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Abstract We introduce the notion of property (RD) for a locally compact, Hausdorff and r-discrete

groupoid G, and show that the set Sl
2(G) of rapidly decreasing functions on G with respect to a

continuous length function l is a dense spectral invariant and Fréchet ∗-subalgebra of the reduced

groupoid C∗-algebra C∗
r (G) of G when G has property (RD) with respect to l, so the K-theories

of both algebras are isomorphic under inclusion. Each normalized cocycle c on G, together with an

invariant probability measure on the unit space G0 of G, gives rise to a canonical map τc on the algebra

Cc(G) of complex continuous functions with compact support on G. We show that the map τc can be

extended continuously to Sl
2(G) and plays the same role as an n-trace on C∗

r (G) when G has property

(RD) and c is of polynomial growth with respect to l, so the Connes’ fundament paring between the

K-theory and the cyclic cohomology gives us the K-theory invariants on C∗
r (G).

Keywords Groupoid C*-algebra, property (RD), spectral invariance

MR(2010) Subject Classification 46L05, 46L80, 46L87

1 Introduction

The fundamental pairing between theK-theory and the cyclic cohomology of a dense subalgebra
A of a C∗-algebra A plays an important role in the theory of non-commutative geometry of
Connes. In order to use the pairing, one needs to find suitable dense subalgebra A such that
the K-theory invariants on A given by the pairing can be extended to ones on A. The dense
subalgebra A, stable under holomorphic functional calculus in A, is the simplest situation,
because, in this case, the inclusion A ⊂ A induces isomorphisms from K∗(A) onto K∗(A) ([3]).
When one considers the reduced group C∗-algebra C∗

r (G) of a countable group G, the space
H∞

l (G) of rapidly decreasing functions on G with respect to a length function l is stable under
holomorphic functional calculus in C∗

r (G) if G has property (RD) in the sense that H∞
l (G) is

contained in C∗
r (G) [11, 13].

The property of rapid-decay for countable groups was established for free groups by Haage-
rup in [8] and investigated in detail by Jolissaint in [12]. The latter proved that both finitely
generated groups of polynomial growth and discrete cocompact subgroups of the group of all
isometries of any hyperbolic space have property (RD). The extension to Gromov’s hyperbolic
groups is due to de la Harpe [9]. These results were used in the work of Connes–Moscovici on
the Novikov conjecture [2] and the work of Lafforgue on the Baum–Connes conjecture [15].
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Spectral invariance and the stability under holomorphic functional calculus of dense sub-
algebras in their ambient Banach algebras are closely related. From [21], these two notions
are equivalent for dense and Fréchet ∗-subalgebras of C∗-algebras. In [14], Ji and Schweitzer
proved that all rapid-decay locally compact groups are unimodular and the set of rapid-decay
functions on these groups forms dense, spectral invariant and Fréchet ∗-subalgebras of reduced
group C∗-algebras. Recently, Chen and Wei studied the property (MRD) of discrete metric
spaces in [7]. They computed spectral invariant subalgebras of uniform Roe algebras on these
spaces and characterized the polynomial growth of countable groups using the spectral invari-
ance of the space of all l2-Schwartz functions in the reduced crossed product for commutative
C∗-algebras with these group actions. For the theory and applications on property (RD) and
spectral invariance, we can refer to [5, 6, 10–14, 16, 21].

As generalizations of discrete groups and topological spaces, r-discrete groupoids, arising as
model for structures like leaf spaces of foliations and orbit spaces of actions by discrete groups,
figure prominently in the theory of non-commutative geometry. The reduced groupoid C∗-
algebras of these groupoids can be regarded as spaces of continuous functions on them. This
property provides us with the possibility to study the property of rapid-decay for r-discrete
groupoids.

Given a continuous length function l on an r-discrete groupoid G, we consider the set Sl
2(G)

of all complex continuous functions on G and rapidly decay on each fiber of G in the l2-sense
with respect to l. When Sl

2(G) is contained in the reduced groupoid C∗-algebra C∗
r (G) of

G, we call G has property (RD). We can show that, in this situation, Sl
2(G) is stable under

holomorphic functional calculus in C∗
r (G), hence they have isomorphic K-theories.

Each normalized cocycle c on a countable group Γ gives rise to a canonical cyclic cocycle τc
on the group algebra CΓ [3]. In general, τc cannot be extended as an n-trace on the reduced
group C∗-algebra of Γ, but in [13], Jolissaint proved that, with some additional hypotheses, τc
plays the same role as an n-trace. Jolissaint’s technique on the estimation for the norm of τc was
used in [2]. For an r-discrete groupoid G with a continuous length function l and a normalized
cocycle c, we can define the canonical map τu

c on each range fiber Gu of G, as defined for the
group case. Under the hypothesis of property (RD) on G and polynomial growth on c with
respect to l, the integral of τu

c with respect to an invariant probability measure on the unit
space G0 of G defines a map τc. This map can play the same role as an n-trace on C∗

r (G),
which is analogous to Jolissaint’s result.

The paper is organized as follows. Section 2 contains some definitions and results on spec-
tral invariance and groupoids. Section 3 contains the notion of property (RD) for r-discrete
groupoids. In addition, we obtain that each r-discrete groupoid being of polynomial growth has
property (RD). As an application, we can use the groupoid language to rewrite a result in [7],
which states that a countable group Γ is of polynomial growth with respect to a proper length
function if and only if the transformation group of Γ on its Stone–Čech compactification space
has property (RD) with respect to a canonical length function. In Section 4, we show that,
if an r-discrete groupoid G has property (RD) with respect to a continuous length function l,
then the space Sl

2(G) of rapidly decreasing functions on G is a spectral invariant and Fréchet
∗-subalgebra of C∗

r (G). Section 5 contains two examples of spectral invariant subalgebras of



528 Hou C. J.

groupoid C∗-algebras arising from two expansive dynamical systems, a subshift of finite type
and a solenoid. In Section 6, we associate to a normalized cocycle c on an r-discrete groupoid
G a cyclic cocycle τc on Sl

2(G), which plays the same role as an n-trace on C∗
r (G), when G has

property (RD) and c is of polynomial growth with respect to a continuous length function l, so
the fundament paring of Connes gives us the K-theory invariants on C∗

r (G).

2 Preliminaries

We review some basic terminology and results concerning spectral invariance of subalgebras
of Banach algebras. Let A be a Banach algebra and A a subalgebra of A, and let ˜A and ˜A
be obtained by adjoining the same unit. Recall that A is stable under holomorphic functional
calculus if, for each a ∈ A and each function f holomorphic in a neighborhood of the spectrum
of a in ˜A, one has f(a) ∈ ˜A. If A is a dense subalgebra of A, stable under holomorphic functional
calculus, then the inclusion map ι : A ↪→ A induces isomorphisms on their K-theories [3]. We
say that A is spectral invariant in A if the invertible elements of ˜A are precisely those elements
of ˜A which are invertible in ˜A. Note that A is spectral invariant in A if and only if for every
a ∈ A, the spectrum of a is the same in ˜A and in ˜A.

By a Fréchet algebra, we shall mean a Fréchet space with an algebra structure for which
multiplication is jointly continuous. We say that A is a Fréchet subalgebra of A if A is a Fréchet
algebra, and the inclusion map ι : A ↪→ A is a continuous, injective algebraic homomorphism.
It follows from [21] that if A is a dense and Fréchet subalgebra of a C∗-algebra A, then A is
spectral invariant in A if and only if it is stable under holomorphic functional calculus in A.

A groupoid is a set G, together with a subset G2 ⊆ G×G, a product map (x, y) → xy from
G2 to G, and an inverse map x→ x−1 from G onto G such that

(i) (x−1)−1 = x;

(ii) if (x, y), (y, z) ∈ G2, then (xy, z), (x, yz) ∈ G2 and (xy)z = x(yz);

(iii) for each x ∈ G, (x, x−1) ∈ G2, and if (x, y) ∈ G2, then x−1(xy) = y and (xy)y−1 = x.

The maps r and d, defined by r(x) = xx−1 and d(x) = x−1x, are called the range map and
the source map, respectively. They have a common image called the unit space of G, which is
denoted by G0. It is very useful to note that a pair (x, y) is in G2 only when d(x) = r(y). For
u ∈ G0, the fibers of r and d are denoted by Gu = r−1({u}) and Gu = d−1({u}), respectively.

In this paper, we call a groupoid G to be a topological groupoid, if it is endowed with a
locally compact and Hausdorff topology compatible with the groupoid structure: the inverse
map x → x−1 and the product map (x, y) → xy are continuous on their respective domain G

and G2, where G2 has the induced topology from G×G. For basic of groupoid theory, we refer
to [17, 19].

Let G be a topological groupoid. For S ⊆ G, let rS and dS respectively be the restrictions of
r and d to S. If the family, Gop, of open subsets of G such that rS and dS are homeomorphisms
onto open subsets of G, is a basis for the topology of G, then G is said to be r-discrete. In this
situation, the unit space G0 is open and closed in G, and all fibres Gu and Gu are countable.
Moreover, the counting measure is a Haar system of G [17, 19].

For an r-discrete groupoid G, let Cc(G) be the space of continuous complex functions
with compact support on G. Then, it is a normed ∗-algebra, under the following convolution,
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involution and the norm ‖ · ‖I : for f, g ∈ Cc(G) and x ∈ G,

f ∗ g(x) =
∑

yz=x

f(y)g(z), f∗(x) = f(x−1) and ‖f‖I = max{‖f‖I, r, ‖f‖I, d},

where ‖f‖I, r = supu∈G0

∑

x∈Gu |f(x)|, ‖f‖I, d = supu∈G0

∑

x∈Gu
|f(x)|.

For each u ∈ G0, let Indu : Cc(G) → B(l2(Gu)) be the induced representation of Cc(G) on
the Hilbert space l2(Gu):

Indu(f)(ξ)(x) =
∑

y∈Gu

f(xy)ξ(y−1)

for f ∈ Cc(G), ξ ∈ l2(Gu) and x ∈ Gu. For each f ∈ Cc(G), defines

‖f‖red = sup
u∈G0

‖Indu(f)‖.

Then ‖ · ‖red is a C∗-norm on Cc(G). The completion of Cc(G) under the norm is called the
reduced groupoid C∗-algebra of G, denoted by C∗

r (G). From the following result, the elements
of C∗

r (G) can be viewed as continuous functions on G.

Proposition 2.1 ([19]) Let G be an r-discrete groupoid. Then
(i) ‖f‖∞ ≤ ‖f‖II ≤ ‖f‖red ≤ ‖f‖I for each f ∈ Cc(G), where ‖f‖∞ is the supremum norm

of f and

‖f‖II = max
{

sup
u∈G0

(

∑

x∈Gu

|f(x)|2
)

1
2

, sup
u∈G0

(

∑

x∈Gu

|f(x)|2
)

1
2
}

;

(ii) The injection j0 of Cc(G) into C0(G), the Banach space of continuous functions on G

vanishing at infinity, extends to a norm decreasing and one-to-one linear map J0 of C∗
r (G) into

C0(G); Moreover, each a ∈ C∗
r (G) satisfies ‖J0(a)‖∞ ≤ ‖a‖red and ‖|a|2‖I ≤ ‖a‖2

red.
(iii) Under the identification J0, the operations in C∗

r (G) may be expressed in the same as
in the ∗-algebra Cc(G) :

a∗(x) = a(x−1), a ∗ b(x) =
∑

y∈Gd(x)

a(xy)b(y−1)

for a, b ∈ C∗
r (G) and x ∈ G.

Example 2.2 (a) Discrete groups. A countable discrete group G is an r-discrete groupoid
with G2 = G × G and G0 = {e} (the unit element of G). The reduced group C∗-algebra is
isomorphic to the reduced groupoid C∗-algebra.

(b) Topology spaces. A locally compact Hausdorff space X is an r-discrete, groupoid by
letting X2 = {(x, x) : x ∈ X} and defining the operations by xx = x and x−1 = x for each
x ∈ X. The groupoid C∗-algebra is isomorphic to C0(X).

(c) Transformation groups. Let Γ be a discrete group acting on the right on a locally compact
and Hausdorff space X. Then G = X × Γ, with the product topology, the multiplication
(x, g)(xg, h) = (x, gh) and the inverse (x, g)−1 = (xg, g−1), is an r-discrete groupoid. Here
G0 = {(x, e) : x ∈ X} ∼= X, r(x, g) = (x, e) and d(x, g) = (xg, e) for (x, g) ∈ G. The groupoid
C∗-algebra C∗

r (G) is isomorphic to the reduced crossed product C0(X)�α,r Γ, where the action
α of Γ on C0(X) is given by αg(f)(x) = f(xg) for g ∈ Γ, f ∈ C0(X) and x ∈ X.
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3 Polynomial Growth and Rapid Decay

Let G be an r-discrete groupoid. A nonnegative function l on G is called a length function, if
it satisfies that l(xy) ≤ l(x) + l(y), l(z) = l(z−1) and l(u) = 0 for every (x, y) ∈ G2, z ∈ G and
u ∈ G0. Moreover, if l is bounded on every compact subset of G, then it is said to be locally
bounded. For two length functions l1 and l2 on G, we say that l1 dominates l2 if there exist
c > 0 and k ≥ 1 such that l2(x) ≤ c(1 + l1(x))k for every x ∈ G. We say that l1 is equivalent
to l2 if, furthermore, l2 dominates l1.

We say that G is compactly generated, if it admits a symmetric compact subset K (i.e.,
K = K−1) such that every element in G can be written as a finite product of elements in K.
Each generating set K gives us a word length function lK on G by

lK(u) = 0, and lK(x) = min{n : x = x1x2 · · ·xn, xi ∈ K for i = 1, 2, . . . , n}
for each u ∈ G0 and x ∈ G, x /∈ G0. If l is an arbitrary locally bounded length function on G

and let mK = sup{l(x) : x ∈ K}, then, for each x ∈ G with x /∈ G0, we have x = x1x2 · · ·xn

for xi ∈ K, i = 1, . . . , n, n = lK(x), and l(x) ≤ ∑n
i=1 l(xi) ≤ mK lK(x). Hence every locally

bounded length function on G can be controlled by any word length function lK , so that locally
bounded word length functions on a compactly generated groupoid are all comparable to each
other. In the example of a transformation group G = X × Γ, if Γ has a finite symmetric
generating set S and X is compact, then K = X ×S is a generating set of G. The word length
function lK on G is determined by the word length function lS on Γ, i.e., lK(x, g) = lS(g) for
every (x, g) ∈ G.

Recall that a discrete group Γ is of polynomial growth with respect to a length function
l if there exists a polynomial P (t) such that the cardinality of the set of all elements in Γ
with length no more than m is bounded by P (m). For an r-discrete groupoid G with a length
function l, we define

Bl
Gu(m) = {x ∈ Gu| l(x) ≤ m}, Bl

Gu
(m) = {x ∈ Gu| l(x) ≤ m}

for u ∈ G0 andm ≥ 0. If we denote by #S the cardinality of a set S, then #Bl
Gu(m) =# Bl

Gu
(m)

for each m and u.

Definition 3.1 We say that G is of polynomial growth with respect to a length function l on
G, if there exist constants c ≥ 1, r ≥ 1 such that, for every m ≥ 0,

sup
u∈G0

#Bl
Gu(m) ≤ c(1 +m)r.

We say that G is of polynomial growth if it is of polynomial growth with respect to some
length function l on G.

In the rest of this section, we let G be an r-discrete groupoid and l a nonzero locally bounded
length function on G. For a complex function ϕ on G and for p = 0, 1, 2, . . ., we define

‖ϕ‖2,p,d,l = sup
u∈G0

[

∑

x∈Gu

|ϕ(x)|2(1 + l(x))2p

]
1
2

,

‖ϕ‖2,p,r,l = sup
u∈G0

[

∑

x∈Gu

|ϕ(x)|2(1 + l(x))2p

]
1
2

,



Spectral Invariant Subalgebras of C∗-algebras 531

‖ϕ‖2,p,l = max{‖ϕ‖2,p,d,l, ‖ϕ‖2,p,r,l}.

Clearly, for each ϕ ∈ Cc(G) and each p ≥ 0, ‖ϕ‖∞ ≤ ‖ϕ‖2,p,l, and ‖ · ‖2,p,l defines a norm
on Cc(G). Let Sl

2(G) be the completion of Cc(G) under the local convex topology τ generated
by the sequence of norms, {‖ · ‖2,p,l : p = 0, 1, 2, . . . , }, and ‖ · ‖∞. Moreover, if let L2,p,l(G)
be the completion of Cc(G) under the norm ‖ · ‖2,p,l, then Sl

2(G) =
⋂∞

p=0 L2,p,l(G), so it is a
Fréchet space under the topology τ . We call Sl

2(G) the space of rapidly decreasing functions
on G with respect to l.

Definition 3.2 We say that G has property (RD) with respect to a length function l, if there
exist a c > 0 and a positive integer p such that ‖f‖red ≤ c‖f‖2, p, l for each f ∈ Cc(G).

We simply say that G has property (RD) if it has property (RD) with respect to some locally
bounded length function on G.

Note that, for two locally bounded length functions l1 and l2 on G such that l1 dominates
l2, if G has property (RD) with respect to l2, then it has property (RD) with respect to l1.

By Proposition 2.1, if we identify J0(a) with a for each a ∈ C∗
r (G), then both C∗

r (G)
and Sl

2(G) are subspaces of C0(G). Using the closed graph theorem, we have the following
description for property (RD).

Lemma 3.3 G has property (RD) with respect to l if and only if Sl
2(G) is contained in C∗

r (G).

Proof If G has property (RD) with respect to l, then there exist c > 0 and a positive integer p
such that ‖f‖red ≤ c‖f‖2,p,l for each f ∈ Cc(G). For each ϕ ∈ Sl

2(G), we can choose a sequence
{ϕn} in Cc(G) converging to ϕ under the norms, ‖ · ‖2,p,l and ‖ · ‖∞. Hence, {ϕn}n is a Cauchy
sequence under the reduced norm ‖·‖red, so it converges to a in C∗

r (G). Using the identification
J0, we have {ϕn}n converges to a in C0(G). Hence ϕ = a ∈ C∗

r (G).

Suppose Sl
2(G) ⊆ C∗

r (G). We claim that the inclusion ι from Sl
2(G) with the Fŕechet

topology into C∗
r (G) with the reduced norm is a closed map. In fact, for a sequence {ϕn}n in

Sl
2(G), assume it converges to ϕ under the Fŕechet topology and {ι(ϕn)}n converges to a in
C∗

r (G) under the reduced norm ‖ · ‖red. By (i) and (ii) in Proposition 2.1, we have {ϕn}n in
C0(G) converges to a under the norm ‖ · ‖∞, so a = ι(ϕ). Hence ι is closed. By the closed
graph theorem, ι is continuous. Then there exist c > 0 and a positive integer p such that
‖f‖red ≤ c‖f‖2,p,l for every f ∈ Cc(G). Hence G has property (RD) with respect to l. �

Proposition 3.4 Assume G has property (RD) with respect to a continuous length function
l. Then

(i) there exist c > 0 and a positive integer q such that ‖f‖red ≤ c‖f‖2,q,l for each f ∈ Sl
2(G);

(ii) under the following convolution and involution, Sl
2(G) is a ∗-algebra :

f ∗ g(x) =
∑

y∈Gd(x)

f(xy)g(y−1) and f∗(x) = f(x−1)

for all f, g ∈ Sl
2(G) and x ∈ G. Moreover, it is a dense and Fréchet ∗-subalgebra of C∗

r (G).

Proof (i) It follows from the continuity of the inclusion ι from Sl
2(G) into C∗

r (G).

(ii) From Lemma 3.1, Sl
2(G) is contained in C∗

r (G). For every f, g ∈ Sl
2(G), by (iii) of

Proposition 2.1, we have f ∗g and f∗ are well defined and belong to C∗
r (G). Moreover, (f ∗g)∗ =
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g∗ ∗ f∗, ‖f∗‖2,p,d,l = ‖f‖2,p,r,l and ‖f∗‖2,p,r,l = ‖f‖2,p,d,l, so ‖f∗‖2,p,l = ‖f‖2,p,l for each p ≥ 0.
Hence f∗ ∈ Sl

2(G).
Let f and g be in Sl

2(G). For u ∈ G0, if let gu be the restriction of g to Gu, then gu ∈ l2(Gu)
and f ∗ g|Gu

= Indu(f)gu ∈ l2(Gu), so
∑

x∈Gu
|f ∗ g(x)|2 = ‖Indu(f)gu‖2 ≤ ‖f‖red‖g‖2,0,d,l.

Hence
‖f ∗ g‖2,0,d,l ≤ ‖f‖red‖‖g‖2,0,d,l. (1)

For ϕ ∈ Sl
2(G) and q ≥ 0, we define ϕq(x) = ϕ(x)(1 + l(x))q for x ∈ G. Then ϕq ∈ Sl

2(G),
‖ϕq‖2,p,d,l = ‖ϕ‖2,p+q,d,l, ‖ϕq‖2,p,r,l = ‖ϕ‖2,p+q,r,l, so ‖ϕq‖2,p,l = ‖ϕ‖2,p+q,l for each p ≥ 0.
Since (1 + l(x))p ≤ (1 + l(xy))p(1 + l(y−1))p for all (x, y) ∈ G2 and p ≥ 0, one can check that
‖f ∗ g‖2,p,d,l ≤ ‖fp ∗ gp‖2,0,d,l and ‖f ∗ g‖2,p,r,l ≤ ‖fp ∗ gp‖2,0,r,l.

By (i), there exist c > 0 and a positive integer q such that ‖ϕ‖red ≤ c‖ϕ‖2,q,l for each
ϕ ∈ Sl

2(G). Hence, for each p ≥ 0, it follows from (1) that

‖f ∗ g‖2,p,d,l ≤ ‖fp ∗ gp‖2,0,d,l ≤ ‖fp‖red‖gp‖2,0,d,l ≤ c‖fp‖2,q,l‖gp‖2,0,d,l

≤ c‖f‖2,p+q,l‖g‖2,p,l ≤ c‖f‖2,p+q,l‖g‖2,p+q,l.

Noting that (f ∗ g)∗ = g∗ ∗ f∗, we have ‖f ∗ g‖2,p,r,l = ‖(f ∗ g)∗‖2,p,d,l = ‖g∗ ∗ f∗‖2,p,d,l ≤
c‖g‖2,p+q,l‖f‖2,p+q,l for each p. Consequently,

‖f ∗ g‖2,p,l ≤ c‖f‖2,p+q,l‖g‖2,p+q,l for f, g ∈ Sl
2(G).

Hence f ∗ g ∈ Sl
2(G). It follows from (i) that Sl

2(G) is a Fréchet ∗-algebra and dense in C∗
r (G)

as a ∗-subalgebra. �

Proposition 3.5 If G is of polynomial growth with respect to a locally bounded length function
l, then G has property (RD) with respect to l.

Proof Since G is of polynomial growth with respect to l, there exist a constant c ≥ 1 and an
integer r ≥ 1 such that, for every m ≥ 0, supu∈G0

#Bl
Gu(m) ≤ c(1 +m)r.

Let p = 3 + r. Then, for each u ∈ G0, we have
∑

x∈Gu

[1 + l(x)]−2p =
∞
∑

k=0

∑

x∈Gu,k≤l(x)<k+1

[1 + l(x)]−2p

≤
∞
∑

k=0

#Bl
Gu(k + 1) · (1 + k)−2p

≤ c
∞
∑

k=0

(2 + k)r(1 + k)−2p

≤ 2rc
∞
∑

k=0

(1 + k)−6 = c′,

where c′ is a positive constant only depending on l. Hence, for each f ∈ Cc(G) and u ∈ G0, we
have

∑

x∈Gu

|f(x)| =
∑

x∈Gu

(|f(x)|[1 + l(x)]p) · [1 + l(x)]−p

≤
(

∑

x∈Gu

(|f(x)|2[1 + l(x)]2p

)
1
2

·
(

∑

x∈Gu

[1 + l(x)]−2p

)
1
2
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≤
√
c′‖f‖2,p,r,l,

and
∑

x∈Gu
|f(x)| =

∑

x∈Gu |f∗(x)| ≤ √
c′‖f∗‖2,p,r,l =

√
c′‖f‖2,p,d,l. We have established that

‖f‖I ≤ √
c′‖f‖2,p,l for each f ∈ Cc(G). By Proposition 2.1, ‖f‖red ≤ ‖f‖I , thus ‖f‖red ≤√

c′‖f‖2,p,l for each f ∈ Cc(G). Hence G has property (RD) with respect to l. �
Next we consider the property (RD) for transformation groups. Let G = X × Γ be a

transformation group, as defined in Example 2.2. For a length function L on Γ, we can get a
length function l on G by l(x, g) = L(g) for (x, g) ∈ G. Note that, for each m ≥ 0 and each x ∈
X, we have {g ∈ Γ : L(g) ≤ m} = {g ∈ Γ : l(x, g) ≤ m}, so #Bl

Gx(m) =# {g ∈ G : L(g) ≤ m}.
Hence G is of polynomial growth with respect to l if Γ is of polynomial growth with respect to
L.

Let βΓ be the Stone–Čech compactification of Γ, which consists of all nonzero multiplicative
linear functionals on the abelian C∗-algebra l∞(Γ). Under the w∗-topology, βΓ is a compact
Hausdorff space. For each g ∈ Γ, we let ĝ be the functional in βΓ defined by ĝ(f) = f(g) for
f ∈ l∞(Γ). If we identify each ĝ with g, then Γ is a dense subset of βΓ. Consider the action
of Γ on βΓ given by the right multiplication of Γ: ĝh = ̂gh for g, h ∈ Γ. Let G = βΓ × Γ
be the transformation group. Then the reduced groupoid C∗-algebra C∗

r (G) is isomorphic to
the reduced crossed product C(βΓ) �α,r Γ, where the action α of Γ on C(βΓ) is given by
αg(f)(x) = f(xg) for g ∈ Γ, f ∈ C(βΓ) and x ∈ βΓ.

Recall that the Schwartz function space SL
2 (Γ, C(βΓ)) of the action α of Γ on C(βΓ) with

respect to L is the set of all functions ϕ : Γ → C(βΓ) satisfying

‖ϕ‖n =
∥

∥

∥

∥

∑

g∈Γ

αg−1(ϕ(g)∗ϕ(g))(1 + l(g))2n

∥

∥

∥

∥

C(βΓ)

<∞

for all n = 0, 1, . . .. Then SL
2 (Γ, C(βΓ)) becomes a Fréchet space with the topology generate

by the seminorms ‖ · ‖n, n = 0, 1, . . .. By Theorem 3.4 in [7], if SL
2 (Γ, C(βΓ)) is contained in

C(βΓ) �α,r Γ, then Γ is of polynomial growth with respect to L. In view of property (RD) for
groupoids, we can rewrite a result in [7].

Theorem 3.6 ([7]) Let Γ be a countable discrete group with a proper length function L. Then
Γ is of polynomial growth with respect to L if and only if G = βΓ × Γ has property (RD) with
respect to the length function l, defined by l(x, g) = L(g) for each (x, g) ∈ G.

Proof Suppose Γ is of polynomial growth with respect to L. We have shown that G is of
polynomial growth with respect to l, hence has property (RD).

Suppose G has property (RD) with respect to l. Let Cc(Γ, C(βΓ)) be the set of all functions
with finite support from Γ into C(βΓ). Then it is a dense subalgebra of C(βΓ) �α,r Γ under
the reduced crossed norm. Let Π : Cc(G) → Cc(Γ, C(βΓ)) be defined by Π(ϕ)(g)(x) = ϕ(x, g)
for ϕ ∈ Cc(G), g ∈ Γ and x ∈ βΓ. Then Π can be extended to a ∗-isomorphism, still denoted
by Π, from C∗

r (G) onto C(βΓ) �α,r Γ. We show that the isomorphism Π maps Sl
2(G) onto

SL
2 (Γ, C(βΓ)), and is an isomorphism as Férchet algebras.

In fact, for each ϕ ∈ Sl
2(G) and each n = 0, 1, . . ., we have

‖Π(ϕ)‖n = sup
x∈βΓ

∣

∣

∣

∣

∑

g∈Γ

αg−1(Π(ϕ)(g)∗Π(ϕ)(g))(x)(1 + L(g))2n

∣

∣

∣

∣
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= sup
x∈βΓ

∑

g∈Γ

|ϕ(xg−1, g)|2(1 + l(xg−1, g))2n

= ‖ϕ‖2
2,n,d,l

and

‖Π(ϕ∗)‖n = sup
x∈βΓ

∑

g∈Γ

|Π(ϕ∗)(g)(xg−1)|2(1 + L(g))2n|

= sup
x∈βΓ

∑

g∈Γ

|ϕ∗(xg−1, g)|2(1 + l(xg−1, g))2n

= sup
x∈βΓ

∑

g∈Γ

|ϕ(x, g)|2(1 + (x, g))2n

= ‖ϕ‖2
2,n,r,l.

On the other hand, for each ψ ∈ SL
2 (Γ, C(βΓ)), define ϕ(x, g) = ψ(g)(x) for (x, g) ∈ βΓ×Γ.

Then ϕ is continuous on βΓ×Γ, ‖ϕ‖2,n,d,l = ‖ψ‖n and ‖ϕ‖2,n,r,l = ‖ψ∗‖n for each n = 0, 1, . . .,
and Π(ϕ) = ψ. Hence, the restriction Π|Sl

2(G) of Π to Sl
2(G) is an algebraic isomorphism from

Sl
2(G) onto SL

2 (Γ, C(βΓ)). Since G has property (RD) with respect to l, we have Sl
2(G) is

contained in C∗
r (G), so SL

2 (Γ, C(βΓ)) is contained in C(βΓ)�α,r Γ. It follows from Theorem 3.4
in [7] that Γ has polynomial growth with respect to L. �

4 Spectral Invariance

In this section, we show that the space Sl
2(G) of rapidly decreasing functions on an r-discrete

groupoid G with respect to a continuous length function l is spectral invariant if G has property
(RD) with respect to l. We first recall a Connes’ technical lemma on spectral invariance [11].

Lemma 4.1 ([11]) Let B be a C∗-algebra, and A a C∗-subalgebra of B. For a closed derivation
δ : Dom(δ) −→ B, let A0 =

⋂∞
k=0 Dom(δk) ∩ A, where Dom(δk), contained in B, denotes the

domain of δk for each k. Then A0 is a Fréchet algebra under the topology generated by the
family of semi-norms, {‖ · ‖k : k = 0, 1, 2, . . .}, where ‖A‖k = ‖δk(A)‖ for each A ∈ A0 and
each k. Moreover, if A0 is dense in A, then it is a spectral invariant subalgebra of A, and the
inclusion A0 ⊆ A induces an isomorphism on their K-theories.

Borrowing Ji’s idea in [11], we have the following result.

Theorem 4.2 Let G be an r-discrete groupoid. If G has property (RD) with respect to a
continuous length function l on G, then Sl

2(G) is a spectral invariant *-subalgebra of C∗
r (G).

Moreover, the inclusion Sl
2(G) ⊆ C∗

r (G) induces an isomorphism on their K-theories.

Proof Let u ∈ G0 be fixed. Let Indu : C∗
r (G) → B(l2(Gu)) be the induced representation

by Indu(f)(ξ)(x) =
∑

y∈Gu f(xy)ξ(y−1) for f ∈ C∗
r (G), ξ ∈ l2(Gu), x ∈ Gu. Let Tu be the

multiplicative mapping on l2(Gu), given by the length function l: Tu(ξ)(x) = l(x)ξ(x) for
ξ ∈ l2(Gu) and x ∈ Gu. Then the mapping δu, defined by δu(A) = i(TuA − ATu), is a closed
∗-derivation on B(l2(Gu)).

For each f ∈ Cc(G), ξ ∈ l2(Gu) and x ∈ Gu, we have

δu(Indu(f))(ξ)(x) = i
∑

y∈Gu

f(xy)ξ(y−1)(l(x) − l(y)).
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Moreover, by induction, we can check that

δk
u(Indu(f))(ξ)(x) = ik

∑

y∈Gu

f(xy)ξ(y−1)(l(x) − l(y))k for k = 1, 2, . . ..

Hence, for each f ∈ Cc(G) and ξ ∈ l2(Gu), we have

‖δk
u(Indu(f))ξ‖2 =

∑

x∈Gu

|δk
u(Indu(f))ξ)(x)|2

=
∑

x∈Gu

∣

∣

∣

∣

∑

y∈Gu

f(xy)ξ(y−1)(l(x) − l(y))k

∣

∣

∣

∣

2

≤
∑

x∈Gu

(

∑

y∈Gu

|f(xy)l(xy)k| · |ξ(y−1)|
)2

≤
∑

x∈Gu

(

∑

y∈Gu

f (k)(xy) · |ξ(y−1)|
)2

≤ ‖Indu(f (k))(|ξ|)‖2

≤ ‖Indu(f (k))‖2‖ξ‖2,

where f (k)(x) = |f(x)|(1 + l(x))k, so

‖δk
u(Indu(f))‖ ≤ ‖Indu(f (k))‖ ≤ ‖f (k)‖red. (2)

Let Su(G) = (
⋂∞

k=0 Dom(δk
u)) ∩ Indu(C∗

r (G)). It follows from Lemma 4.1 that Su(G) is
a Fréchet algebra under the topology generated by the family of semi-norms, {‖ · ‖k : k =
0, 1, 2, . . .}, where ‖A‖k = ‖δk

u(A)‖ for each A ∈ Su(G) and k. By (2), Su(G) contains
Indu(Cc(G)), so it is spectral invariant in Indu(C∗

r (G)).
For f ∈ Sl

2(G), by Proposition 3.1 (i), we can choose a sequence {fn} in Cc(G) converging
to f under each norm ‖ · ‖2,p,l (p ≥ 0), as well as under the reduced norm ‖ · ‖red. For every
n,m, k ≥ 1, by (2), we have ‖δk

u(Indu(fn)) − δk
u(Indu(fm))‖ ≤ ‖f (k)

n − f
(k)
m ‖red ≤ c‖f (k)

n −
f

(k)
m ‖2,q,l ≤ c‖fn − fm||2,q+k.l, where c and q are constants independent of u, m and n, as in

Proposition 3.1. Hence there exists T ∈ B(l2(Gu)) such that δk
u(Indu(fn)) → T in B(l2(Gu)).

Since Indu(fn) → Indu(f) and δk
u is closed, Indu(f) ∈ Dom(δk

u) and T = δk
u(Indu(f)). Thus

Indu(f) ∈ Su(G), so that Indu(Sl
2(G)) ⊆ Su(G). Moreover, for the above constants c > 0 and

q ≥ 1, we have
‖δk

u(Indu(f))‖ ≤ c‖f‖2,q+k,l for each f ∈ Sl
2(G). (3)

Assume that A ∈ C∗
r (G) satisfies that Indu(A) ∈ Su(G). Then Indu(A) ∈ Dom(δk

u) for each
k ≥ 0. If let eu ∈ l2(Gu) be the characteristic function on {u}, then

∑

x∈Gu
|A(x)|2l(x)2k = ‖δk

u(Indu(A))eu‖2 ≤ ‖δk
u(Indu(A)‖2 <∞,

∑

x∈Gu |A(x)|2l(x)2k = ‖δk
u(Indu(A∗))eu‖2 ≤ ‖δk

u(Indu(A)‖2 <∞.
(4)

Let S(G) =

⎧

⎨

⎩

A ∈ C∗
r (G)

∣

∣

∣

∣

Indu(A) ∈ Su(G) for each u ∈ G0 and

supu∈G0 ‖δk
u(Indu(A))‖ <∞ for each k ≥ 0

⎫

⎬

⎭

.

For A ∈ S(G), we let |||A|||n = supu∈G0 ‖δn
u(Indu(A))‖ for each n ≥ 0. Then S(G) is a Fréchet

∗-algebra under the local convex topology given by the family of semi-norms, {||| · |||n : n ≥ 0}.
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With a given A ∈ S(G), by (4) and the basic inequality (1 + l(x))2 ≤ 2(1 + l(x)2) for x ∈ G,
we have, for each k ≥ 0,

‖A‖2
2,k,l ≤ 2k(|||A|||20 + C1

k |||A|||21 + C2
k |||A|||22 + · · · + Ck−1

k |||A|||2k−1 + |||A|||2k),

where Ci
k denotes the combination number. Hence A ∈ Sl

2(G). From (3), it follows that
|||f |||n ≤ c‖f‖2,q+n,l for each f ∈ Sl

2(G) and n ≥ 0. Consequently, S(G) = Sl
2(G) and they have

the same topology.
In order to show Sl

2(G) is spectral invariant in C∗
r (G), it is sufficient to show S(G) is spectral

invariant in C∗
r (G). For A ∈ S(G), if let B ∈ C∗

r (G) be the inverse of A in C∗
r (G), then, for

each u ∈ G0, Indu(B) is the inverse of Indu(A) in Indu(C∗
r (G)). Since Indu(A) ∈ Su(G) and

Su(G) is spectral invariant in Indu(C∗
r (G)), we have Indu(B) ∈ Su(G), so δn

u(Indu(B)) is well
defined for every n ≥ 0. By induction, from the fact δn

u(Indu(A)Indu(B)) = 0 for each n ≥ 1 and
|||A|||n = supu∈G0 ‖δn

u(Indu(A))‖ <∞, we can obtain that |||B|||n = supu∈G0 ‖δn
u(Indu(B))‖ <∞.

Hence B is in S(G). �

5 C∗-algebras Arising from Expansive Dynamical Systems

Let X be a compact metrizable space and ϕ a homeomorphism of X. We assume that ϕ is
expansive; this means that, for a given metric d compatible with the topology, there is ε > 0
such that d(ϕn(x), ϕn(y)) ≤ ε, for all integers n, implies x = y. We say that x and y in X

are conjugate if lim|n|→∞ d(ϕn(x), ϕn(y)) = 0. One can check that conjugacy is an equivalence
relation on X, and each equivalence class is countable. We assume that the dynamical system
(X, d, ϕ) satisfies the following condition:

(C) For every conjugate pair (x, y), there is a map γ : O → X such that O is an open
neighborhood of x, γ is continuous at x, γ(x) = y, and

lim
|n|→∞

d(ϕn(z), ϕn(γ(z)) = 0 (5)

uniformly for z ∈ O.
From [20] (or [1]), if the condition (C) holds, the germ of γ at x is uniquely determined by

(x, y), and one can define a conjugating homeomorphism as a pair (O, γ), where O is an open
subset of X, and γ is a homeomorphism from O onto γ(O) such that the equation (5) holds
uniformly for z ∈ O.

Let Ga be the set of all conjugate pairs (x, y). If Ga is equipped with the topology whose
base is given by the following open sets:

{(z, γz)| z ∈ O}, for a conjugating homeomorphism (O, γ),
then it is a separable and r-discrete groupoid.

Remark 5.1 Each Smale space (X, d, ϕ) satisfies the condition (C) [18, 20]. In this situation,
Ga is precisely the groupoid defined by Putnam in [18] using the asymptotic equivalence relation
on X. Some important dynamical systems, for example, subshifts of finite type (SFT), Anosov
diffeomorphisms and solenoids, are Smale spaces, hence satisfy the condition (C).

In this section, we consider the property (RD) for the groupoid Ga associated with SFT
and solenoids.
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5.1 Subshifts of Finite Type (SFT)

Let N be a positive integer and let A be a fixed N ×N matrix whose entries Ai,j are zeros or
ones. We assume that A is primitive, i.e. for some positive integer k, Ak has no zero entries.
Let {1, 2, . . . , N}Z be the space of doubly infinite sequences of {1, 2, . . . , N}. Let

X = {{xi} ∈ {1, 2, . . . , N}Z| Axi,xi+1 = 1 for all i ∈ Z}
and ϕ the mapping from X onto itself defined by

ϕ(x)i = xi+1 for x = {xi} ∈ X.

Then, with the metric

d(x, y) =
∑

i∈Z

2−|i||xi − yi| for x = {xi} and y = {yi} ∈ X,

X is a compact metric space and ϕ is a homeomorphism onX. Moreover, (X,ϕ) is an irreducible
Smale space, so it satisfies the condition (C) ([18]).

One can verify that x and y in X are conjugate if and only if, there is an integer k0 ≥ 0
such that xk = yk for each k with |k| ≥ k0. Hence, for g = (x, y) ∈ Ga, we can define

L(g) = min{k0 ≥ 0 : xk = yk, for all k with |k| ≥ k0},
l(g) = NL(g) − 1.

Then L(gh) ≤ max{L(g), L(h)} and l(gh) ≤ max{l(g), l(h)} for every (g, h) ∈ G2
a, so L and l

are length functions on Ga.

Theorem 5.2 The groupoid Ga is of polynomial growth with respect to l. Hence Sl
2(Ga) is a

spectral invariant and dense *-subalgebra of C∗
r (Ga).

Proof We first show L is continuous on Ga. For (x, y) ∈ Ga, since G0
a is open in Ga and

L|G0
a

= 0, we can assume that x �= y. Let k0 = L(x, y) > 0 and write x = {xn} and y = {yn}.
Then xk = yk when |k| ≥ k0, and xk0−1 �= yk0−1 or x−k0+1 �= x−k0+1. Set

Ox = {z ∈ X : zk = xk for each |k| < k0}
and define the mapping γ from Ox into X by

(γz)k = zk for |k| ≥ k0, and (γz)k = yk for |k| < k0

for each z ∈ Ox. For each n ∈ Z, and z ∈ Ox,

d(ϕnz, ϕnγz) =
∑

k∈Z

|(ϕnz)k − (ϕnγz)k|
2|k|

=
k0−1
∑

j=−k0+1

|xj − yj |
2|n−j| ≤ c

2|n|
,

where c is a constant, only depending on N and k0. Hence

lim
|n|−→∞

d(ϕnz, ϕnγz) = 0, uniformly for z ∈ Ox.

Obviously, γ is injective, continuous at x and γx = y. From [1], (Ox, γ) is a conjugating
homeomorphism determined by (x, y), so U = {(z, γz) : z ∈ Ox} is an open neighborhood of
(x, y) in Ga. For each z ∈ Ox, by the definition of Ox, we have (γz)k = zk when |k| ≥ k0,
and zk0−1(= xk0−1) �= (γz)k0−1(= yk0−1) or z−k0+1(= x−k0+1) �= (γz)−k0+1(= y−k0+1). Hence
L(z, γz) = k0, so L is continuous at (x, y). Consequently, l is continuous on Ga.
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Let u = {un} ∈ X be given. For x = {xn} ∈ X and m > 0, we have (u, x) ∈ Ga and
L(u, x) ≤ m if and only if uk = xk when |k| ≥ m. So

#BL
Gu

a
(m) = #

⎧

⎨

⎩

(x−m, x−m+1, . . . , xm−1, xm)
∣

∣

∣

∣

x−m = u−m, xm = um,

Axi,xi+1 = 1,−m ≤ i < m

⎫

⎬

⎭

= (A2m)u−m,um
, i.e., the (u−m, um)-entry of A2m

≤ N2m.

Hence
#Bl

Gu
a
(m) ≤ #BL

Gu
a
([logm+1

N +1]) ≤ N2(m+ 1)2.

Hence Ga is of polynomial growth with respect to l. From Proposition 3.2 and Theorem 4.2,
Sl

2(Ga) is a spectral invariant and dense *-subalgebra of C∗
r (Ga). �

5.2 Solenoids

Let S1 be the unit circle in the complex plane and σ : S1 −→ S1 the map defined by σ(x) = x2

for x ∈ S1. The inverse limit of the system {Xn, σ}n≥0 is called a solenoid. Concretely, we can
describe X as

X = {(x0, x1, . . .)| xn ∈ S
1, σ(xn+1) = xn, n = 0, 1, . . .}.

Under the following metric,

d(x, y) =
∞
∑

n=0

d′(xn, yn)
2n

for x = (xn)n≥0, y = (yn)n≥0 ∈ X,

X is a compact metric space, where d′ is the Riemannian metric on S1, i.e., for α1, α2 ∈ [−π, π),
d′(eiα1 , eiα2) = |α1 − α2| if |α1 − α2| ≤ π and d′(eiα1 , eiα2) = 2π − |α1 − α2| if |α1 − α2| > π.

Let ϕ be the mapping from X onto itself, defined by

ϕ : (x0, x1, x2, . . .) −→ (x2
0, x0, x1, . . .) for x = (x0, x1, x2, . . .) ∈ X.

Then ϕ is a homeomorphism on X with the inverse ϕ−1(x0, x1, x2, . . .) = (x1, x2, . . .) for x =
(x0, x1, x2, . . .) ∈ X. By [18], (X, d, ϕ) is an irreducible Smale space, so satisfies the condition
(C).

In order to describe the groupoid Ga of conjugate pairs on (X, d, ϕ), we use the dyadic
rational additive group Γ = { m

2n : m,n ∈ Z, n ≥ 1} and a canonical flow {Ft| t ∈ R} on X. For
each t ∈ R, we let

Ft : (x0, x1, x2, . . .) −→ (e2πtix0, e
2πti
2 x1, e

2πti
22 x2, . . .), for (x0, x1, x2, . . .) ∈ X.

Then FsFt = Fs+t for all s, t ∈ R. For x = {xn}n≥0 and y = {yn}n≥0 ∈ X, one can check that
limn→+∞ d(ϕnx, ϕny) = 0 if and only if y0 = tx0 for some t ∈ Γ, and limn→+∞ d(ϕ−nx, ϕ−ny) =
0 if and only if y = Ftx for some t ∈ R. Hence, x and y are conjugate, if and only if y = Ftx

for a unique t ∈ Γ. So, Γ acts on X by {Ft}.
For t ∈ Γ, let

l1(t) =

⎧

⎨

⎩

min{n| t = m
2n , for m,n ∈ Z, n ≥ 1}, if t �= 0,

0, if t = 0.
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LΓ(t) = max(2l1(t) − 1, |t|).
Note that l1(s+ t) ≤ max(l1(t), l1(s)) for s, t ∈ Γ. Then LΓ is a length function on Γ. By the
definition of l1, we have, for k ∈ N,

l1(t) = k if and only if t =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if k = 0,
n
2k , for some odd n, if k > 1,
n
2 , n ∈ Z, n �= 0, if k = 1.

As before, let Ga be the r-discrete groupoid consisting of all conjugate pairs associated with
the solenoid (X, d, ϕ). Using the function LΓ, we can give a length function l on Ga.

Definition 5.3 For each (x, y) ∈ Ga, there exists a unique t ∈ Γ such that y = Ftx. Define

l(x, y) = LΓ(t).

One can verify that l is a length function on Ga. We have the following result.

Theorem 5.4 The groupoid Ga is of polynomial growth with respect to l, hence Sl
2(Ga) is a

spectral invariant and dense *-subalgebra of C∗
r (Ga).

Proof We first claim that, for each t = m0
2n0 ∈ Γ for m0, n0 ∈ Z and n0 ≥ 1, (X,Ft) is a

conjugating homeomorphism, i.e., Ft is a homeomorphism on X and lim|n|→∞ d(ϕnz, ϕnFtz) =
0 uniformly for z ∈ X.

In fact, one can easily check that Ft is a homeomorphism on X. For an arbitrary ε with 0 <
ε < π

2 , choose an integer N such that N > max(|m0|, n0) and 1
2N (

∑∞
j=0

2π(1+|t|)
2j +

∑n0−1
j=0 2jπ) <

ε. Let n > N be given.
Since | 2πt

2n+j | < π
2 for j = 0, 1, . . ., we have d′(zn+j , exp( 2πti

2n+j )zn+j) = | 2πt
2n+j | for every

z = {zj}j≥0 ∈ X. So

d(ϕ−nz, ϕ−nFtz) =
∞
∑

j=0

d′(zn+j , exp( 2πti
2n+j )zn+j)

2j
=

1
2n

∞
∑

j=0

2π|t|
4j

< ε

and

d(ϕnz, ϕnFtz) =
n

∑

j=1

d′(σjz0, σ
j(Ftz)0)

2n−j
+

∞
∑

j=0

d′(zj , (Ftz)j)
2n+j

=
1
2n

n
∑

j=1

2jd′(σjz0, exp(2π2jti)σjz0) +
1
2n

∞
∑

j=0

d′(zj , (Ftz)j)
2j

=
1
2n

n0−1
∑

j=1

2jd′(σjz0, exp(2π2jti)σjz0) +
1
2n

∞
∑

j=0

d′(zj , (Ftz)j)
2j

<
1
2n

[ n0−1
∑

j=1

2jπ +
∞
∑

j=0

π

2j

]

< ε.

Hence lim|k|→∞ d(ϕkz, ϕkFtz) = 0 uniformly for z ∈ X. We have established the claim.
For (x, y) ∈ Ga, write y = Ftx for some t ∈ Γ, so l(x, y) = LΓ(t). From the above claim, we

have U = {(z, Ftz)| z ∈ X} is an open subset of Ga containing (x, y), so that l is continuous at
(x, y). Hence l is a continuous length function on Ga.
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Let k, k′ ∈ N. We consider the element t in Γ such that |t| ≤ k and l1(t) = k′. If k′ = 0 or
k = 0, then t = 0; if k′ = 1, then t = m

2 for m ∈ Z and 0 < |m| ≤ 2k; if k′ ≥ 2, then t = m
2k′ for

an odd m with |m| ≤ 2k′
k. Hence

#{t ∈ Γ| |t| ≤ k, l1(t) ≤ k′} =
k′

∑

j=0

#{t ∈ Γ| |t| ≤ k, l1(t) = j} ≤ 1 + 2k′+1k.

So, for u ∈ X and m ∈ N, we have

#{(u, x) ∈ Gu
a | l(u, x) ≤ m} =# {t ∈ Γ| |t| ≤ m, l1(t) ≤ logm+1

2 } ≤ 4m2 + 4m+ 1.

Hence Ga is of polynomial growth with respect to l. From Proposition 3.2 and Theorem 4.2,
Sl

2(Ga) is a spectral invariant and dense ∗-subalgebra of C∗
r (Ga). �

6 Applications

For a countable discrete group Γ, one can associate to a normalized cocycle c on Γ a cyclic
cocycle τc on the group algebra CΓ [3, 4]:

τc(f0, f1, . . . , fn) =
∑

g0g1···gn=1

f0(g0)f1(g1) · · · fn(gn)c(g1, g2, . . . , gn)

for f0, f1, . . . , fn ∈ CΓ. In general, τc cannot be extended as an n-trace on the reduced group
C∗-algebra C∗

r (Γ), but in [13], Jolissaint proved that, with some additional hypotheses, τc plays
the same role as an n-trace. In this section, we can give a similar application of property (RD)
for r-discrete topology groupoids.

Given an algebra A over C, for n ≥ 1, let Zn(A) be the set of all (n+ 1)-linear functionals
ϕ on A such that bϕ = 0, where b is the Hochschild coboundary map given by

(bϕ)(a0, a1, . . . , an+1)

=
n

∑

j=0

(−1)jϕ(a0, . . . , ajaj+1, . . . , an+1) + (−1)n+1ϕ(an+1a0, a1, . . . , an)

for all ai ∈ A. We denote by Zn
λ (A) the set of all cyclic n-cocycles ϕ on A, i.e., ϕ ∈ Zn(A) and

ϕ(a1, . . . , an, a0) = (−1)nϕ(a0, a1, . . . , an) for all ai ∈ A. For the cyclic cohomology theory, we
refer to [3].

Let G be an r-discrete, topology groupoid. The sets G0, G1 = G and G2 have already been
defined. For n ≥ 3, we set

Gn = {(g0, g1, . . . , gn−1) : gi ∈ G, d(gi) = r(gi+1), i = 0, 1, . . . , n− 2}.
Let c be a normalized n-cocycle on G. That is, c is a complex continuous function on Gn with
the product topology and satisfies:

(i) for all (g0, g1, . . . , gn) ∈ Gn+1,

bc(g0, g1, g2, . . . , gn)

= c(g1, g2, . . . , gn) +
n

∑

j=1

(−1)jc(g0, g1, . . . , gj−1gj , . . . , gn)

+ (−1)n+1c(g0, g1, . . . , gn−1) = 0 ;
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(ii) c(g0, . . . , gn−1) = 0, for every (g0, . . . , gn−1) ∈ Gn with g0g1 · · · gn−1 ∈ G0,or gi ∈ G0

for some i.
For u ∈ G0, we define

τu
c (f0, f1, . . . , fn) =

∑

g0g1···gn=u

f0(g0)f1(g1) · · · fn(gn)c(g1, g2, . . . , gn),

for fi ∈ Cc(G), i = 0, 1, . . . , n.

Remark 6.1 For each f ∈ Cc(G), since Gop is a base for the topology, the (compact) support
of f is covered by a finite number of sets in Gop. Using a partition of unity for the cover, we
can obtain that f is a linear combination of functions fi in Cc(G) with support contained in
some sets in Gop. Hence we can assume that the support of each fi in the definition of τu

c is
contained in some Ai in Gop. For each u in G0, if u has a decomposition u = g0g1 · · · gn for
gi ∈ Ai, i = 0, 1, . . . , n, then such decomposition is unique. So τu

c (f0, f1, . . . , fn) is well defined.

Recall that each positive Borel probability measure μ on G0 induces a Borel measure ν on
G, defined by

∫

G
f(g)dν(g) =

∫

G0

∑

g∈Gu f(g)dμ(u) for f ∈ Cc(G). Let ν−1 be the image of ν
under the inverse map on G, i.e., ν−1 is given by

∫

G
f(g)dν−1(g) =

∫

G0

∑

g∈Gu
f(g)dμ(u) for

f ∈ Cc(G). We say μ is invariant if ν = ν−1. Under this situation, for each A ∈ Gop, if r(A)
and d(A) are endowed with the relative measures of μ and let αA be defined by αA(r(a)) = d(a)
for a ∈ A, then αA is a homeomorphism preserving measure from r(A) onto d(A).

For fi in Cc(G) with support contained in Ai ∈ Gop for i = 0, 1, . . . , n, let

Ln = {u ∈ G0 : u = g0g1 · · · gn for gi ∈ Ai, i = 0, 1, 2, . . . , n},
L′

n = {u ∈ G0 : u = gng0g1 · · · gn−1 for gi ∈ Ai, i = 0, 1, 2, . . . , n}.
Then Ln ⊆ d(An), L′

n ⊆ r(An), Ln and L′
n are open in G0. Moreover, αAn

(gng0g1 · · · gn−1) =
g0g1 · · · gn−1gn ∈ Ln for u = gng0g1 · · · gn−1 ∈ L′

n. Hence, αAn
(L′

n) = Ln and the restriction of
αAn

to L′
n preserves the relative measures of μ on L′

n and Ln. So, for appropriate functions ϕ
on Ln, we have

∫

Ln

ϕ(u)dμ(u) =
∫

L′
n

ϕ(αAn
(u))dμ(u).

For each u ∈ G0, if u /∈ Ln then τu
c (f0, f1, . . . , fn) = 0; if u = g0g1 · · · gn−1gn ∈ Ln then

τu
c (f0, f1, . . . , fn) = f0(g0)f1(g1) · · · fn(gn)c(g1, g2, . . . , gn). By the property of sets in Gop,
τu
c (f0, f1, . . . , fn) is continuous on Ln. Moreover, we have

∫

Ln

f0(g0) · · · fn(gn)c(g1, . . . , gn)dμ(u) =
∫

L′
n

f0(g0) · · · fn(gn)c(g1, . . . , gn)dμ(u).

So, we can give the following definition.

Definition 6.2 Let μ be an invariant probability measure on G0. Define

τc(f0, f1, . . . , fn) =
∫

u∈G0
τu
c (f0, f1, . . . , fn)dμ(u) for fi ∈ Cc(G), i = 0, 1, . . . , n.

Proposition 6.3 τc is a cyclic cocycle on Cc(G), i.e., τc ∈ Zn
λ (Cc(G).

Proof We first show τc is an n-cocycle on Cc(G), i.e., τc ∈ Zn(Cc(G)). Without loss of
generality, we can let fi be in Cc(G) with support contained in Ai ∈ Gop for i = 0, 1, . . . , n+ 1.
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By the above argument, we have

τc(f0f1, f2, . . . , fn+1) =
∫

Ln+1

f0(g0)f1(g1) · · · fn+1(gn+1)c(g2, . . . , gn+1)dμ(u),

τc(fn+1f0, f1, . . . , fn) =
∫

L′
n+1

fn+1(gn+1)f0(g0) · · · fn(gn)c(g1, g2 . . . , gn)dμ(u)

=
∫

Ln+1

f0(g0) · · · fn(gn)fn+1(gn+1)c(g1, g2 . . . , gn)dμ(u),

and, for each j with 1 ≤ j ≤ n,

τc(f0, f1, . . . , fjfj+1, . . . , fn+1)

=
∫

Ln+1

f0(g0) · · · fj(gj)fj+1(gj+1) · · · fn+1(gn+1)c(g1, . . . , gjgj+1, . . . , gn+1)dμ(u).

Hence

bτc(f0, f1, . . . , fn+1) =
n

∑

j=0

(−1)jτc(f0, f1, . . . , fjfj+1, . . . , fn+1)

+ (−1)n+1τc(fn+1f0, f1, . . . , fn)

=
∫

Ln+1

f0(g0) · · · fn(gn)fn+1(gn+1)(bc(g1, g2 . . . , gn, gn+1)dμ(u) = 0.

Consequently, τc is an n-cocycle on Cc(G).
Next we show that τc is a cyclic cocycle. Let f0, f1, . . . fn be in Cc(G). As before, we only

consider that each fi has support contained in Ai ∈ Gop for i = 0, 1, . . . , n. Then

τc(f0, f1, . . . , fn) =
∫

Ln

f0(g0)f1(g1) · · · fn(gn)c(g1, g2, . . . , gn)dμ(u)

and

τc(fn, f0, . . . , fn−1) =
∫

L′
n

fn(gn)f0(g0) · · · fn−1(gn−1)c(g0, g1, . . . , gn−1)dμ(u)

=
∫

Ln

f0(g0) · · · fn−1(gn−1)fn(gn)c(g0, g1, . . . , gn−1)dμ(u).

It follows from the normality of c that c(g0, g1, . . . , gn−1) = (−1)nc(g1, . . . , gn−1, gn) for u =
g0g1 · · · gn−1gn ∈ Ln. So, τc(f0, f1, . . . , fn) = (−1)nτc(fn, f0, f1, . . . , fn−1). �

We say an n-cocycle c on G is of polynomial growth with respect to a length function l, if
there are constants 0 < b and 1 ≤ m such that

|c(g0, g1, . . . , gn−1)| ≤ b(1 + l(g0))m(1 + l(g1))m · · · (1 + l(gn−1))m

for each (g0, g1, . . . , gn−1) ∈ Gn. The following proposition is similar to that in [13].

Proposition 6.4 Let G be an r-discrete, topological groupoid. Suppose that G has property
(RD) with respect to a continuous length function l, and c is a normalized n-cocycle on G being
of polynomial growth with respect to l. Then τc can be extended continuously to Sl

2(G). Hence
τc induces a map Φi : Ki(C∗

r (G)) −→ C, i ≡ n(mod 2), such that
(1) if n is even and e ∈ Proj(Mq(Sl

2(G))) then Φ0([e]) = (τc#Tr)(e, . . . , e);
(2) if n is odd and u ∈ GLq(Sl

2(G)) then Φ0([u]) = (τc#Tr)(u−1, u, . . . , u−1, u).
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Proof From the assumption, there exist positive constants a, b and positive integers p and m
such that ‖f‖r ≤ a‖f‖2,p,l and |c(g0, g1, . . . , gn−1)| ≤ b(1+l(g0))m(1+l(g1))m · · · (1+l(gn−1))m

for f ∈ Cc(G) and (g0, g1, . . . , gn−1) ∈ Gn. For u ∈ G0 and f0, f1, . . . , fn ∈ Cc(G), we have

|τu
c (f0, . . . , fn)| ≤

∑

g0g1···gn=u

|f0(g0)‖f1(g1)| · · · |fn(gn)‖c(g1, g2, . . . , gn)|

≤
∑

g0g1···gn=u

bφ0(g0)φ1(g1) · · ·φn(gn)

= b(φ0 ∗ φ1 ∗ · · · ∗ φn)(u)

≤ b‖φ0 ∗ φ1 ∗ · · · ∗ φn)‖r

≤ b‖φ0‖r‖φ1‖r · · · ‖φn‖r

≤ anb‖f0‖r · ‖φ1‖2,p,l · · · ‖φn‖2,p,l

≤ anb‖f1‖2,p+m,l · · · ‖fn‖2,p+m,l‖f0‖2,p+m,l,

where φ0(g) = |f0(g)|, φi(g) = |fi(g)|(1+l(g))m, i = 1, 2, . . . , n. Since these constants a, b, p, m
are independent of u and μ is a probability measure, we have |τc(f0, f1, . . . , fn)|≤anb‖f0‖2,p+m,l

· · · ‖fn‖2,p+m,l. Hence τc can be extended continuously to Sl
2(G).

From Theorem 4.2, Sl
2(G) and C∗

r (G) have isomorphic K-theories. By the pairing of the
K-theory and the cyclic cohomology [3], τc induces a map Φi : Ki(C∗

r (G)) → C with the
properties (1) and (2). �
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