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Abstract We study the Hindmarsh—Rose burster which can be described by the differential system
b=y—a® +br’+T—2 §=1-52"—y, 2=u(s(x—x0)—2),

where b, I, i, s, zo are parameters. We characterize all its invariant algebraic surfaces and all its ex-
ponential factors for all values of the parameters. We also characterize its Darboux integrability in
function of the parameters. These characterizations allow to study the global dynamics of the system
when such invariant algebraic surfaces exist.

Keywords Polynomial integrability, rational integrability, Darboux polynomials, Darboux first inte-

grals, invariant algebraic surfaces, exponential factors, Hindmarsh—Rose burster
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1 Introduction and Statement of Main Results

The existence of one or two independent first integrals in a differential system in dimension 3
reduces the analysis of the dynamics of this system in 1 or 2 dimensions. This justifies the study
of the integrability (the existence of first integrals) of a differential system like the Hindmarsh—
Rose differential system. The Darboux integrability essentially captures the elementary first
integrals using the invariant algebraic surfaces. We prove that the unique invariant algebraic
surface of the Hindmarsh-Rose burster differential system is z = 0 when the parameter p = 0,
or s = 0 and p # 0 with cofactors zero and non-zero, respectively. We also have shown
that the Hindmarsh—Rose burster differential system has a Darboux first integral only when
the parameter © = 0. The fact that the Hindmarsh—Rose burster differential system exhibits
almost no Darboux integrability shows that it is a candidate to have complex dynamics, in
general not easy to study.
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One of the most studied three-dimensional ordinary differential systems that appears as a
reduction of the conductance-based in the Hodgkin—Huxley model for neural spiking [9] is the

Hindmarsh-Rose model [8] which can be written as
t=y—ad+ba?+1-2z,
gy =1->52%—y, (1.1)
s = p(s(x — 20) — 2),

where b, I, i, s, xg are parameters and the dot indicates derivative with respect to the time t.

The success of system (1.1) comes, first from its simplicity since it is just a differential system
in R? with a polynomial nonlinearity containing only five parameters, and second its ability
to qualitatively capture the three main dynamical behaviors displayed by real neurons, namely
quiescence, tonic spiking and bursting. Many papers have investigated the dynamics which takes
place in system (1.1) when we vary one or more of its parameters, see for instance [1, 6, 7, 10—
12, 17, 19, 21-27]. Among these amount of papers, none of them study its integrability.

The existence of a first integral in a differential system defined in dimension three reduces
the analysis of this system in one dimension when we fix the value of the first integral. Of course,
this simplifies strongly the analysis of the dynamics of such systems. Moreover, if a system in
dimension three has two independent first integrals then fixing these two first integrals we obtain
the curves where the solutions live. These arguments justify the study of the integrability (the
existence of first integrals) of a differential system like the Hindmarsh—-Rose differential system.

The Darboux integrability essentially captures the elementary first integrals, i.e. the first
integrals given by elementary functions, which are the ones that roughly speaking can be ob-
tained by composition of exponential, trigonometric, logarithmic and polynomial functions, see
for more details about the Darboux integrability Chapter 8 of [5], the references quoted there,
and in special see the references [18, 20, 28].

The Darboux integrability in dimension three is based in the existence of invariant algebraic
surfaces f(x,y,z) = 0, where f(z,y,2) is a polynomial, called a Darboux polynomial. A
sufficient number of such polynomials taking into account their multiplicity (through the so—
called exponential factors) force the existence of first integrals.

The main aim of this paper is to study the existence of first integrals of system (1.1). The

vector field X associated to system (1.1) is

X:(y—z3+bx2+l—z)£v +(1—5x2—y)aay+u(s(x—x0)—z)aaz.
Let U C R3 be an open set. We say that the non-constant function f: R® — R is a first
integral of the vector field X on U, if F(x(t),y(t), 2(t)) = constant for all values of ¢ for which
the solution (z(t),y(t), 2(t)) of X is defined on U. Clearly f is a first integral of X on U if and
only if Xf=0onU.

The aim of this paper is to study the existence of first integrals of system (1.1) that can
be described by functions of Darboux type (see (1.5)). Note that one of the main tools for
studying the dynamics of the differential system (1.1) is to know the existence of first integrals
for some values of the parameters b, I, i1, s, 9. In general, for a given differential system it is

difficult to determine the existence or nonexistence of first integrals.
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First we study the existence of first integrals of system (1.1) given by polynomials.
A polynomial first integral f = f(x,y,z) of system (1.1) is a polynomial in the variables z,
y and z such that

of
dy

of

0
f+(175x2—y) 55

ox

The first main result is the following.

(y—a+bx? +1-2) + p(s(x —xo) —2) ;. =0. (1.2)

Theorem 1.1 System (1.1) with p # 0 has no polynomial first integrals. If = 0, then the

unique polynomial first integrals are polynomials in the variable z.

The proof of Theorem 1.1 is given in Section 2.

A rational first integral of system (1.1) is a rational function f satisfying (1.2).
Theorem 1.2 System (1.1) with p # 0 has no rational first integrals. If u = 0, then the

unique rational first integrals are rational functions in the variable z.

The proof of Theorem 1.2 is given in Section 4.

For proving Theorem 1.2 we will use the Darboux theory of integrability. The Darboux
theory of integrability in dimension 3 is based on the existence of invariant algebraic surfaces
(or Darboux polynomials). For more details see [3-5, 14]. This theory is one of the best theories
for studying the existence of first integrals for the polynomial differential systems.

A Darboux polynomial of system (1.1) is a polynomial f € C[z,y, z] \ C such that

(y — 2 + ba? —|—I—z)g£ + (1 — 522 —y)g;c + p(s(x — zg) —z)gi =Kf, (1.3)
for some polynomial
K = ag 4+ a1z 4+ asy + asz + asx® + aszy + agrz + ary® + agyz + agz?, (1.4)

called the cofactor of f. Note that f = 0 is an invariant algebraic surface for the flow of
system (1.1) and a polynomial first integral is a Darboux polynomial with zero cofactor.

Theorem 1.3 The unique irreducible Darboux polynomial with non-zero cofactor for sys-
tem (1.1) exists for s = 0 and p # 0, and in this case the Darboux polynomial is z and the
cofactor is —pu.

The proof of Theorem 1.3 is given in Section 3.

An exponential factor F(z,y, z) of system (1.1) is a function of the form F = exp(go/g1) ¢ C
with go, g1 € C[z,y, 2] coprime satisfying that
(y—a® +bx? +1— z)gi + (1 — 5a2? —y)aaj + p(s(x — x0) — z)g]: = LF,

for some polynomial L = L(x,y, z) of degree at most 2, called the cofactor of F.

Theorem 1.4 The following statements hold for system (1.1).

(i) If u # 0 system (1.1) has the exponential factors eV, e*, e with cofactors 1 — 5x% —
u(s(z—x0) —2z) and 2pz(s(x—xg) — 2), respectively; and also exponential of linear combinations
of y, z and 2.

(ii) If p = 0 system (1.1) has the exponential factors ¢¥, eF'*)/Q) where P,Q are polyno-
mials with cofactors 1 —5x% —y and 0, respectively and also exponential of linear combinations

of all the exponents in the previous exponential factors.
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The proof of Theorem 1.4 is given in Section 5.

A Darboux first integral G of system (1.1) is a first integral of the form
G:ffl"'f;‘PFfl"'F5Q7 (1.5)
where f1,..., f, are Darboux polynomials and F, ..., F; are exponential factors and A;, uy € C
forj=1,...,pand k=1,...,q.
Theorem 1.5 System (1.1) with u # 0 has no Darboux first integrals. If u = 0, then the
unique Darboux first integrals are Darboux functions in the variable z.

The proof of Theorem 1.5 is given in Section 6.

2 Polynomial First Integrals: Proof of Theorem 1.1

Let f be a polynomial first integral of system (1.1). Without loss of generality we can assume
that it has no constant term. Then f satisfies (1.2). We write f as f = Z?:o fi(z,y, z) where
each f; is a homogeneous polynomial of degree j in each variables z,y and z. We can assume
that f, # 0 with n > 0. We have that the terms of degree n + 2 in (1.2) satisfy

Afn
—a3 GJ; =0, thatis f, = fa(y,2).
Computing the terms of degree n + 1 in (1.2) we get
0 fn—1 of . Ofn-1 _ Of
—x3 T 5?7 " =0, thatis —ax 0 =5 2",
x o 5% y 0, at is T 9 5 y

Since f,, do not depend on x we must have 68-7;‘ = 0 and 61(“{;;;1 = 0, that is f,, = f.(2) and

fnfl = fnfl(y,z)'

Now computing the terms of degree n in (1.2) we obtain

afn72 8fn71 df"
. k2 _
T e be oy dz

. C . . . . dfn
Note that if 1 # 0 then p(sz — z) must be divisible by 22 which is not possible and thus C{z =0

which yields f, is a constant, in contradiction with the fact that f is a first integral. Hence

+ p(sz — 2) 0.

4 = 0. In this case proceeding as above, after simplifying by =2 and taking into account that
fn—1 does not depend on z we get that 8%y,1 =0 and 8’3‘;2 =0, that is f,_1 = f,_1(2) and
o = fn_a(y,z). Proceeding inductively we conclude that f = 37, f;(2), that is, f is a
Yy g y j=0J7J
polynomial in the variable z. This concludes the proof of Theorem 1.1.

3 Darboux Polynomials with Non-zero Cofactor: Proof of Theorem 1.3

We consider a Darboux polynomial f with non-zero cofactor K as in (1.4). We denote by N
the set of all positive integers.

We first prove three preliminary results.
Lemma 3.1 o5 =ag = a7 = ag = ag =0 and ay = m with m € NU{0}.
Proof We write f = Z?:o fj(z,y,z) where each f; is a homogeneous polynomial of degree j
in each variables z,y and z. Without loss of generality we can assume that f,, # 0 and n > 0.
We have that the terms of degree n + 2 in (1.3) satisfy

CCS afn

o = (uz? + aszy + agrz + ary? + agyz + agz?) fr. (3.1)
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Solving the differential equation in (3.1) we have

asy + gz ary® + agyz + 01922>

n =Ky ) o -
o= Kl 2o exp (= o

where K, is any function in the variables y and z. Since f,, must be a homogeneous polynomial
of degree n we must have ay = m, m € NU {0} and a5 = ag = ay = ag = ag = 0. This
completes the proof of the lemma. O
Lemma 3.2 ay =0.

Proof We write f =37 fj(x,2)y’ where each f; is a polynomial in the variables , z. The
terms of y" "1 in (1.3) satisfy

O fn
éi = a2fn-

Solving this differential equation we obtain
fn = Kn(z) eXP(CYQx)a

where K, is any function in the variable z. Since f,, must be a polynomial we must have as = 0
or K, =0. If K,, =0, then f,, =0, and consequently f = f(x, z). Then, from (1.3)

0

Y / = aoyf, thatis [ = K(z)e*",

or
for some function K of z. Since f must be a polynomial we get o = 0. This completes the
proof of the lemma. O
Lemma 3.3 a3 =0.

Proof We write f = Y7 fi(,y)2’ where each f; is a polynomial in the variables z and y.
The terms of 2"+ in (1.3) satisfy

O fn
éi = _a3fn-

Solving this differential equation we obtain

fn = Kn(y) exp(—azz),
where K, is any function in the variable y. Since f,, must be a polynomial we must have az = 0
or K, =0. If K,, =0, then f,, =0, and consequently f = f(x,y). Then, from (1.3)

8 . — Q3T
_Z&J; =azzf, thatis f=K(y)e *7,

for some function K of y. Since f must be a polynomial we get a3 = 0. This completes the

proof of the lemma. O

In view of Lemmas 3.1, 3.2 and 3.3 we have that
K =ag+aix+mz?, meNu{0} (3.2)
Now for simplicity in the computations we introduce the following weight change of variables
r=A"1X, y=Y, z2=2 t=X\T (3.3)
with A € R\ {0} and system (1.1) becomes
X' =X +0AX2+ (Y +1-2),
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Y = -5X24+\%(1-Y),
Z' = MisX — Nu(swo + 7),
where the prime denotes derivative of the variables with respect to T'.
Let g(z,y, z) be a Darboux polynomial of system (1.1) with cofactor K given in (3.2). We
use the transformation (3.3) and setting G(X,Y, Z) = \"g(A~1X,Y, Z) where n is the degree
of gand k = X2K(A™1X) = mX? + A1 X + A2ap. Then we have

dG dg
= A2 \"P2R g = kG
T dt g
Assume G = Y"1 AG;, where G; is a homogeneous polynomial in the variables X,Y, Z with
degree n —i for i = 0,...,n. Clearly g = G|\—;. By definition of a Darboux polynomial we
have

e “~ ,0G;
_ .3 2 3 o % v - 201 _ % ?
(—2°+ oA+ X (y+ 1 —2)) ZE:O)\ P + (=52 + A (1 —y)) ;:0)\ oy

n

+ (Mpsz — Np(szo + 2)) Z A 5 = (mz? + Xa1x + Nayg) Z NG,

i=0 i=0
where now we use , y, z instead of X,Y, Z. Equating the terms with A\’ for i =0,...,n+2 we
get
L[Go] — ma®’Gy =0 where L= —2* 0 _ 51 0 (3.4)
0 0 Ox Oy '
and
L[G1] — ma?Gy = —ba? 9Go _ ,usxaGO + a1 2Gy,
ox 0z
oG oG 0 G
L[G3) — ma?Gy = —ba? P ! 82’1 (1-y) 5 + p(szo + 2) P 0
4+ a12G1 + G, (35)
0G4 0G4 0G;_o 0G;_»
L[G;] — m2*G; = —ba? (‘;x — ST (';z —(1-y) (‘;y + p(sxo + 2) (‘;z

oG, _
—(y+1-2) 8?5 Sy a12Gj_1 + apGj_2,

forj=3,...,n+2.
Solving (3.4) we get

Go =2 "Go(z,5logz — 7).
In order that Gy be a homogeneous polynomial of degree n we get m = 0 and
Go = apz" with a9 € C \ {0}

Substituting Gy into the first equation of (3.5) and simplifying by  we get

oG oG
—x (:C 81:1 -5 8y1) = araoz" — psnagz" L (3.6)

Evaluating (3.6) on z = 0 and taking into account that agn # 0 we get @3 = 0 and ps = 0.
Then again from (3.6) we get that
0G1 0G1

T o -5 oy =0, thatis G; = Gi(z,5logz —y). (3.7)
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Since G; must be a polynomial of degree n — 1 we obtain G; = a12" ! where a; € C.
Substituting Gy and G; into the second equation of (3.5) taking into account that oy =
us =0, we get

_$2< Gy _ 9G

T o oy ) = ag(un + ag)z". (3.8)

We consider two different cases.

Case 1 p = 0. In this case, evaluating (3.8) on z = 0 we get oy = 0, but then K = 0 in
contradiction with the fact that f is a Darboux polynomial with non-zero cofactor.

Case 2 # 0. Since us = 0 then s = 0. Evaluating (3.8) on = = 0 we obtain ay = —un,
and proceeding as we did for G; we get Gy = a22" 2 with ay € C.

Substituting Gy, G and G5 into equation (3.5) with j = 3 and taking into account that
o) = us =0, ag = —pun, we get

oG oG
2 3 3 n—1
—x <x - -5 ) > = —pa;z" . (3.9)

Evaluating (3.9) on « = 0 and using that pu # 0 we get a1 = 0, that is G; = 0. Furthermore,
Gs = a3z 2 with as € C.

Proceeding inductively we get G; = 0 for i = 1,...,n+ 2, Gy = apz" and k = oy =
—un. Then g = apz™ and K = —un. In short, the unique irreducible Darboux polynomial of

system (1.1) is z and its cofactor is —u. This concludes the proof of Theorem 1.3.

4 Proof of Theorem 1.2

To prove Theorem 1.2 we recall two auxiliary results. The first was proved in [5] while the
second was proved in [13].

Lemma 4.1 Let f be a polynomial and f = H;Zl f;-xj its decomposition into irreducible factors
in Clz,y, z]. Then f is a Darbouz polynomial if and only if all the f; are Darboux polynomials.
Moreover, if K and K; are the cofactors of f and f;, then K = Z;=1 o K.

Lemma 4.2 The existence of a rational first integral for a polynomial differential system (1.1)
implies the existence of a polynomial first integral, or the existence of two Darboux polynomials
with the same non-zero cofactor.

The proof of Theorem 1.2 follows readily from Theorems 1.1 and 1.3 together with Lem-
mas 4.1 and 4.2.

5 Exponential Factors: Proof of Theorem 1.4

To prove Theorem 1.4 we will use the following known result whose proof and geometrical
meaning is given in [2] for the plane systems and [15] and [16] for higher dimensional systems.
Proposition 5.1 The following statements hold.

(a) If E = exp(go/g1) is an exponential factor for the polynomial system (1.1) and g1 is not
a constant polynomial, then g1 = 0 is an invariant algebraic curve.

(b) Eventually e9° can be exponential factors, coming from the multiplicity of the infinite

invariant straight line.
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The following result given in [2] and [15] characterizes the algebraic multiplicity of an
invariant algebraic surface using the number of exponential factors of system (1.1) associated
with this invariant algebraic surface.

Theorem 5.2 Given an irreducible invariant algebraic surface g1 = 0 of degree m of sys-
tem (1.1), it has algebraic multiplicity k if and only if the vector field associated to system (1.1)
has k — 1 exponential factors of the form exp(go.i/g:), where go,i 15 a polynomial of degree at
most im, and go,; and g1 are coprime fori=1,...,k—1.

In view of Theorem 5.2 if we prove that e9%/9! is not an exponential factor with degree gy <

degree g1, there are no exponential factors associated to the invariant algebraic surface g; = 0.

Proposition 5.3  System (1.1) with p # 0 has the exponential factors e¥, e*, e with cofactors
1—52% —y, u(s(x — o) — 2) and 2uz(s(x — xg) — 2), respectively and also exponential of linear
combinations of y, z and z>.
Proof System (1.1) has the irreducible Darboux polynomial z when s = 0. Then in view of
Proposition 5.1 system (1.1) can have an exponential factor of the form: either £ = exp(g)
with g € C[z,y, 2], or only when s =0, E = exp(h/z™) with m > 1 and such that h € Clz,y, 2]
is coprime with z and the degree of h is at most m.

We first prove that system (1.1) with s = 0 has no exponential factors of the form E =
exp(h/z™).

Assume that system (1.1) with s = 0 has an exponential factor of the form F = exp(h/z™)
with m > 1 such that z is coprime with h € Cz,y, z]. In view of Theorem 5.2 we can assume
that m = 1 and that h has degree at most one (note that here g3 = z has degree one). We

write h as a polynomial of degree one in the variables x,y, z as follows:
h =ag+ a1x + asy + asz. (5.1)
Clearly h satisfies

oh oh
_ .3 2 _ a2
(y—ax®+bx"+1—2) $+(1 52° —y) Ay

where L is a polynomial of degree two in the variables x,y, z. Let

oh
Ky + ph = Lz, (5.2)

L = by + bz + boy + b3z + bax?® + bsay + bexz + bry? + bgyz + bez>. (5.3)
From (5.2) and using an algebraic manipulator it is easy to check that
h=a3z and L =0.

However this is not possible since h is coprime with z. Hence this case is not possible.
In summary, if u # 0 and (1.1) has an exponential factor it must be of the form F = exp(g)
with g € Clx,y, 2] \ C. In this case, g satisfies
dg 2109 dg
1—52" — =
ox + ¥ =) Jy 0z

where L = L(x,y, 2) is some polynomial of degree two in the variables x,y and z and that we

(y— 2> +bx? +1—2z) + p((s(x — x0) — 2)) L, (5.4)

can take as in (5.3).
We write g as g = Z?:o g;j(z,y, z) where each g; is a homogeneous polynomial of degree
j in each variables z,y and z and n > 0. We have that the terms of degree n + 2 with n > 3
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in (5.4) satisfy

19)
—z3 ag; =0, thatis g, =gn(y,2).

Computing the terms of degree n 4+ 1 with n > 3 in (5.4) we get

3697},1 agnfl

- — b’ =0, that - =5".
T o T ay , at 1s T or dy

Since g, do not depend on x we must have dg,,/dy = 0 and 9g,,—1/0x = 0, that is g, = gn(2)
and In—1 = gn—l(ya Z)

Now computing the terms of degree n with n > 3 in (5.4) we obtain

dgn
dz

71_3 agn—Q . 51_2 3gn—1

Ox Oy =0

+ sz — 2)

Note that since 4 # 0 then u(sx — z) must be divisible by 22 which is not possible and thus
dg,/dz = 0 which yields g, is a constant, in contradiction with the fact that n > 3. Then, we
must have n < 2. In this case ¢ is a polynomial of degree two in its variables that we write it
as

g =ag+ a1z + apy + asz + ayx? + aszy + agrz + ary® + agyz + ag2’. (5.5)

Imposing that g satisfies (5.4) with L as in (5.3) using an algebraic manipulator such as math-

ematica we get

g = ag+ asy + azz + agz? (5.6)

and
L =ay(1 —5z% —y) + asp(s(x — x0) — 2) + 2pagz(s(x — xo) — 2). (5.7)
This concludes the proof of the proposition. O

Now we have to study the case = 0. This is the content of the following result.

Proposition 5.4 System (1.1) with ;= 0 has the exponential factors €Y, eP(2)/Q() where
P,Q are polynomials with cofactors 1 —5x% —y and 0, respectively and also exponential of linear

combinations of all the exponents in the previous exponential factors.

Proof System (1.1) has the polynomial first integral z when g = 0. Then in view of Propo-
sition 5.1 system (1.1) can have an exponential factor of the form: either E = exp(g) with
g € Clz,y, 2], or E = exp(h/z™) with m > 1 and such that h € C[z,y, 2] is coprime with z and
has degree at most m.

We first prove that system (1.1) with x4 = 0 has no exponential factors of the form F =
exp(h/z™).

Assume that system (1.1) with g = 0 has an exponential factor of the form E = exp(h/z"™)
with m > 1 such that z is coprime with h € Cz,y, 2z]. In view of Theorem 5.2 we can assume
that m = 1 and that h has degree at most one. We write h as a polynomial of degree one in

the variables z,y, z as in (5.1). Clearly, h satisfies

+ (1 = 52% —y) oh _ Lz, (5.8)

h
(y—x3+bx2+l—z)a oy

ox
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where L is a polynomial of degree two in the variables z,y, z. Setting L in (5.8) as in (5.3) and

working with an algebraic manipulator we conclude that
h=a9+as3z and L =0.

Now assume that system (1.1) with ¢ = 0 has an exponential factor of the form F = exp(g)
with g € Clz,y, z] \ C. In this case, g satisfies

(y—x3+bx2+1—z)gi+(1—5x2—y)gz:L, (5.9)
where L = L(x,y, 2) is some polynomial of degree two in the variables z,y, 2 and that we can
take as in (5.3).

We write g as g = Z?:o 9j(z,y, z) where each g; is a homogeneous polynomial of degree j

in each variables x,y and z. We have that the terms of degree n+ 2 with n > 3 in (5.9) satisfy

17)
—z3 ag; =0, thatis g, =gn(y,2).
Computing the terms of degree n + 1 with n > 3 in (5.9) we get
OGn— Agn . Ogn— Ign
—z3 n-1 — 52 g =0, thatis —=x In—1 =5 g .
ox y ox dy

Since g, do not depend on x we must have dg,, /0y = 0 and 9g,,—1/0x = 0 that is g, = gn(2)
and In—-1 = 9n71(y7 Z)
Now computing the terms of degree n with n > 3 in (5.9) we obtain

3 Ogn—2

—r _

Or oy

Now proceeding as above, after simplifying by 22 and taking into account that g,,_; does not

depend on z, we get that dg,—1/0y = 0 and 9g,,—2/0x = 0, that is g,—1 = gn—1(2) and
In—2 = gn—2(y, z). Proceeding inductively, we get

g =G(2) + a2z + asy + asz + ag = G(2) + asy,

where G and G are polynomials in the variable z and a3 € C. Moreover, it follows from (5.9)
that L = a3(1 — 522 — y). This completes the proof of the proposition for n > 3.

If n < 3 then g can be written as in (5.5). Solving (5.9) with g and L as in (5.3) we get g
as in (5.6) and L = az(1 — 522 —y). So the proposition is proved. O

6 Proof of Theorem 1.5

In order to proof Theorem 1.5 we need the following result whose proof is given in [5] and [15].

Theorem 6.1 Suppose that system (1.1) admits p Darbouz polynomials and with cofactors
K; and q exponential factors F; with cofactors L;. Then there exists A;, pu; € C not all zero
such that

q q
Z/\sz + Z,uiLi =0
i=1 i=1

if and only if the function G given in (1.5) (called of Darboux type) is a first integral of sys-
tem (1.1).
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In view of Theorem 6.1 to characterize the Darboux first integrals we need to compute the

Darboux polynomials and the exponential factors. We consider three cases.

Case 1  ps # 0. In this case, using Theorems 1.3 and 1.4 if G is a Darboux first integral of
system (1.1) it must be of the form (1.5) and the cofactors must satisfy

(1 =522 = y) + pop(s(z — o) — 2) + 2ups2(s(x — x9) — 2) = 0.

Solving this system we have pu; = po = pusz = 0, which yields that G is a constant, that is, there

are no Darboux first integrals.

Case 2 # 0 and s = 0. In this case, using Theorems 1.3 and 1.4 if G is a Darboux first
integral of system (1.1) it must be of the form (1.5) and the cofactors must satisfy

pn(1 = 52° — y) — popz — 2ppsz® — Ay = 0.

Solving this system we have p1 = po = pug = Ay = 0, which yields that G is a constant, that is,

there are no Darboux first integrals.

Case 3 = 0. In this case, using Theorems 1.3 and 1.4 if G is a Darboux first integral of
system (1.1) it must be of the form (1.5) and the cofactors must satisfy

(1= 52% — y) + p120 = 0.

Solving this system we have p; = 0 which yields that G is a function in the variable z. This

concludes the proof of the theorem.

7 Summary and Conclusion

We have proved that the unique invariant algebraic surface of the Hindmarsh—Rose burster
differential system is z = 0 when the parameter u = 0, or s = 0 and p # 0 with cofactors
zero and non-zero, respectively (see Theorems 1.1 and 1.3). We also have shown that the
Hindmarsh-Rose burster differential system has a Darboux first integral when the parameter
i =0 (see Theorem 1.5).
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