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Abstract We study the Hindmarsh–Rose burster which can be described by the differential system

ẋ = y − x3 + bx2 + I − z, ẏ = 1 − 5x2 − y, ż = µ(s(x − x0) − z),

where b, I, µ, s, x0 are parameters. We characterize all its invariant algebraic surfaces and all its ex-

ponential factors for all values of the parameters. We also characterize its Darboux integrability in

function of the parameters. These characterizations allow to study the global dynamics of the system

when such invariant algebraic surfaces exist.

Keywords Polynomial integrability, rational integrability, Darboux polynomials, Darboux first inte-

grals, invariant algebraic surfaces, exponential factors, Hindmarsh–Rose burster
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1 Introduction and Statement of Main Results

The existence of one or two independent first integrals in a differential system in dimension 3
reduces the analysis of the dynamics of this system in 1 or 2 dimensions. This justifies the study
of the integrability (the existence of first integrals) of a differential system like the Hindmarsh–
Rose differential system. The Darboux integrability essentially captures the elementary first
integrals using the invariant algebraic surfaces. We prove that the unique invariant algebraic
surface of the Hindmarsh–Rose burster differential system is z = 0 when the parameter μ = 0,
or s = 0 and μ �= 0 with cofactors zero and non-zero, respectively. We also have shown
that the Hindmarsh–Rose burster differential system has a Darboux first integral only when
the parameter μ = 0. The fact that the Hindmarsh–Rose burster differential system exhibits
almost no Darboux integrability shows that it is a candidate to have complex dynamics, in
general not easy to study.
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One of the most studied three-dimensional ordinary differential systems that appears as a
reduction of the conductance-based in the Hodgkin–Huxley model for neural spiking [9] is the
Hindmarsh–Rose model [8] which can be written as

ẋ = y − x3 + bx2 + I − z,

ẏ = 1 − 5x2 − y, (1.1)

ż = μ(s(x − x0) − z),

where b, I, μ, s, x0 are parameters and the dot indicates derivative with respect to the time t.
The success of system (1.1) comes, first from its simplicity since it is just a differential system

in R
3 with a polynomial nonlinearity containing only five parameters, and second its ability

to qualitatively capture the three main dynamical behaviors displayed by real neurons, namely
quiescence, tonic spiking and bursting. Many papers have investigated the dynamics which takes
place in system (1.1) when we vary one or more of its parameters, see for instance [1, 6, 7, 10–
12, 17, 19, 21–27]. Among these amount of papers, none of them study its integrability.

The existence of a first integral in a differential system defined in dimension three reduces
the analysis of this system in one dimension when we fix the value of the first integral. Of course,
this simplifies strongly the analysis of the dynamics of such systems. Moreover, if a system in
dimension three has two independent first integrals then fixing these two first integrals we obtain
the curves where the solutions live. These arguments justify the study of the integrability (the
existence of first integrals) of a differential system like the Hindmarsh–Rose differential system.

The Darboux integrability essentially captures the elementary first integrals, i.e. the first
integrals given by elementary functions, which are the ones that roughly speaking can be ob-
tained by composition of exponential, trigonometric, logarithmic and polynomial functions, see
for more details about the Darboux integrability Chapter 8 of [5], the references quoted there,
and in special see the references [18, 20, 28].

The Darboux integrability in dimension three is based in the existence of invariant algebraic
surfaces f(x, y, z) = 0, where f(x, y, z) is a polynomial, called a Darboux polynomial. A
sufficient number of such polynomials taking into account their multiplicity (through the so–
called exponential factors) force the existence of first integrals.

The main aim of this paper is to study the existence of first integrals of system (1.1). The
vector field X associated to system (1.1) is

X = (y − x3 + bx2 + I − z)
∂

∂x
+ (1 − 5x2 − y)

∂

∂y
+ μ(s(x − x0) − z)

∂

∂z
.

Let U ⊂ R
3 be an open set. We say that the non–constant function f : R

3 → R is a first
integral of the vector field X on U , if F (x(t), y(t), z(t)) = constant for all values of t for which
the solution (x(t), y(t), z(t)) of X is defined on U . Clearly f is a first integral of X on U if and
only if Xf = 0 on U .

The aim of this paper is to study the existence of first integrals of system (1.1) that can
be described by functions of Darboux type (see (1.5)). Note that one of the main tools for
studying the dynamics of the differential system (1.1) is to know the existence of first integrals
for some values of the parameters b, I, μ, s, x0. In general, for a given differential system it is
difficult to determine the existence or nonexistence of first integrals.
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First we study the existence of first integrals of system (1.1) given by polynomials.
A polynomial first integral f = f(x, y, z) of system (1.1) is a polynomial in the variables x,

y and z such that

(y − x3 + bx2 + I − z)
∂f

∂x
+ (1 − 5x2 − y)

∂f

∂y
+ μ(s(x − x0) − z)

∂f

∂z
= 0. (1.2)

The first main result is the following.

Theorem 1.1 System (1.1) with μ �= 0 has no polynomial first integrals. If μ = 0, then the
unique polynomial first integrals are polynomials in the variable z.

The proof of Theorem 1.1 is given in Section 2.
A rational first integral of system (1.1) is a rational function f satisfying (1.2).

Theorem 1.2 System (1.1) with μ �= 0 has no rational first integrals. If μ = 0, then the
unique rational first integrals are rational functions in the variable z.

The proof of Theorem 1.2 is given in Section 4.
For proving Theorem 1.2 we will use the Darboux theory of integrability. The Darboux

theory of integrability in dimension 3 is based on the existence of invariant algebraic surfaces
(or Darboux polynomials). For more details see [3–5, 14]. This theory is one of the best theories
for studying the existence of first integrals for the polynomial differential systems.

A Darboux polynomial of system (1.1) is a polynomial f ∈ C[x, y, z] \ C such that

(y − x3 + bx2 + I − z)
∂f

∂x
+ (1 − 5x2 − y)

∂f

∂y
+ μ(s(x − x0) − z)

∂f

∂z
= Kf, (1.3)

for some polynomial

K = α0 + α1x + α2y + α3z + α4x
2 + α5xy + α6xz + α7y

2 + α8yz + α9z
2, (1.4)

called the cofactor of f . Note that f = 0 is an invariant algebraic surface for the flow of
system (1.1) and a polynomial first integral is a Darboux polynomial with zero cofactor.

Theorem 1.3 The unique irreducible Darboux polynomial with non-zero cofactor for sys-
tem (1.1) exists for s = 0 and μ �= 0, and in this case the Darboux polynomial is z and the
cofactor is −μ.

The proof of Theorem 1.3 is given in Section 3.
An exponential factor F (x, y, z) of system (1.1) is a function of the form F = exp(g0/g1) �∈ C

with g0, g1 ∈ C[x, y, z] coprime satisfying that

(y − x3 + bx2 + I − z)
∂F

∂x
+ (1 − 5x2 − y)

∂F

∂y
+ μ(s(x − x0) − z)

∂F

∂z
= LF,

for some polynomial L = L(x, y, z) of degree at most 2, called the cofactor of F .

Theorem 1.4 The following statements hold for system (1.1).
(i) If μ �= 0 system (1.1) has the exponential factors ey, ez, ez2

with cofactors 1 − 5x2 − y,
μ(s(x−x0)−z) and 2μz(s(x−x0)−z), respectively; and also exponential of linear combinations
of y, z and z2.

(ii) If μ = 0 system (1.1) has the exponential factors ey, eP (z)/Q(z) where P, Q are polyno-
mials with cofactors 1− 5x2 − y and 0, respectively and also exponential of linear combinations
of all the exponents in the previous exponential factors.



950 Llibre J. and Valls C.

The proof of Theorem 1.4 is given in Section 5.
A Darboux first integral G of system (1.1) is a first integral of the form

G = fλ1
1 · · · fλp

p Fμ1
1 · · ·Fμq

q , (1.5)

where f1, . . . , fp are Darboux polynomials and F1, . . . , Fq are exponential factors and λj , μk ∈ C

for j = 1, . . . , p and k = 1, . . . , q.

Theorem 1.5 System (1.1) with μ �= 0 has no Darboux first integrals. If μ = 0, then the
unique Darboux first integrals are Darboux functions in the variable z.

The proof of Theorem 1.5 is given in Section 6.

2 Polynomial First Integrals: Proof of Theorem 1.1

Let f be a polynomial first integral of system (1.1). Without loss of generality we can assume
that it has no constant term. Then f satisfies (1.2). We write f as f =

∑n
j=0 fj(x, y, z) where

each fj is a homogeneous polynomial of degree j in each variables x, y and z. We can assume
that fn �= 0 with n > 0. We have that the terms of degree n + 2 in (1.2) satisfy

−x3 ∂fn

∂x
= 0, that is fn = fn(y, z).

Computing the terms of degree n + 1 in (1.2) we get

−x3 ∂fn−1

∂x
− 5x2 ∂fn

∂y
= 0, that is − x

∂fn−1

∂x
= 5

∂fn

∂y
.

Since fn do not depend on x we must have ∂fn

∂y = 0 and ∂fn−1
∂x = 0, that is fn = fn(z) and

fn−1 = fn−1(y, z).
Now computing the terms of degree n in (1.2) we obtain

−x3 ∂fn−2

∂x
− 5x2 ∂fn−1

∂y
+ μ(sx − z)

dfn

dz
= 0.

Note that if μ �= 0 then μ(sx−z) must be divisible by x2 which is not possible and thus dfn

dz = 0
which yields fn is a constant, in contradiction with the fact that f is a first integral. Hence
μ = 0. In this case proceeding as above, after simplifying by x2 and taking into account that
fn−1 does not depend on x we get that ∂fn−1

∂y = 0 and ∂fn−2
∂x = 0, that is fn−1 = fn−1(z) and

fn−2 = fn−2(y, z). Proceeding inductively we conclude that f =
∑n

j=0 fj(z), that is, f is a
polynomial in the variable z. This concludes the proof of Theorem 1.1.

3 Darboux Polynomials with Non-zero Cofactor: Proof of Theorem 1.3

We consider a Darboux polynomial f with non-zero cofactor K as in (1.4). We denote by N

the set of all positive integers.
We first prove three preliminary results.

Lemma 3.1 α5 = α6 = α7 = α8 = α9 = 0 and α4 = m with m ∈ N ∪ {0}.
Proof We write f =

∑n
j=0 fj(x, y, z) where each fj is a homogeneous polynomial of degree j

in each variables x, y and z. Without loss of generality we can assume that fn �= 0 and n > 0.
We have that the terms of degree n + 2 in (1.3) satisfy

x3 ∂fn

∂x
= (α4x

2 + α5xy + α6xz + α7y
2 + α8yz + α9z

2)fn. (3.1)
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Solving the differential equation in (3.1) we have

fn = Kn(y, z)xα4 exp
(

− α5y + α6z

x
− α7y

2 + α8yz + α9z
2

2x2

)

,

where Kn is any function in the variables y and z. Since fn must be a homogeneous polynomial
of degree n we must have α4 = m, m ∈ N ∪ {0} and α5 = α6 = α7 = α8 = α9 = 0. This
completes the proof of the lemma. �

Lemma 3.2 α2 = 0.

Proof We write f =
∑n

j=0 fj(x, z)yj where each fj is a polynomial in the variables x, z. The
terms of yn+1 in (1.3) satisfy

∂fn

∂x
= α2fn.

Solving this differential equation we obtain

fn = Kn(z) exp(α2x),

where Kn is any function in the variable z. Since fn must be a polynomial we must have α2 = 0
or Kn = 0. If Kn = 0, then fn = 0, and consequently f = f(x, z). Then, from (1.3)

y
∂f

∂x
= α2yf, that is f = K(z)eα2x,

for some function K of z. Since f must be a polynomial we get α2 = 0. This completes the
proof of the lemma. �

Lemma 3.3 α3 = 0.

Proof We write f =
∑n

j=0 fj(x, y)zj where each fj is a polynomial in the variables x and y.
The terms of zn+1 in (1.3) satisfy

∂fn

∂x
= −α3fn.

Solving this differential equation we obtain

fn = Kn(y) exp(−α3z),

where Kn is any function in the variable y. Since fn must be a polynomial we must have α3 = 0
or Kn = 0. If Kn = 0, then fn = 0, and consequently f = f(x, y). Then, from (1.3)

−z
∂f

∂x
= α3zf, that is f = K(y)e−α3x,

for some function K of y. Since f must be a polynomial we get α3 = 0. This completes the
proof of the lemma. �

In view of Lemmas 3.1, 3.2 and 3.3 we have that

K = α0 + α1x + mx2, m ∈ N ∪ {0}. (3.2)

Now for simplicity in the computations we introduce the following weight change of variables

x = λ−1X, y = Y, z = Z, t = λ2T (3.3)

with λ ∈ R \ {0} and system (1.1) becomes

X ′ = −X3 + bλX2 + λ3(Y + I − Z),
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Y ′ = −5X2 + λ2(1 − Y ),

Z ′ = λμsX − λ2μ(sx0 + Z),

where the prime denotes derivative of the variables with respect to T .
Let g(x, y, z) be a Darboux polynomial of system (1.1) with cofactor K given in (3.2). We

use the transformation (3.3) and setting G(X, Y, Z) = λng(λ−1X, Y, Z) where n is the degree
of g and k = λ2K(λ−1X) = mX2 + λα1X + λ2α0. Then we have

dG

dT
= λn+2 dg

dt
= λn+2Kg = kG.

Assume G =
∑n

i=0 λiGi, where Gi is a homogeneous polynomial in the variables X, Y, Z with
degree n − i for i = 0, . . . , n. Clearly g = G|λ=1. By definition of a Darboux polynomial we
have

(−x3 + bλx2 + λ3(y + I − z))
n∑

i=0

λi ∂Gi

∂x
+ (−5x2 + λ2(1 − y))

n∑

i=0

λi ∂Gi

∂y

+ (λμsx − λ2μ(sx0 + z))
n∑

i=0

λi ∂Gi

∂z
= (mx2 + λα1x + λ2α0)

n∑

i=0

λiGi,

where now we use x, y, z instead of X, Y, Z. Equating the terms with λi for i = 0, . . . , n + 2 we
get

L[G0] − mx2G0 = 0 where L = −x3 ∂

∂x
− 5x2 ∂

∂y
(3.4)

and

L[G1] − mx2G1 = −bx2 ∂G0

∂x
− μsx

∂G0

∂z
+ α1xG0,

L[G2] − mx2G2 = −bx2 ∂G1

∂x
− μsx

∂G1

∂z
− (1 − y)

∂G0

∂y
+ μ(sx0 + z)

∂G0

∂z

+ α1xG1 + α0G0,

L[Gj ] − mx2Gj = −bx2 ∂Gj−1

∂x
− μsx

∂Gj−1

∂z
− (1 − y)

∂Gj−2

∂y
+ μ(sx0 + z)

∂Gj−2

∂z

− (y + I − z)
∂Gj−3

∂x
+ α1xGj−1 + α0Gj−2,

(3.5)

for j = 3, . . . , n + 2.
Solving (3.4) we get

G0 = x−mG̃0(z, 5 log x − y).

In order that G0 be a homogeneous polynomial of degree n we get m = 0 and

G0 = a0z
n with a0 ∈ C \ {0}.

Substituting G0 into the first equation of (3.5) and simplifying by x we get

−x

(

x
∂G1

∂x
− 5

∂G1

∂y

)

= α1a0z
n − μsna0z

n−1. (3.6)

Evaluating (3.6) on x = 0 and taking into account that a0n �= 0 we get α1 = 0 and μs = 0.
Then again from (3.6) we get that

x
∂G1

∂x
− 5

∂G1

∂y
= 0, that is G1 = G1(z, 5 log x − y). (3.7)
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Since G1 must be a polynomial of degree n − 1 we obtain G1 = a1z
n−1 where a1 ∈ C.

Substituting G0 and G1 into the second equation of (3.5) taking into account that α1 =
μs = 0, we get

−x2

(

x
∂G2

∂x
− 5

∂G2

∂y

)

= a0(μn + α0)zn. (3.8)

We consider two different cases.

Case 1 μ = 0. In this case, evaluating (3.8) on x = 0 we get α0 = 0, but then K = 0 in
contradiction with the fact that f is a Darboux polynomial with non-zero cofactor.

Case 2 μ �= 0. Since μs = 0 then s = 0. Evaluating (3.8) on x = 0 we obtain α0 = −μn,
and proceeding as we did for G1 we get G2 = a2z

n−2 with a2 ∈ C.
Substituting G0, G1 and G2 into equation (3.5) with j = 3 and taking into account that

α1 = μs = 0, α0 = −μn, we get

−x2

(

x
∂G3

∂x
− 5

∂G3

∂y

)

= −μa1z
n−1. (3.9)

Evaluating (3.9) on x = 0 and using that μ �= 0 we get a1 = 0, that is G1 = 0. Furthermore,
G3 = a3z

n−3 with a3 ∈ C.
Proceeding inductively we get Gi = 0 for i = 1, . . . , n + 2, G0 = a0z

n and k = α0 =
−μn. Then g = a0z

n and K = −μn. In short, the unique irreducible Darboux polynomial of
system (1.1) is z and its cofactor is −μ. This concludes the proof of Theorem 1.3.

4 Proof of Theorem 1.2

To prove Theorem 1.2 we recall two auxiliary results. The first was proved in [5] while the
second was proved in [13].

Lemma 4.1 Let f be a polynomial and f =
∏s

j=1 f
αj

j its decomposition into irreducible factors
in C[x, y, z]. Then f is a Darboux polynomial if and only if all the fj are Darboux polynomials.
Moreover, if K and Kj are the cofactors of f and fj, then K =

∑s
j=1 αjKj.

Lemma 4.2 The existence of a rational first integral for a polynomial differential system (1.1)
implies the existence of a polynomial first integral, or the existence of two Darboux polynomials
with the same non-zero cofactor.

The proof of Theorem 1.2 follows readily from Theorems 1.1 and 1.3 together with Lem-
mas 4.1 and 4.2.

5 Exponential Factors: Proof of Theorem 1.4

To prove Theorem 1.4 we will use the following known result whose proof and geometrical
meaning is given in [2] for the plane systems and [15] and [16] for higher dimensional systems.

Proposition 5.1 The following statements hold.

(a) If E = exp(g0/g1) is an exponential factor for the polynomial system (1.1) and g1 is not
a constant polynomial, then g1 = 0 is an invariant algebraic curve.

(b) Eventually eg0 can be exponential factors, coming from the multiplicity of the infinite
invariant straight line.
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The following result given in [2] and [15] characterizes the algebraic multiplicity of an
invariant algebraic surface using the number of exponential factors of system (1.1) associated
with this invariant algebraic surface.

Theorem 5.2 Given an irreducible invariant algebraic surface g1 = 0 of degree m of sys-
tem (1.1), it has algebraic multiplicity k if and only if the vector field associated to system (1.1)
has k − 1 exponential factors of the form exp(g0,i/gi

1), where g0,i is a polynomial of degree at
most im, and g0,i and g1 are coprime for i = 1, . . . , k − 1.

In view of Theorem 5.2 if we prove that eg0/g1 is not an exponential factor with degree g0 ≤
degree g1, there are no exponential factors associated to the invariant algebraic surface g1 = 0.

Proposition 5.3 System (1.1) with μ �= 0 has the exponential factors ey, ez, ez2
with cofactors

1− 5x2 − y, μ(s(x− x0)− z) and 2μz(s(x− x0)− z), respectively and also exponential of linear
combinations of y, z and z2.

Proof System (1.1) has the irreducible Darboux polynomial z when s = 0. Then in view of
Proposition 5.1 system (1.1) can have an exponential factor of the form: either E = exp(g)
with g ∈ C[x, y, z], or only when s = 0, E = exp(h/zm) with m ≥ 1 and such that h ∈ C[x, y, z]
is coprime with z and the degree of h is at most m.

We first prove that system (1.1) with s = 0 has no exponential factors of the form E =
exp(h/zm).

Assume that system (1.1) with s = 0 has an exponential factor of the form E = exp(h/zm)
with m ≥ 1 such that z is coprime with h ∈ C[x, y, z]. In view of Theorem 5.2 we can assume
that m = 1 and that h has degree at most one (note that here g1 = z has degree one). We
write h as a polynomial of degree one in the variables x, y, z as follows:

h = a0 + a1x + a2y + a3z. (5.1)

Clearly h satisfies

(y − x3 + bx2 + I − z)
∂h

∂x
+ (1 − 5x2 − y)

∂h

∂y
− μz

∂h

∂z
+ μh = Lz, (5.2)

where L is a polynomial of degree two in the variables x, y, z. Let

L = b0 + b1x + b2y + b3z + b4x
2 + b5xy + b6xz + b7y

2 + b8yz + b9z
2. (5.3)

From (5.2) and using an algebraic manipulator it is easy to check that

h = a3z and L = 0.

However this is not possible since h is coprime with z. Hence this case is not possible.
In summary, if μ �= 0 and (1.1) has an exponential factor it must be of the form E = exp(g)

with g ∈ C[x, y, z] \ C. In this case, g satisfies

(y − x3 + bx2 + I − z)
∂g

∂x
+ (1 − 5x2 − y)

∂g

∂y
+ μ((s(x − x0) − z))

∂g

∂z
= L, (5.4)

where L = L(x, y, z) is some polynomial of degree two in the variables x, y and z and that we
can take as in (5.3).

We write g as g =
∑n

j=0 gj(x, y, z) where each gj is a homogeneous polynomial of degree
j in each variables x, y and z and n > 0. We have that the terms of degree n + 2 with n ≥ 3
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in (5.4) satisfy

−x3 ∂gn

∂x
= 0, that is gn = gn(y, z).

Computing the terms of degree n + 1 with n ≥ 3 in (5.4) we get

−x3 ∂gn−1

∂x
− 5x2 ∂gn

∂y
= 0, that is − x

∂gn−1

∂x
= 5

∂gn

∂y
.

Since gn do not depend on x we must have ∂gn/∂y = 0 and ∂gn−1/∂x = 0, that is gn = gn(z)
and gn−1 = gn−1(y, z).

Now computing the terms of degree n with n ≥ 3 in (5.4) we obtain

−x3 ∂gn−2

∂x
− 5x2 ∂gn−1

∂y
+ μ(sx − z)

dgn

dz
= 0.

Note that since μ �= 0 then μ(sx − z) must be divisible by x2 which is not possible and thus
dgn/dz = 0 which yields gn is a constant, in contradiction with the fact that n ≥ 3. Then, we
must have n ≤ 2. In this case g is a polynomial of degree two in its variables that we write it
as

g = a0 + a1x + a2y + a3z + a4x
2 + a5xy + a6xz + a7y

2 + a8yz + a9z
2. (5.5)

Imposing that g satisfies (5.4) with L as in (5.3) using an algebraic manipulator such as math-
ematica we get

g = a0 + a2y + a3z + a9z
2 (5.6)

and

L = a2(1 − 5x2 − y) + a3μ(s(x − x0) − z) + 2μa9z(s(x − x0) − z). (5.7)

This concludes the proof of the proposition. �
Now we have to study the case μ = 0. This is the content of the following result.

Proposition 5.4 System (1.1) with μ = 0 has the exponential factors ey, eP (z)/Q(z) where
P, Q are polynomials with cofactors 1−5x2−y and 0, respectively and also exponential of linear
combinations of all the exponents in the previous exponential factors.

Proof System (1.1) has the polynomial first integral z when μ = 0. Then in view of Propo-
sition 5.1 system (1.1) can have an exponential factor of the form: either E = exp(g) with
g ∈ C[x, y, z], or E = exp(h/zm) with m ≥ 1 and such that h ∈ C[x, y, z] is coprime with z and
has degree at most m.

We first prove that system (1.1) with μ = 0 has no exponential factors of the form E =
exp(h/zm).

Assume that system (1.1) with μ = 0 has an exponential factor of the form E = exp(h/zm)
with m ≥ 1 such that z is coprime with h ∈ C[x, y, z]. In view of Theorem 5.2 we can assume
that m = 1 and that h has degree at most one. We write h as a polynomial of degree one in
the variables x, y, z as in (5.1). Clearly, h satisfies

(y − x3 + bx2 + I − z)
∂h

∂x
+ (1 − 5x2 − y)

∂h

∂y
= Lz, (5.8)
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where L is a polynomial of degree two in the variables x, y, z. Setting L in (5.8) as in (5.3) and
working with an algebraic manipulator we conclude that

h = a0 + a3z and L = 0.

Now assume that system (1.1) with μ = 0 has an exponential factor of the form E = exp(g)
with g ∈ C[x, y, z] \ C. In this case, g satisfies

(y − x3 + bx2 + I − z)
∂g

∂x
+ (1 − 5x2 − y)

∂g

∂y
= L, (5.9)

where L = L(x, y, z) is some polynomial of degree two in the variables x, y, z and that we can
take as in (5.3).

We write g as g =
∑n

j=0 gj(x, y, z) where each gj is a homogeneous polynomial of degree j

in each variables x, y and z. We have that the terms of degree n + 2 with n ≥ 3 in (5.9) satisfy

−x3 ∂gn

∂x
= 0, that is gn = gn(y, z).

Computing the terms of degree n + 1 with n ≥ 3 in (5.9) we get

−x3 ∂gn−1

∂x
− 5x2 ∂gn

∂y
= 0, that is − x

∂gn−1

∂x
= 5

∂gn

∂y
.

Since gn do not depend on x we must have ∂gn/∂y = 0 and ∂gn−1/∂x = 0 that is gn = gn(z)
and gn−1 = gn−1(y, z).

Now computing the terms of degree n with n ≥ 3 in (5.9) we obtain

−x3 ∂gn−2

∂x
− 5x2 ∂gn−1

∂y
= 0.

Now proceeding as above, after simplifying by x2 and taking into account that gn−1 does not
depend on x, we get that ∂gn−1/∂y = 0 and ∂gn−2/∂x = 0, that is gn−1 = gn−1(z) and
gn−2 = gn−2(y, z). Proceeding inductively, we get

g = G(z) + a2z
2 + a3y + a4z + a0 = G̃(z) + a3y,

where G and G̃ are polynomials in the variable z and a3 ∈ C. Moreover, it follows from (5.9)
that L = a3(1 − 5x2 − y). This completes the proof of the proposition for n ≥ 3.

If n < 3 then g can be written as in (5.5). Solving (5.9) with g and L as in (5.3) we get g

as in (5.6) and L = a2(1 − 5x2 − y). So the proposition is proved. �

6 Proof of Theorem 1.5

In order to proof Theorem 1.5 we need the following result whose proof is given in [5] and [15].

Theorem 6.1 Suppose that system (1.1) admits p Darboux polynomials and with cofactors
Ki and q exponential factors Fj with cofactors Lj. Then there exists λj , μj ∈ C not all zero
such that

q∑

i=1

λkKi +
q∑

i=1

μiLi = 0

if and only if the function G given in (1.5) (called of Darboux type) is a first integral of sys-
tem (1.1).
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In view of Theorem 6.1 to characterize the Darboux first integrals we need to compute the
Darboux polynomials and the exponential factors. We consider three cases.

Case 1 μs �= 0. In this case, using Theorems 1.3 and 1.4 if G is a Darboux first integral of
system (1.1) it must be of the form (1.5) and the cofactors must satisfy

μ1(1 − 5x2 − y) + μ2μ(s(x − x0) − z) + 2μμ3z(s(x − x0) − z) = 0.

Solving this system we have μ1 = μ2 = μ3 = 0, which yields that G is a constant, that is, there
are no Darboux first integrals.

Case 2 μ �= 0 and s = 0. In this case, using Theorems 1.3 and 1.4 if G is a Darboux first
integral of system (1.1) it must be of the form (1.5) and the cofactors must satisfy

μ1(1 − 5x2 − y) − μ2μz − 2μμ3z
2 − λ1μ = 0.

Solving this system we have μ1 = μ2 = μ3 = λ1 = 0, which yields that G is a constant, that is,
there are no Darboux first integrals.

Case 3 μ = 0. In this case, using Theorems 1.3 and 1.4 if G is a Darboux first integral of
system (1.1) it must be of the form (1.5) and the cofactors must satisfy

μ1(1 − 5x2 − y) + μ20 = 0.

Solving this system we have μ1 = 0 which yields that G is a function in the variable z. This
concludes the proof of the theorem.

7 Summary and Conclusion

We have proved that the unique invariant algebraic surface of the Hindmarsh–Rose burster
differential system is z = 0 when the parameter μ = 0, or s = 0 and μ �= 0 with cofactors
zero and non-zero, respectively (see Theorems 1.1 and 1.3). We also have shown that the
Hindmarsh–Rose burster differential system has a Darboux first integral when the parameter
μ = 0 (see Theorem 1.5).
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