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1 Introduction

In [9], Lions considered a semi-linear boundary value problem associated to the Laplace operator
with Neumann boundary condition:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2u

∂t2
− Δu + |u|νu = f, in Ω × (0, T ), ν = p − 2,

u = 0 on Γ × (0, T ),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

Using the compactness method and Faedo-Galerkin techniques, the existence of a weak solution
has been proved. Assuming that the condition ν ≤ 2

n−2 holds, then, it follows the uniqueness
and the regularity of the solution.

In [11], Rahmoune and Benabderrahmane considered a semi-linear hyperbolic boundary
value problem governed by partial differential equations that describe the evolution of linear
elastic materials with Dirichlet and Neumann boundary conditions as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− div σ(u) + |u|νu = f, in Ω × (0, T ),

σ(u) = F (ε(u)), in Ω × (0, T ),

u = g on Γ1 × (0, T ), σ(u)η = 0 on Γ2 × (0, T ),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.
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With special known theorems they established the local existence result. They showed that
for a suitable initial datum, the uniqueness and the regularity of solution have been gotten by
eliminating some hypotheses on the number ν that have been imposed by other authors for
different particular problems.

In this work, a semi-linear generalized hyperbolic boundary value problem associated to
the linear elastic equations with general damping term, dissipative term and nonlinearities of
variable exponent type is considered:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− div σ(u) + |u|ν(x)u + g(u′) = f, in Ω × (0, T ),

σ(u) = F (ε(u)), in Ω × (0, T ),

u = 0 on Γ1 × (0, T ), σ(u)η = 0 on Γ2 × (0, T ),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

(1.1)

u, f and σ(u) represent the displacement field, the density of volume forces and the tensor of
constraints, respectively. div denotes the divergence operator of the tensor valued functions
and σ = (σij), i, j = 1, 2, . . . , n stands for the stress tensor field. The latter is obtained from
the displacement field by the constitutive law of linear elasticity defined by the second equation
in (1.1). F is a linear elastic constitutive law, and ε(u) = 1

2 (∇u +∇T u) is the linearized strain
tensor. The equation (1.1), without the nonlinear term |u|ν(x)u+g(u′), describes the evolution of
linear elastic materials, with the initial and mixed boundary conditions on Σi, i = 1, 2. Assume
certain hypotheses on the data functions. Then, by using Faedo-Galerkin techniques combined
with compactness and monotonous methods, we will prove the existence of a weak solution.
Our main goal is, without taking into account the conditions on the continuous function ν(x),
to prove the uniqueness of the solution. Ω is an open and bounded domain in R

n. Recall that
the boundary Γ of Ω is assumed to be regular and is composed of two relatively closed parts:
Γ1, Γ2, with mutually disjoint relatively open interiors. We pose Σi = Γi × (0, T ), i = 1, 2,
where T is a finite real number. To simplify the writing one will put u′ = ∂u

∂t , u′′ = ∂2u
∂t2 , and

we do not indicate explicitly the dependence of the functions u and σ by report to x ∈ Ω and
t ∈ (0, T ). Let η be the unit outward normal vector on Γ. Here and throughout this work, the
summation convention over repeated indices is used. In this paper, our aim is to extend the
results of [9, 11], and other’s established in bounded domains to a general problem as in (1.1).

The present paper is organized as follows. Before the main results, in Section 2 we introduce
the function spaces of Sobolev type with variable exponents. In Section 3 we present to the
proof of the weak solution to the initial-boundary value problem (1.1). The weak solution are
obtained as the limit of the sequence of Galerkin’s approximations. Our object is to obtain,
without taking into account the condition on ν(x), the uniqueness of the solution. In section
4, the global existence in time and the stability of solution are established of the problem (1.1)
in the framework of the Lebesgue space with variable exponents.

2 Preliminaries for Function Spaces

In this section we list and recall some well-known results and facts from the theory of the
Sobolev spaces with variable exponent (for the details see [2, 4–6, 8]).

Throughout the rest of the paper we assume that Ω is a bounded domain of R
n, n ≥ 2 with
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smooth boundary Γ and assume that meas (Γ) > 0, μ > 0, p( · ) is a continuous measurable
function on Ω such that

2 < p− ≤ p(x) ≤ p+ < ∞, (2.1)

where
p+ = ess sup

x∈Ω
p(x), p− = ess inf

x∈Ω
p(x).

We also assume that p satisfies the following Zhikov–Fan uniform local continuity condition:

|p(x) − p(y)| ≤ M

| log |x − y‖ , for all x, y in Ω with |x − y| <
1
2
, M > 0. (2.2)

Let p : Ω → [1,∞] be a measurable function. We denote by Lp(·)(Ω) the set of measurable
functions u on Ω such that

Ap(·)(u) =
∫

{x∈Ω|p(x)<∞}
|u(x)|p(x)dx + ess sup

{x∈Ω|p(x)=∞}
|u(x)| < ∞.

The variable-exponent space Lp(·) equipped with the Luxemburg norm

‖u‖p(.),Ω = ‖u‖p(.) = ‖u‖Lp(.)(Ω) = inf
{

λ > 0, Ap(.)

(
u

λ

)

≤ 1
}

is a Banach space.
In general, variable-exponent Lebesgue spaces are similar to classical Lebesgue spaces in

many aspects, see the first discussed the Lp(x) spaces and W k,p(x) spaces by Kovacik and
Rakosnik in [8].

Let us list some properties of the spaces Lp(·)(Ω) which will be used in the study of the
problem (1.1).

• It follows directly from the definition of the norm that

min(‖u‖p−
p(·) , ‖u‖p+

p(·)) ≤ Ap(·)(u) ≤ max(‖u‖p−
p(·) , ‖u‖p+

p(·)).

• The following generalized Hölder inequality
∫

Ω

|u(x)v(x)|dx ≤
(

1
p−

+
1

p′−

)

‖u‖p(x)‖v‖p′(x) ≤ 2‖u‖p(x)‖v‖p′(x)

holds, for all u ∈ Lp(·)(Ω), v ∈ Lp′(·)(Ω) with p(x) ∈ (1,∞), p′(x) = p(x)
p(x)−1 .

• If the condition (2.2) is fulfilled, and Ω has a finite measure and p, q are variable exponents
so that p(x) ≤ q(x) almost everywhere in Ω, then the embedding Lq(·)(Ω) ↪→ Lp(·)(Ω) is
continuous.

• If p : Ω → [1, +∞) is a measurable function and p∗ > ess sup{x∈Ω} p(x) with p∗ ≤ 2n
n−2 ,

then the embedding H1
0 (Ω) = W 1,2

0 (Ω) ↪→ Lp(·)(Ω) is continuous and compact.

2.1 Mathematical Assumptions

In the study of mechanical problem involving elastic materials, we assume that the operator
F : Ω × Sn → Sn satisfies the following conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(a) ∃m > 0; (F (x, ε), ε) ≥ m‖ε‖2, ∀ε ∈ Sn a.e. x ∈ Ω;

(b) (F (x, ε), τ ) = (F (x, τ), ε), ∀ε, τ ∈ Sn a.e. x ∈ Ω;

(c) For any ε ∈ Sn, x → F (x, ε) is measurable on Ω,

(2.3)
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where Sn will denote the space of second-order symmetric tensors on R
n.

Let g : R → R be an monotonous continuous function as g(0) = 0 and σ(·) be a continuous
measurable function on Ω such that the following inequalities hold:

⎧
⎪⎪⎨

⎪⎪⎩

xg(x) ≥ d0|x|σ(x), ∀x ∈ R,

|g(x)| ≤ d1|x| + d2|x|σ(x)−1, ∀x ∈ R, di ≥ 0,

2 < σ− ≤ σ(x) ≤ σ+ ≤ p(x) ≤ p+ < ∞.

(2.4)

And we assume that the given data f , u0 and u1 verify

f ∈ L2(Q), (2.5)

u0 ∈ V ∩ Lp(x)(Ω), p(x) = ν(x) + 2, (2.6)

u1 ∈ L2(Ω). (2.7)

For convenience, we set:

1
p(x)

‖v(x, t))‖p(x)

Lp(x)(Ω)
=

∫

Ω

1
p(x)

|v(t)|p(x)dx,

also we denote the norm and scalar product in L2(Ω) by ‖v‖L2(Ω) = |v| = (
∫

Ω
|v|2dx)

1
2 and (., .)

respectively. C and c denotes a general positives constants, which may be different in different
estimates.

3 Main Result

In this section, we start with a local existence and uniqueness of the solution for (1.1).

3.1 Local Existence Result

Theorem 3.1 For every T > 0 and every initial data u0, u1 satisfying (2.5)–(2.7), under the
assumptions (2.1)–(2.4) there exists a unique u which solves the problem (1.1) such that

u ∈ L∞(0, T ; V ∩ Lp(x)(Ω)), p(x) = ν(x) + 2, (3.1)

g(u) · u ∈ L1(0, T ; L1(Ω)), (3.2)

u′ ∈ L∞(0, T ; L2(Ω)). (3.3)

Proof We shall prove the existence by means of the Faedo-Galerkin approximation scheme.
For every j ≥ 1, let Vm = span{w1, w2, . . . , wm}, where {wj} is one of the orthogonal complete
system of eigenfunctions in V ∩Lp(x)(Ω). Construct the approximate solutions of problem (1.1)

um(t) =
m∑

i=1

Kjm(t)wi, m = 1, 2, . . . (3.4)

solving the system

(u′′
m(t), wj) + a(um, wj) + (|um|ν(x)um, wj) + (g(u′

m), wj) = (f, wj), 1 ≤ j ≤ m, (3.5)

which is a nonlinear system of ordinary differential equations and will be completed by the
following initial conditions

um(0) = u0m =
m∑

i=1

αimwi → u0, when m → ∞ in V ∩ Lp(x)(Ω), (3.6)
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u′
m(0) = u1m =

m∑

i=1

βimwi → u, when m → ∞ in L2(Ω). (3.7)

As the family {w1, w2, . . . , wm} is linearly independent, by virtue of the theory of ordinary
differential equations we can get a unique local solution um extended to a maximal interval
(0, Tm), having the following regularity

um(t) ∈ L2(0, tm; Vm), u′
m(t) ∈ L2(0, tm; Vm).

A priori, the time interval (0, T ) depends on m and thereafter we shall prove that tm does not
depend on m based on the following a priori estimates.

First we set

‖u‖2
1 = a(u, u) =

∫

Ω

F (ε(u))ε(u)dx. (3.8)

Then, using (2.3) and Korn’s inequality it can be shown that ‖u‖1 is a norm on V equivalent
to the norm ‖u‖ on H1(Ω). Multiplying the equation (3.5) by K ′

jm(t) and performing the
summation over j = 1 to m, yields

(u′′
m(t), u′

m(t)) + a(um(t), u′
m(t)) + (|um|ν(x)um(t), u′

m(t)) + (g(u′
m), u′

m(t)) = (f, u′
m(t)).

(3.9)

On the other hand
d

dt
a(um(t), um(t)) = (F (ε(um(t))), ε(u′

m(t))) + (F (ε(u′
m(t))), ε(um(t)))

= a(um(t), u′
m(t)) + a(u′

m(t), um(t)).

Then, using (2.3) (b), we obtain

2a(um(t), u′
m(t)) =

d

dt
a(um(t), um(t)) =

d

dt
‖um(t)‖2

1, (3.10)

also
1
2

d

dt
|u′

m(t)|2 = (u′′
m(t), u′

m(t)); (3.11)

1
p(x)

d

dt
‖um(x, t))‖p(x)

Lp(x)(Ω)
= (|um|ν(x)um(t), u′

m(t)), p(x) = ν(x) + 2. (3.12)

Then, according to (3.10)–(3.12) by the Cauchy–Schwarz’s inequality, from (3.9) we obtain

1
2

d

dt
(|u′

m(t)|2 + C1‖um(t)‖2) +
1

p(x)
d

dt
‖um(x, t))‖p(x)

Lp(x)(Ω)
+

∫

Ω

g(u′
m(t))u′

m(t)dx

≤ |f(s)||u′
m(s)|. (3.13)

Integrating on (0, t) and applying Young inequality we deduce

1
2
(|u′

m(t)|2 + C1‖um(t)‖2) +
1

p(x)
‖um(t)‖p(x)

Lp(x)(Ω)
+

∫ t

0

∫

Ω

g(u′
m(s))u′

m(s)dxds

≤ 1
2
|u1m|2 +

1
2
C1‖u0m‖2 +

1
p(x)

‖u0m‖p(x)

Lp(x)(Ω)

+
1
2

∫ t

0

|f(s)|2ds +
1
2

∫ t

0

|u′
m(s)|2ds. (3.14)
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Since
1
2
|u1m| + 1

2
‖u0m‖2 +

1
p(x)

‖u0m‖p(x)

Lp(x)(Ω)
+

1
2

∫ t

0

|f(s)|2ds ≤ C, ∀m ∈ N
∗.

Hence it follows from (3.14) and Gronwall’s inequality that

|u′
m(t)| ≤ CT . (3.15)

Therefore, (3.14) gives

‖um(t)‖p(x)

Lp(x)(Ω)
+ ‖um(t)‖2 +

∫ t

0

∫

Ω

g(u′
m(s)) · u′

m(s)dxds ≤ CT (3.16)

for every m ≥ 1, and CT > 0 is independent of m. Thus, we obtain
⎧
⎪⎪⎨

⎪⎪⎩

(um) is a bounded sequence in L∞(0, T ; V ∩ Lp(x)(Ω)),

(u′
m) is a bounded sequence in L∞(0, T ; L2(Ω)),

g(u′
m)u′

m is a bounded sequence in L1(0, T ; L1(Ω)).

(3.17)

Lemma 3.2 There exists a constant K > 0 such that

‖g(u′
m(t))‖

L
σ(x)

σ(x)−1 (Ω×[0,T ])
≤ K,

for all m ∈ N.

Proof We exploit Hölder’s and Young’s inequalities from (2.4),
∫ T

0

∫

Ω

|g(u′
m)| σ(x)

σ(x)−1 dxdt =
∫ T

0

∫

Ω

|g(u′
m)‖g(u′

m)| 1
σ(x)−1 dxdt

≤
∫ T

0

∫

Ω

|g(u′
m(t))|(d1|u′

m(t)| + d2|u′
m(t)|σ(x)−1)

1
σ(x)−1 dxdt

≤ C

∫ T

0

∫

Ω

|g(u′
m(t))|(|u′

m(t)| 1
σ(x)−1 + |u′

m(t)|)dxdt

= C

∫ T

0

∫

Ω

|g(u′
m(t))‖u′

m(t)| 1
σ(x)−1 dxdt

+ C

∫ T

0

∫

Ω

|g(u′
m(t))‖u′

m(t)|dxdt

≤ σ+ − 1
σ+

∫ T

0

∫

Ω

|g(u′
m)| σ(x)

σ(x)−1 dxdt

+ C(σ+, σ−)
∫ T

0

∫

Ω

|u′
m(t)| σ(x)

σ(x)−1 dxdt

+ C

∫ T

0

∫

Ω

|g(u′
m(t))‖u′

m(t)|dxdt.

Therefore,

1
σ+

∫ T

0

∫

Ω

|g(u′
m(t))| σ(x)

σ(x)−1 dxdt ≤ C(σ+, σ−)
∫ T

0

∫

Ω

|u′
m(t)| σ(x)

σ(x)−1 dxdt

+ C

∫ T

0

∫

Ω

|g(u′
m(t))‖u′

m(t)|dxdt

≤ C

∫ T

0

|u′
m(t)| σ(x)

σ(x)−1 dt



Semi-linear Generalized Elasticity Equation with General Damping Term 1555

+ C

∫ T

0

∫

Ω

|g(u′
m(t))‖u′

m(t)|dxdt,

which yields, by the estimate (3.17),
∫ T

0

∫

Ω

|g(u′
m(t))| σ(x)

σ(x)−1 dxdt ≤ K. �

From (3.17) and Lemma 3.2 there exists a subsequence (uμ) of (um) such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uμ → u weak star in L∞(0, T ; V ∩ Lp(x)(Ω)),

u′
μ → u′ weak star in L2(0, T ; L2(Ω)),

g(u′
μ) → χ weak star in L

σ(x)
σ(x)−1 (Ω × (0, T )),

−div F (ε(uμ(t))) → κ weak star in L2(0, T ; H−1(Ω))

(3.18)

From (3.17), it is obtained that the sequences (um), (u′
m) are bounded in L2(0, T ; V ) ⊂

L2(0, T ; L2(Ω)) = L2(Q), L2(Q), respectively. Then, in particular, (um) is a bounded se-
quence in H1(Q). It is known, see [9], that the injection of H1(Q) in L2(Q) is compact. Then,
from (3.18) we have

uμ → u in L2(Q) strongly. (3.19)

Setting 1
p(x) + 1

p′(x) = 1, p(x) = ν(x) + 2, using (3.17) we have that (|um|ν(x)um) is a bounded

sequence in L∞(0, T ; Lp′(x)(Ω)). Therefore

|uμ|ν(x)uμ → |u|ν(x)u in L∞(0, T ; Lp′(x) (Ω)) weak star. (3.20)

Because the operator −div F (ε(·)) : H1
0 (Ω) to H−1(Ω) is bounded, monotone, and hemicontin-

uous, then we have

−div F (ε(um(t))) is bounded in L∞(0, T ; H−1(Ω))

as m → ∞. Using the standard monotonicity argument as in [9, 10, 12], we can, thus, suppose
that

−div F (ε(uμ(t))) → −div F (ε(u(t))) in L∞(0, T ; H−1(Ω)) weak star. (3.21)

similarly by using the result in Lemma 3.2 and the estimate (3.17)

g(u′
μ) → g(u′) in L

σ(x)
σ(x)−1 (0, T ; L

σ(x)
σ(x)−1 (Ω)) weak star. (3.22)

Let j be fixed and μ > j. Then, by (3.5) we have

(u′′
μ(t), wj) + a(uμ, wj) + (|uμ|ν(x)uμ, wj) + (g(u′

μ), wj) = (f, wj). (3.23)

Therefore, (3.18), (3.19), (3.20), (3.23) and (3.22) implies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(uμ, wj) → a(u, wj) in L∞(0, T ) weak star,

(u′
μ, wj) → (u′, wj) in L∞(0, T ) weak star,

(u′′
μ(t), wj) → (u′′(t), wj) in D′(0, T ),

(|uμ|ν(x)uμ, wj) → (|u|ν(x)u, wj) in L∞(0, T ) weak star,

(g(u′
μ), wj) → (g(u′), wj) in L∞(0, T ) weak star.

(3.24)
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Then (3.23) takes the form

(u′′, wj) + a(u, wj) + (|u|ν(x)u, wj) + (g(u′), wj) = (f, wj).

Finally, be using the density of Vm in V ∩ Lp(x)(Ω) we obtain

(u′′, v) + a(u, v) + (|u|ν(x)u, v) + (g(u′), v) = (f, v), ∀v ∈ V ∩ Lp(x)(Ω). (3.25)

Then u satisfies (1.1). From (3.18) we have

uμ(0) → u(0) weakly in L2(Ω).

Then, using (3.6) we deduce in particular that

uμ(0) = u0μ → u0 in V ∩ Lp(x)(Ω).

Thus, the first initial condition in (1.1) is obtained. On the other hand, by using (3.24)

(u′′
μ(t), wj) → (u′′(t), wj) in L∞(0, T ) weak star.

Hence (u′
μ(0), wj) → (u′(0), wj). Since (u′

μ(0), wj) → (u1, wj), we have (u′(0), wj) = (u1, wj),
∀j. Then the second initial condition in (1.1) is satisfied. �

3.2 Uniqueness

Many authors, for some particular problems, when ν(x) = ν is a constant number, have showed
the uniqueness of the solution basing on the condition ν ≤ 2

n−2 . In this subsection the unique-
ness of the solution will be proved without any condition on ν(x).

Theorem 3.3 Let the conditions of Theorem 3.1 hold and in addition

ν(x) ≤ ν+ ≤ 2k

n − 2
, k ∈ N

∗, (n = 2; ν+ < ∞ if n = 2). (3.26)

Then, the solution u obtained in Theorem 3.1 is unique.

Proof Let u, v be two solutions of problem (1.1), to the sense of the Theorem 3.1. Setting
w = u − v, since F is linear we have

w′′ − div F (ε(w)) + (|u|ν(x)u − |v|ν(x)v) + (g(u′) − g(v′)) = 0, in Q, (3.27)

w(0) = w′(0) = 0, in Ω, (3.28)

w = 0 on Σ1, σ(w)η = 0 on Σ2, (3.29)

w ∈ L∞(0, T ; V ∩ Lp(x)(Ω)), p(x) = ν(x) + 2, (3.30)

w′ ∈ L∞(0, T ; L2(Ω)). (3.31)

Multiplying the equation (3.27) by w′ and integrating on Ω. Then, by using Green’s formula
together with the conditions (3.28), (3.29), we obtain

1
2

d

dt
|w′(t)|2 + a(w(t), w′(t)) + (g(u′) − g(v′), w′(t)) =

∫

Ω

(|v|ν(x)v − |u|ν(x)u)w′dx. (3.32)

Then by (2.3) (b), we have

a(w(t), w′(t)) =
d

dt
a(w(t), w(t)) −

∫

Ω

d

dt
(F (ε(w)))ε(w)dx

= C1
d

dt
‖w‖2 −

∫

Ω

F (ε(w′))ε(w)dx
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= C1
d

dt
‖w‖2 − a(w(t), w′(t)).

In this case (3.32) takes the form

1
2

d

dt
(|w′(t)|2 + C1‖w‖2) + (g(u′) − g(v′), w′(t)) =

∫

Ω

(|v|ν(x)v − |u|ν(x)u)w′dx. (3.33)

Also, we have
∣
∣
∣
∣

∫

Ω

(|v|ν(x)v − |u|ν(x)u)w′dx

∣
∣
∣
∣ ≤ (ν+ + 1)

∫

Ω

sup(|u|ν(x), |v|ν(x))|w‖w′|dx.

Next, by using the Hölder inequality we have
∣
∣
∣
∣

∫

Ω

(|v|ν(x)v − |u|ν(x)u)w′dx

∣
∣
∣
∣ ≤ C2(‖|u|ν(x)‖Ln(Ω) + ‖|v|ν(x)‖Ln(Ω))‖w(t)‖Lq(Ω)|w′(t)|,

where 1
n + 1

q + 1
2 = 1. Also, by referring to [1] we have

‖v‖Lkq(Ω) = ‖|v|k‖ 1
k

Lq(Ω) ∀k, q ∈ N
∗. (3.34)

Therefore by (3.34) ‖v‖ν(x)

Lkq(Ω)
= ‖|v|k‖

ν(x)
k

Lq(Ω) , for all ν(x) ∈ R, using (3.26) we have ν(x)n ≤
ν+n ≤ kq. Then, this conditions implies that

‖|v|ν(x)‖Ln(Ω) ≤ ‖v‖ν(x)

Lν(x)n(Ω)
≤ ‖v‖ν(x)

Lν+n(Ω) ≤ ‖v‖ν(x)

Lkq(Ω)
= ‖|v|k‖

ν(x)
k

Lq(Ω)

≤ ‖|v|k‖ ν(x)
k ≤ C‖v‖ν(x),

which implies by the estimate (3.1) and as H1
0 (Ω) ⊂ Lq(Ω) that

∣
∣
∣
∣

∫

Ω

(|v|p(x)−2v − |u|p(x)−2u)w′dx

∣
∣
∣
∣ ≤ C(‖u‖ν(x) + ‖v‖ν(x))‖w(t)‖H1

0 (Ω)|w′(t)| ≤ C4‖wt‖|w′|.

Then, by Young inequality from (3.33) we deduce

1
2

d

dt
(|w′(t)|2 + C1‖w(t)‖2) ≤ 1

2
C4(|w′(t)|2 + ‖w(t)‖2). (3.35)

Integrating equation (3.35) together with the initial conditions (3.28), we use Gronwall’s in-
equality to find w = 0. �

Corollary 3.4 Assume that the conditions of Theorem 3.1 hold. Then, for all ν(x) ∈ R the
solution u found to Theorem 3.1 is unique.

Proof For all n > 2, set

k = Ent
(

ν+(n − 2)
2

)

+ 1,

where Ent(x) denotes the integer part of x. Then, we have

ν(x) ≤ ν+ ≤ 2k

n − 2
, k ∈ N

∗, (n = 2; ν+ < ∞ if n = 2).

Thus, using Theorem 3.3, there exists a unique solution satisfying (3.1)–(3.3). �
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4 Global Existence and Nonlinear Internal Stabilization

In this section, we discuss the global existence and the stability property of the unique weak so-
lution u of the problem (1.1). To this aim, we define the modified energy function corresponding
to the unique solution by the formula

E(t) =
1
2
|ut(t)|2 +

1
2
‖u(t)‖2

1 +
1

p(x)
‖u(t)‖p(x)

Lp(x)(Ω)
, t ∈ R

+. (4.1)

The goal of this note is to get the stability of the system considered under the appropriate
conditions on the functions g. Suppose that for the continuous functions p(x), p′(x) ≥ 1 and
for the positive constants C1, C2, C3, C4 the following statements hold:

C1|x|p(x) ≤ |g(x)| ≤ C2|x|
1

p(x) , if |x| ≤ 1, (4.2)

C3|x| ≤ |g(x)|, if |x| > 1, (4.3)

|g(x)| ≤ C4|x|p′(x), if |x| > 1 and n ≥ 3. (4.4)

The next lemma shows that our functional energy (4.1) is a nonincreasing function along the
trajectory of solution of (1.1).

Lemma 4.1 The energy E : R
+ → R

+ is a nonincreasing function for t ≥ 0 and

E′(t) = −
∫

Ω

utg(ut)dx ≤ 0. (4.5)

Proof For all 0 ≤ S < T < ∞, multiplying the equation of (1.1) by ut and integrating over
Ω, using integrating by parts and summing up the product results, we get

E(t) − E(0) = −
∫ t

0

∫

Ω

utg(ut)dxds, for t ≥ 0. (4.6)

Being the primitive of an integrable function, E(t) is absolutely continuous and the equality (4.5)
is satisfied. �

4.1 Global Existence

Theorem 4.2 Let the assumptions of Theorem 3.1 hold. Then the solution u to problem (1.1)
verifies the following estimates

u ∈ C(R+, V ∩ Lp(x)(Ω)), u′ ∈ C(R+, L2(Ω)).

Proof Under the hypotheses of Theorem 3.1, (u, u′) ∈ (V ∩Lp(x)(Ω))×L2(Ω) on [0, T ). Then
by the identity (4.5) we have

1
2
|ut(t)|2 +

1
2
‖u(t)‖2

1 +
1

p(x)
‖u(t)‖p(x)

Lp(x)(Ω)
≤ E(0), ∀t ≥ 0

bounded independently of t. �

4.2 Stability of Solution

Theorem 4.3 Supposes that (4.2)–(4.4) hold. Then the solution of the problem (1.1) verifies
for positive constants c and � the estimates :

E(t) ≤ ct
−2

p+−1 , ∀t ∈ R
+ if p+ > 1, (4.7)

and
E (t) ≤ E (0) e(1−�t), ∀t ∈ R

+ if p+ = 1.
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Here, the constant c depends on the initial energy E(0), the constant � does not depend of E(0).

First, we shall give some lemmas which will be used for the proof of Theorem 4.3.

Lemma 4.4 (see [7, Theorem 8.1]) Let E : R
+ → R

+ be a nonincreasing function verifying
for two constants α ≥ 0 and T > 0 the estimates :

∫ ∞

t

Eα+1(s)ds ≤ TEα(0)E(t), ∀t ∈ R
+.

Then

E(t) ≤ E(0)
(

T + αt

T + αT

)−1
α

, ∀t ∈ R
+ if α > 0

and
E(t) ≤ E(0)e1− 1

T t, ∀t ∈ R
+ if α = 0.

Lemma 4.5 For all 0 ≤ S < T < ∞ we have the estimate

2
∫ T

S

E
p(x)+1

2 (t)dt ≤ −
[

E
p(x)−1

2 (t)
∫

Ω

utudx

]T

S

+
p(x) − 1

2

∫ T

S

E
p(x)−3

2 (t)E′(t)
∫

Ω

utudxdt

+
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

(2(ut)2 − ug(ut))dxdt. (4.8)

Proof First, note that
∫

Ω
uttudx = d

dt

∫

Ω
utudx − ∫

Ω
(ut)2dx, then

0 =
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

u(utt − div σ(u) + |u|ν(x)u(t) + g(ut))dxdt

=
[

E
p(x)−1

2 (t)
∫

Ω

utudx

]T

S

− p(x) − 1
2

∫ T

S

E
p(x)−3

2 (t)E′(t)
∫

Ω

uutdxdt

+
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

((−u · div σ(u)) + |u|p(x) + ug(ut) − (ut)2)dxdt. (4.9)

By using the definition of the energy (4.1) we have
∫

Ω

(−udiv σ(u) + |u|p(x))dx ≥ 2E(t) −
∫

Ω

(ut)2dx. (4.10)

By substitution (4.10) in (4.9) it gives

0 ≥
[

E
p(x)−1

2 (t)
∫

Ω

utudx

]T

S

− p(x) − 1
2

∫ T

S

E
p(x)−3

2 (t)E′(t)
∫

Ω

uutdxdt

+
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

(2E(t) − (ut)2 + ug(ut) − (ut)2)dxdt.

Then

0 ≥
[

E
p(x)−1

2 (t)
∫

Ω

utudx

]T

S

− p(x) − 1
2

∫ T

S

E
p(x)−3

2 (t)E′(t)
∫

Ω

uutdxdt

+ 2
∫ T

S

E
p(x)+1

2 (t)dt −
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

(2(ut)2 − ug(ut))dxdt,

deriving (4.8). �
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Lemma 4.6 The energy E verifies the estimate

2
∫ T

S

E
p(x)+1

2 (t)dt ≤ cE
p(x)+1

2 (S) +
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

(2(ut)2 − ug(ut))dxdt (4.11)

for all 0 ≤ S < T < ∞, where c design, from this lemma, a positive constant independent of
E(0), S and of T.

Proof The boundary condition and assumptions (2.3) imply
∫

Ω

−udiv σ(u)dx = C1

∫

Ω

‖u‖2dx ≥ c

∫

Ω

|u|2dx. (4.12)

From (4.12), (4.1) and Young inequality, we have
∣
∣
∣
∣E

p(x)−1
2 (t)

∫

Ω

uutdx

∣
∣
∣
∣ ≤ cE

p(x)−1
2 (t)

∫

Ω

((u)2 + (ut)2)dx

≤ cE
p(x)−1

2 (t)
∫

Ω

(−udiv σ(u) + (ut)2)dx

≤ cE
p(x)−1

2 (t)E(t) = cE
p(x)+1

2 (t).

Therefore [

E
p(x)−1

2 (t)
∫

Ω

uutdx

]T

S

≤ cE
p(x)+1

2 (S).

On the other hand,
∣
∣
∣
∣
p(x) − 1

2

∫ T

S

E
p(x)−3

2 (t)E′(t)
∫

Ω

uutdxdt

∣
∣
∣
∣

≤ c

∫ T

S

E
p(x)−3

2 (t)(−E′(t))E(t)dt

= cE
p(x)+1

2 (S) − cE
p(x)+1

2 (T ) ≤ cE
p(x)+1

2 (S).

One replaces these two estimates in (4.8) to find (4.11). �

Lemma 4.7 For all 0 ≤ S < T < ∞ and all ε > 0 :
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

(ut)2dxdt ≤ ε

∫ T

S

E
p(x)+1

2 (t)dt + c(ε)E(s) + cE
p(x)+1

2 (S). (4.13)

Proof For t ∈ R
+ fixed, we have

∫

Ω

(ut)2dx =
∫

|ut|≤1

(ut)2dx +
∫

|ut|>1

(ut)2dx.

Using the Hölder inequality we get
∫

Ω

(ut)2dx ≤ c

( ∫

|ut|≤1

|ut|p(x)+1dx

) 2
p(x)+1

+
∫

|ut|>1

(ut)2dx.

By virtue of (4.2), (4.3) and (4.5) we observe that
∫

Ω

(ut)2dx ≤ c

( ∫

|ut|≤1

|ut|p(x) |ut|dx

) 2
p(x)+1

+
∫

|ut|>1

ututdx

≤ c

( ∫

|ut|≤1

|utg(ut)|dx

) 2
p(x)+1

+ c

∫

|ut|>1

|utg(ut)|dx



Semi-linear Generalized Elasticity Equation with General Damping Term 1561

= c

( ∫

|ut|≤1

utg(ut)dx

) 2
p(x)+1

+ c

∫

|ut|>1

utg(ut)dx

≤ c(−E′(t))
2

p(x)+1 − cE′(t).

Therefore,
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

(ut)2dxdt ≤ c

∫ T

S

E
p(x)−1

2 (t)(−E′(t))
2

p(x)+1 dt − c

∫ T

S

E
p(x)−1

2 (t)E′(t)dt.

Using Young inequality, we yield

c

∫ T

S

E
p(x)−1

2 (t)(−E′(t))
2

p(x)+1 dt ≤ c
p(x) − 1
p(x) + 1

∫ T

S

E
p(x)−1

2
p(x)+1
p(x)−1 (t)dt

+ c
2

p(x) + 1

∫ T

S

(−E′(t))
2

p(x)+1
p(x)+1

2 dt

≤ ε

∫ T

S

E
p(x)+1

2 (t)dt − c(ε)
∫ T

S

E′(t)dt

≤ ε

∫ T

S

E
p(x)+1

2 (t)dt + c(ε)E(S).

Combining the last two inequalities, we find
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

(ut)2dxdt ≤ ε

∫ T

S

E
p(x)+1

2 (t)dt + c(ε)E(S) + cE
p(x)+1

2 (S).

Thus (4.13) holds. �

Lemma 4.8 For all 0 ≤ S < T < ∞ and all ε > 0 :
∣
∣
∣
∣

∫ T

S

E
p(x)−1

2 (t)
∫

Ω

ug(ut)dxdt

∣
∣
∣
∣ ≤ ε

∫ T

S

E
p(x)+1

2 (t)dt + c(ε)E(S). (4.14)

Proof By applying the generalized young inequality, for all ε′ > 0 we have
∣
∣
∣
∣

∫

|ut|≤1

ug(ut)dx

∣
∣
∣
∣ ≤ ε′

∫

|ut|≤1

u2dx + c(ε′)
∫

|ut|≤1

g2(ut)dx

then from (4.2) and (4.12) we get
∣
∣
∣
∣

∫

|ut|≤1

ug(ut)dx

∣
∣
∣
∣ ≤ ε′

∫

|ut|≤1

−udiv σ(u)dx + c(ε′)
∫

|ut|≤1

g2(ut)dx

≤ 2ε′E(t) + c(ε′)
(∫

|ut|≤1

|g(ut)|p(x)+1dx

) 2
p(x)+1

= 2ε′E(t) + c(ε′)
(∫

|ut|≤1

|g(ut)|p(x) |g(ut)|dx

) 2
p(x)+1

≤ 2ε′E(t) + cc(ε′)
(∫

|ut|≤1

|g(ut)‖ut|dx

) 2
p(x)+1

= 2ε′E(t) + cc(ε′)
(∫

|ut|≤1

utg(ut)dx

) 2
p(x)+1

= 2ε′E(t) + cc(ε′)(−E(t))
2

p(x)+1 .
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Therefore, ∣
∣
∣
∣

∫

|ut|≤1

ug(ut)dx

∣
∣
∣
∣ ≤ 2ε′E(t) + cc(ε′)(−E(t))

2
p(x)+1 . (4.15)

For all p′(x) ≥ 1, and all n > 2, we put k = Ent( (p′
++1)(n−2)

2n ) + 1, where the notation Ent(x)
designates the integer part of real x, and therefore k must verify the condition

p′(x) + 1 ≤ p′+ + 1 ≤ 2nk

n − 2
≤ kq, k ∈ N

∗, n = 2.

By referring to (3.23) we have the following inequalities:

‖v‖Lp′(x)+1(Ω) ≤ ‖v‖Lkq(Ω) = ‖|v|k‖ 1
k

Lq(Ω) ≤ c‖v‖Lq(Ω) ≤ c‖v‖H1(Ω).

Consequently
( ∫

|ut|>1

|u|p′(x)+1dx

) 1
p′(x)+1

≤ c‖u‖H1(Ω) ≤ CE(t)
1
2 .

From (4.4) we have

( ∫

|ut|>1

|g(ut)|
p′(x)+1

p′(x) dx

) p′(x)
p′(x)+1

=
( ∫

|ut|>1

|g(ut)‖g(ut)|
1

p′(x) dx

) p′(x)
p′(x)+1

≤ C

( ∫

|ut|>1

|utg(ut)|dx

) p′(x)
p′(x)+1

≤ c(−E′(t))
p′(x)

p′(x)+1 ,

which implies ∣
∣
∣
∣

∫

|ut|>1

ug(ut)dx

∣
∣
∣
∣ ≤ cE(t)

1
2 (−E′(t))

p′(x)
p′(x)+1 . (4.16)

Then from (4.15) and (4.16) we arrives to
∣
∣
∣
∣

∫ T

S

E
p(x)−1

2 (t)
∫

Ω

ug(ut)dxdt

∣
∣
∣
∣ ≤ 2ε′

∫ T

S

E
p(x)−1

2 (t)E(t)dt

+ cc(ε′)
∫ T

S

E
p(x)−1

2 (t)(−E′(t))
2

p(x)+1 dt

+ c

∫ T

S

E
p(x)−1

2 (t)E(t)
1
2 (−E′(t))

p′(x)
p′(x)+1 dt

or
∣
∣
∣
∣

∫ T

S

E
p(x)−1

2 (t)
∫

Ω

ug(ut)dxdt

∣
∣
∣
∣ ≤ 2ε′

∫ T

S

E
p(x)+1

2 (t)dt

+ cc(ε′)
∫ T

S

E
p(x)−1

2 (t)(−E′(t))
2

p(x)+1 dt

+ c

∫ T

S

E
p(x)

2 (t)(−E′(t))
p′(x)

p′(x)+1 dt.

Using the fact that 2
p(x)+1 + p(x)−1

p(x)+1 = 1, by the Young inequality we see

cc(ε′)
∫ T

S

E
p(x)−1

2 (t)(−E′(t))
2

p(x)+1 dt ≤ ε′
∫ T

S

E
p(x)+1

2 (t)dt + c(ε′)
∫ T

S

(−E′(t))dt. (4.17)
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In the same way, since p′(x)
p′(x)+1 + 1

p′(x)+1 = 1 we have

c

∫ T

S

E
p(x)

2 (t)(−E′(t))
p′(x)

p′(x)+1 dt ≤ c

∫ T

S

E(t)
p(x)(p′(x)+1)

2 dt + c

∫ T

S

(−E′(t))dt. (4.18)

Combine (4.17) with (4.18) to get
∣
∣
∣
∣

∫ T

S

E
p(x)−1

2 (t)
∫

Ω

ug(ut)dxdt

∣
∣
∣
∣

≤ 2ε′
∫ T

S

E
p(x)+1

2 (t)dt + ε′
∫ T

S

E
p(x)+1

2 (t)dt

+ c(ε′)
∫ T

S

(−E′(t))dt + c

∫ T

S

E(t)
p(x)(p′(x)+1)

2 dt + c

∫ T

S

(−E′(t))dt

= 3ε′
∫ T

S

E
p(x)+1

2 (t)dt − c(ε′)
∫ T

S

E′(t)dt + c

∫ T

S

E(t)
p(x)(p′(x)+1)

2 dt. (4.19)

As E nonincreasing and as p(x)(p′(x) + 1) ≥ p(x) + 1, then
∫ T

S

E(t)
p(x)(p′(x)+1)

2 dt ≤ c

∫ T

S

E
p(x)+1

2 (t)dt. (4.20)

Thus, it follows from (4.19) and (4.20) that
∣
∣
∣
∣

∫ T

S

E
p(x)−1

2 (t)
∫

Ω

ug(ut)dxdt

∣
∣
∣
∣ ≤ ε

∫ T

S

E
p(x)+1

2 (t)dt + c(ε)E(s).

This is (4.14). �

Lemma 4.9 For all 0 ≤ S < T < ∞ we have the estimate
∫ T

S

E
p(x)+1

2 (t)dt ≤ c(1 + E
p(x)−1

2 (0))E(s), 0 ≤ S ≤ T < ∞. (4.21)

Proof Choosing ε = 1
3 in (4.13) and in (4.14) it finds

∫ T

S

E
p(x)−1

2 (t)
∫

Ω

2u2
t dxdt ≤ 2

3

∫ T

S

E
p(x)+1

2 (t)dt + cE(s) + cE
p(x)+1

2 (s) (4.22)

and

−
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

ug(ut)dxdt ≤ 1
3

∫ T

S

E
p(x)+1

2 (t)dt + cE(s). (4.23)

Therefore, by addition of (4.22) and (4.23) it comes
∫ T

S

E
p(x)−1

2 (t)
∫

Ω

(2u2
t − ug(ut))dxdt ≤

∫ T

S

E
p(x)+1

2 (t)dt + cE(s) + cE
p(x)+1

2 (s). (4.24)

Using in (4.11) the inequality (4.24) we find that

2
∫ T

S

E
p(x)+1

2 (t)dt ≤ cE
p(x)+1

2 (s) +
∫ T

S

E
p(x)+1

2 (t)dt + cE(s) + cE
p(x)+1

2 (s).

Therefore,
∫ T

S

E
p(x)+1

2 (t)dt ≤ c(1 + E
p(x)−1

2 (s))E(s) ≤ c(1 + E
p(x)−1

2 (0))E(s), 0 ≤ S ≤ T < ∞. �
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The Lemmas 4.1 and 4.9 imply that E : R
+ → R

+ is a nonincreasing function and verify
the inequality ∫ ∞

t

E
p++1

2 (s)ds ≤
∫ ∞

t

E
p(x)+1

2 (s)ds ≤ cE(t), ∀t ∈ R
+. (4.25)

The applications of the well-known Lemma 4.4 and (4.25) yield the estimates (4.7) and (4.3)
and we complete the proof of Theorem 4.3.

Example 4.10 Consider the following function

F (ε(u)) = 2ε(u) − Trace(ε(u))I,

where I denotes the identity operator and Trace denotes the trace operator.
Then, the problem (1.1), without the condition σ(u)η = 0 on Σ2, is reduced to the following

problem
⎧
⎪⎪⎨

⎪⎪⎩

∂2u
∂t2 − Δu + |u|ν(x)u + g(u′) = f, in Ω × (0, T ),

u = 0 on Σ,

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

(P)

Since F is linear and satisfies the assumption (2.3). Then, Theorems 3.1, 3.3, 4.2 and 4.3 are
verified for the problem (P), which gives an importance to this general problem.
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