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Abstract We introduce a class of tri-linear operators that combine features of the bilinear Hilbert

transform and paraproduct. For two instances of these operators, we prove boundedness property in a

large range D = {(p1, p2, p3) ∈ R
3 : 1 < p1, p2 < ∞, 1

p1
+ 1

p2
< 3

2
, 1 < p3 < ∞}.
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1 Introduction

We introduce the following class of tri-linear operators which can be viewed as a hybrid of the
bilinear Hilbert transform (BHT for short) and paraproduct.

T (f1, f2, f3)(x) =
∑

k∈Z

Hk(f1, f2)(x)f3k(x), x ∈ R, (1.1)

where

Hk(f1, f2)(x) =
∫∫

R2
f̂1(ξ1)f̂2(ξ2)e2πi(ξ1+ξ2)xΦ̂1

(
ξ1 − ξ2

2k

)
dξ1dξ2

=
∫

R

f1(x− t)f2(x+ t)Φ1(2kt)2k dt,

(1.2)

and

f3k(x) =
∫

R

f̂3(ξ)e2πiξxΦ̂2

(
ξ

2αk

)
dξ. (1.3)

Here α ∈ R and various conditions (about smoothness, support, etc) can be imposed on the
cut-off functions Φ1 and Φ2.

In the study of BHT B(f1, f2)(x) =
∫
f1(x− t)f2(x+ t)dt

t , the usual set up is to decompose
the kernel 1

t =
∑

k∈Z
Φ(2kt)2k using a nice function Φ (e.g. [4, 5]). The bilinear operator

Hk(f1, f2) then appears naturally as the piece of the decomposition at scale k. Meanwhile, a
function with a cut-off in frequency as f3k is a fundamental unit in many paraproducts (e.g.
[1, 7, 11]). These two facts explain why T is a hybrid of BHT and paraproduct.

We became interested in such type of operators when it came out in our study of tri-linear
Hilbert transform along curves such as operator TC(f1, f2, f3)(x) =

∫
f1(x− t)f2(x+ t)f3(x−

t2)dt
t , whose boundedness is still unknown. We may compare TC with its bilinear analogue

BC(f1, f2)(x) =
∫
f1(x − t)f2(x − t2)dt

t , whose boundedness is proved in [8] and [9]. BC
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contains a paraproduct of the form P (f1, f2)(x) =
∑

k∈Z
f1k(x)f2k(x) where f1k and f2k are

defined the same way as f3k in (1.3). Proving boundedness of P is the first step to study BC

(see [7]). T plays the same role in TC as P in BC .
Let us first investigate a simple case of T . Let D = {(p1, p2, p3) ∈ R

3 : 1 < p1, p2 <

∞, 1
p1

+ 1
p2
< 3

2 , 1 < p3 <∞}. We have

Proposition 1.1 Let Φ1 be a smooth function satisfying Φ̂1(0) = 0 and Φ2 be an integrable
C1 function satisfying Φ̂2(0) = 0 and |Φ2(x)|+ |Φ′

2(x)| � (1 + |x|)−2. Assume α �= 0. Then the
operator T defined by (1.1)–(1.3) is bounded from Lp1 × Lp2 × Lp3 to Lp, 1

p = 1
p1

+ 1
p2

+ 1
p3

,
whenever (p1, p2, p3) ∈ D.

The proof of Proposition 1.1 is straightforward. Under the hypotheses of the proposition,
the two cut-off functions Φ̂1 and Φ̂2 are supported away from 0. Hence Proposition 1.1 follows
from the Cauchy–Schwartz inequality, Hölder inequality, Littlewood–Paley theorem and its
bilinear analogue (Theorem 6 in [2]).

T becomes more interesting and more difficult to handle when Φ̂2 is supported near 0. This
paper is mainly devoted to this case.

Theorem 1.2 Let Φ1 and Φ2 be a smooth functions satisfying supp Φ̂1 ⊂ [L,L+ 1] for some
large L and supp Φ̂2 ⊆ [−1, 1]. Assume α = 1. Then the operator T defined by (1.1)–(1.3) is
bounded from Lp1 × Lp2 × Lp3 to Lp, 1

p = 1
p1

+ 1
p2

+ 1
p3

, whenever (p1, p2, p3) ∈ D.

We believe that Theorem 1.2 holds for a larger class of operators and we have the following
conjecture.

Conjecture 1.3 The assumption α = 1 in Theorem 1.2 can be dropped.

Unfortunately our proof of Theorem 1.2 relies on the homogeneity of the scales and thus
can not cover the α �= 1 case. A suitable use of the telescoping trick as in [3, 6] and [12] is
expected to solve the conjecture.

We provide the proof of Theorem 1.2 in the rest of the paper. In Section 2, we simplify the
study of T to a model form. Then we prove the boundedness of the model form in Section 3
using three lemmas whose proofs can be found in Sections 4–6. Throughout the paper we use
C to denote a positive constant whose value may change from line to line. We may add one or
more subscripts to C to emphasize dependence of C. A � B is short for A ≤ CB and A �N B

means A ≤ CNB. If A � B and B � A, then we write A � B. χE will be used to denote the
characteristic function of the set E.

2 Reduction to the Model Form

The goal of this section is to reduce Theorem 1.2 to the study of a model form using wave
packet decomposition. Let S(R) denote the class of Schwartz functions on R. Given fj ∈ S(R),
j ∈ {1, 2, 3, 4}, consider the 4-linear form Λ associated with T

Λ(f1, f2, f3, f4) :=
∫
T (f1, f2, f3)(x)f4(x) dx

=
∑

k∈Z

∫∫∫
f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)Φ̂1

(
ξ1 − ξ2

2k

)
Φ̂2

(
ξ3
2k

)
f̂4(ξ1 + ξ2 + ξ3)dξ1dξ2dξ3. (2.1)

Theorem 1.2 is then equivalent to
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Theorem 2.1 Under the hypotheses of Theorem 1.2, the 4-linear form Λ satisfies

|Λ(f1, f2, f3, f4)| � ‖f1‖p1‖f2‖p2‖f3‖p3‖f4‖p4

for any (p1, p2, p3) ∈ D, 1
p4

= 1 − 1
p1

− 1
p2

− 1
p3

, and fi ∈ S(R), i ∈ {1, 2, 3, 4}.
We plan to localize each function in both time and frequency spaces. The following process

is called wave packet decomposition. Pick a ψ ∈ S(R) such that supp ψ̂ ⊆ [0, 1] and
∑

l∈Z
ψ̂(ξ−

l
2 ) = 1 for any ξ ∈ R. Define ψ̂k,l(ξ) := ψ̂( ξ−2k−1l

2k ) for (k, l) ∈ Z
2. Also pick a non-negative

ϕ ∈ S(R) with supp ϕ̂ ⊂ [−1, 1] and ϕ̂(0) = 1. Let ϕk(x) := 2kϕ(2kx), k ∈ Z. For every
(k, n) ∈ Z

2, denote Ik,n := [2−kn, 2−k(n + 1)). Then for each scale k ∈ Z and function
f ∈ S(R), we have

f =
∑

(n,l)∈Z2

fk,n,l, (2.2)

where

fk,n,l(x) := χ∗
Ik,n

(x)f ∗ ψk,l(x), and (2.3)

χ∗
I(x) := χI ∗ ϕk(x) for any interval I. (2.4)

Note that supp f̂k,n,l ⊂ [2k( l
2 − 1), 2k( l

2 + 2)] and fk,n,l is essentially supported on Ik,n in the
sense that

|fk,n,l(x)| �N,M

(
1 +

dist(x, Ik,n)
|Ik,n|

)−N 1
|Ik,n|

∫
|f(y)|

(
1 +

|x− y|
|Ik,n|

)−M

dy. (2.5)

So fk,n,l is indeed well-localized and the wave packet decomposition is complete.
Now we can apply the decomposition (2.2) to all the four functions in (2.1) and obtain

Λ(f1, f2, f3, f4) =
∑

k∈Z

(n1,n2,n3,n4)∈Z
4

(l1,l2,l3,l4)∈Z
4

∫∫∫
̂f1,k,n1,l1 ,(ξ1) ̂f2,k,n2,l2(ξ2) ̂f3,k,n3,l3(ξ3)

· Φ̂1

(
ξ1 − ξ2

2k

)
Φ̂2

(
ξ3
2k

)
̂f4,k,n4,l4(ξ1 + ξ2 + ξ3) dξ1dξ2dξ3.

Here fj,k,nj ,lj , j ∈ {1, 2, 3, 4}, is defined as in (2.3) for f = fj . By the support of functions,
each term in the sum is non-zero only when

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξi ∈
[
2k

(
li
2
− 1

)
, 2k

(
li
2

+ 2
)]

for i = 1, 2, 3;

ξ1 − ξ2 ∈ [L2k, (L+ 1)2k), |ξ3| � 2k;

ξ1 + ξ2 + ξ3 ∈
[
2k

(
l4
2
− 1

)
, 2k

(
l4
2

+ 2
)]
.

These imply that |l2 − (l1 − 2L)| � 1, |l3| � 1, and |l4 − (2l1 − 2L)| � 1. In other words, among
the four parameters l1, l2, l3, l4, only one is free (say l1). Without loss of generality we can fix
a dependence relation between l2, l3, l4 and l1, and think of Λ(f1, f2, f3, f4) as

∑

k,l1
n1,n2,n3,n4

∫∫∫
̂f1,k,n1,l1 ,(ξ1) ̂f2,k,n2,l2(ξ2) ̂f3,k,n3,l3(ξ3)
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· Φ̂1

(
ξ1 − ξ2

2k

)
Φ̂2

(
ξ3
2k

)
̂f4,k,n4,l4(ξ1 + ξ2 + ξ3) dξ1dξ2dξ3.

We then drop the cut-off functions in the above expression by the Fourier expansion trick and
ignore fast decay terms so that Λ(f1, f2, f3, f4) becomes essentially as

∑

k,l1
n1,n2,n3,n4

∫∫∫
f1,k,n1,l1(x)f2,k,n2,l2(x)f3,k,n3,l3(x)f4,k,n4,l4(x) dx.

Since fj,k,nj ,lj is almost supported in Ik,nj
= [2−knj , 2−k(nj + 1)), there is no harm to assume

n1 = n2 = n3 = n4 due to the fast decay in other cases. Therefore the original 4-linear form
has been simplified to the following model form (we still use Λ to denote the model 4-linear
form by abuse of notation):

Λ(f1, f2, f3, f4) =
∑

(k,n,l)∈Z3

∫ 4∏

j=1

fj,k,n,lj (x) dx. (2.6)

Here l1 = l, l2 = l − 2L, l3 = 0 and l4 = 2l − 2L. This model form is similar to that of BHT.
[10] contains an elegant proof of Lacey–Thiele Theorem on BHT and thus we plan to adopt the
ideas there to handle Λ. Of course we have to take extra care to the term f3k.

We will prove directly that T is of restricted weak type (see [10, p. 312] for the definition)
when (p1, p2, p3) is in a smaller range D0 := {(p1, p2, p3) : 1 < p1, p2 < 2, 1

p1
+ 1

p2
< 3

2 , p3 ∈
(1,∞)}. More precisely,

Theorem 2.2 Let (p1, p2, p3) ∈ D0. For any measurable sets F1, F2, F3, F of finite measure,
there exists measurable set F ′ ⊆ F with |F ′| ≥ 1

2 |F | such that Λ defined in (2.6) satisfy

|Λ(f1, f2, f3, f4)| � |F1|
1

p1 |F2|
1

p2 |F3|
1

p3 |F ′| 1
p′ (2.7)

for every |f1| ≤ χF1 , |f2| ≤ χF2 , |f3| ≤ χF3 and |f4| ≤ χF ′ . Here 1
p′ := 1 − ( 1

p1
+ 1

p2
+ 1

p3
).

Theorem 2.1 follows from Theorem 2.2 by interpolation and the fact that three adjoints of
T can be handled by the same method (see the Appendix of [10] for a similar interpolation
treatment in the context of BHT). To prove Theorem 2.2, we pick up an arbitrary finite subset
S ⊂ Z

3 and aim to obtain (2.7) for

ΛS(f1, f2, f3, f4) :=
∑

(k,n,l)∈S

∫ 4∏

j=1

fj,k,n,lj (x) dx, (2.8)

provided the bound does not depend on the set S. We can also assume |F | = 1 by dilation
invariance. Next we make the geometric structure of ΛS clearer. To each tuple s = (k, n, l) ∈ Z

3,
we plan to assign a time-interval Is := Ik,n and four frequency-intervals ωsj

, j ∈ {1, 2, 3, 4},
representing the localization of functions in the time-frequency space. More precisely, Is and
ωsj

’s satisfy:

fj,k,n,lj (x) is dominated by (2.9)

CN,M

(
1 +

dist(x, Is)
|Is|

)−N 1
|Is|

∫
|fj(y)|

(
1 +

|x− y|
|Is|

)−M

dy;

The Fourier transform of fj,k,n,lj is supported on ωsj
. (2.10)
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We will call s = (k, n, l) a 4-tile (or simply a tile) as it corresponds to 4 single-tiles sj := Is×ωsj
,

j ∈ {1, 2, 3, 4}. Write fsj
:= fk,n,lj and fj,sj

:= fj,k,n,lj for simplicity.
We can take finitely many sparse subsets of S and transform ωsj

’s by fixed affine mappings
if needed (since only relative locations of Fourier supports matter) so that Is and ωsj

’s enjoy
nice geometric properties as follows:

|ωs1 | = |ωs2 | = |ωs3 | = |ωs4 | = C|Is|−1; (2.11)

dist(ωs1 , ωs2) = dist(ωs2 , ωs4) = |ωs1 |; (2.12)

c(ωs1) > c(ωs2) > c(ωs4), where c(I) is the center of the interval I; (2.13)

{Is}s∈S is a grid (defined below); (2.14)

{ωs1 ∪ ωs2 ∪ ωs4}s∈S is a gird; (2.15)

ωsi
� J for some i ∈ {1, 2, 4}, J := ωs′

1
∪ ωs′

2
∪ ωs′

4
, s′ ∈ S ⇒ (2.16)

ωsj
⊆ J for all j ∈ {1, 2, 4}.

Here a grid is defined as a set of intervals having the property that if two different elements
intersect then one must contain the other and the larger interval is at least twice as long as the
smaller one. See [4] for a detailed construction of the time and frequency intervals. From now
on we fix a finite set of tiles S ⊂ Z

3 and assume the tiles satisfy (2.9)–(2.16). Theorem 2.2 has
been reduced to the following theorem.

Theorem 2.3 Let p > 1 be arbitrary. Given any (p1, p2, p3) ∈ D0 with p3 ≥ p and any sets
of finite measure F1, F2, F3, F with |F | = 1, there exists F ′ ⊆ F with |F ′| ≥ 1

2 such that

|ΛS(f1, f2, f3, f4)| � |F1|
1

p1 |F2|
1

p2 |F3|
1

p3

for every |f1| ≤ χF1 , |f2| ≤ χF2 , |f3| ≤ χF3 and |f4| ≤ χF ′ .

3 Boundedness of the Model Form

In this section we prove Theorem 2.3 using three lemmas to be proved in the remaining sections.
Fix p > 1, (p1, p2, p3) ∈ D0 with p3 > p, and measurable sets F1, F2, F3, F with |F | = 1. Let
M denote the maximal operator. Define the exceptional set

Ω :=
( 2⋃

j=1

{x : M(χFj
)(x) > C|Fj |}

)
∪ {x : M(χF3)(x) > C|F3| 1p }.

Then |Ω| ≤ 1
4 when C is large enough. Set F ′ := F \ Ω so that |F ′| ≥ 1

2 . Decompose
S =

⋃
d∈N

Sd, where

Sd := {s ∈ S : 1 + dist(Is,Ωc)|Is|−1 � 2d}. (3.1)

Clearly, it suffices to obtain the estimate

|ΛSd(f1, f2, f3, f4)| � 2−2d|F1|
1

p1 |F2|
1

p2 |F3|
1

p3 for d ∈ N. (3.2)

The main idea is to group the tiles in Sd carefully so that there is orthogonality among the
groups. The following definitions will be used in the grouping algorithm.

Definition 3.1 Let j ∈ {1, 2, 4}. Given two 4-tiles s and s′, we write sj < s′j if Is ⊆ Is′ and
ωsj

⊇ ωs′
j
. We call T ⊆ S a j-tree if there exists a t ∈ T such that sj < tj for all s ∈ T . t is

called the top of T and IT := It.
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Definition 3.2 Let i, j ∈ {1, 2, 4} and i �= j. A finite sequence of i-trees T1, T2, . . . , TM is
called a chain of strongly j-disjoint trees if

l1 �= l2, s ∈ Tl1 , s′ ∈ Tl2 ⇒ Is × ωsj
�= Is′ × ωs′

j
; (3.3)

l1 �= l2, s ∈ Tl1 , s′ ∈ Tl2 , ωsj
� ωs′

j
⇒ Is′ ∩ ITl1

= ∅; (3.4)

l1 < l2, s ∈ Tl1 , s′ ∈ Tl2 , ωsj
= ωs′

j
⇒ Is′ ∩ ITl1

= ∅. (3.5)

Definition 3.3 For any P ⊆ S, j ∈ {1, 2, 4} and f ∈ S(R), define

sizej(P, f) := sup
T⊆P

T is an i-tree for some i�=j

(
1

|IT |
∑

s∈T

‖fsj
‖2
2

) 1
2

and

energyj(P, f) := sup
n∈Z

sup
T

2n

( ∑

T∈T

|IT |
) 1

2

,

where T ranges over all chains of strongly j-disjoint trees in P having the property that
( ∑

s∈T

‖fsj
‖2
2

) 1
2

≥ 2n|IT | 12 for all T ∈ T and such that

( ∑

s∈T ′
‖fsj

‖2
2

) 1
2

≤ 2n+1|IT ′ | 12 for all subtrees T ′ ⊆ T ∈ T.

We need the following three lemmas, whose proof will be given in Sections 4, 5, 6, respec-
tively.

Lemma 3.4 For any 0 ≤ θ1, θ2, θ4 < 1 with θ1 + θ2 + θ4 = 1 and d ∈ N,

|ΛSd(f1, f2, f3, f4)| �θ1,θ2 2d
∏

j∈{1,2,4}
sizej(Sd, fj)θj energyj(S

d, fj)1−θj |F3|
1

p3 .

Lemma 3.5 For any P ⊆ S, j ∈ {1, 2, 4}, f ∈ S(R), and d ∈ N,

sizej(P, f) �M sup
s∈P

(
1
|Is| ‖f‖L1(5·2dIs) + 2−Md inf

y∈2dIs

Mf(y)
)
.

Lemma 3.6 For any P ⊆ S, j ∈ {1, 2, 4} and f ∈ S(R),

energyj(P, f) � ‖f‖2.

By the above lemmas and the definitions of Sd and the exceptional set Ω, we have

|ΛSd(f1, f2, f3, f4)| �M 2−M |F1|
1+θ1

2 |F2|
1+θ2

2 |F3|
1

p3 ,

from which (3.2) follows.

4 4-linear Form Estimate

We prove Lemma 3.4 in this section. For notational convenience, in the rest of this paper we
write

Sj := sizej(Sd, fj) and Ej := energyj(S
d, fj), j ∈ {1, 2, 4}. (4.1)

The following lemma is the main ingredient of the “grouping” algorithm we will use.
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Lemma 4.1 Let j ∈ {1, 2, 4} and P ⊆ Sd satisfy

sizej(P, fj) ≤ 2−nEj for some n ∈ Z.

Then we can decompose P = P ′ ∪ P ′′ such that

sizej(P ′, fj) ≤ 2−n−1Ej (4.2)

and P ′′ is a union of a collection F of trees T with
∑

T∈F |IT | � 22n.

Proof An i-tree T with top t is called “upward” if c(ωsj
) ≥ c(ωtj

) for all s ∈ T . We can define
“downward” i-tree with obvious modifications. Note that every i-tree is a union of an upward
tree and a downward tree and the two trees intersect only at the top. Initially set F = ∅.
Consider all upward i-trees T for some i �= j satisfying

∑
s∈T ‖fsj

‖2 > |IT |(2−n−1|Ej |)2. If
there are no such trees, then we stop. Otherwise, we choose a tree T satisfying two conditions:
firstly it is maximal with respect to set inclusion; secondly, if t denotes the top of T , then c(ωtj

)
is as large as possible. After selecting such a T , we define a j-tree by T ′ := {s ∈ P \T : sj < tj}.
Add T and T ′ to the collection F and remove tiles of T and T ′ from P . Repeat this process
and when we stop we have T1, T

′
1, T2, T

′
2, . . . , TM , T ′

M ∈ F .
We claim that T1, T2, . . . , TM form a chain of strongly j-disjoint tress. To see this, let us

verify (3.3)–(3.5). (3.3) is automatically satisfied by construction. Let l1 �= l2, s ∈ Tl1 , s
′ ∈ Tl2

with ωsj
� ωs′

j
. Then Tl1 is selected first by (2.16) and “upward” tree structure. Suppose

ITl1
∩ Is′ �= ∅. Then ITl1

⊃ Is′ and thus s′ ∈ T ′
l1

, which contradicts s′ ∈ Tl2 . This proves (3.4).
(3.5) can be verified in the similar way.

By the claim and the definition of energyj , we have
∑M

i=1 |ITi
| � 22n. Since Ti and T ′

i have
the same top,

∑
T∈F |IT | � 22n as well. The termination of the previous algorithm implies

that for any upward i-tree T in the remaining set P \ (T1 ∪ T ′
1 ∪ · · · ∪ TM ∪ T ′

M ), we must
have

∑
s∈T ‖fsj

‖2
2 < 2−2n−2|IT ||Ej |2. We can run the algorithm again for downward trees

with apparent modifications and the remaining set P ′ satisfy (4.2) by definition of sizej . The
estimate

∑
T∈F |IT | � 22n still holds after adding downward trees to F . This finishes the proof

of the lemma. �
Lemma 4.1 provides a way to reorganize the trees according to their sizes. To sum up all

the trees with different sizes, we need to estimate the contribution from a single tree, which
leads to the following lemma.

Lemma 4.2 Let T ⊆ Sd be a tree. Then

|ΛT (f1, f2, f3, f4)| � 2d|IT |
∏

j∈{1,2,4}
sizej(T, fj)|F3|

1
p3 .

Proof Without loss of generality, assume T is a 1-tree. By the definition of ΛS in (2.8) with S
being the single tree T , Cauchy–Schwartz inequality, (2.9), and the definition of tree, we have

|ΛT (f1, f2, f3, f4)| ≤
∫

sup
s∈T

|f1,s1 |
( ∑

s∈T

|f2,s2 |2
) 1

2
( ∑

s∈T

|f4,s4 |2
) 1

2

sup
s∈T

|f3,s3 |

≤ |IT | sup
s∈T

‖f1,s1‖∞
(

1
|IT |

∑

s∈T

‖f2,s2‖2
2

) 1
2
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·
(

1
|IT |

∑

s∈T

‖f4,s4‖2
2

) 1
2

sup
s∈T

1
|Is|

∫
|f3(y)|

(
1 +

dist(y, Is)
|Is|

)−N

� 2d|IT | sup
s∈T

‖f1,s1‖∞ size2(T, f2) size4(T, f4)|F3|
1

p3 .

It remains to prove ‖f1,s1‖∞ � size1(T, f1) for any s ∈ T . This follows from the estimate

‖f1,s1‖∞ � ‖f1,s1‖2|Is|− 1
2 , (4.3)

since {s} is a 2-tree. To prove (4.3), recall for s = (k, n, l), f1,s1(x) = χ∗
Ik,n

(x)f1 ∗ ψk,l(x),

where ψk,l(x) = 2kψ(2kx)e−2πi l
2x. Let b be a real number such that | l

2 − b| = 2k and define

f̃1,s1(x) := e2πibxf1,s1(x). Then f̃1,s1

′
(x) = βf1,s1(x) for some β � 2k. Hence

‖f1,s1‖∞ = ‖f̃1,s1‖∞ �
√
‖f̃1,s1‖2‖f̃1,s1

′‖2 � 2
k
2 ‖f1,s1‖2 � ‖f1,s1‖2|Is|− 1

2 ,

as desired. �
We are now ready to prove Lemma 3.4, which is equivalent to

∣∣∣∣ΛSd

(
f1
E1

,
f2
E2

, f3,
f4
E4

)∣∣∣∣ � 2d
∏

j∈{1,2,4}

(
Sj

Ej

)θj

|F3|
1

p3 , (4.4)

where Sj and Ej are defined as in (4.1). Apply Lemma 4.1 inductively to decompose Sd =⋃
n∈Z

⋃
T∈Fn

T , where Fn is a collection of trees satisfying
∑

T∈Fn
|IT | � 22n and j-size

(
⋃

T∈Fn
T, fj) ≤ min(Ej

2n , Sj) for any j ∈ {1, 2, 4}. So
∣∣∣∣ΛSd

(
f1
E1

,
f2
E2

, f3,
f4
E4

)∣∣∣∣ ≤
∑

n

∑

T∈Fn

∣∣∣∣ΛT

(
f1
E1

,
f2
E2

, f3,
f4
E4

)∣∣∣∣

� 2d
∑

n

22n
∏

j∈{1,2,4}
min

(
2−n,

Sj

Ej

)
|F3|

1
p3 (by Lemma 4.2)

� 2d
∏

j∈{1,2,4}

(
Sj

Ej

)θj

|F3|
1

p3 .

The last inequality follows from the observation 2−n ≤ maxj∈{1,2,4}(
Sj

Ej
) (see Section 6.7 in [10]

for a similar trick).

5 Estimates on Size

We prove Lemma 3.5 in this section. The following lemma is closely related with the John–
Nirenberg inequality.

Lemma 5.1 For any P ⊆ S, j ∈ {1, 2, 4} and f ∈ S(R),

sizej(P, f) � sup
T⊆P

T is an i-tree for some i�=j

1
|IT |

∥∥∥∥

( ∑

s∈T

‖fsj
‖2
2

|Is| χIs

) 1
2
∥∥∥∥

1,∞
.

Proof Fix j ∈ {1, 2, 4}, P ⊂ S and f ∈ S(R). Let T ⊆ P be an i-tree for some i �= j such that

sizej(P, f) =
(

1
|IT |

∑

s∈T

‖fsj
‖2
2

) 1
2

.
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For simplicity write as := ‖fsj
‖2 for s ∈ T and we aim to show

(
1

|IT |
∑

s∈T

as
2

) 1
2

� 1
|IT |

∥∥∥∥

( ∑

s∈T

as
2

|Is|χIs

) 1
2
∥∥∥∥

1,∞
. (5.1)

Denote the left-hand side (LHS) and the right-hand side (RHS) of (5.1) by A andB, respectively.
Let C be a large constant and define the set

E :=
{
x :

( ∑

s∈T

as
2

|Is|χIs
(x)

) 1
2

> CB

}
⊆ IT . (5.2)

By the definition of weak 1 norm,

|E| ≤ B|IT |
CB

=
|IT |
C

(5.3)

Write E as a joint union of intervals E =
⋃

Im∈J M Im, where JM is the set of maximal elements
in

J :=
{
I = Is0 for some s0 ∈ T :

( ∑

s∈T
Is⊇I

as
2

|Is|
) 1

2

> CB

}
. (5.4)

By the definition of A,

A2|IT | =
∑

s∈T

as
2 =

∫

E

∑

s∈T

as
2

|Is|χIs
+

∫

IT \E

∑

s∈T

as
2

|Is|χIs
=: H + K. (5.5)

Use the decomposition E =
⋃

Im∈J M Im to split H further as

H =
∑

Im∈J M

∫

Im

∑

s∈T
Is�Im

as
2

|Is|χIs
+

∑

Im∈J M

∫

Im

∑

s∈T
Is⊆Im

as
2

|Is|χIs
=: H1 + H2. (5.6)

Since each Im is maximal in J defined by (5.4),

H1 ≤
∑

Im∈J M

(CB)2|Im| = (CB)2|E| ≤ (CB)2|IT |. (5.7)

For each Im ∈ J M , {s ∈ T : Is ⊆ Im} is still an i-tree by the grid structure. So the definition
of sizej(P, f) and (5.3) give

H2 =
∑

Im∈J M

|Im|
(

1
|Im|

∑

s∈T
Is⊆Im

as
2

)
≤

∑

Im∈J M

|Im|A2 = A2|E| ≤ A2 |IT |
C

. (5.8)

Since the integrand in K is dominated by CB by (5.2), we have

K ≤ (CB)2|IT |. (5.9)

Putting (5.5)–(5.9) together, we obtain

A2|IT | = H1 + H2 + K ≤ (CB)2|IT | +A2 |IT |
C

+ (CB)2|IT |, (5.10)

from which (5.1) follows. �
By the previous lemma, to prove Lemma 3.5 it suffices to show for any i-tree T with i �= j,

∥∥∥∥

( ∑

s∈T

‖fsj
‖2
2

|Is| χIs

) 1
2
∥∥∥∥

1,∞
�M ‖f‖L1(5·2dIs) + 2−Md inf

y∈2dIs

Mf(y)|IT |. (5.11)
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Write f = fχ5·2dIT
+ fχ(5·2dIT )c . LHS of (5.11) is bounded by

∥∥∥∥

( ∑

s∈T

‖(fχ5·2dIT
)sj

‖2
2

|Is| χIs

) 1
2
∥∥∥∥

1,∞
+

∥∥∥∥

( ∑

s∈T

‖(fχ(5·2dIT )c)sj
‖2
2

|Is| χIs

) 1
2
∥∥∥∥

1

=: I + II.

Term I is bounded by C‖f‖L1(5·2dIs) since the discrete square-function operator is of weak type
(1, 1) by the L2 estimate and Calderón–Zygmund decomposition. Using the fact l2 norm is no
more than l1 norm, we estimate II by

∑

s∈T

‖(fχ(5·2dIT )c)sj
‖2|Is| 12 .

It remains to show
∑

s∈T

‖(fχ(5·2dIT )c)sj
‖2|Is| 12 �M 2−Md inf

y∈2dIs

Mf(y)|IT |. (5.12)

Using (2.9) we control the function (fχ(5·2dIT )c)sj
by

|(fχ(5·2dIT )c)sj
(x)|

�N

(
1 +

dist(Is, (5 · 2dIT )c)
|Is|

)−N(
1 +

dist(x, Is)
|Is|

)−N

inf
y∈2dIs

Mf(y).

Hence

LHS of (5.12) �N inf
y∈2dIs

Mf(y)
∑

s∈T

|Is|
(

1 +
dist(Is, (5 · 2dIT )c)

|Is|
)−N

�M 2−Md inf
y∈2dIs

Mf(y)|IT |,

as desired.

6 Estimates on Energy

We prove Lemma 3.6 in this section. Fix j ∈ {1, 2, 4}. Let n and T be as in the definition of
energyj in Definition 3.3 where the supremum is attained, i.e.,

energyj(P, f) = 2n

( ∑

T∈T

|IT |
) 1

2

.

Here T is a chain of strongly j-disjoint trees in P having the property that
( ∑

s∈T

‖fsj
‖2
2

) 1
2

≥ 2n|IT | 12 for all T ∈ T, (6.1)

and such that
( ∑

s∈T ′
‖fsj

‖2
2

) 1
2

≤ 2n+1|IT ′ | 12 for all subtrees T ′ ⊆ T ∈ T. (6.2)

We need to show

2n

( ∑

T∈T

|IT |
) 1

2

� ‖f‖2. (6.3)
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By (6.1),

(LHS of (6.3))2 = 22n

( ∑

T∈T

|IT |
)

≤ 22n2−2n
∑

T∈T

∑

s∈T

‖fsj
‖2
2 =

∑

T∈T

∑

s∈T

‖fsj
‖2
2,

and thus it remains to prove
∑

T∈T

∑

s∈T

‖fsj
‖2
2 � ‖f‖2

2. (6.4)

For each 4-tile s, define an operator As by Asf(x) = fsj
(x). By the Cauchy–Schwarz inequality,

∑

T∈T

∑

s∈T

‖fsj
‖2
2 =

〈 ∑

T∈T

∑

s∈T

A∗
sAsf, f

〉
≤

∥∥∥∥
∑

T∈T

∑

s∈T

A∗
sAsf

∥∥∥∥
2

‖f‖2.

Hence (6.4) follows from the following estimate:
∥∥∥∥

∑

T∈T

∑

s∈T

A∗
sAsf

∥∥∥∥
2

�
( ∑

T∈T

∑

s∈T

‖fsj
‖2
2

) 1
2

. (6.5)

To prove (6.5), write

(LHS of (6.5))2 =
∑

T,T ′∈T

∑

s∈T
s′∈T ′

〈A∗
sAsf,A

∗
s′As′f〉 =: I + II,

where I contains all off-diagonal terms in which T �= T ′, and II contains all diagonal terms
where T = T ′. Finally We only need to prove the following estimates:

Lemma 6.1 I �
∑

T∈T

∑
s∈T ‖fsj

‖2
2 and II �

∑
T∈T

∑
s∈T ‖fsj

‖2
2.

Proof We only prove the estimate for I. II is easier to control and we omit the proof. Apply
Cauchy–Schwartz inequality,

I ≤
∑

T �=T ′

∑

s∈T
s′∈T ′

‖Asf‖2‖AsA
∗
s′‖‖As′f‖2. (6.6)

The following estimate for ‖AsA
∗
s′‖ is the key to sum up all the terms in (6.6).

Lemma 6.2 ‖AsA
∗
s′‖ �= 0 only when ωsj

∩ ωs′
j
�= ∅. Moreover,

‖AsA
∗
s′‖ �N

|Is′ | 12
|Is| 12

(
1 +

dist(Is, Is′)
|Is|

)−N

if ωsj
⊆ ωs′

j
. (6.7)

Proof Write AsA
∗
s′f(x) =

∫
K(x, y)f(y) dy, where K(x, y) = χ∗

Is
(x)χ∗

Is′
(y)ψ̃s′

j
∗ ψsj

(x − y),

ψsj
:= ψk,lj for s = (k, n, l) and g̃(x) := g(−x) for any function g. Note that ψ̃s′

j
∗ ψsj

(t) =
∫
ψ̂s′(ξ)ψ̂s(ξ)e2πiξt dξ is non-zero only when ωsj

∩ωs′
j
�= ∅ by (2.3) and (2.10). Assume ωsj

⊆ ωs′
j
.

By definitions of χ∗
I (2.4) and ψk,l and using the triangle inequality (1 + |a|)−1 + (1 + |b|)−1

≤ (1 + |a+ b|)−1,

|K(x, y)| �N

(
1 +

dist(x, Is)
|Is|

)−2N(
1 +

dist(y, Is′)
|Is′ |

)−N

· 1
|Is||Is′ |

∫ (
1 +

|x− y − z|
|Is′ |

)−2N(
1 +

|z|
|Is|

)−N

dz

�N

(
1 +

dist(Is, Is′)
|Is|

)−N 1
|Is|

(
1 +

dist(x, Is)
|Is|

)−N

.
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Hence
∫

|K(x, y)|dx �N

(
1 +

dist(Is, Is′)
|Is|

)−N

. (6.8)

Similarly,
∫

|K(x, y)|dy �N

(
1 +

dist(Is, Is′)
|Is|

)−N |Is′ |
|Is| . (6.9)

(6.8) and (6.9) imply (6.7) by Schur’s lemma. �
By Lemma 6.2 and symmetry, we can assume without loss of generality ωsj

⊆ ωs′
j
. In the

following we assume further that ωsj
� ωs′

j
. The case ωsj

= ωs′
j

can be handled the same way.
For any T, T ′ ∈ T, T �= T ′ and s ∈ T , s′ ∈ T ′, by (6.1) and (6.2), we have

‖Asf‖2|Is|− 1
2 ≤ 2n+1 � 2n and 2n ≤

(
|IT |−1

∑

s0∈T

‖f(s0)j
‖2
2

) 1
2

.

These imply

‖Asf‖2 � |Is| 12 |IT |− 1
2

( ∑

s0∈T

‖f(s0)j
‖2
2

) 1
2

. (6.10)

Similarly,

‖As′f‖2 � |Is′ | 12 |IT |− 1
2

( ∑

s0∈T

‖f(s0)j
‖2
2

) 1
2

. (6.11)

Using (6.10) and (6.11), RHS of (6.6) can be estimated by
∑

T �=T ′

∑

s∈T,s′∈T ′

ωsj
�ωs′

j

‖Asf‖2‖AsA
∗
s′‖‖As′f‖2

�
∑

T �=T ′

∑

s∈T,s′∈T ′

ωsj
�ωs′

j

|Is| 12 |Is′ | 12 |IT |−1

( ∑

s0∈T

‖f(s0)j
‖2
2

)
‖AsA

∗
s′‖

=
∑

T∈T

( ∑

s0∈T

‖f(s0)j
‖2
2

)( ∑

s∈T,T ′ �=T
s′∈T ′,ωsj

�ωs′
j

|Is| 12 |Is′ | 12 |IT |−1‖AsA
∗
s′‖

)
.

Therefore, the estimate for I will be done once we show that for any T ∈ T,
∑

s∈T,T ′ �=T
s′∈T ′,ωsj

�ωs′
j

|Is| 12 |Is′ | 12 |IT |−1‖AsA
∗
s′‖ � 1.

By (6.7), this amounts to

∑

s∈T,T ′ �=T
s′∈T ′,ωsj

�ωs′
j

(
1 +

dist(Is, Is′)
|Is|

)−N

� |IT |, (6.12)

which is an immediate consequence of the separation condition (3.4). �
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