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1 Introduction

Motivated by the idea of randomizing space theory of Menger, Schweizer and Sklar from the
theory of probabilistic metric space [20], Guo initiated a new approach to random functional
analysis in [6, 7]. In particular, random metric spaces, random normed modules and random
inner product modules have formed three basic frameworks of random functional analysis. In
fact, the notion of a random normed module (briefly, an RN module) is a randomnization of
that of an ordinary normed space, see [7] for further details. In this paper, an RN module is
always endowed with the (ε, λ)-topology and the (ε, λ)-topology is very natural, for example,
let L0(F , R) be the algebra of equivalence classes of random variables from a probability space
(Ω,F , P ) to the real scalar field R, then L0(F , R) is an RN module and the (ε, λ)-topology on
L0(F , R) is exactly the topology of convergence in probability P . However, an RN module is
not a locally convex space in general and in particular the theory of classical conjugate spaces
universally fails to serve the theory of RN modules, which motivates Guo to have developed the
theory of random conjugate spaces in [8]. Subsequently, the theory of RN modules together with
their random conjugate spaces has obtained a deep and systematic development in the direction
of functional analysis [9–14, 22–26], and it has also been applied to random linear operators
[21, 27–29], Lebesgue–Bochner function spaces [3] and conditional convex risk measures [15–18].

Motivated by the work with respect to mean ergodicity in [1, 2, 5], we have recently begun
to study the mean ergodic theorem under the framework of RN modules and have obtained
some results. For example, in 2012, Zhang and Guo proved a mean ergodic theorem on a
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random reflexive random normed module [30]. Subsequently, Zhang studied some mean ergodic
semigroups of random linear operators [27] and further gave two forms of conditional mean
ergodic theorem for a type of semigroup of random linear operators [28]. The purpose of this
paper is to continue to study the mean ergodicity of random linear operators by using some
techniques of measure theory and L0-convex analysis. Intuitively, an RN module possesses not
only the random normed structure but also the structure of a probability space. It is the module
structure of an RN module that makes its random normed structure and the structure of its base
space behave well, which makes an RN module possess many rich and complicated stratification
structures, see [13, 14] for details. In this paper, besides the analysis on stratification structures
in measure theory, we use a approach of L0-convex analysis to study the mean ergodicity of
random linear operators. Precisely, using a fixed point approach of L0-convex hull, we proved
that a random linear operator T under some condition is mean ergodic in the ‖ · ‖p-topology if
and only if T is mean ergodic in the (ε, λ)-topology. Subsequently, we are devoted to establishing
a characterization for a complete RN module to be mean ergodic. It should be pointed out that
in this process the discussion with respect to the local property and the local mean ergodicity
of a linear operator is a difficult point of this paper.

The remainder of this paper is organized as follows: in Section 2 we briefly recall some basic
notion and facts; in Section 3 we study the mean ergodicity of some random linear operators
and in Section 4 we give a characterization for a complete RN module to be mean ergodic.

2 Preliminaries

Throughout this paper, N denotes the set of natural numbers, K the scalar field R of real
numbers or C of complex numbers, (Ω,F , P ) a given probability space, L̄0(F , R) the set of
equivalence classes of extended real-valued F-measurable random variables on Ω, L0(F , K)
the algebra of equivalence classes of K-valued F-measurable random variables on Ω under the
ordinary addition, scalar multiplication and multiplication operations on equivalence classes.
It is well known from [4] that Proposition 2.1 below holds, which will be used in the proof of
Lemma 3.1.

Proposition 2.1 ([4]) L̄0(F , R) is a complete lattice under the ordering ≤: ξ ≤ η if and only
if ξ0(ω) ≤ η0(ω), for P -almost all ω in Ω (briefly, a.s.), where ξ0 and η0 are arbitrarily chosen
representatives of ξ and η, respectively, and has the following three properties :

(1) each subset A of L̄0(F , R) has a supremum (denoted by
∨

A) and an infimum (denoted
by

∧
A) and there exist two sequences {an, n ∈ N} and {bn, n ∈ N} in A such that

∨
n≥1

an =
∨

A and
∧

n≥1 bn =
∧

A;
(2) if A is directed (dually directed), namely for any two elements c1 and c2 in A there exists

some c3 in A such that c1

∨
c2 ≤ c3 (c1

∨
c2 ≥ c3), then the present {an, n ∈ N} ({bn, n ∈ N})

can be chosen as nondecreasing (nonincreasing);
(3) L0(F , R), as a sublattice of L̄0(F , R), is complete in the sense that each subset with an

upper bound (a lower bound) has a supremum (an infimum).

As usual, we denote L0
+(F) = {ξ ∈ L0(F , R) | ξ ≥ 0}.

Definition 2.2 ([8, 9]) An ordered pair (X, ‖ · ‖) is called an RN module over K with base
(Ω,F , P ) if X is a left module over over the algebra L0(F , K) and ‖ · ‖ is a mapping from X
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to L0
+(F) such that the following three axioms are satisfied :
(1) ‖ξx‖ = |ξ| · ‖x‖, ∀ξ ∈ L0(F , K) and x ∈ X;
(2) ‖x + y‖ ≤ ‖x‖ + ‖y‖, ∀x, y ∈ X;
(3) ‖x‖ = 0 implies x = θ (the null vector of X),

where ‖ · ‖ is called the L0-norm on X and ‖x‖ is called the L0-norm of a vector x ∈ X.

Clearly, (L0(F , K), | · |) is an RN module over K with base (Ω,F , P ).
Let (X, ‖ · ‖) be an RN module over K with base (Ω,F , P ). For any positive real numbers

ε and λ such that λ < 1, let

Nθ(ε, λ) = {x ∈ X | P{ω ∈ Ω | ‖x‖(ω) < ε} > λ},
then

{Nθ(ε, λ) | ε > 0, 0 < λ < 1}
is a local base at the null vector θ of some Hausdorff linear topology, and the linear topology
is called the (ε, λ)-topology. It should be pointed out that the idea of introducing the (ε, λ)-
topology is due to Schweizer and Sklar, see [20] for details. In this paper, given an RN module
(X, ‖ · ‖), it is always assumed that (X, ‖ · ‖) is endowed with the (ε, λ)-topology. Besides, one
needs to notice that a sequence {xn, n ∈ N} in X converges to x ∈ X in the (ε, λ)-topology if
and only if {‖xn − x‖, n ∈ N} converges to 0 in probability P .

Example 2.3 Let X be a normed space over K and L0(F , X) the linear space of equiv-
alence classes of X-valued F-random variables on Ω. The module multiplication operation
· : L0(F , K)×L0(F , X) → L0(F , X) is defined by ξx = the equivalence class of ξ0x0, where ξ0

and x0 are the respective arbitrarily chosen representatives of ξ ∈ L0(F , K) and x ∈ L0(F , X),
and (ξ0x0)(ω) = ξ0(ω) · x0(ω), ∀ω ∈ Ω. Furthermore, the mapping ‖ · ‖ : L0(F , X) → L0

+(F) is
defined by ‖x‖ = the equivalence class of ‖x0‖, ∀x ∈ L0(F , X), where x0 is as above. Then it
is easy to see that (L0(F , X), ‖ · ‖) is an RN module over K with base (Ω,F , P ). In particular,
L0(F , K) is an RN module over K with base (Ω,F , P ).

Definition 2.4 ([19]) Let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be two RN modules over K with base
(Ω,F , P ). A linear operator T from X1 to X2 is called a random linear operator, and further
the random linear operator T is called a.s. bounded if there exists a ξ ∈ L0

+(F) such that

‖Tx‖2 ≤ ξ · ‖x‖1

for any x ∈ X1. Denote by B(X1, X2) the linear space of a.s. bounded random linear operators
from X1 to X2, define ‖ · ‖ : B(X1, X2) → L0

+(F) by

‖T‖ :=
∧

{ξ ∈ L0
+(F) | ‖Tx‖2 ≤ ξ · ‖x‖1, ∀x ∈ X1}

for any T ∈ B(X1, X2), then it is clear that (B(X1, X2), ‖ · ‖) is an RN module over K with
base (Ω,F , P ).

Proposition 2.5 ([19]) Let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be two RN modules over K with base
(Ω,F , P ). Then we have the following statements :

(1) T ∈ B(X1, X2) if and only if T is a continuous module homomorphism ;
(2) If T ∈ B(X1, X2), then ‖T‖ =

∨{‖Tx‖2 : x ∈ X1 and ‖x‖1 ≤ 1}, where 1 denotes the
identity element in L0(F , R).
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Now let us recall the notions of an a.s. power-bounded random linear operator and a mean
ergodic operator on an RN module below.

Definition 2.6 ([30]) Let (X, ‖·‖) be an RN module and T : X → X an a.s. bounded random
linear operator. If

∨

n∈N

‖Tn‖ ∈ L0
+(F),

then T is called an a.s. power-bounded random linear operator on X.

Definition 2.7 ([30]) Let (X, ‖·‖) be an RN module and T : X → X an a.s. bounded random
linear operator. If the sequence

{
1
n

n∑

i=1

T ix, n ∈ N

}

converges to some point in X for any x ∈ X, then T is called a mean ergodic operator on X.
Furthermore, if any a.s. power-bounded random linear operator on X is mean ergodic, then X

is said to be mean ergodic.

3 Mean Ergodicity of Random Linear Operators

The central result of this section is Theorem 3.4, which is devoted to establishing a relation
with respect to mean ergodicity of random linear operators between the ‖ · ‖p-topology and
the (ε, λ)-topology. What’s more important is that this relation plays a key role in the proof
of Theorem 4.4. Before presenting them, let us give some preliminaries below for the reader’s
convenience.

In the sequel of this paper, let 1 ≤ p ≤ ∞ and (X, ‖ · ‖) denote a complete RN module over
K with base (Ω,F , P ). Define the mapping ‖ · ‖p : X → [0, +∞] by

‖x‖p =

⎧
⎪⎨

⎪⎩

[∫

Ω

‖x‖pdP

] 1
p

, when 1 ≤ p < +∞,

the P -essential suppremum of ‖x‖, when p = +∞
for any x ∈ X and denote

Lp(X) = {x ∈ X | ‖x‖p < +∞}.

Then (Lp(X), ‖·‖p) is a Banach space. Let L(Lp(X)) denote the set of bounded linear operators
on Lp(X) and ||| · ||| denote the usual norm of Lp(X). Then it is clear that (L(Lp(X)), ||| · |||)
is also a Banach space. Furthermore, let I denote the identical operator on Lp(X) and T a
linear operator on Lp(X). Then range(I − T ) stands for the range of the operator I − T ,

range(I − T )
ε,λ

the closure of range(I − T ) under the (ε, λ)-topology and range(I − T )
‖·‖p the

closure of range(I − T ) under the ‖ · ‖p-topology.
Besides, for any A in F , IA denotes the characteristic function of A and ĨA the equivalence

class of IA. When Ã denotes the equivalence class of A, i.e., Ã = {B ∈ F | P (A	B) = 0}, we
also use IÃ for ĨA, where A	B = (A\B)∪ (B\A). Specifically, [ξ < η] denotes the equivalence
class of {ω ∈ Ω | ξ0(ω) < η0(ω)}, where ξ0 and η0 are arbitrarily chosen representatives of ξ

and η in L̄0(F , R), respectively, one can similarly understood such notations as [ξ = η] and
[ξ �= η].
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Now let us recall the notion of the local property of a linear operator. A linear operator
T : Lp(X) → Lp(X) is called to have the local property if T (ĨAx) = ĨAT (x) for any A ∈ F and
x ∈ Lp(X), where ĨA stands for the equivalence class of the characteristic function of A. The
key is that Lemma 3.1 below holds.

Lemma 3.1 Let (X, ‖ · ‖) be a complete RN modules over K with base (Ω,F , P ) and T :
Lp(X) → Lp(X) be a bounded linear operator having the local property such that supm∈N |||Tm|||
< ∞ for any given p satisfying 1 ≤ p ≤ ∞. Then range(I − T )

ε,λ
= range(I − T )

‖·‖p .

Proof It is easy to see that range(I − T )
‖·‖p ⊂ range(I − T )

ε,λ
, and it is enough to prove that

range(I − T )
ε,λ ⊂ range(I − T )

‖·‖p . For any x ∈ range(I − T )
ε,λ

, then

d(x, range(I − T )) =
∧

{‖x − g‖ | g ∈ range(I − T )} = θ.

Now we will first prove that {‖x − g‖ | g ∈ range(I − T )} is directed. In fact, for any g1, g2 ∈
range(I − T ), let E = [‖x − g1‖ ≤ ‖x − g2‖]. Then

‖x − g1‖
∧

‖x − g2‖ = IE · ‖x − g1‖ + (1 − IE) · ‖x − g2‖
= ‖x − (IE · g1 + (1 − IE) · g2)‖. (3.1)

Since T is linear and has the local property, it follows that

IE · g1 + (1 − IE) · g2 ∈ range(I − T ).

Thus {‖x − g‖ | g ∈ range(I − T )} is directed. Hence it follows by Proposition 2.1 that there
exists a sequence {gn, n ∈ N} in range(I − T ) such that

‖x − gn‖ ↘
∧

{‖x − g‖ | g ∈ range(I − T )}
as n → ∞. Denote

dist(x, range(I − T )) = inf{‖x − g‖p | g ∈ range(I − T )},
and observe that

‖x − gn‖ ≤ ‖x − g1‖, ∀n ≥ 1.

Then, when 1 ≤ p < ∞, according to Lebesgue’s dominated convergence theorem, it follows
that

[dist(x, range(I − T ))]p = [inf{‖x − g‖p | g ∈ range(I − T )}]p

≤ lim
n→∞

∫

Ω

‖x − gn‖pdP

=
∫

Ω

[∧
{‖x − g‖ | g ∈ range(I − T )}

]p

dP

= 0. (3.2)

Thus
dist(x, range(I − T )) = 0,

namely x ∈ range(I − T )
‖·‖p and the desired result follows.

When p = ∞, one can similarly prove the result.
This completes the proof. �
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Using Egorov’s theorem, one can obtain Lemma 3.2 below, which will be used in Lemma 3.5,
Theorem 3.6 and Theorem 4.2.

Lemma 3.2 If a linear operator T : Lp(X) → Lp(X) having the local property is continuous
in the ‖ · ‖p-topology for any given p satisfying 1 ≤ p ≤ ∞, then T : Lp(X) → Lp(X) is
continuous in the (ε, λ)-topology.

Proof For any {xn, n ∈ N} ⊂ Lp(X) and x ∈ Lp(X) such that xn → x as n → ∞ in the
(ε, λ)-topology, then, according to Egorov’s theorem, for any ε, λ > 0 such that λ < 1, there
exist some A ∈ F satisfying P (A) < λ

2 and some N1 ∈ N such that

‖IAc · xn − IAc · x‖ < ε on Ω

as n > N1. Thus IAc · xn → IAc · x as n → ∞ in the ‖ · ‖p-topology. Since T : Lp(X) → Lp(X)
is continuous in the ‖ · ‖p-topology, it follows that T (IAc · xn) → T (IAc · x) as n → ∞ in the
‖ · ‖p-topology. According to Egorov’s theorem again, for the same ε, λ above, there exists
some B ∈ F and B ⊂ Ac satisfying P (B) < λ

2 and some N2 ∈ N such that

‖IBc · T (IAc · xn) − IBc · T (IAc · x)‖ < ε on Ω

as n > N2. Let N0 = max{N1, N2}. Then obviously

‖IBc · T (IAc · xn) − IBc · T (IAc · x)‖ < ε on Ω

holds as n > N0.
Since T possesses the local property, it follows that

IBc · T (IAc · xn) = IAc∩Bc · T (xn)

and
IBc · T (IAc · x) = IAc∩Bc · T (x)

hold. Consequently,
‖T (xn) − T (x)‖ < ε on Ac ∩ Bc

as n > N0, and further we can obtain that for any ε, λ > 0 such that λ < 1, there exists some
N0 ∈ N such that

P [‖T (xn) − T (x)‖ < ε] ≥ P [Ac ∩ Bc]

= P [(A ∪ B)c]

= 1 − P [A] − P [B] + P [A ∩ B]

> 1 − λ (3.3)

as n > N0, which shows that T : Lp(X) → Lp(X) is continuous in the (ε, λ)-topology.
This completes the proof. �

Proposition 3.3 ([12]) Lp(X) is dense in X in the (ε, λ)-topology for any given p satisfying
1 ≤ p ≤ ∞.

Based on Proposition 3.3, we can present Lemma 3.4 below.

Lemma 3.4 If a linear operator T : Lp(X) → Lp(X) having the local property is continuous
in the (ε, λ)-topology for any given p satisfying 1 ≤ p ≤ ∞, then T can be extended to a
continuous module homomorphism on X in the (ε, λ)-topology.
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Proof Since T : Lp(X) → Lp(X) is continuous in the (ε, λ)-topology and Lp(X) is dense in X

in the (ε, λ)-topology by Proposition 3.3, it follows that for any x in X, there exists a sequence
{xn, n ∈ N} ⊂ Lp(X) such that xn → x as n → ∞ in the (ε, λ)-topology. Set

T̃ (x) = lim
n→∞ T (xn),

and we only need to prove that T̃ is linear and is continuous in the (ε, λ)-topology. Obviously,

T̃ (x + y) = T̃ (x) + T̃ (y), ∀x, y ∈ X,

T̃ (kx) = k · T̃ (x), ∀k ∈ K, x ∈ X

hold. Now we will prove that T̃ is continuous in the (ε, λ)-topology. For any sequence
{xm, m ∈ N} ⊂ X such that {xm, m ∈ N} converges to some x∗ in X as m → ∞ in the
(ε, λ)-topology, since Lp(X) is dense in X in the (ε, λ)-topology, it follows that there exist
m sequences {x(1)

l , l ∈ N}, {x(2)
l , l ∈ N}, . . . , {x(i)

l , l ∈ N}, . . . , {x(m)
l , l ∈ N} in Lp(X) such

that {x(i)
l , l ∈ N} converges to xi as l → ∞ in the (ε, λ)-topology for any i = 1, 2, . . . , m.

Furthermore, the above m sequences form a table below:

x
(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 , . . . , x

(1)
l , . . .

x
(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 , . . . , x

(2)
l , . . .

x
(3)
1 , x

(3)
2 , x

(3)
3 , x

(3)
4 , . . . , x

(3)
l , . . .

. . .

x
(m)
1 , x

(m)
2 , x

(m)
3 , x

(m)
4 , . . . , x

(m)
l , . . . .

Then the diagonal elements form a new sequence {x(m)
m , m ∈ N} and it is easy to see that

x
(m)
m → x∗ as m → ∞ in the (ε, λ)-topology. Since

‖T̃ (xm) − T̃ (x∗)‖ = ‖T̃ (xm) − T̃ (x(m)
m ) + T̃ (x(m)

m ) − T̃ (x∗)‖
= ‖T̃ (xm) − T̃ (x(m)

m )‖ + ‖T̃ (x(m)
m ) − T̃ (x∗)‖,

it follows that T̃ is continuous in the (ε, λ)-topology. Moreover, T̃ is linear and has the local
property, and one can obtain that T̃ is a continuous module homomorphism on X.

This completes the proof. �
Before giving Lemma 3.5 and Theorem 3.6, let us recall the notions of an L0-convex set and

an L0-convex hull. Let X be a complete RN module over K and A a subset of X. If

{αx + (1 − α)y | α ∈ L0
+(F) and 0 ≤ α ≤ 1} ⊆ A,

then A is called an L0-convex set of X. Let B be a subset of X and {Aλ |λ ∈ Λ} all the
L0-convex set containing B of X. Then

⋂
λ∈Λ Aλ is the smallest L0-convex set containing B of

X, called the L0-convex hull of B (denoted by hL0(B)). Furthermore, it is easy to see that

hL0(B) =
{ n∑

i=1

αixi

∣
∣
∣
∣ αi ∈ L0

+(F), xi ∈ A and
n∑

i=1

αi = 1, n ≥ 1
}

.

Lemma 3.5 Let (X, ‖ · ‖) be a complete RN module over K with base (Ω,F , P ) and T :
Lp(X) → Lp(X) be a bounded linear operator having the local property such that supm∈N |||Tm|||
< ∞ for any given p satisfying 1 ≤ p ≤ ∞. If x̄ belongs to the (ε, λ)-closed L0-convex hull of
{T kx, k ∈ N} for any x ∈ Lp(X), then x̄ still belongs to Lp(X).
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Proof Since x̄ belongs to the (ε, λ)-closed L0-convex hull of {T kx, k ∈ N} for any x ∈ Lp(X),
there exists a sequence {Slx, l ∈ N} of L0-convex combinations with the form

Slx =
ml∑

i=1

λilT
ix

(λil ∈ L0
+(F) and

∑ml

i=1 λil = 1 for any l ∈ N) such that {Slx, l ∈ N} converges to x̄ in the
(ε, λ)-topology.

According to Lemma 3.2, we have T : Lp(X) → Lp(X) is continuous in the (ε, λ)-topology;
furthermore, it follows from Lemma 3.4 that T can be extended to a continuous module homo-
morphism T̃ on X in the (ε, λ)-topology. This implies that

x − Slx =
ml∑

i=1

λil(x − T ix)

=
ml∑

i=1

λil(x − T̃ ix)

=
ml∑

i=1

λil(I − T̃ )(I + T̃ + T̃ 2 + · · · + T̃ i−1)x

= (I − T̃ )
[ ml∑

i=1

λil(I + T̃ + T̃ 2 + · · · + T̃ i−1)x
]

= (I − T )
[ ml∑

i=1

λil(I + T + T 2 + · · · + T i−1)x
]

∈ range(I − T ) (3.4)

since one can observe that
∑ml

i=1 λil(I + T + T 2 + · · ·+ T i−1)x still belongs to Lp(X), where I

denotes the identity element in L(Lp(X)), so that x− x̄ ∈ range(I − T )
ε,λ

. Since, according to
Lemma 3.1,

range(I − T )
ε,λ

= range(I − T )
‖·‖p

,

it follows that x − x̄ ∈ range(I − T )
‖·‖p ⊂ Lp(X); furthermore, observing that x ∈ Lp(X),

which shows that x̄ still belongs to Lp(X). This completes the proof. �
Now we can present Theorem 3.6 below.

Theorem 3.6 Let (X, ‖ · ‖) be a complete RN module over K with base (Ω,F , P ) and T :
Lp(X) → Lp(X) be a bounded linear operator having the local property such that supm∈N |||Tm|||
< ∞ for any given p satisfying 1 ≤ p ≤ ∞. Then for any x ∈ Lp(X), the following statements
are equivalent :

(1) {n−1
∑n

k=1 T kx, n ∈ N} converges in the ‖ · ‖p-topology.
(2) {n−1

∑n
k=1 T kx, n ∈ N} converges in the (ε, λ)-topology.

(3) T has a fixed point in the (ε, λ)-closed L0-convex hull of {T kx, k ∈ N}.
Proof (1)⇒ (2) It is clear.

(2)⇒(3) Let

Anx =
1
n

n∑

k=1

T kx
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for any n ∈ N . Then there exists an x̄ ∈ X such that Anx → x̄ as n → ∞ in the (ε, λ)-topology.
Clearly, x̄ belongs to the (ε, λ)-closed L0-convex hull of {T kx, k ∈ N}, then, according to
Lemma 3.5, it follows that x̄ ∈ Lp(X).

It is easy to notice that Anx ∈ Lp(X) and

TAnx − Anx =
1
n

(Tn+1x − Tx)

for any n ∈ N , thus

‖TAnx − Anx‖p =
∥
∥
∥
∥

1
n

(Tn+1x − Tx)
∥
∥
∥
∥

p

≤ 1
n

(‖Tn+1x‖p + ‖Tx‖p)

≤ 2
n

(
sup
m∈N

|||Tm||| · ‖x‖p

)

→ 0 (3.5)

as n → ∞, hence TAnx − Anx → 0 as n → ∞ in the ‖ · ‖p-topology. Furthermore, according
to Lemma 3.2, T is continuous in the (ε, λ)-topology. Consequently T x̄ = x̄. Observing that
x̄, being the (ε, λ)-limit of L0-convex combinations of {T kx, k ∈ N}, is in the (ε, λ)-closed
L0-convex hull of {T kx, k ∈ N}.

(3)⇒(1) Let x̄ be the fixed point. Since T kx = T kx̄ + T k(x − x̄) = x̄ + T k(x − x̄) for any
k ∈ N , we have that

Anx = x̄ + An(x − x̄)

for any n ∈ N , and it is enough to prove that An(x− x̄) converges to θ as n → ∞ in the ‖ · ‖p-
topology. Since x̄ belongs to the (ε, λ)-closed L0-convex hull of {T kx, k ∈ N}, it follows from

Lemma 3.5 that x− x̄ ∈ range(I − T )
‖·‖p . Thus for any ε > 0, we can choose a y ∈ range(I−T )

such that ‖y − (x − x̄)‖p < ε. Since

An(I − T ) =
1
n

(T − Tn+1)

for any n ∈ N , it follows that Anx converges to θ as n → ∞ in the ‖·‖p-topology. Consequently,
for the same ε above, there exists some N(ε) ∈ N such that

‖An(x − x̄)‖p ≤ ‖Any‖p + ‖An(y − (x − x̄))‖p

< ε +
(

sup
m∈N

|||Tm|||
)
· ε (3.6)

as n ≥ N(ε), i.e. An(x − x̄) converges to θ in the ‖ · ‖p-topology.
This completes the proof. �

4 A Mean Ergodic Characterization

The central result of this section is Theorem 4.3, which establishes a characterization for a
complete RN module to be mean ergodic. For the sake of clearness, the proof of Theorem 4.5 is
divided into Theorem 4.1 and Theorem 4.2 below. First, we give the proof of Theorem 4.1 and
it is just based on the analysis of module structure of complete RN modules that makes the
Theorem 4.1 established. However, when we turn to the proof of Theorem 4.2, we are forced
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to deal with a difficult point with respect to the local property and the local mean ergodicity
of a linear operator.

For the reader’s convenience, a Banach space B is said to be locally mean ergodic if any
power-bounded linear operator on B having the local property is mean ergodic. Clearly, if B

is mean ergodic, then B must be locally mean ergodic.

Theorem 4.1 Let (X, ‖ · ‖) be a complete RN module over K with base (Ω,F , P ). If Lp(X)
is locally mean ergodic in the ‖ · ‖p-topology for any given p satisfying 1 ≤ p ≤ ∞, then X is
mean ergodic in the (ε, λ)-topology.

Proof Let T be an arbitrary a.s. power-bounded random linear operator on X and

ξ =
∨

m∈N

‖Tm‖.

Then ξ ∈ L0
+(F). Let Ei = [i − 1 ≤ ξ < i] for each i ∈ N . Then {Ei, i ≥ 1} is a sequence of

pairwise disjoint F-measurable sets such that
∑∞

i=1 Ei = Ω. Let Ti = IEi
· T for each i ∈ N .

Then Ti ∈ L(Lp(X)) and supm∈N ‖|Tm
i ‖| < ∞, i.e., Ti is a power-bounded operator on the

Banach space Lp(X) for each i ∈ N . Furthermore, Ti obviously has the local property for each
i ∈ N since T is a module homomorphism on X. For any x ∈ X, let Fj = [j − 1 ≤ ‖x‖ < j]
for each j ∈ N . Then {Fj , j ≥ 1} is a sequence of pairwise disjoint F-measurable sets such
that

∑∞
j=1 Fj = Ω. Let xj = IFj

· x for each j ∈ N . Then xj ∈ Lp(X) for the same p above
for each j ∈ N . Since Lp(X) is locally mean ergodic in the ‖ · ‖p-topology, it follows that
for each i ∈ N , Ti is always mean ergodic on Lp(X). Namely, for each fixed i, j ∈ N , there
exists a yij ∈ Lp(X) such that 1

n

∑n
k=1 T k

i xj converges to yij in the ‖ · ‖p-topology as n → ∞.
Consequently, 1

n

∑n
k=1 T k

i xj converges to yij in the (ε, λ)-topology as n → ∞ for each i, j ∈ N .
Observe that yij = IEi∩Fj

· yij for each i, j ∈ N and we can suppose P (Ei ∩ Fj) > 0 for each
i, j ∈ N (otherwise such an Ei ∩ Fj is automatically removed). Furthermore, since

∞∑

i,j=1

P (Ei ∩ Fj) = P

( ∞∑

i,j=1

(Ei ∩ Fj)
)

= P (Ω) = 1,

we have that {∑l
i=1

∑m
j=1 yij , (l, m) ∈ N×N} is a Cauchy net in the (ε, λ)-topology in X. Since

X is complete, it follows that there exists a y in X such that {∑l
i=1

∑m
j=1 yij , (l, m) ∈ N ×N}

converges to y in the (ε, λ)-topology as l, m → ∞. Since T k
i = (IEi

· T )k = IEi
· T k, it follows

that {∑l
i=1

∑m
j=1(

1
n

∑n
k=1 T k

i xj), (l, m) ∈ N × N} converges to 1
n

∑n
k=1 T kx as l, m → ∞ in

the (ε, λ)-topology for each n ∈ N . Thus it is easy to check that 1
n

∑n
k=1 T kx converges to y

as n → ∞ in the (ε, λ)-topology, which shows that X is mean ergodic in the (ε, λ)-topology.
This completes the proof. �
Now we can present Theorem 4.2 below.

Theorem 4.2 Let (X, ‖ · ‖) be a complete RN module over K with base (Ω,F , P ). If X is
mean ergodic in the (ε, λ)-topology, then L∞(X) is locally mean ergodic in the ‖ · ‖∞-topology.

Proof Let T be an arbitrary power-bounded linear operator on L∞(X) such that T has the
locally property. Then there exists an M > 0 such that |||Tm||| ≤ M for any m ∈ N . It is clear
that the linear operator T : L∞(X) → L∞(X) having the local property is continuous in the
‖ · ‖∞-topology, then, according to Lemma 3.2, it follows that T : L∞(X) → L∞(X) is also
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continuous in the (ε, λ)-topology. Furthermore, according to Lemma 3.4, T can be extended to
a continuous module homomorphism on X (still denoted by T ) in the (ε, λ)-topology. Moreover,
one can observe that

‖Tmx‖ ≤ |||Tmx|||∞ ≤ M

for any m ∈ N and x ∈ {x ∈ X and ‖x‖ ≤ 1}. Since the random closed unit ball on X and the
closed unit ball on L∞(X) are the same, it follows that

∨

m∈N

‖Tm‖ ≤ M,

i.e.,
∨

m∈N ‖Tm‖ ∈ L+
0 (F), which shows that T is an a.s. power-bounded random linear opera-

tor on X. Since X is mean ergodic in the (ε, λ)-topology, it follows that {n−1
∑n

k=1 T kx, n ∈ N}
converges in the (ε, λ)-topology for any x ∈ L∞(X) ⊂ X. According to Theorem 3.6, the se-
quence {n−1

∑n
k=1 T kx, n ∈ N} also converges in the ‖ · ‖∞-topology, which says that L∞(X)

is locally mean ergodic in the ‖ · ‖∞-topology.
This completes the proof. �
Based on Theorems 4.1 and 4.2 above, we can now present a characterization for a complete

RN module to be mean ergodic below.

Theorem 4.3 Let (X, ‖ · ‖) be a complete RN module over K with base (Ω,F , P ). Then
X is mean ergodic in the (ε, λ)-topology if and only if L∞(X) is locally mean ergodic in the
‖ · ‖∞-topology.

Remark 4.4 Theorem 4.3 establishes a bridge between a complete RN module X and its
generated Banach space L∞(X) with respect to mean ergodicity of random linear operators,
which will motivated us to adopt the properties of classical Banach spaces to study the further
properties and structures of random normed modules.
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