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Abstract We give a brief survey of some developments in Nielsen fixed point theory. After a look

at early history and a digress to various generalizations, we confine ourselves to several topics on fixed

points of self-maps on manifolds and polyhedra. Special attention is paid to connections with geometric

group theory and dynamics, as well as some formal approaches.
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1 Introduction

Nielsen fixed point theory is a research area in algebraic and geometric topology. The maps
are allowed to deform continuously, in contrast to the metric fixed point theory originated
from Banach’s contraction principle. A central theme of Nielsen theory is the effect of the
fundamental group on the behavior of fixed points of maps.

Nielsen fixed point theory is named after its founder Jakob Nielsen. In 1921, he deter-
mined the minimal number of fixed points in any isotopy class of self-homeomorphisms of the
torus. This was immediately extended to self-maps of torus by Brouwer, their papers appeared
side by side in Math. Annalen. Shortly after Lefschetz established his celebrated fixed point
theorem which is homological in nature, Nielsen in 1927 published his seminal study [64] on
self-homeomorphisms of hyperbolic surfaces, with special emphasis on the fixed point problem.
He classifies fixed points according to their behavior on the universal covering space, or equiv-
alently, in connection with the fundamental group. A fixed point class with non-zero index (=
the sum of local winding numbers) is called essential because it can never disappear during a
homotopy. So the number of essential fixed point classes (the Nielsen number) is a lower bound
to the number of fixed points for all self-maps in that homotopy class.

Reidemeister and his student Wecken brought Nielsen’s ideas into the mainstream of alge-
braic topology. Freed from the cumbersome language of non-Euclidean plane geometry used by
Nielsen, the notions of fixed point class and Nielsen number became available for self-maps of
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polyhedra. Reidemeister 1936 [69] introduced a homotopy invariant (the Reidemeister trace)
which combines algebraic coordinates and geometric indices of all fixed point classes, and bears
a formal resemblance to the Lefschetz trace formula. It is theoretically computable once a
cellular self-map is given. Wecken 1942 [76] proved his famous minimality theorem: the Nielsen
number is the minimal number of fixed points for all self-maps in a given homotopy class,
provided the underlying space is a manifold of dimension at least three. However, explicit com-
putation of Nielsen number lagged behind for as long as four decades, except for Hopf 1927 on
higher dimensional tori and projective spaces and Franz 1943 on three-dimensional lens spaces.

Chinese mathematicians made their contributions. Tsai-han Kiang, after his PhD degree
under Marston Morse, worked as a research assistant of Lefschetz for one year before his return
to China. In an effort to make Nielsen theory more accessible to topologists, his 1931 paper [56]
replaced Nielsen’s use of the circle at infinity of the non-Euclidean plane by infinite words in
fundamental groups. In the early 1960’s, Kiang organized a seminar on fixed point theory,
participants including Jiang, Shi and You et al. Jiang introduced a class of spaces (called Jiang
spaces) on which every loop is the track of a cyclic homotopy of the identity map. On such
spaces the Nielsen number can be read off from homological information. Shi extended Wecken’s
minimality theorem to a much wider class of polyhedra. These developments were reviewed in a
survey by Fadell [24], then presented in a book by Brown [13] and a more elementary book [57]
by Kiang. These are signs of a renewal of interest in Nielsen fixed point theory.

Also in the 1970’s, Nielsen’s original study was reborn into the Nielsen–Thurston theory
of surface diffeomorphisms, which has a profound impact in mathematics. This brings low
dimensional problems back to the research front of fixed point theory.

The present article is a brief survey of developments thereafter. After a description of some
theoretical generalizations, we confine ourselves to several aspects on fixed points of self-maps
on manifolds and polyhedra. The exposition is sketchy. We used to mention initial and/or
recent works on a topic, in the hope that the interested reader can trace the history from the
references listed therein.

The Handbook [15] contains many more topics and literature than we are able to cover. For
unexplained notions below, the reader may consult its Chapter III.16.

2 Theoretical Ramifications

The standard setting of fixed point theory considers maps f : X → X from a space to itself, and
solutions x ∈ X of the equation x = f(x). Similar equations are everywhere in mathematics.
Wherever a Lefschetz type index theory is available and an effect of the fundamental group is
uncovered, a Nielsen type study would emerge.

2.1 Coincidence Theory

A coincidence of two maps f, g : X → Y is a point x ∈ X such that f(x) = g(x). Fixed point
theory generalizes naturally to this setting where the domain and target spaces can be different.

Nielsen coincidence theory was initiated by Brooks and Brown [12]. See Gonçalves [15,
Chapter I.1] for a more recent account. An extremely special case with g a constant map,
called Nielsen root theory, already adds very interesting information to Hopf’s degree theory
on maps between manifolds of the same dimension.
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In the smooth category, coincidences become intersections (between graphs of the maps
embedded in the product manifold), a familiar topic in differential topology. For manifolds X

and Y of the same dimension, the graphs of f and g have complementary dimensions and the
coincidence index equals their algebraic intersection number. When X is of higher dimension
than Y , bordism replaces the role of the index, see Koschorke’s work [60].

Much of Nielsen coincidence theory takes inspiration from Nielsen fixed point theory. Al-
though less broad, the fixed point setting has more structure: composition (self-maps form a

monoid and have iterates) and commutation (compositions X
φ→ Y

ψ→ X and Y
ψ→ X

φ→ Y

have identical fixed point behavior). It has closer connection to dynamics and algebra.

2.2 Relative Nielsen Theory

A pair of spaces (X, A) refers to a space and a subspace. Maps between pairs respect the
designated subspaces. Schirmer [70] started to consider fixed points of self-maps on a pair of
spaces. The definition of relative Nielsen number depends on the preferred location (e.g. on
the whole X or only on X \ A) where fixed points are counted and minimized. See Zhao’s
account [15, Chapter III.18].

This basic relative setting can be nested in complicated ways, such as stratifications ap-
pearing in many branches of mathematics.

2.3 Parametrized and Fibrewise Fixed Point Theory

The behavior of fixed points during a homotopy/isotopy is of interest in Nielsen fixed point
theory. A homotopy is a one-parameter family of self-maps. Two homotopic self-maps with
equal number of fixed points may fail to be connected by a homotopy with the same number
of fixed points.

Geoghegan and Nicas [30] proposed a parametrized Lefschetz–Nielsen fixed point theory.
The r-parameter case leads to trace invariants in the r-th Hochschild homology groups, with
the 0-parameter case reducing to the classical Reidemeister trace. The 1-parameter theory was
developed in detail, and further extended [31] to a theory on closed orbits of flows in relation
to the K1 groups in algebraic K-theory.

The geometric side of the theory is less clear. When a homotopy on X is seen as a level-
preserving self-map of the cylinder X×I, the theory gives a lower bound to the number of path
components of the fixed point set. But when is this lower bound sharp?

The parametrized theory fits into the framework of fibrewise topology. A fibrewise space
X over a base space B means a continuous family of spaces Xb (fibres) with parameter b ∈ B,
while a fibrewise self-map f : X → X sends each fibre into itself. Dold [21] has defined the
fibrewise fixed point index. The impact of the fundamental group of B was considered [32] in
the coincidence context.

2.4 Equivariant Fixed Point Theory

Equivariant topology studies spaces with a group action and maps respecting that action.
Wong [78] gave a definition of equivariant Nielsen number by working through the isotropy
stratification of the space, along with a Wecken type minimality theorem. See the very infor-
mative survey by Ferrario [15, Chapter II.8].
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2.5 Other Directions

Traditionally, topological fixed point theory works on finite dimensional manifolds and com-
plexes. Generalizations to infinite dimensions, multi-valued maps, etc., are motivated by po-
tential applications to nonlinear analysis. Wherever Lefschetz theory can be generalized (under
certain compactness assumptions), Nielsen theory can also, without extra obstacle.

Cotton-Clay [18] recently studied fixed points of area-preserving diffeomorphisms on sur-
faces via symplectic Floer homology. The relevant chain complex splits naturally into direct
summands, one for each fixed point class. This puts Nielsen fixed point theory into a new
perspective.

3 Computation and Estimation of Nielsen Number

The Nielsen number is geometrically defined. Its computation turns out to be difficult in general.
Many simply stated questions remain unanswered. For example, Geoghegan’s conjecture (1979):
If f : X → X is a homotopy idempotent (in the sense that f is homotopic to f2), then N(f) ≤ 1.
However, substantial progress has been made for several important classes of self-maps.

3.1 Homogeneous Spaces

For homogeneous spaces of the form G/H, where G is a compact Lie group and H is a Lie
subgroup, Nielsen number can be computed with the help of the finite covering G/He → G/H,
where He is the connected component of H at the identity element e. Note that G/He is a Jiang
space, and finite coverings are manageable (see a discussion by Jezierski [41]). An important
tool is the product formula of Nielsen numbers for a fibred self-map (= self-map of a fibred
space which sends each fibre into a possibly different fibre) initiated by Brown [14] and refined
by You [80].

Anosov [2] and Fadell and Husseini [26] proved that for any self-map of a nilmanifold, the
Nielsen number equals the absolute value of the Lefschetz number (this is called the Anosov
relation). Moreover, the Lefschetz number can be read off from the induced endomorphism of
Lie algebra. The Anosov relation, along with deviations from it, has since been studied on solv-
manifolds, infra-nilmanifolds and infra-solvmanifolds, through the work of Heath, Keppelmann,
McCord, Kim, Lee, Lee, Dekimpe and others. An interesting result is the averaging formula
for Nielsen numbers [59].

From another view point, Wong [77] proved that when the homogeneous space G/H is
orientable, all fixed point classes of a self-map are of the same sign. Hence the Nielsen number
vanishes when the Lefschetz number vanishes, otherwise equals the Reidemeister number (which
is algebraically defined, see the next paragraph). Clearly the converse of Lefschetz fixed point
theorem holds on these spaces.

3.2 Reidemeister Trace and Twisted Conjugacy in Groups

The Reidemeister trace of a self-map f : X → X is a formal linear combination (with integer
coefficients) of (twisted) conjugacy classes. Let φ : π1(X) → π1(X) be the endomorphism
induced by f . Two elements β, β′ ∈ π1(X) are φ-conjugate if there exists α ∈ π1(X) such that
β′ = φ(α)βα−1. Another way is to work in π1(Tf ), the fundamental group of the mapping torus
of f , obtained from π1(X) by adding a new generator z and new relations z−1αz = φ(α) for all
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α ∈ π1(X). Then β, β′ ∈ π1(X) are φ-conjugate if and only if βz, β′z ∈ π1(Tf ) are conjugate
in the ordinary sense. (When φ is an automorphism, π1(Tf ) is the HNN extension of π1(X)
relative to φ.)

The Reidemeister trace of a cellular map is not difficult to calculate. In particular, when X

is a graph or a surface, Fadell and Husseini [25] wrote it down in terms of Fox calculus.
However, the passage from Reidemeister trace to Nielsen number depends on the ability

to distinguish φ-conjugacy classes. Only when the Reidemeister trace is in its simplest form
where terms with identical φ-conjugacy classes are already combined or cancelled, the number
of terms is the Nielsen number and the coefficients are the indices of essential fixed point classes.
So, if the conjugacy problem in π1(Tf ) is decidable, the Nielsen number of f is algorithmically
computable. Otherwise, linear representations of π1(Tf ) can be used to obtain (often partial)
information about conjugacy classes, for the purpose of estimating (from below) the Nielsen
number.

3.3 Aspherical Polyhedra

For X a compact aspherical polyhedron (πi(X) = 0 unless i = 1), the induced endomorphism
φ : π1(X) → π1(X) determines the homotopy type of the self-map f . Hence all homotopy
invariants of f , such as Nielsen number, indices of essential fixed point classes, are determined
by φ. Their computation deserves more attention in geometric group theory.

4 Algorithms for Nielsen Numbers on Surfaces and Graphs

4.1 Surface Self-homeomorphisms

For surface self-homeomorphisms, Jiang and Guo [47] proposed a standard form which supple-
ments Thurston canonical form with twist information along reducing curves. Nielsen number
can be read off easily from this standard form.

Finding the Thurston canonical form for a given self-homeomorphism has been a hot topic
in various contexts. The main breakthrough is Bestvina and Handel’s train-track approach [4]
that yields an algorithmic proof of Thurston’s classification theorem. (See Brinkmann [11] for
an implementation.) It is not clear whether this approach can be extended to determine the
standard form (and hence the Nielsen number).

Using his special technique for minimizing the number of fixed points by isotopy, Kelly [55]
has given an algorithm to compute Nielsen number for surface self-homeomorphisms.

From another point of view, Préaux [67, 68] has shown that all 3-manifold groups have
a solvable conjugacy problem. Hence Reidemeister trace always leads to Nielsen number for
surface self-homeomorphisms.

If a self-map of a surface is not homotopic to a self-homeomorphism, it suffices to look at
its restriction on a spine, so the problem reduces to one on graphs.

4.2 Self-maps of Graphs

Bestvina and Handel [3] developed a theory of free group automorphisms analogous to the
Thurston theory of surface automorphisms. Starting with a self-homotopy equivalence of a
finite graph, they use an algorithm of geometric moves, such as foldings and tightenings, to
simplify it until a most efficient form is reached. The latter, called a relative train track map
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or RTT, is a filtration of subgraphs preserved by the self-map, such that in each layer the
map either permutes the edges or stretches all edges by a factor λ > 1. With the help of a
supplementary algorithm by Turner that calculates indivisible Nielsen paths (or INP, which
joins fixed points of the same class), a complete picture of fixed point classes will arise, whereby
the Nielsen number is determined.

From another view point, the conjugacy problem is solvable in free-by-cyclic groups (=
HNN extension of free groups relative to automorphisms). See [6] or [10], both use RTT in an
essential way. Hence Reidemeister trace works.

A general endomorphism of a free group (or equivalently, a general self-map of a graph) can
be reduced by mutation (i.e., by a sequence of homotopies and commutations) to an injective
endomorphism. For the latter the RTT algorithm still works (see [20]), yet no INP algorithm
is known.

In a very different approach, starting with an endomorphism of free group, Wagner [73] in-
troduced a purely combinatorial condition (called remnant condition) that restricts the amount
of cancelation under the endomorphism, and gave an algorithm for Nielsen number under this
condition. Focusing on the rank-two free group, Yi and Kim managed to handle various non-
remnant cases and gave an algorithm [58] for any self-map of the figure-eight graph.

The algorithmic computation of Nielsen number on graphs is yet to be completed. The
problem for arbitrary self-maps with rank > 2 remains open.

Besides the Nielsen number, the indices of essential fixed point classes and the ranks of
fixed-element-subgroups in π1(X) are also interesting homotopy invariants of self-maps. As an
application of Bestvina and Handel’s theory, a delicate bound to these invariants was found for
self-maps of compact surfaces and graphs [50].

5 Minimum Number of Fixed Points Under Homotopy

Wecken’s minimality theorem has been extended [42] to self-maps of compact connected poly-
hedra that have no local cut points and are not surfaces with negative Euler characteristic.
In the case of surfaces with negative Euler characteristic, Jiang [44] found that the Nielsen
number is not always attainable as the minimum number of fixed points for self-maps. Then
Zhang [81] and Kelly [52] showed that the discrepancy can even be arbitrary large on a given
surface. Since then, the determination of the minimal fixed point number on surfaces stands
out as a challenging problem.

The results of Jiang and Zhang are based on braid equations. The work [45] pushed this idea
further and converted the problem into an algebraic minimizing problem of a width function
in a certain free subgroup of the pure 2-braid group. Although the width is known to be
algorithmically computable (see [35, Chapter 1, §7]), the minimization is still unsolved. Note
that the braid idea has been successful in finding minimum root numbers of surface maps,
see [5].

Kelly took an entirely different approach and gave a geometric algorithm for the minimal
fixed point number [53], for self-maps of bounded surfaces.

For polyhedra with local cut points, the minimal fixed point number is calculated success-
fully only for the homotopy class of the identity map, by Shi [71], see [57, Chapter 4] for an
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exposition in English.

6 Minimum Number of Fixed Points Under Isotopy

Originally Nielsen worked on closed orientable hyperbolic surfaces and studied self-maps that
induce automorphisms on fundamental group. He conjectured that any fixed point class might
be made either to vanish or to reduce to a single point by homotopy, see [64, p. 293 of English
translation]. This is finally given a detailed proof in [47]. Note that when the surface is bounded,
we must either use a relative Nielsen number in stead, or allow self-embeddings in order to get
away from boundary.

Jiang et al. [49] showed that the same conclusion is also true for orientation-preserving
homeomorphisms on closed orientable 3-dimensional manifolds which are either Haken or ge-
ometric. Now that Thurston’s Geometrization Conjecture has been proved, the above class
includes all irreducible, orientable, closed 3-manifolds. The case of reducible 3-manifolds is
open.

Kelly [54] has given a proof of attaining the Nielsen number through isotopy for homeo-
morphisms on manifolds of dimension at least 5, using the fact that any null-homotopic simple
closed curve in such a manifold bounds an embedded disc. The failure of the latter fact is a
typical difficulty in dimension four.

7 Periodic Points

Periodic points of a self-map f : X → X are fixed points of iterates of f . A point x ∈ X is a
periodic point with period n ≥ 1 if x = fn(x) but x �= fk(x) for all 0 < k < n.

7.1 Nielsen Type Numbers and Their Realization

The simplest question to ask is about the number of periodic points. Halpern [37, 38], just
before he left mathematics, worked towards finding a Nielsen type number for a self-map which
is (the best) lower bound for the number of n-periodic points in its homotopy class. Later,
Jiang [43, Section III.4] formulated the definition of Nielsen type numbers NFn(f) and NPn(f)
which are lower bounds for the number of fixed points of fn, and the number of n-periodic points
of f , respectively. Both are defined in terms of the fixed point class data (their coordinates and
indices) of iterates of f , hence are homotopy invariants. Twenty years later, a Wecken type
minimality theorem was proved by Jezierski [40]: On manifolds of dimension at least 3, for any
given integer n > 0, NFn(f) is realizable as the number of fixed points of the n-th iterate, of a
self-map g homotopic to f . Likewise is NPn(f) realizable.

Is there a single self-map g (homotopic to f) realizing NFn(f) and NPn(f) for all n? This
is too good to be true in general, but nice exceptions do exist, such as orientation-preserving
homeomorphisms on surfaces (Boyland [9, Theorem 2.4]). Obviously, a necessary condition for
this simultaneous realization is the equality NFn(f) =

∑
k|nNPk(f) for all n ≥ 1. Self-maps

of tori/nilmanifolds/solvmanifolds satisfy this condition, hence are good candidates to look at.
See Keppelmann’s discussion [15, Chapter I.3, §9].
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7.2 Periodic Points of Smooth Self-maps

Differentiable dynamics is much richer than topological dynamics. In the study of periodic
points the difference was first discovered by Shub and Sullivan [72]. For continuous self-maps,
Dold [22] noticed that the sequence of indices {ind(fk; x0)}∞k=1 at an isolated fixed point x0

satisfies certain congruences. In contrast, for smooth self-maps this sequence is severely re-
stricted (see [17]). Graff and Jezierski ([34]) took all these restrictions into account to define
a new Nielsen type number NJDn(f) for any smooth self-map f on a closed smooth manifold,
which is a homotopy invariant lower bound to the number of fixed points of fn. This invariant
turns out to be much larger than the invariant NFn(f) from the topological category even if
the underlying manifold is simply-connected [33]. They also proved a Wecken type minimality
theorem in smooth category.

7.3 Minimal Set of Periods

The set of periods of a self-map f : X → X is the set consisting of the periods of all periodic
points of f . The minimal (under homotopy) set of periods of f is the intersection of the sets
of periods, for all self-maps in the homotopy class of f . The interest in this set stems from
the period doubling bifurcation and ‘period three implies chaos’ phenomena in one-dimensional
dynamics.

By a careful analysis of the Nielsen numbers of iterates, the minimal set of periods are
determined for self-maps on 2- and 3-dimensional tori, also obtained is a qualitative trichotomy
for higher dimensional tori (see [1] and [48]). A discussion for nilmanifolds and solvmanifolds
is in Marzantowicz’s account [15, Chapter I.4].

7.4 Free Degree

Nielsen [65] considered the question of how long the iterates of a self-homeomorphism can
remain fixed point free. The free degree of a (oriented) manifold M is the maximal integer m

(or infinity) such that M has a (orientation-preserving) self-homeomorphism with no periodic
point of period < m.

Nielsen showed the free degree of an oriented closed surface is 2g − 2 when genus g ≥ 3,
and is 2 or 3 (it is 2 [19]) when g = 2. Wang [74] determined the free degree for closed surfaces
without orientation restrictions.

For bounded surfaces, it is now known [79] that the free degree has a uniform (with respect
to the number of boundary components) upper bound depending only on the genus g ≥ 2.
More detailed computations have been done in the thesis of Chas [16].

7.5 Zeta-functions

A self-map f : X → X generates a semi-flow on the mapping torus Tf (called the suspension
flow of f). A periodic point of f corresponds to a periodic orbit of this flow, the period of the
former equals the length of the latter, and the coordinate (in π1(X)) of the former corresponds
to the free homotopy class (in π1(Tf )) of the latter. Fuller [29] was the first to bring Nielsen
classes into the study of periodic orbits in dynamics.

Zeta function is a favorite way in dynamics to organize sequential data. Combining ideas of
Milnor [63] and Fuller and using an abelianized version of Nielsen fixed point theory, Fried [28]
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introduced the Lefschetz zeta function that keeps track of homology information of all closed
orbits, and related it to the Reidemeister torsion. Twisted Lefschetz zeta function can also be
obtained through a linear representation of π1(Tf ). It is a rational function carrying asymptotic
information about the growth rate of Nielsen numbers and the topological entropy [46].

For a discussion on various zeta functions related to Nielsen fixed point theory, see Fel’shtyn’s
monograph [27].

8 Braid Forcing in Dynamics

An influential discovery in one-dimensional dynamics is the Sharkovskii order in the set of
periods for self-maps on the interval. In the hope of finding a two-dimensional analogue,
Matsuoka [62] and Boyland [7] started in early 1980’s to consider an orientation-preserving
homeomorphism f : R

2 → R
2 of the plane with a given periodic orbit P of n points. For any

isotopy F := {ft : R
2 → R

2}t∈I from the identity map to f , the braid {(ft(P ), t)} ⊂ R
2 × I,

modulo “full twists” and conjugacy in the braid group Bn, is independent of the isotopy F , and
called the braid type of the orbit P . They noticed that for such homeomorphisms, the existence
of (an orbit of) one braid type guarantees the co-existence of (orbits of) certain other braid
types. This brings up a partial order among braid types, called ‘braid forcing’. It has since
been a hot and rich topic in dynamics, contributors include Boyland, Guaschi, Hall, Handel,
Los, Matsuoka and many others. Theories and algorithms are developed about how the braid
type determines geometric features of the planar homeomorphism, such as its set of periods, its
Thurston canonical form, etc. See the survey paper by Boyland [8]. The relevance of Nielsen
fixed point theory was first made clear in [39].

Jiang and Zheng [51] developed a theory of braid forcing in the framework of Nielsen fixed
point theory. On a configuration space of the plane, the forced braids arise as coordinates of
essential fixed point classes (as in the Reidemeister trace) of a self-homeomorphism (determined
by the given braid). They even gave an algorithm which, for any braid type β and any given
size m, produces a finite list of all braid types in Bm that are forced by β. Thus, the forcing
order of braid types is algorithmically computable.

The importance of a mathematical notion or theory is often seen through its role in the
interplay of different branches of mathematics. The braid forcing problem happens to be such
a good test ground for Nielsen fixed point theory between topology and dynamics.

9 Formal Approaches

Now that categorification is making progress in many areas of mathematics, we take a look at
formal approaches to Nielsen fixed point theory.

In view of a formal analogy, in algebraic geometry Grothendieck established a Lefschetz
trace formula which played a basic role in Deligne’s proof of the Weil conjecture. He also gave
a Nielsen–Wecken formula [36] which resembles the Reidemeister trace, for an endomorphism
on a variety over a finite field. Its significance remains to be explored.

Lück [61] constructed a universal (in a functorial sense) Lefschetz invariant for fixed points
on CW complexes. Weber [75] developed it into an equivariant version of Reidemeister trace,
and gave a converse of the equivariant Lefschetz fixed point theorem when this invariant van-
ishes.
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Dold and Puppe [23] considered Lefschetz number as a trace associated to a dualisable object
in a symmetric monoidal category. Hence, the Lefschetz fixed point theorem can be proved
formally by using functoriality properties. Ponto [66] generalized this to a trace in bicategories
with shadows, so that the Reidemeister trace and the converse of Lefschetz theorem are valid
in more general (including fibrewise and parametrized) contexts.
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