zero vectors x2, . . . , x2n ∈ X

such that the sum of the subspaces

Zi = Span{xi, Txi, . . . , T
2nxi}, 0 ≤ i ≤ 2n,
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is direct. Let f0, . . . , f2n−1 ∈ X∗ be such that fi ∈ Z⊥
j for i �= j, and f0(x0) = fi(Txi) = 1 for

1 ≤ i ≤ 2n − 1. Consider also the operators H, R ∈ B(X) defined by

H = T +
2n∑

i=1

Txi ⊗ fi−1 and R = S +
2n∑

i=1

Txi ⊗ fi−1.

Clearly, we have H ∼ R. Note also that

I +
2n∑

i=1

xi ⊗ fi−1 =
2n∏

i=1

(I + xi ⊗ fi−1),

and since fi−1(xi) = 0 for 1 ≤ i ≤ 2n, we obtain that this operator is invertible. Therefore, H

is invertible. Furthermore, one can easily verify that Hkx0 = vk−1 +Txk for 1 ≤ k ≤ 2n, where
vk−1 ∈ Z0 ⊕ · · · ⊕ Zk−1. Consequently, the vectors x0, . . . , H

2nx0 are linearly independent.
Thus, Hx0 = Rx0 by Lemma 3.6. But, we have also Hx0 = Tx0 + Tx1 and Rx0 = Sx0 + Tx1.
Hence, Tx0 = Sx0. This completes the proof.

Proposition 3.7 Let Φ : B(X) → B(X) be an additive surjective map. If Φ preserves Bn(X)
in both directions then there exists a non-zero α ∈ K such that Φ(I) = αI.

Before proving this proposition, we need the following technical lemma:

Lemma 3.8 Let U ∈ B(X) be an invertible operator, and let F ∈ B(X) be such that
dim ran(F ) ≤ n. If UF = F then U + F ∈ Bn(X).

Proof Note that U + F is a Fredholm operator of index zero, and hence, by Lemma 2.3, it
suffices to show that dim ker((U + F )n+1) ≤ n. Under the assumption UF = F , one can easily
get that (U+F )n+1 = Un+1+FV for some V ∈ B(X). Hence, it follows that ker((U +F )n+1) ⊆
U−(n+1)ran(F ). Thus dim ker((U + F )n+1) ≤ n, as desired. �

Proof of Proposition 3.7 Set S = Φ(I), note that S ∈ Bn(X) because I ∈ Bn(X). We begin
by proving that S + F ∈ Bn(X) for every F ∈ B(X) such that dim ran(F ) ≤ n. Let F ∈ B(X)
with dim ran(F ) ≤ n. By Corollary 3.1, Φ is bijective and preserves rank one operators in both
directions, it follows that there exists K ∈ B(X) such that dim ran(K) ≤ n and Φ(K) = F .
Thus, we get by the previous lemma that I + K, and hence S + F = Φ(I + K), belongs to
Bn(X).

Now, suppose on the contrary that S is not scalar multiple of the identity. Then there
exists y1 ∈ X such that the vectors y1 and Sy1 are linearly independent. Since S ∈ Bn(X),
ran(S) is an infinite-dimensional subspace, and hence there exist vectors yi ∈ X, 2 ≤ i ≤ n,
such that {y1, Syi : 1 ≤ i ≤ n} is a linearly independent set. Consider the linear forms gi ∈ X∗,
1 ≤ i ≤ n, given by

gi(y1) = 0 and gi(Syj) = −δij for 1 ≤ i, j ≤ n.

Let F =
∑n

i=1 S2yi ⊗ gi. Clearly, we have (S + F )Syj = 0 for 1 ≤ j ≤ n, and (S + F )y1 = Sy1,
and so Sy1 ∈ ker(S + F )2. Consequently, dim ker(S + F )2 ≥ n + 1, and hence S + F /∈ Bn(X).
This leads to a contradiction because dim ran(F ) ≤ n. The proof is complete.

To give the proof of the main result, it remains only to establish the following two lemmas.

Lemma 3.9 Let x ∈ X, f ∈ X∗, and let x1, . . . , xn ∈ ker(f) be linearly independent vectors.
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Then f(x) = −1 if and only if there exist f1, . . . , fn ∈ X∗ such that

I + x ⊗ f + x1 ⊗ f1 + · · · + xn ⊗ fn /∈ Bn(X).

Proof Let S = I + x ⊗ f . Suppose that f(x) = −1. Then the vectors {x, x1, . . . , xn} are
linearly independent, and hence there exist linear forms f1, . . . , fn ∈ X∗ such that

fi(x) = 0 and fi(xj) = −δij for 1 ≤ i, j ≤ n.

If we let F = x1 ⊗ f1 + · · · + xn ⊗ fn we get easily that Fx = 0 and Fxi = −xi for 1 ≤ i ≤ n.
So that (S + F )xi = (S + F )x = 0 for 1 ≤ i ≤ n. Thus, dim ker(S + F ) ≥ n + 1, which implies
that S + F /∈ Bn(X).

Conversely, suppose that f(x) �= −1. Let f1, . . . , fn ∈ X∗ be arbitrary, and let K =
x1 ⊗ f1 + · · · + xn ⊗ fn. Then, S is invertible and dim ran(K) ≤ n. Furthermore, we have
SK = K, and so S + K ∈ Bn(X) by the previous lemma. This completes the proof. �

Let τ be a field automorphism of K. An additive map A : X → Y defined between two
Banach spaces will be called τ -semi linear if A(λx) = τ (λ)Ax holds for all x ∈ X and λ ∈ K.
Moreover, we say simply that A is conjugate linear when τ is the complex conjugation. Notice
that if A is non-zero and bounded, then τ is continuous, and consequently, τ is either the
identity or the complex conjugation, see [11, Theorem 14.4.2 and Lemma 14.5.1]. Moreover, in
this case, the adjoint operator A∗ : Y ∗ → X∗, defined by

A∗(g) = τ−1 ◦ g ◦ A for all g ∈ Y ∗,

is again τ -semi linear.
For a bounded linear operator T on X, we have

T ∈ Bn(X) if and only if T ∗ ∈ Bn(X∗).

Indeed, it is well known that T is Drazin invertible if and only if T ∗ is Drazin invertible, and
in this case i(T ) = i(T ∗), see [16]. So, using [21, Theorem IV.8.4] we get easily the desired
equivalence.

Lemma 3.10 Let Φ : B(X) → B(X) be an additive surjective map. If Φ preserves Bn(X) in
both directions, then there exists a non-zero α ∈ K such that Φ(I) = αI, and either

(i) there exists an invertible bounded linear, or conjugate linear, operator A : X → X such
that Φ(F ) = αAFA−1 for all finite rank operator F ∈ B(X), or

(ii) there exists an invertible bounded linear, or conjugate linear, operator B : X∗ → X such
that Φ(F ) = αBF ∗B−1 for all finite rank operator F ∈ B(X). In this case, X is reflexive.

Proof The existence of a non-zero scalar α such that Φ(I) = αI is ensured by Proposition 3.7.
Clearly, we can assume without loss of generality that Φ(I) = I. Since Φ is bijective and
preserves the set of rank one operators in both directions, then by [18, Theorems 3.1 and 3.3],
there exist a ring automorphism τ : K → K and either two bijective τ -semi linear mappings
A : X → X and C : X∗ → X∗ such that

Φ(x ⊗ f) = Ax ⊗ Cf for all x ∈ X and f ∈ X∗, (3.3)

or two bijective τ -semi linear mappings B : X∗ → X and D : X → X∗ such that

Φ(x ⊗ f) = Bf ⊗ Dx for all x ∈ X and f ∈ X∗. (3.4)
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Suppose that Φ satisfies (3.3), and let us show that

C(f)(Ax) = τ (f(x)) for all x ∈ X and f ∈ X∗. (3.5)

Clearly, it suffices to establish that for all x ∈ X and f ∈ X∗, f(x) = −1 if and only if
C(f)(Ax) = −1. Let x ∈ X and f ∈ X∗. Consider arbitrary linearly independent vectors zi,
1 ≤ i ≤ n, in ker(f) ∩ ker(C(f)A). Then, it follows from Lemma 3.9 that

f(x) = −1 ⇔ ∃{gi}n
i=1 ⊆ X∗ : I + x ⊗ f +

n∑

i=1

zi ⊗ gi /∈ Bn(X)

⇔ ∃{gi}n
i=1 ⊆ X∗ : I + Ax ⊗ Cf +

n∑

i=1

Azi ⊗ Cgi /∈ Bn(X)

⇔ C(f)(Ax) = −1.

Thus, Equation (3.5) holds, and arguing as in [18, p. 252], we get that τ , A, C are continuous,
τ is the identity or the complex conjugation, and C = (A−1)∗. Therefore, τ−1 = τ and, for
every u ∈ X, we have

Φ(x ⊗ f)u = τ (fA−1u)Ax = A(f(A−1u)x) = A(x ⊗ f)A−1u.

Thus, Φ(x⊗ f) = A(x⊗ f)A−1 for all x ∈ X and f ∈ X∗; that is, Φ(F ) = AFA−1 for all finite
rank operator F ∈ B(X).

Now, suppose that Φ satisfies (3.4), and let us show that

D(x)(Bf) = τ (f(x)) for all x ∈ X and f ∈ X∗. (3.6)

Let x ∈ X and f ∈ X∗. Let h1, . . . , hn ∈ X∗ be linearly independent linear forms such that
hi(x) = (D(x)B)(hi) = 0 for 1 ≤ i ≤ n. Then, using the fact that D is bijective, it follows from
Lemma 3.9 that

D(x)(Bf) = −1 ⇔ ∃{ui}n
i=1 ⊆ X : I + Bf ⊗ Dx +

n∑

i=1

Bhi ⊗ Dui /∈ Bn(X)

⇔ ∃{ui}n
i=1 ⊆ X : I + x ⊗ f +

n∑

i=1

ui ⊗ hi /∈ Bn(X)

⇔ ∃{ui}n
i=1 ⊆ X : I + f ⊗ Jx +

n∑

i=1

hi ⊗ Jui /∈ Bn(X∗)

⇔ f(x) = −1,

where J : X → X∗∗ is the natural embedding. Thus, Equation (3.6) holds, and arguing as in
[18, p. 252], we get that τ , B, D are continuous, τ is the identity or the complex conjugation,
and D = (B−1)∗J. But, since D and (B−1)∗ are bijective, J is bijective and X is reflexive.
Furthermore, τ−1 = τ and, for every u ∈ X, we have

Φ(x ⊗ f)u = (Bf ⊗ (B−1)∗J(x))u = (B−1)∗J(x)(u) · Bf

= τ (J(x)(B−1u)) · Bf = B(J(x)(B−1u)f)

= B(f ⊗ J(x))B−1u = B(x ⊗ f)∗B−1u.
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Thus, Φ(x ⊗ f) = B(x ⊗ f)∗B−1 for all x ∈ X and f ∈ X∗. Hence, Φ(F ) = BF ∗B−1 for all
finite rank operator F ∈ B(X). This finishes the proof. �

With these results at hand, we are now ready to prove our main result.

Proof of Theorem 1.1 (i) ⇒ (ii). First, note that Φ is Q-linear. Hence, using the fact that Φ
is surjective, it follows by Theorem 2.4 that for every T ∈ B(X),

T ∈ Bn(X) ⇔ ∀S, ∃ε0 > 0 : {T + εS : ε ∈ Q and 0 ≤ ε < ε0} ⊆ Dn(X)

⇔ ∀S, ∃ε0 > 0 : {Φ(T ) + εΦ(S) : ε ∈ Q and 0 ≤ ε < ε0} ⊆ Dn(X)

⇔ ∀R, ∃ε0 > 0 : {Φ(T ) + εR : ε ∈ Q and 0 ≤ ε < ε0} ⊆ Dn(X)

⇔ Φ(T ) ∈ Bn(X).

Thus Φ preserves Bn(X) in both directions.
(ii) ⇒ (iii). Suppose that Φ preserves Bn(X) in both directions. It follows that Φ takes one

of the two forms in Lemma 3.10.
Assume that Φ(F ) = αAFA−1 for all finite rank operator F ∈ B(X). Let

Ψ(T ) = α−1A−1Φ(T )A for all T ∈ B(X).

Clearly, Ψ satisfies the same properties as Φ. Furthermore, Ψ(I) = I and Ψ(F ) = F for all
finite rank operator F ∈ B(X). Let T ∈ B(X), and choose an arbitrary rational number λ such
that T − λ and Ψ(T ) − λ are invertible. For every finite rank operator F ∈ B(X), we have

T − λ + F ∈ Bn(X) ⇔ Ψ(T − λ) + F ∈ Bn(X).

Hence, we get by Proposition 3.3 that Ψ(T ) = T . This shows that Φ(T ) = αATA−1 for all
T ∈ B(X).

Now suppose that Φ(F ) = αBF ∗B−1 for all finite rank operator F ∈ B(X). Then
Lemma 3.10 ensures that X is reflexive. By considering

Γ(T ) = α−1J−1(B−1Φ(T )B)∗J for all T ∈ B(X),

we get in a similar way that Γ(T ) = T for all T ∈ B(X). Thus, Φ(T ) = αBT ∗B−1 for all
T ∈ B(X), as desired.

(iii) ⇒ (i) is obvious.
We close this paper by the following remark:

Remark 3.11 Let X and Y be infinite-dimensional Banach spaces over K. Theorem 1.1
can be formulated without any change for additive surjective mappings Φ : B(X) → B(Y )
preserving Drazin invertible operators of index non-greater than n in both directions.
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