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Abstract In this paper, we mainly explore fractal dimensions of fractional calculus of continuous

functions defined on closed intervals. Riemann–Liouville integral of a continuous function f(x) of order

v(v > 0) which is written as D−vf(x) has been proved to still be continuous and bounded. Furthermore,

upper box dimension of D−vf(x) is no more than 2 and lower box dimension of D−vf(x) is no less

than 1. If f(x) is a Lipshciz function, D−vf(x) also is a Lipshciz function. While f(x) is differentiable

on [0, 1], D−vf(x) is differentiable on [0, 1] too. With definition of upper box dimension and further

calculation, we get upper bound of upper box dimension of Riemann–Liouville fractional integral of

any continuous functions including fractal functions. If a continuous function f(x) satisfying Hölder

condition, upper box dimension of Riemann–Liouville fractional integral of f(x) seems no more than

upper box dimension of f(x). Appeal to auxiliary functions, we have proved an important conclusion

that upper box dimension of Riemann–Liouville integral of a continuous function satisfying Hölder

condition of order v(v > 0) is strictly less than 2 − v. Riemann–Liouville fractional derivative of

certain continuous functions have been discussed elementary. Fractional dimensions of Weyl–Marchaud

fractional derivative of certain continuous functions have been estimated.
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1 Introduction

In [4], Riemann–Liouville fractional integral of a continuous function f(x) of bounded vari-
ation on a closed interval has been proved to still be a continuous function with bounded
variation. It is obvious that both f(x) and its Riemann–Liouville fractional integral are 1-
dimensional. Zhang discussed Riemann–Liouville fractional integral of certain 1-dimensional
continuous function of unbounded variation [25]. Riemann–Liouville fractional integral of any
continuous functions which have finite points of unbounded variation still are 1-dimensional [9].
There exist continuous functions whose box dimension are bigger than 1, such as Weierstrass
function [1], Besicovitch function [17], linear fractal interpolation functions [15]. More details
about functions of unbounded variation and definition of fractal functions can be found in [6].
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An important problem is to estimate fractal dimensions, such as box dimension or Hausdorff
dimension, of Riemann–Liouville fractional integral of fractal functions [6]. In [5], author proved
that upper box dimension of Riemann–Liouville integral of order v of any continuous functions
on closed intervals are no more than 2 − v when v ∈ (0, 1). We will prove this conclusion by
a simple method in this paper. We mainly deal with fractal dimensions of Riemann–Liouville
fractional integral of continuous functions defined on closed intervals and especially explore
fractal dimensions of Riemann–Liouville fractional integral of continuous functions satisfying
Hölder condition. Definition of Hausdorff dimension, box dimension and Riemann–Liouville
fractional integral are given as follows.

Definition 1.1 ([1, 17]) Let F ∈ R
n and s ≥ 0. Hausdorff dimension of F is

dimH(F ) = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}. (1.1)

Definition 1.2 ([1, 17]) Let F ( �= φ) be any bounded subset of R
n and let Nδ(F ) be the smallest

number of sets of diameter at most δ which can cover F . Lower box dimension and upper box
dimension of F respectively are defined as

dimB(F ) = lim
δ→0

logNδ(F )
− log δ

(1.2)

and

dimB(F ) = lim
δ→0

logNδ(F )
− log δ

. (1.3)

If (1.2) and (1.3) are equal, we refer to the common value as box dimension of F

dimB(F ) = lim
δ→0

logNδ(F )
− log δ

. (1.4)

Definition 1.3 ([12, 14]) Let f(x) be a continuous function on a closed interval [a, b]. Let
v > 0 and D−vf(0) = 0. We call

D−vf(x) =
1

Γ(v)

∫ x

0

(x− t)v−1f(t)dt, x ∈ [a, b] (1.5)

Riemann–Liouville integral of f(x) of order v on [a, b].

Definition of other fractal dimensions and fractional calculus can be found in [1, 12, 14]. In
the following several sections, we will give estimation of fractal dimensions of Riemann–Liouville
fractional calculus of continuous functions on I.

Definition 1.4 Let f(x) be continuous on [a, b]. If for a positive constant C and 0 < α < 1,

|f(x) − f(y)| ≤ C|x− y|α, x, y ∈ [a, b], (1.6)

we say f(x) satisfies α-Hölder condition. When α = 1, (1.6) is called a Lipshciz condition.

Throughout the present paper, let I = [0, 1]. CI denotes the set of continuous functions on
I. C1

I denotes the set of functions having continuous derivative functions on I. Denote

Γ(f, I) = {(x, f(x)) : x ∈ I}
as graph of f(x) on I. Let C be a positive absolutely constant that may have different values
at different occurrences even in the same line.
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2 Basic Properties of D−vf(x)

Let f(x) ∈ CI . Thus f(x) is unanimously continuous and bounded on I. In other words, there
exists a positive number M such that |f(x)| ≤M for any x ∈ I. D−vf(x) is Riemann–Liouville
integral of f(x) on I of order v(v > 0) which is

D−vf(x) =
1

Γ(v)

∫ x

0

(x− t)v−1f(t)dt, x ∈ I. (2.1)

First we have the following basic conclusion about D−vf(x) on I.

Proposition 2.1 Let D−vf(x) be defined as (2.1).
(1) D−vf(x) is bounded on I for any positive order v.
(2) D−vf(x) is continuous on I for any positive order v.

Though D−vf(x) is unanimously continuous on I, we do not know whether D−vf(x) is
derivative on I or not. By Weierstrass theorem [27], we know D−vf(x) can be approximated
by certain continuous functions which is differentiable on I. Thus, we have the following results.

Proposition 2.2 Let δ > 0, 0 < δ′ < x and 0 < v < 1. Write

D−v
δ f(x) =

1
Γ(v)

∫ x

0

(x+ δ − t)v−1f(t)dt, x ∈ I, (2.2)

D−v
δ′ f(x) =

1
Γ(v)

∫ x−δ′

0

(x− t)v−1f(t)dt, x ∈ I. (2.3)

Then both D−v
δ f(x) and D−v

δ′ f(x) are differentiable on I. Meanwhile,

lim
δ→0

|D−vf(x) −D−v
δ f(x)| = 0, (2.4)

lim
δ′→0

|D−vf(x) −D−v
δ′ f(x)| = 0. (2.5)

Proof Let 0 < v < 1, δ > 0, 0 < δ′ < x and x ∈ I. Then by (2.2) and (2.3),

d

dx
D−v

δ f(x) =
v − 1
Γ(v)

∫ x

0

f(t)(x+ δ − t)v−2dt+
1

Γ(v)
f(x)δv−1,

d

dx
D−v

δ′ f(x) =
v − 1
Γ(v)

∫ x−δ′

0

f(t)(x− t)v−2dt+
1

Γ(v)
f(x− δ′)δ(′)v−1.

Furthermore,

|D−v
δ (x) −D−vf(x)| =

∣∣∣∣ 1
Γ(v)

∫ x

0

f(t)(x+ δ − t)v−1dt− 1
Γ(v)

∫ x

0

f(t)(x− t)v−1dt

∣∣∣∣
=

∣∣∣∣ 1
Γ(v)

∫ x

0

f(t)[(x+ δ − t)v−1 − (x− t)v−1]dt
∣∣∣∣ ≤ 2M

Γ(v)
δv.

Thus (2.4) holds. Similarly, we can get (2.5). �
f(x) ∈ CI satisfying Lipshciz condition means that

|f(x) − f(y)| ≤ C|x− y|, x, y ∈ I.

Then, D−vf(x) still is a Lipshciz function on I with the following proposition.

Proposition 2.3 Let D−vf(x) be defined as (2.1) and v ∈ (0, 1).
(1) If f(x) is a Lipshciz function on I, D−vf(x) is also a Lipshciz function on I.
(2) If f(x) is differentiable on I, D−vf(x) is differentiable on I too.
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We give an example in the end of this section.

Example 2.4 Let f(x) = 0 when 0 ≤ x ≤ 1 and f(x) = x − 1 when 1 < x ≤ 2. f(x) is a
Lipshciz function on [0, 2] and dimH Γ(f, I) = dimB Γ(f, I) = 1. Let 0 < v < 1. If 0 ≤ x ≤ 1,
D−vf(x) = D−v0 = 0. If 1 < x ≤ 2,

D−vf(x) =
1

Γ(v)

∫ x

0

(x− t)v−1f(t)dt

=
1

Γ(v)

∫ x

1

(x− t)v−1(t− 1)dt

=
1

Γ(v + 1)
(x− 1)v +

1
Γ(v + 1)

∫ x

1

(x− t)vdt− 1
Γ(v + 1)

(x− 1)v

=
1

Γ(v + 2)
(x− 1)v+1.

Thus D−vf(x) is not only a Lipshciz function, but also a differentiable function on [0, 2].
Let 0 < v < 1, 0 < λ < 1 and v + λ < 1. If we let f(x) = 0 when 0 ≤ x ≤ 1 and

f(x) = (x− 1)λ when 1 < x ≤ 2, D−vf(x) is not differentiable at point 1.

3 Fractal Dimensions of D−vf(x) with f(x) ∈ CI

Riemann integral of a continuous function on I is smoother than function itself. So we discuss
fractal dimensions of fractional calculus of continuous functions defined on I. By numerical
simulation, we find Riemann–Liouville fractional integral of any continuous functions on I

seems smoother than functions themselves. So we will investigate upper box dimension of
Riemann–Liouville integral of f(x) ∈ CI of order v. First we give two lemmas as follows.

Lemma 3.1 ([1]) Let f(x) ∈ CI . Suppose that δ ∈ (0, 1) and n is the least integer greater
than or equal to δ−1. Then, if Nδ is number of squares of δ-mesh that intersect Γ(f, I),

n−1∑
i=0

max
{
Rf [iδ, (i+ 1)δ]

δ
, 1

}
≤ Nδ ≤ 2n+ δ−1

n−1∑
i=0

Rf [iδ, (i+ 1)δ]. (3.1)

Lemma 3.2 Let f(x) ∈ CI and 0 ≤ α ≤ 1. If

|f(x) − f(y)| ≤ C|x− y|α, x, y ∈ I, (3.2)

then
1 ≤ dimH Γ(f, I) ≤ dimBΓ(f, I) ≤ 2 − α. (3.3)

With Lemmas 3.1 and 3.2, we can give the following theorem which shows upper box
dimension of Riemann–Liouville integral of any f(x) ∈ CI of order v is no more than 2 − v

when 0 < v < 1.

Theorem 3.3 Let f(x) ∈ CI and D−vf(x) be defined as (2.1). Then

dimBΓ(D−vf, I) ≤ 2 − v, 0 < v < 1. (3.4)

Proof Let 0 ≤ x < x+ h ≤ 1. Then for 0 < v < 1,

|D−vf(x+ h) −D−vf(x)| =
1

Γ(v)

∣∣∣∣
∫ x

0

[(x+ h− t)v−1 − (x− t)v−1]f(t)dt

+
∫ x+h

x

(x+ h− t)v−1f(t)dt
∣∣∣∣
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:= I1 + I2.

Since f(x) ∈ CI , there exists a positive number M such that |f(x)| ≤M for ∀x ∈ I. Thus,

I1 ≤ 1
Γ(v)

∫ x

0

|(x+ h− t)v−1 − (x− t)v−1| · |f(t)|dt

≤ M

Γ(v)

∫ x

0

[(x− t)v−1 − (x+ h− t)v−1]dt

≤ M

Γ(v + 1)
hv.

Meanwhile,

I2 ≤ 1
Γ(v)

∫ x+h

x

(x+ h− t)v−1|f(t)|dt

≤ M

Γ(v)

∫ x+h

x

(x+ h− t)v−1dt

≤ M

Γ(v + 1)
hv.

We have
|D−vf(x+ h) −D−vf(x)| ≤ I1 + I2 ≤ 2M

Γ(v + 1)
hv.

From Lemma 3.2, (3.4) holds. �
If box dimension of D−vf(x) exists, then

dimH Γ(D−vf, I) ≤ dimB Γ(D−vf, I) ≤ 2 − v, 0 < v < 1.

With definition of box dimension and Hausdorff dimension, we know

1 ≤ dimH Γ(D−vf, I) ≤ dimB Γ(D−vf, I) ≤ 2 − v, 0 < v < 1.

If v = 1, it is obvious that box dimension of D−vf(x) exists and

dimH Γ(D−vf, I) = dimB Γ(D−vf, I) = 1 = 2 − v (3.5)

for any f(x) ∈ CI . In fact, D−1f(x) which is Riemann integral of order 1 is a differentiable
function on I, then it is of bounded variation on I. By [4], we know (3.5) holds.

In Theorem 3.3, there is a condition that orders of Riemann–Liouville integral belong to
(0, 1). From Definition 1.3 and Theorem 3.3, we can get the following result.

Corollary 3.4 Let f(x) ∈ CI , D
−vf(x) be defined as (2.1).

(1) If 0 < v < 1,

1 ≤ dimH Γ(D−vf, I) ≤ dimBΓ(D−vf, I) ≤ 2 − v.

(2) If v ≥ 1,
dimH Γ(D−vf, I) = dimB Γ(D−vf, I) = 1.

From discussion above, we know D−vf(x) ∈ Hv when

Hv = {f(x) : |f(x) − f(y)| ≤ C|x− y|v, 0 < v < 1, ∀x, y ∈ I}. (3.6)

If f(x) ∈ CI belongs to Hα when 0 < α < 1, we will discuss fractal dimensions of of Riemann–
Liouville integral of f(x) of order v (v > 0) in the next section. Here we give certain example
about Riemann–Liouville fractional integral of continuous functions on I.
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Example 3.5 Let 0 = x0 < x1 · · · < xN = 1, i ∈ S = {1, 2, . . . , N} and Li(x) be the linear
map satisfying

Li(0) = xi−1, Li(1) = xi, i ∈ S.

Let K = I × R and {yi}N
i=0 be a certain data set. A continuous map Fi : K → R is defined as

Fi(0, y0) = yi−1, Fi(1, yN ) = yi, i ∈ S.

For α ∈ (0, 1), Fi satisfies

|Fi(x, t) − Fi(x, u)| ≤ α|t− u|, ∀x ∈ I, ∀t, u ∈ R, i ∈ S.

Let functions ψi : K → K be defined as ψi(x, y) = (Li(x), Fi(x, y)), i ∈ S. Then {K,ψi : i ∈ S}
is an iterated function system and it has a unique attractor G =

⋃N
i=1 ψi(G). Γ(G, I) can be

looked as graph of a continuous function g : I → R which satisfies

g(xi) = yi, i ∈ S. (3.7)

Functions defined as (3.7) is called as fractal interpolation functions. For i ∈ L, let |di| < 1, qi
be continuous and Fi(x, y) = diy+ qi(x). Then, a fractal interpolation function g(x) defined as
above is called a linear fractal interpolation function. In [15], the authors chose

Li(x) = aix+ bi, ai = xi − xi−1, bi = xi−1, i ∈ S.

Let g(x) be determined by {Li(x), Fi(x, y)}N
i=1. Suppose

∑N
i=1 |ci| > 1 and qi is continuous

and of bounded variation on I for any i ∈ S. They proved that dimB Γ(f, I) = D({ai, ci}),
whereD({ai, ci}) is the unique solution s of the equation

∑N
i=1 a

s−1
i |ci| = 1. Then for 0 < v <

D({ai, ci}) − 1, it holds
dimB Γ(D−vf, I) = dimB Γ(f, I) − v.

Since dimB Γ(f, I) ≤ 2,
dimB Γ(D−vf, I) ≤ 2 − v. (3.8)

From Theorem 3.3, we can also directly get (3.8).

4 Fractal Dimensions of Fractional Integral of f(x) ∈ Hα

For 0 < α < 1, let

Hα = {f(x) : |f(x) − f(y)| ≤ C|x− y|α, ∀x, y ∈ I}
which is defined similarly as (3.6). If a continuous function f(x) on I belongs to Hα, thus

1 ≤ dimH Γ(f, I) ≤ dimBΓ(f, I) ≤ 2 − α.

D−vf(x) is Riemann–Liouville integral of f(x) of order v. We will give some estimations of
fractal dimensions of D−vf(x). First we give upper bound of upper box dimension of D−vf(x).

Theorem 4.1 Let f(x) ∈ Hα, f(0) = 0 and D−vf(x) be defined as (2.1). Then

1 ≤ dimH Γ(D−vf, I) ≤ dimBΓ(D−vf, I) ≤ 2 − α, 0 < v < 1.

Proof Let 0 ≤ x < x+ h ≤ 1 and 0 < v < 1. It holds

D−vf(x+ h) −D−vf(x)
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=
1

Γ(v)

∫ x+h

0

(x+ h− t)v−1f(t)dt− 1
Γ(v)

∫ x

0

(x− t)v−1f(t)dt

=
1

Γ(v)

∫ x+h

h

(x+ h− t)v−1[f(t) − f(t− h)]dt+
1

Γ(v)

∫ h

0

(x+ h− t)v−1f(t)dt

:= I3 + I4.

Since |f(x) − f(y)| ≤ C|x− y|α holds for any x, y ∈ I, then |I3| ≤ C
Γ(v+1)h

α. For f(0) = 0, we
can get |I4| ≤ C

Γ(v+1)h
α · hv. Thus,

|D−vf(x+ h) −D−vf(x)| ≤ Chα.

By Lemma 3.2,
dimBΓ(D−vf, I) ≤ 2 − α.

Combine Definition 1.1 with the above inequality, we know the conclusion of Theorem 4.1
holds. �

If f(x) is a 2−α-dimensional regular fractal function [6], upper box dimension of Riemann–
Liouville fractional integral of f(x) is non-increasing. We know

dimB Γ(f, I) = 2 − α.

While
dimB Γ(D−vf, I) ≤ 2 − α.

That is,
dimB Γ(D−vf, I) ≤ dimB Γ(f, I) = 2 − α.

With Theorem 3.3, we can get the following corollary.

Corollary 4.2 Let f(x) ∈ Hα, f(0) = 0 and D−vf(x) be defined as (2.1). Then for 0 < v < 1,

dimH Γ(D−vf, I) ≤ dimBΓ(D−vf, I) ≤ min{2 − v, 2 − α}.
Certain example is given as follows.

Example 4.3 ([21]) Let 0 < α < 1, λ > 4. Weierstrass function W (x) is defined as

W (x) =
∑
j≥1

λ−αj sin(λjx).

Then
dimB Γ(W, I) = 2 − α

and for v < 1 − α,

dimB Γ(D−vW, I) = 2 − α− v ≤ min{2 − v, 2 − α}.
We expect to get that upper box dimension of Riemann–Liouville integral of f(x) ∈ Hα of

order v (< 1 − α) is no more than 2 − α− v. Though it is difficult to get the inequality

dimBΓ(D−vf, I) ≤ 2 − α− v, v < 1 − α

when f ∈ Hα(0 ≤ α ≤ 1), we still can get a well estimation about fractal dimensions of
D−vf(x) by the following discussion.
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Lemma 4.4 Let D−vf(x), D−v
δ f(x) be defined as (2.1) and (2.2) respectively. For f(x) ∈ Hα,

|D−v
δ f(x) −D−vf(x)| ≤ Cδv, x ∈ I, δ > 0.

Proof Let x ∈ I and δ > 0. By Proposition 2.2, we can directly get the result of Lemma 3.4.

Now we give the main result of our paper.

Theorem 4.5 Let D−vf(x), D−v
δ f(x) be defined as (2.1) and (2.2) respectively. For f(x) ∈

Hα, f(0) = 0, 0 < α, v < 1 and α+ v < 1, it holds

|D−vf(x) −D−vf(y)| ≤ Cδv(1 + δα−1|x− y|), x, y ∈ I, δ > 0. (4.2)

Proof Let δ > 0, x, y ∈ I. By Lemma 4.4, for 0 < α, v < 1 and α+ v < 1,

|D−vf(x) −D−vf(y)| ≤ |D−vf(x) −D−v
δ f(x)| + |D−vf(y) −D−v

δ f(y)|
+ |D−v

δ f(x) −D−v
δ f(y)|

≤ Cδv + |D−v
δ f(x) −D−v

δ f(y)|
:= Cδv + I5.

Since I5 is differentiable on I by Property 2.3, then

I5 ≤
∣∣∣∣
(
d

dx
D−v

δ f(x)
)∣∣∣∣

x=ξ

∣∣∣∣|x− y|

for certain ξ ∈ I. Now we estimate d
dxD

−v
δ f(x). That is,

Γ(v)
d

dx
D−v

δ f(x) = (v − 1)
∫ x

0

f(t)(x+ δ − t)v−2dt+ f(x)δv−1

= (v − 1)
∫ x

0

f(t)(x+ δ − t)v−2dt

− (v − 1)
∫ x

0

f(x)(x+ δ − t)v−2dt+ f(x)(x+ δ)v−1

= (v − 1)
∫ x

0

[f(t) − f(x)](x+ δ − t)v−2dt+ [f(x) − f(0)](x+ δ)v−1.

For α+ v < 1,

Γ(v)
1 − v

∣∣∣∣ ddxD
−v
δ f(x)

∣∣∣∣ ≤ C

∫ x

0

(x− t)α(x+ δ − t)v−2dt+ Cxα(x+ δ)v−1

≤ C

∫ x

0

(x+ δ − t)α+v−2dt+ C(x+ δ)α+v−1

≤ Cδα+v−1 + C(x+ δ)α+v−1 ≤ Cδα+v−1.

So
I5 ≤ Cδα+v−1.

This means (4.2) holds. �
In Theorem 4.5, let δ = |x− y|. By appropriate modification, it holds

D−vf(x) ∈ Hv, 0 < v < 1.

In other words, there exists certain constant C such that

|D−vf(x) −D−vf(y)| ≤ C|x− y|v, 0 < v < 1, ∀x, y ∈ I.
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By Definition 1.2,

dimH Γ(D−vf, I) ≤ dimBΓ(D−vf, x) ≤ 2 − v, 0 < v < 1. (4.3)

From the following Theorem 4.6, we can get a conclusion better than (4.3).

Theorem 4.6 Let D−vf(x), D−v
δ f(x) be defined as (2.1) and (2.2) respectively. For f(x) ∈

Hα, f(0) = 0, 0 < α, v < 1 and α+ v < 1, it holds

D−vf(x) ∈ H2− v
1−α . (4.4)

Proof By Theorem 4.4, for 0 < α, v < 1 and α+ v < 1,

|D−vf(x) −D−vf(y)| ≤ Cδv(1 + δα−1|x− y|), ∀x, y ∈ I.

Let δ = |x− y| 1
1−α . Then,

|D−vf(x) −D−vf(y)| ≤ C|x− y| v
1−α .

Thus, we get (4.4). �

Remark 4.7 From Theorem 4.6,

dimH Γ(D−vf, I) ≤ dimBΓ(D−vf, x) ≤ 2 − v

1 − α
.

Since 0 < v < 1,
dimH Γ(D−vf, I) ≤ dimBΓ(D−vf, x) < 2 − v. (4.5)

(4.5) is better than (4.3). If we choose δ = |x− y|α
v ,

dimH Γ(D−vf, I) ≤ dimBΓ(D−vf, x) < 2 − α. (4.6)

Thus we know upper box dimension of Riemann–Liouville integral of certain continuous
functions of order v is strictly less than 2 − v, not no more than 2 − v. A best conclusion
maybe upper box dimension of Riemann–Liouville integral of f(x) ∈ Hα(0 < α < 1) of order
v(0 < v < 1) is no more than 2 − α − v when α + v < 1. Now we explore Riemann–Liouville
fractional integral of f(x) ∈ Hα with α+ v ≥ 1. Similar argument with Theorem 4.5, we have
the following result.

Theorem 4.8 Let D−vf(x), D−v
δ f(x) be defined as (2.1) and (2.2) respectively. For f(x) ∈

Hα, f(0) = 0, α+ v ≥ 1 and 0 < δ < 1, it holds

dimH Γ(D−vf, I) = dimB Γ(D−vf, I) = 1, 0 < v < 1 (4.7)

Proof Since 0 < δ < 1 and α+ v ≥ 1. Similar discussion with Theorem 4.5,

|D−vf(x) −D−vf(y)| ≤ Cδv + C|x− y|, x, y ∈ I. (4.8)

Let δ = |x− y| 1v . (4.8) equals to

|D−vf(x) −D−vf(y)| ≤ C|x− y|. (4.9)

This means Lipschiz function D−vf(x) ∈ H1. By [4], if a continuous function is of bounded
variation on I, its box dimension is 1. Since D−vf(x) is of bounded variation on I by (4.9),
then

dimB Γ(D−vf, I) = 1.
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From Definition 1.1,
dimB Γ(D−vf, I) ≥ dimH Γ(D−vf, I) ≥ 1.

Thus (4.7) holds. �
Box dimension of a continuous function f(x) ∈ Hα on I maybe exist or not, but by The-

orem 4.8, box dimension of Riemann–Liouville integral of f(x) of order v when α + v ≥ 1
exists. Furthermore, box dimension of D−vf(x) is 1. It is obvious that box dimension of
Riemann–Liouville integral of f(x) of order v is 1 for any 0 < α < 1 when v ≥ 1.

Remark 4.9 From Theorem 4.8, Riemann–Liouville fractional integral of a continuous func-
tion belong to Hα when 0 < α < 1 and α + v ≥ 1 is continuous and bounded. Furthermore,
box dimension of Riemann–Liouville integral of f(x) of order v > 1−α still is 1. In fact, by [4],
Riemann–Liouville integral of a continuous function with bounded variation of any positive or-
der v still is a continuous function with bounded variation. f(x) ∈ H1 is obviously of bounded
variation. Thus its Riemann–Liouville fractional integral still is of bounded variation by [4].

Here is an important problem that whether D−vf(x) with f(x) ∈ Hα is differentiable on I
when α+ v > 1. Let f(x) ∈ CI be a Lipchsiz function. Thus for any v(v > 0), box dimension
of Riemann–Liouville integral of f(x) of order v(v > 0) is 1 by Theorem 4.8. It is also given in
the following example.

Example 4.10 Let f(x) ∈ H1 be continuous on I andD−vf(x) be Riemann–Liouville integral
of f(x) of order v (v > 0). Since 1 + v > 1 for v > 0, by Theorem 4.8, D−vf(x) ∈ H1 and

dimH Γ(D−vf, I) = dimB Γ(D−vf, I) = 1. (4.10)

In fact (4.10) in Example 4.10 also holds by Remark 4.9. We can regard (4.10) as a special
result of the following theorem.

Theorem 4.11 ([4]) Let f(x) ∈ CI be of bounded variation. If D−vf(x) is defined as (2.1),
it is a continuous function with bounded variation on I and

dimH Γ(D−vf, I) = dimB Γ(D−vf, I) = dimH Γ(f, I) = dimB Γ(f, I) = 1.

If a continuous function f(x) ∈ H1, it is of bounded variation. While f(x) is of bounded
variation on I, it maybe belong to H1 or not. So the condition of Theorem 4.11 is weaker than
that of Example 4.10. But the conclusion of Example 4.10 is better than Theorem 4.11. In [9],
the author proved that box dimension of Riemann–Liouville fractional integral of a continuous
function defined on I which has at most finite points with unbounded variation is 1.

5 Fractal Dimensions of Fractional Derivative of f(x)

In the above several sections, we mainly discuss fractal dimensions of Riemann–Liouville frac-
tional integral of continuous functions. Here we explore fractal dimensions of Riemann–Liouville
fractional derivative of certain continuous functions on I elementary. Definition of Riemann–
Liouville fractional derivative of f(x) ∈ CI is given as follows.

Definition 5.1 ([11, 12]) Let f(x) ∈ CI and μ > 0. We call

Dμf(x) =
1

Γ(1 − μ)
d

dx

∫ x

0

(x− t)−μf(t)dt (5.1)

Riemann–Liouville derivative of f(x) of order μ if (5.1) exists.
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For convenience, let f(0) = 0. Now we consider fractal dimensions of Dμf(x) when f(x)
has a continuous derivative function f ′(x) on I of order μ (0 < μ < 1). From (5.1),

Γ(1 − μ)Dμf(x) =
d

dx

∫ x

0

(x− t)−μf(t)dt =
1

μ− 1
d

dx

∫ x

0

f(t)d(x− t)1−μ

=
1

μ− 1
d

dx
[f(t)(x− t)1−μ|xt=0] +

1
1 − μ

d

dx

∫ x

0

(x− t)1−μf ′(t)dt

=
1

1 − μ

d

dx

∫ x

0

(x− t)1−μf ′(t)dt = −
∫ x

0

(x− t)−μf ′(t)dt.

That is,

Dμf(x) =
−1

Γ(1 − μ)

∫ x

0

(x− t)−μf ′(t)dt. (5.2)

(5.2) means Riemann–Liouville derivative of f(x) of order μ exists when 0 < μ < 1. Thus
we have the following basic property.

Proposition 5.2 If f(x) has a continuous derivative function on I, Riemann–Liouville deriva-
tive of f(x) of order μ (0 < μ < 1) is continuous and bounded on I.

Similar argument with Theorem 3.3, we give estimation of fractal dimensions of Riemann–
Liouville fractional derivative of f(x) which has a continuous derivative function on I.

Theorem 5.3 If f(x) has a continuous derivative f ′(x) on I and f(0) = 0, upper box dimen-
sion of Riemann–Liouville derivative of f(x) of order μ (0 < μ < 1) is no more than 1 + μ.

Proof Let 0 < μ < 1 and 0 ≤ x, x+ h ≤ 1. Then by (5.2),

|Dμf(x+ h) −Dμf(x)| =
∣∣∣∣
∫ x+h

0

(x+ h− t)−μf ′(t)dt−
∫ x

0

(x− t)−μf ′(t)dt
∣∣∣∣

=
∣∣∣∣
∫ x+h

0

(x+ h− t)(1−μ)−1f ′(t)dt−
∫ x

0

(x− t)(1−μ)−1f ′(t)dt
∣∣∣∣.

Similar argument with Theorem 3.3,

|Dμf(x+ h) −Dμf(x)| ≤ C|x− y|1−μ.

With Lemma 3.2, we have

1 ≤ dimH Γ(Dμf, I) ≤ dimBΓ(Dμf, I) ≤ 1 + μ. (5.3)

By (5.3), upper box dimension of Dμf(x) is no more than 1 + μ when 0 < μ < 1. �
From Proposition 5.2 and Theorem 5.3, Riemann–Liouville fractional derivative of a contin-

uous function which has a continuous derivative exists. Furthermore, its upper box dimension
has been proved to be no more than 1 + μ.

Except for Riemann–Liouville fractional calculus, there are many other definition of frac-
tional calculus, such as modified Riemann–Liouville fractional calculus [2], Hadamard fractional
calculus [14], q-fractional integrals [13], Caputo fractional calculus [12], Grünwald fractional cal-
culus [14] and so on. Here we discuss fractal dimensions of Weyl–Marchaud fractional derivative
of certain continuous functions defined on R elementary. Definition of left-sided Weyl–Marchaud
fractional derivative has been given as follows.
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Definition 5.4 ([14]) Let f(x) be a continuous function defined on R and 0 < μ < 1. Write

Dμf(x) =
μ

Γ(1 − μ)

∫ ∞

0

f(x) − f(x− t)
t1+μ

dt (5.4)

as left-sided Weyl–Marchaud derivative of f(x) of order μ when (5.4) exists.

Estimation of fractal dimensions of Dμf(x) is given as follows.

Theorem 5.5 Let f(x) ∈ Hα on R. For 0 < μ < α < 1,

dimBΓ(Dμf, I) ≤ 2 − α+ μ. (5.5)

Proof Let h > 0 and 0 < μ < α. Then,(
Γ(1 − μ)

μ

)
(Dμf(x+ h) −Dμf(x))

=
∫ ∞

0

f(x+ h) − f(x) + f(x− t) − f(x+ h− t)
t1+μ

dt

=
( ∫ h

0

+
∫ ∞

h

)
f(x+ h) − f(x) + f(x− t) − f(x+ h− t)

t1+μ
dt

=: I1 + I2.

Since f(x) ∈ Hα on R,
|f(x) − f(y)| ≤ C|x− y|α, ∀x, y ∈ R.

We have,

|I1| ≤
∫ h

0

|f(x+ h) − f(x+ h− t)| + |f(x) − f(x− t)|
t1+μ

dt ≤ C

∫ h

0

tα

t1+μ
dt ≤ Chα−u,

|I2| ≤
∫ ∞

h

|f(x+ h) − f(x)| + |f(x− t) − f(x+ h− t)|
t1+μ

dt ≤ C

∫ ∞

h

hα

t1+μ
dt ≤ Chα−u.

Thus, it holds
|Dμf(x+ h) −Dμf(x)| ≤ Chα−μ, x ∈ R.

By Lemma 3.2, (5.5) holds. �

Remark 5.6 From Theorem 5.5, upper box dimension of Weyl–Machaud derivative of a
continuous function f(x) ∈ Hα(0 < α < 1) of order μ is no more than 2−α+μ when 0 < μ < α.
Let f(x) be a continuous function defined on R and f(x) = 0 (x ∈ R/I). Thus we can discuss
properties of Weyl–Machaud fractional derivative of f(x) on I as that of Riemann–Liouville
fractional calculus. More details can be found in Ref. [26].

6 Conclusions

In classical calculus, integral of f(x) ∈ CI seems smoother than f(x) itself. While derivative
of f(x) having a continuous derivative on I seems coarser than f(x) itself. For example, let
a positive integer n ∈ Z. Integral of a continuous function of order n seems more and more
smoother when n increases. If derivative of a continuous function of order n exists, it seems
more and more coarser when n increases. n which is order of calculus is integer here. So we
are interested in the corresponding results when n is not an integer, for example 0 < n < 1.

We try to deal with fractional calculus, such as Riemann–Liouville fractional calculus and
Weyl–Marchaud fractional calculus, of continuous functions on I. Fractal dimensions, such as
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Hausdorff dimension and box dimension have been used to describe those functions. According
to classical calculus, the right problem is to investigate fractal dimensions of fractional calculus
of continuous functions on closed intervals. In the present paper, we mainly consider upper
bound of fractal dimensions of Riemann–Liouville fractional integral of continuous functions on
I. It has been proved that upper bound of upper Box dimension of Riemann–Liouville integral
of any continuous functions on closed intervals of order v is no more than 2− v when v ∈ (0, 1).
Upper box dimension of Riemann–Liouville integral of any continuous functions which satisfy
α-Hölder condition on closed intervals of order v ∈ (0, 1) is no more than 2−α when 0 < α < 1.
An important conclusion maybe that upper box dimension of Riemann–Liouville integral of any
continuous functions which satisfy α-Hölder condition on closed intervals of order v ∈ (0, 1) is
strictly less than 2 − α when 0 < α < 1 and α+ v < 1. There are also many other important
conclusions about fractal dimensions of fractional calculus of certain continuous functions.

A special case is box dimension of f(x) ∈ CI is 1. Thus lower box dimension of Riemann–
Liouville integral of f(x) of positive order v is naturally no less than 1. We only to estimate
upper box dimension of Riemann–Liouville integral of f(x) of order v ∈ (0, 1). Since box
dimension of f(x) is 1 and upper box dimension of Riemann–Liouville integral of f(x) of
positive order v seems no more than that of f(x), we insist that box dimension of Riemann–
Liouville integral of f(x) order v must be 1. This work seems very obvious, but it is difficult to
prove the conclusion. Box dimension of Riemann–Liouville integral of f(x) of any continuous
functions with bounded variation on I of any positive order v is 1. Furthermore, box dimension
of Riemann–Liouville integral of f(x) of any continuous functions which have at most finite
points with unbounded variation on I of any positive order v is 1 too. But there are many
other 1-dimensional continuous functions on I. For example, there exists a 1-dimensional
continuous function with infinite points of unbounded variation on I and measure of these
points maybe strictly bigger than 0. The latest work about estimation of fractal dimensions of
Riemann–Liouville fractional integral of continuous functions on closed intervals can be found
in [4, 9, 25].

Another problem is to investigate Riemann–Liouville fractional derivative of f(x) ∈ CI .
Since Riemann–Liouville fractional derivative is derived from Riemann–Liouville fractional in-
tegral, some conclusion about Riemann–Liouville fractional integral can be used on estimation
of fractal dimensions of Riemann–Liouville fractional derivative of continuous functions such as
discussion of the present paper. It is obvious that Riemann–Liouville fractional derivative of
continuous functions maybe not exist. Since Dμf(x) = DDμ−1f(x), we should first consider
whether Dμ−1f(x) is differentiable or not when 0 < μ < 1.

In short, we discuss the relationship between fractal dimensions of continuous functions
and their fractional calculus. [21, 22, 24] got the linear connection between fractal dimensions
of Weierstrass functions and their Riemann–Liouville fractional calculus. [3] explored fractal
dimensions of Riemann–Liouville fractional calculus of Besicovitch functions. Certain fractal
curves such as Von Koch curve and its fractional calculus had been investigated in [8, 16, 18].
Linear relationship between fractal dimensions of linear fractal interpolation functions and their
Riemann–Liouville fractional integral [15] and derivative [10] had been discussed respectively.
In [25], the authors made research on Weyl–Marchaud fractional derivative of a type of self-
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affine functions. More details and other work about fractal dimensions of fractional calculus
of continuous functions can be found in [7, 19, 23]. According to classical calculus, we think a
right fractional calculus must satisfy the following conclusion.

Conjecture 6.1 (Fractional Calculus Theorem) Let f(x) be an s-dimensional regular fractal
function [6] on I for 1 < s < 2. D−vf(x) is fractional integral of f(x) of order v (0 < v < 1)
and D−μf(x) is fractional derivative of f(x) of order μ (0 < μ < 1) on I. Then,

dimB Γ(D−vf, I) = s− v, 0 < v < s− 1,

dimB Γ(Dμf, I) = s+ μ, 0 < μ < 2 − s.

In short, if definition of fractional calculus is well given, it must satisfy the conclusion which
is given in Fractional Calculus Theorem above. Meanwhile if Fractional Calculus Theorem holds
for certain fractional calculus, we regard this fractional calculus as the right fractional calculus
according to classical calculus. Up to now, Riemann–Liouville fractional calculus maybe the
fractional calculus which satisfies Fractional Calculus Theorem.
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