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Abstract We introduce the notion of the right approximation property with respect to an operator

ideal A and solve the duality problem for the approximation property with respect to an operator ideal

A, that is, a Banach space X has the approximation property with respect to Ad whenever X∗ has

the right approximation property with respect to an operator ideal A. The notions of the left bounded

approximation property and the left weak bounded approximation property for a Banach operator ideal

are introduced and new symmetric results are obtained. Finally, the notions of the p-compact sets and

the p-approximation property are extended to arbitrary Banach operator ideals. Known results of

the approximation property with respect to an operator ideal and the p-approximation property are

generalized.
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1 Introduction, Definitions and Notations

Throughout this paper, we denote by (A, ‖ · ‖A) a Banach operator ideal. When the norm
‖ · ‖A is understood or when we only work with an operator ideal, we simply write A. As usual,
L,W ,K,F and F denote the operator ideals of bounded, weakly compact, compact, approx-
imable and finite rank linear operators, respectively. All are considered with the supremum
norm. Let A be an operator ideal. For a pair of Banach spaces X and Y , Ad(X,Y ) denotes the
set of T ∈ L(X,Y ) such that the adjoint T ∗ ∈ A(Y ∗, X∗) and ‖T‖Ad = ‖T ∗‖A. The operator
ideal (Ad, ‖ · ‖Ad) is called the dual ideal of A.

Recall that a Banach space X is said to have the approximation property (AP) if for every
compact subset K of X and every ε > 0, there exists a finite rank operator S on X such
that supx∈K ‖Sx − x‖ ≤ ε, briefly, idX ∈ F(X,X)

τc , where idX is the identity map on X

and τc is the topology of uniform convergence on compact subsets of X. It is well known that
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a Banach space X has the AP if and only if for every Banach space Y and every operator
T ∈ L(Y,X), one has T ∈ {ST : S ∈ F(X,X)}τc . Given an operator ideal A, Delgado and
Piñeiro in [4] introduce the notion of approximation property depending on the operator ideal
A by replacing the operator ideal L by A. A Banach space X is said to have the approximation
property with respect to the operator ideal A (for short, APA) if for every Banach space Y and
every operator T ∈ A(Y,X), one has T ∈ {ST : S ∈ F(X,X)}τc . Delgado and Piñeiro in [4]

proved that a Banach space X has the APA if and only if idX ∈ F(X,X)
τc(A)

, where τc(A)
is the topology of uniform convergence on A-compact subsets of X introduced by Carl and
Stephani [1]. Following [1], a subset K of a Banach space X is said to be relatively A-compact
if there exist a Banach space Z, an operator T ∈ A(Z,X) and a compact subset M of Z such
that K ⊂ T (M). A closed relatively A-compact subset is said to be A-compact. It is proved
in [4] that a Banach space X has the APA whenever X∗∗ the APA. However, it seems that the
duality problem for the APA remains unknown so far. In Section 2, we introduce the notion
of the right approximation property with respect to an operator ideal A and solve the duality
problem for the APA.

Section 3 is concerned with the bounded approximation property with respect to an operator
ideal. Letting 1 ≤ λ < ∞, a Banach space X is said to have the λ-bounded approximation
property (λ-BAP) if for every compact subset K of X and every ε > 0, there exists a finite rank
operator S on X with ‖S‖ ≤ λ such that supx∈K ‖Sx−x‖ ≤ ε. In [11], Lima and Oja define the
weak bounded approximation property. Recall that X has the weak λ-bounded approximation
property (weak λ-BAP) if for every Banach space Y and for each operator T ∈ W(X,Y ), there
exists a net (Sα)α in F(X,X) such that supα ‖TSα‖ ≤ λ‖T‖ and Sα

τc−→ idX . In [9], this
concept is extended to an arbitrary Banach operator ideal (A, ‖ · ‖A) by replacing (W , ‖ · ‖).
A Banach space X is said to have the λ-bounded approximation property for A (λ-BAP for
A) if for every Banach space Y and for each operator T ∈ A(X,Y ), there exists a net (Sα)α

in F(X,X) such that supα ‖TSα‖A ≤ λ‖T‖A and Sα
τc−→ idX . It is immediate that the λ-

BAP implies the λ-BAP for every Banach operator ideal (A, ‖ · ‖A). In [8], Lassalle and Turco
presented a natural modification of the λ-BAP for A and introduce the weak λ-BAP for A.
A Banach space X is said to have the weak λ-bounded approximation property for A (weak
λ-BAP for A) if for every Banach space Y and for each operator T ∈ A(X,Y ), there exists a
net (Sα)α in F(X,X) such that supα ‖TSα‖A ≤ λ‖T‖A and Sα −→ idX in the strong operator
topology (SOT). Also, Lassalle and Turco [8] proved that the weak λ-BAP for A is equivalent
to the following condition: for every Banach space Y and for each operator T ∈ A(X,Y ),
there exists a net (Sα)α in F(X,X) such that supα ‖TSα‖A ≤ λ‖T‖A and TSα

SOT−→ T . In
this section, we prove, given an arbitrary operator ideal A, that the λ-BAP is equivalent to
a stronger condition: for every Banach space Y and for each operator T ∈ A(X,Y ), there
exists a net (Sα)α in F(X,X) such that supα ‖Sα‖ ≤ λ and TSα

SOT−→ T . It is shown in [8],
under the condition A = Add, that the strong operator topology under which the net (Sα)α

in the definition of the weak λ-BAP for A converges to the identity can be changed by a finer
topology (coarser than the topology of uniform convergence on compact sets). Consequently,
Lassalle and Turco [8] showed that the weak λ-BAP for F is equivalent to the λ-BAP for F .
In this section, we omit the condition A = Add and hence obtain that the weak λ-BAP for
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A is equivalent to the λ-BAP for A whenever Ad contains F . The symmetric versions of the
λ-BAP for A and the weak λ-BAP for A are also introduced in this section. We say that a
Banach space X has the left weak λ-bounded approximation property for A if for every Banach
space Y and for each operator T ∈ A(Y,X), there exists a net (Sα)α in F(X,X) such that
supα ‖SαT‖A ≤ λ‖T‖A and Sα

SOT−→ idX . If the strong operator topology under which the net
(Sα)α in the definition of the left weak λ-BAP for A converges to the identity is replaced by
the topology τc, we say that X has the left λ-bounded approximation property for A. In this
section, we show that the strong operator topology in the definition of the left weak λ-BAP
for A can be changed by the topology τc(A). As a consequence, we prove that the left weak
λ-BAP for A is equivalent to the left λ-BAP for A whenever A contains F .

In the final section, we generalize the relatively p-compact sets and the p-approximation
property in [14] to operator ideal cases. To illustrate our results, we need some definitions and
notations. For 1 ≤ p <∞, lp(X) denotes the space of p-summable sequences in X. For p = ∞,
we use the space c0(X) of norm null sequences in X. If (A, ‖·‖A) is a Banach operator ideal, we
denote by lAp (X)(1 ≤ p <∞) the space of p-summable sequences (xn)n in X with respect to A,
i.e., there exist an operator T ∈ A(Z,X) and (zn)n ∈ lp(Z) such that xn = Tzn(n = 1, 2, . . .).
For p = ∞, we denote by cA0 (X) the space of A-convergent to zero sequences in X. Then
lLp (X) = lp(X) and cL0 (X) = c0(X). For (xn)n ∈ lAp (X), we define a quasi-norm

‖(xn)n‖Ap = inf{‖T‖A‖(zn)n‖p : xn = Tzn(n = 1, 2, . . .)},
where the infimum is taken over all Banach spaces Z, all operators T ∈ A(Z,X) and all
(zn)n ∈ lp(Z) such that xn = Tzn(n = 1, 2, . . .). We say that a subset K of X is relatively A-p-
compact (1 ≤ p ≤ ∞) if there exists a sequence (xn)n ∈ lAp (X) such that K ⊂ p-co{xn}, where
p-co{xn} = {∑∞

n=1 αnxn : (αn)n ∈ Blp′} is called the p-convex hull of (xn)n and 1
p + 1

p′ = 1.
For A = L, the relatively L-p-compact sets are precisely the relatively p-compact sets. For
p = ∞, the relatively A-∞-compact sets are precisely the relatively A-compact sets. For a
relatively A-p-compact subset K of X, we define

mp
A,‖·‖A

(K;X) = inf{‖(xn)n‖Ap : K ⊂ p-co{xn}, (xn)n ∈ lAp (X)},
If K is not relatively A-p-compact, then let mp

A,‖·‖A
(K;X) = ∞. For simplicity, we write

mp
A(K) instead of mp

A,‖·‖A
(K;X). For A = L, mp

A(·) is precisely equal to mp(·) which is
introduced by Lassalle and Turco [6] to measure the size of a relatively p-compact set. For
p = ∞, mp

A(·) is precisely equal to mA(·) which is introduced by Lassalle and Turco [7] to
measure the size of a relatively A-compact set. In Section 4, we characterize relatively A-p-
compact sets and prove that a subset K of X is relatively A-p-compact if and only if K is
relatively A ◦ K-p-compact and has the same size. This result extends Corollary 1.9 in [7] to
the case 1 ≤ p ≤ ∞. We say that an operator T : X → Y is A-p-compact if T (BX) is relatively
A-p-compact. We denote by KA

p the space of all A-p-compact operators. KA
p becomes a quasi-

normed operator ideal if for any T ∈ KA
p (X,Y ), one defines

‖T‖KA
p

:= mp
A(T (BX)).

In Section 4, we present the representation formula for KA
p as KA

p = (A ◦ Kp)sur. This formula
also generalizes [7, Proposition 2.1] to the case 1 ≤ p ≤ ∞. For A = L, the L-p-compact
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operators are precisely the p-compact operators introduced by Sinha and Karn [14]. Moreover,
‖ · ‖KL

p
is equal to kp(·) introduced in [6]. For p = ∞, the A-p-compact operators are precisely

the A-compact operators introduced by by Carl and Stephani [1].

The topology of uniform convergence on A-p-compact subsets inX on L(X,Y ) is denoted by
τp(A) (τc(A) for p = ∞). This locally convex topology is generated by the family of semi-norms

pK(T ) := sup
x∈K

‖Tx‖, ∀T ∈ L(X,Y ),

where K is running over all the A-p-compact subsets in X. We say that a Banach space X
has the p-approximation property with respect to an operator ideal A (for short, p-APA) if for
every A-p-compact subset K of X and every ε > 0, there exists a finite rank operator S on X

such that supx∈K ‖Sx − x‖ ≤ ε, that is, idX ∈ F(X,X)
τp(A)

. Some new characterizations of
the p-APA are established. It is proved in [4] that, under the assumption A = K ◦A, a Banach
space X has the APA if and only if F(Y,X) is τc(A)-dense in K(Y,X) for any Banach space Y .
In this paper, we prove the symmetric version of this result without any assumption. Actually,
we prove a more general result, that is, a Banach space X has the p-APA if and only if F(X,Y )
is τp(A)-dense in K(X,Y ) for every Banach space Y .

We refer to the books of Pietsch [13], of Diestel, Jarchow and Tonge [5] for operator ideals.
For approximation properties, we refer to the books [2, 12].

2 The Duality Problem for the Approximation Property with Respect to an Op-
erator Ideal

Definition 2.1 We say that a Banach space X has the right approximation property with
respect to an operator ideal A (for short, the right APA) if for every Banach space Y and every
operator T ∈ A(X,Y ), one has T ∈ {TS : S ∈ F(X,X)}τc .

To prove the main results in this section, we need two lemmas which strengthen the Banach
spaces Y in the definitions of the APA and the right APA to be separable and reflexive.

Lemma 2.2 Let X be a Banach space and A be an operator ideal. The following statements
are equivalent :

(a) X has the APA.

(b) For every separable reflexive Banach space Y and every operator T ∈ A(Y,X), one has
T ∈ {ST : S ∈ F(X,X)}τc .

(c) For every separable reflexive Banach space Y and every operator T ∈ A ◦ K(Y,X), one
has T ∈ {ST : S ∈ F(X,X)}τc .

Proof It suffices to prove (c)⇒(a). Let Y be a Banach space and an operator T ∈ A(Y,X).
Fix sequences (yn)n in Y , (x∗n)n in X∗ with

∑
n ‖yn‖‖x∗n‖ <∞ such that

∑

n

〈x∗n, STyn〉 = 0, ∀S ∈ F(X,X). (2.1)

We may assume that 1 ≥ ‖yn‖ → 0 and
∑

n ‖x∗n‖ < ∞. Let K = absconv((yn)n) ⊂ BY . By
the factorization lemma, there exists a separable and reflexive space Z, which is a subspace
of Y , such that the inclusion map J : Z → Y is compact, ‖J‖ ≤ 1 and K ⊂ BZ . Then
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TJ ∈ A ◦ K(Z,X). By the assumption, we get

TJ ∈ {STJ : S ∈ F(X,X)}τc
.

Then there exists a net (Sα)α ⊂ F(X,X) such that SαTJ
τc−→ TJ . Define φ ∈ (L(Z,X), τc)∗

by
〈φ,U〉 =

∑

n

〈x∗n, Uyn〉, U ∈ L(Z,X).

Thus
〈φ, SαTJ〉 −→ 〈φ, TJ〉. (2.2)

By (2.1), for any operator S ∈ F(X,X), one has

〈φ, STJ〉 =
∞∑

n=1

〈x∗n, STJyn〉 =
∞∑

n=1

〈x∗n, STyn〉 = 0.

By (2.2),
∞∑

n=1

〈x∗n, T yn〉 = 0.

Therefore,
T ∈ {ST : S ∈ F(X,X)}τc

.

A slight modification of the proof of Lemma 2.2 shows its symmetric version.

Lemma 2.3 Let X be a Banach space and A be an operator ideal. The following statements
are equivalent :

(a) X has the right APA.
(b) For every separable reflexive Banach space Y and every operator T ∈ A(X,Y ), one has

T ∈ {TS : S ∈ F(X,X)}τc .
(c) For every separable reflexive Banach space Y and every operator T ∈ K ◦ A(X,Y ), one

has T ∈ {TS : S ∈ F(X,X)}τc .

Theorem 2.4 Let X be a Banach space and A be an operator ideal. If X∗ has the right APA,
then X has the APAd . If X is reflexive, the converse holds.

Proof Let Y be a Banach space and an operator T ∈ Ad(Y,X). By the definition of Ad, we
get T ∗ ∈ A(X∗, Y ∗). Since X∗ has the right APA, one has

T ∗ ∈ {T ∗S : S ∈ F(X∗, X∗)}τc
. (2.3)

It remains to prove that
T ∈ {RT : R ∈ F(X,X)}τc

.

Fix sequences (yn)n ⊂ Y, (x∗n)n ⊂ X∗ with
∑

n ‖yn‖‖x∗n‖ <∞ such that
∑

n

〈x∗n, RTyn〉 = 0, ∀R ∈ F(X,X). (2.4)

Since F(X∗, X∗) ⊂ {R∗ : R ∈ F(X,X)}τc , by (2.4), we have
∞∑

n=1

〈T ∗Sx∗n, yn〉 =
∞∑

n=1

〈Sx∗n, T yn〉 = 0, ∀S ∈ F(X∗, X∗).
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By (2.3), we get
∞∑

n=1

〈x∗n, T yn〉 =
∞∑

n=1

〈iY (yn), T ∗x∗n〉 = 0.

Thus

T ∈ {RT : R ∈ F(X,X)}τc
.

Suppose that X is reflexive. Fix a Banach space Y and an operator T ∈ A(X∗, Y ). Since X is
reflexive, there exists an operator U ∈ L(Y ∗, X) such that

〈y∗, Tx∗〉 = 〈x∗, Uy∗〉, x∗ ∈ X∗, y∗ ∈ Y ∗.

This implies that

U∗ = iY T ∈ A(X∗, Y ∗∗),

where iY denotes the canonical embedding from Y to Y ∗∗. Thus U ∈ Ad(Y ∗, X). Since X has
the APAd , we get

U ∈ {SU : S ∈ F(X,X)}τc (2.5)

Fix sequences (x∗n)n ⊂ X∗, (y∗n)n ⊂ Y ∗ with
∑

n ‖x∗n‖‖y∗n‖ <∞ such that
∞∑

n=1

〈y∗n, TRx∗n〉 = 0, ∀R ∈ F(X∗, X∗). (2.6)

By rescaling, we may assume that ‖y∗n‖ → 0 and
∑∞

n=1 ‖x∗n‖ <∞. Then, by (2.5), there exists
a net (Sα)α ⊂ F(X,X) such that

sup
n

‖U(y∗n) − SαU(y∗n)‖ → 0. (2.7)

Note that for each α, by (2.6), one has
∑

n

〈x∗n, SαUy
∗
n〉 =

∑

n

〈y∗n, TS∗
αx

∗
n〉 = 0.

By (2.7), we get
∞∑

n=1

〈y∗n, Tx∗n〉 =
∞∑

n=1

〈x∗n, Uy∗n〉 = 0.

Thus

T ∈ {TR : R ∈ F(X∗, X∗)}τc
.

Theorem 2.5 Let X be a Banach space and A be an operator ideal. If X∗ has the APA, then
X has the right APAd. If X is reflexive, the converse holds.

Proof Let Y be a Banach space and an operator T ∈ Ad(X,Y ). Since X∗ has the APA, one
has

T ∗ ∈ {ST ∗ : S ∈ F(X∗, X∗)}τc
. (2.8)

Fix sequences (xn)∞n=1 ⊂ X, (y∗n)∞n=1 ⊂ Y ∗ with
∑∞

n=1 ‖xn‖‖y∗n‖ <∞ such that
∞∑

n=1

〈y∗n, TRxn〉 = 0, ∀R ∈ F(X,X). (2.9)
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By rescaling, we may assume that ‖y∗n‖ → 0 and
∑∞

n=1 ‖x∗n‖ < ∞. Let S ∈ F(X∗, X∗). Then
there exists a net (Rα)α ⊂ F(X,X) such that R∗

α
τc−→ S. Hence

sup
n

‖R∗
αT

∗y∗n − ST ∗y∗n‖ → 0.

This implies that
∞∑

n=1

〈y∗n, TRαxn〉 →
∞∑

n=1

〈ST ∗y∗n, xn〉. (2.10)

By (2.9) and (2.10), we get
∞∑

n=1

〈ST ∗y∗n, xn〉 = 0, S ∈ F(X∗, X∗). (2.11)

By (2.8), there exists a net (Sβ)β ⊂ F(X∗, X∗) such that

sup
n

‖SβT
∗y∗n − T ∗y∗n‖ → 0.

It follows that ∞∑

n=1

〈SβT
∗y∗n, xn〉 →

∞∑

n=1

〈T ∗y∗n, xn〉.

By (2.11), we have
∞∑

n=1

〈y∗n, Txn〉 =
∞∑

n=1

〈T ∗y∗n, xn〉 = 0.

This shows that

T ∈ {TR : R ∈ F(X,X)}τc
.

Consequently, X has the right APAd .
Suppose that X is reflexive. Fix a reflexive Banach space Y and an operator T ∈ A(Y,X∗).

Define U : X → Y ∗ by

〈Ux, y〉 = 〈Ty, x〉, x ∈ X, y ∈ Y.

Then U∗iY = T . It follows from the reflexivity of Y that U∗ ∈ A(Y ∗∗, X∗) and hence U ∈
Ad(X,Y ∗). By the assumption, there exists a net (Sα)α ⊂ F(X,X) such that USα

τc−→ U . Fix
sequences (yn)n ⊂ Y, (xn)n ⊂ X with

∑
n ‖xn‖‖yn‖ <∞ such that

∞∑

n=1

〈RTyn, xn〉 = 0, ∀R ∈ F(X∗, X∗). (2.12)

We may assume that ‖xn‖ → 0 and
∑∞

n=1 ‖yn‖ <∞. Thus

sup
n

‖USα(xn) − U(xn)‖ → 0.

From this, one has
∑

n

〈USαxn, yn〉 →
∑

n

〈Uxn, yn〉. (2.13)

By (2.12), for any α,
∑

n

〈USαxn, yn〉 =
∑

n

〈Tyn, Sαxn〉 = 0.
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By (2.13),
∞∑

n=1

〈Tyn, xn〉 =
∞∑

n=1

〈Uxn, yn〉 = 0.

It follows from the reflexivity of X that

T ∈ {RT : R ∈ F(X∗, X∗)}τc
.

By Lemma 2.2, X∗ has the APA.
An immediate consequence of Theorems 2.4 and 2.5 is the following result due to Delgado

and Piñeiro in [4].

Corollary 2.6 Let X be a Banach space and A be an operator ideal. If X∗∗ has the APA,
then so does X.

Proof Suppose that X∗∗ has the APA. By Theorem 2.5, X∗ has the right APAd . By The-
orem 2.4, X has the AP(Ad)d . Note that A(Y,X) ⊂ (Ad)d(Y,X) whenever Y is reflexive. It
follows from Lemma 2.2 that X has the APA.

3 The Bounded Approximation Property with Respect to an Operator Ideal

Theorem 3.1 The following statements are equivalent for a Banach space X, an operator
ideal A and λ ≥ 1.

(a) X has the λ-BAP ;
(b) For every A-compact subset K of X and every ε > 0, there exists a finite rank operator

S on X with ‖S‖ ≤ λ such that supx∈K ‖Sx− x‖ ≤ ε;
(c) For every Banach space Y and every operator T ∈ A(Y,X), one has

T ∈ {ST : S ∈ F(X,X), ‖S‖ ≤ λ}SOT
;

(d) For every Banach space Y and every operator T ∈ A(X,Y ), one has

T ∈ {TS : S ∈ F(X,X), ‖S‖ ≤ λ}SOT
.

Proof (a)⇒(b)⇒(c) and (a)⇒(d) are trivial.
(c)⇒(a). Fix a finite subset {x1, x2, . . . , xn} ⊂ X and ε > 0. Choose a projection P from

X onto span{x1, x2, . . . , xn} ⊂ X. It follows from F ⊂ A that P ∈ A(X,X). By (c), we have

P ∈ {SP : S ∈ F(X,X), ‖S‖ ≤ λ}SOT
.

Then there exists an operator S ∈ F(X,X) with ‖S‖ ≤ λ such that

‖xi − Sxi‖ = ‖Pxi − SPxi‖ < ε, i = 1, 2, . . . , n.

Thus X has the λ-BAP.
(d)⇒(a). It is well known that X has the λ-BAP if and only if

idX ∈ {S : S ∈ F(X,X), ‖S‖ ≤ λ}WOT
,

where WOT denotes the weak operator topology for simplicity. Let φ ∈ (L(X,X),WOT)∗.
Then there exist finite sequences (xn)m

n=1 ⊂ X and (x∗n)m
n=1 ⊂ X∗ such that

〈φ,U〉 =
m∑

n=1

〈x∗n, Uxn〉, U ∈ L(X,X).
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We may assume that ‖x∗n‖ ≤ 1, n = 1, 2, . . . ,m. Let K := absconv((x∗n)m
n=1) ⊂ BX∗ . By the

factorization lemma, there exists a separable reflexive space Z, which is a subspace of X∗, such
that the inclusion map J : Z → X∗ is finite rank (see the proof of [10, Theorem 2.2]), ‖J‖ ≤ 1
and K ⊂ BZ . Since F ⊂ A, it follows from the assumption that

J∗iX ∈ {J∗iXS : S ∈ F(X,X), ‖S‖ ≤ λ}SOT
.

Since the functional ψ : T �→ ∑m
n=1〈iZx∗n, Txn〉(∀T ∈ L(X,Z∗)) belongs to (L(X,Z∗), SOT)∗,

we have

Re〈φ, idX〉 = Re
m∑

n=1

〈iXxn, Jx
∗
n〉

= Re
m∑

n=1

〈J∗iXxn, x
∗
n〉 = Re〈ψ, J∗iX〉

≤ sup{Re〈ψ, J∗iXS〉 : S ∈ F(X,X), ‖S‖ ≤ λ}

= sup
{

Re
m∑

n=1

〈J∗iXSxn, x
∗
n〉 : S ∈ F(X,X), ‖S‖ ≤ λ

}

≤ sup{Re〈φ, S〉 : S ∈ F(X,X), ‖S‖ ≤ λ}.

Hence idX ∈ {S : S ∈ F(X,X), ‖S‖ ≤ λ}WOT
.

In the following result, we omit the condition A = Add of Proposition 1.3 in [8]. Recall that
cA

d

0 (X∗) denotes the space of Ad-convergent to zero sequences in X∗.

Theorem 3.2 Let X be a Banach space, (A, ‖·‖A) be a Banach operator ideal. Suppose that τ
is a locally convex Hausdorff topology on L(X,X) such that every functional φ ∈ (L(X,X), τ )∗

is of the form

〈φ, T 〉 =
∑

n

〈x∗n, Txn〉, ∀T ∈ L(X,X),

where (xn)n ∈ l1(X), (x∗n)n ∈ cA
d

0 (X∗). Then the following are equivalent :
(a) X has the weak λ-BAP for A;
(b) For every Banach space Y and every operator T ∈ A(X,Y ), one has

idX ∈ {S : S ∈ F(X,X), ‖TS‖A ≤ λ‖T‖A}τ
.

Proof (b)⇒(a) is trivial, so it suffices to prove (a)⇒(b). Let Y be a Banach space and an
operator T ∈ A(X,Y ). Suppose on the contrary that

idX �∈ {S : S ∈ F(X,X), ‖TS‖A ≤ λ‖T‖A}τ
.

Then, by the separation theorem, there exists a functional φ ∈ (L(X,X), τ )∗ such that 〈φ, ·〉 =
∑

n〈x∗n, ·xn〉, (xn)n ∈ l1(X), (x∗n)n ∈ cA
d

0 (X∗) and

|〈φ, idX〉| > sup
S∈F(X,X)

‖T S‖A≤λ‖T‖A

|〈φ, S〉|.

Fix ε > 0. Then there exists an operator R ∈ Ad(Z,X∗) and (zn)n ∈ c0(Z) such that

‖R‖Ad ≤ (1 + ε)mAd((x∗n)n), R(zn) = x∗n, n = 1, 2, . . . .
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Define an operator

T̃ : X → Z∗ × Y, x �→ (εR∗JXx, Tx).

Then we can derive that T̃ = εi1R
∗JX + i2T ∈ A(X,Z∗ × Y ) and P2T̃ = T , where i1 : Z∗ →

Z∗ × Y, i2 : Y → Z∗ × Y are the canonical injections and P2 : Z∗ × Y → Y is the canonical
projection. For each n, define fn ∈ (Z∗ × Y )∗ by

〈fn, (z∗, y)〉 = 〈z∗, zn〉, (z∗, y) ∈ Z∗ × Y.

By [8, Theorem 1.2 (iii)], we have
∣
∣
∣
∣

∑

n

〈fn, T̃ xn〉
∣
∣
∣
∣ ≤ λ sup

S∈F(X,X)
‖T̃ S‖A≤‖T̃‖A

∣
∣
∣
∣

∑

n

〈fn, T̃ Sxn〉
∣
∣
∣
∣.

Note that for each x ∈ X, one has 〈fn, T̃ x〉 = ε〈x∗n, x〉. For any operator S ∈ F(X,X) with
‖T̃ S‖A ≤ ‖T̃‖A, one can derive that

‖TS‖A = ‖P2T̃ S‖A ≤ ‖T̃ S‖A ≤ ‖T̃‖A
≤ ε‖R∗‖A + ‖T‖A
≤ ε(1 + ε)mAd((x∗n)n) + ‖T‖A.

Thus,

ε

∣
∣
∣
∣

∑

n

〈x∗n, xn〉
∣
∣
∣
∣ ≤ λε sup

S∈F(X,X)
‖T̃ S‖A≤‖T̃‖A

∣
∣
∣
∣

∑

n

〈x∗n, Sxn〉
∣
∣
∣
∣

≤ λε sup
S∈F(X,X)

‖T S‖A≤ε(1+ε)mAd ((x∗
n)n)+‖T‖A

∣
∣
∣
∣

∑

n

〈x∗n, Sxn〉
∣
∣
∣
∣

= ε

[

1 + ε(1 + ε)
mAd((x∗n)n)

‖T‖A

]

sup
S∈F(X,X)

‖T S‖A≤λ‖T‖A

∣
∣
∣
∣

∑

n

〈x∗n, Sxn〉
∣
∣
∣
∣.

Letting ε→ 0, we complete the proof.

As a consequence, we extend [8, Corollary 1.4] to any Banach operator ideal A with Ad ⊃ F .

Corollary 3.3 For any λ ≥ 1, the λ-BAP for A and the weak λ-BAP for A coincide whenever
Ad contains F .

The rest of this section is concerned with the symmetric version of Theorem 3.2. We shall
prove that the topology τ in Theorem 3.2, in the case of the left weak λ-BAP for A, can be
replaced by the topology τc(A). First, we establish some characterizations of the left weak
λ-BAP for A.

Theorem 3.4 Let X be a Banach space, (A, ‖ · ‖A) be a Banach operator ideal and λ ≥ 1.
Then the following are equivalent :

(a) X has the left weak λ-BAP for A;

(b) For every Banach space Y and every operator T ∈ A(Y,X), one has

T ∈ {ST : S ∈ F(X,X), ‖ST‖A ≤ λ‖T‖A}SOT
;
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(c) For every Banach space Y , every operator T ∈ A(Y,X), all sequences (yn)n ⊂ Y and
(x∗n)n ⊂ X∗ such that

∑
n ‖yn‖‖x∗n‖ <∞, one has

∣
∣
∣
∣

∑

n

〈x∗n, T yn〉
∣
∣
∣
∣ ≤ λ sup

S∈F(X,X)
‖ST‖A≤‖T‖A

∣
∣
∣
∣

∑

n

〈x∗n, STyn〉
∣
∣
∣
∣.

(d) For every Banach space Y , every operator T ∈ A(Y,X), all finite sequences (yn)N
n=1 ⊂ Y

and (x∗n)N
n=1 ⊂ X∗, one has

∣
∣
∣
∣

N∑

n=1

〈x∗n, T yn〉
∣
∣
∣
∣ ≤ λ sup

S∈F(X,X)
‖ST‖A≤‖T‖A

∣
∣
∣
∣

N∑

n=1

〈x∗n, STyn〉
∣
∣
∣
∣.

Proof It suffices to prove (d)⇒(a). Let Y be a Banach space and an operator T ∈ A(Y,X).
Suppose on the contrary that

idX �∈ {S : S ∈ F(X,X), ‖ST‖A ≤ λ‖T‖A}SOT
.

By the separation theorem, there exists a functional φ ∈ (L(X,X), SOT)∗ such that it is of the
form

〈φ, T 〉 =
N∑

n=1

〈x∗n, Txn〉, ∀T ∈ L(X,X),

where (xn)N
n=1 ⊂ X, (x∗n)N

n=1 ⊂ X∗, ‖xn‖ = 1 (n = 1, 2, . . . , N) and

|〈φ, idX〉| > sup
S∈F(X,X)

‖ST‖A≤λ‖T‖A

|〈φ, S〉|.

Let K = absconv((xn)N
n=1) ⊂ BX . Then there exists a separable and reflexive space Z ⊂ X

such that the inclusion map J : Z → X is finite rank, ‖J‖ ≤ 1 and K ⊂ BZ . Fix ε > 0. Define
an operator

T̃ : Y × Z → X, (y, z) �→ Ty + εJz.

Then T̃ = TP1 + εJP2 ∈ A(Y × Z,X) and T = T̃ i1, where P1 : Y × Z → Y, P2 : Y × Z → Z

are the canonical projections and i1 : Y → Y × Z is the canonical injection. By (d), one has
∣
∣
∣
∣

N∑

n=1

〈x∗n, T̃ (0, xn)〉
∣
∣
∣
∣ ≤ λ sup

S∈F(X,X)
‖ST̃‖A≤‖T̃‖A

∣
∣
∣
∣

N∑

n=1

〈x∗n, ST̃ (0, xn)〉
∣
∣
∣
∣.

As in the proof of Theorem 3.2, for any operator S ∈ F(X,X) with ‖ST̃‖A ≤ ‖T̃‖A, we have

‖ST‖A = ‖ST̃ i1‖A ≤ ‖ST̃‖A ≤ ‖T̃‖A
≤ ε‖J‖A + ‖T‖A.

Thus,

ε

∣
∣
∣
∣

N∑

n=1

〈x∗n, xn〉
∣
∣
∣
∣ ≤ λε sup

S∈F(X,X)
‖ST̃‖A≤‖T̃‖A

∣
∣
∣
∣

N∑

n=1

〈x∗n, Sxn〉
∣
∣
∣
∣

≤ λε sup
S∈F(X,X)

‖ST‖A≤ε‖J‖A+‖T‖A

∣
∣
∣
∣

N∑

n=1

〈x∗n, Sxn〉
∣
∣
∣
∣
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= ε

(

1 + ε
‖J‖A
‖T‖A

)

sup
S∈F(X,X)

‖ST‖A≤λ‖T‖A

∣
∣
∣
∣

N∑

n=1

〈x∗n, Sxn〉
∣
∣
∣
∣.

Let ε→ 0. We are done.

Corollary 3.5 Let X be a Banach space, (A, ‖ · ‖A) be a Banach operator ideal and λ ≥ 1.
Then the following are equivalent :

(a) X has the left weak λ-BAP for A;
(b) For every Banach space Y and every operator T ∈ A(Y,X), one has

idX ∈ {S : S ∈ F(X,X), ‖ST‖A ≤ λ‖T‖A}τc(A)
.

Proof We only prove (a)⇒(b). Let Y be a Banach space and an operator T ∈ A(Y,X).
Suppose on the contrary that

idX �∈ {S : S ∈ F(X,X), ‖ST‖A ≤ λ‖T‖A}τc(A)
.

There exists a functional φ ∈ (L(X,X), τc(A))∗ such that φ is the form of

〈φ, T 〉 =
∑

n

〈x∗n, Txn〉, ∀T ∈ L(X,X),

where (xn)n ∈ cA0 (X), (x∗n)n ∈ l1(X∗) and

|〈φ, idX〉| > sup
S∈F(X,X)

‖ST‖A≤λ‖T‖A

|〈φ, S〉|.

Fix ε > 0. Then there exists an operator R ∈ A(Z,X) and (zn)n ∈ c0(Z) such that

‖R‖A ≤ (1 + ε)mA((xn)n), R(zn) = xn, n = 1, 2, . . . .

As in Theorem 3.4, we define an operator

T̃ : Y × Z → X, (y, z) �→ Ty + εRz.

Then T̃ = TP1+εRP2 ∈ A(Y ×Z,X) and T = T̃ i1. Applying Theorem 3.4 (c) to T̃ , ((0, zn))n ⊂
Y × Z and (x∗n)n ⊂ X∗, one has

∣
∣
∣
∣

∑

n

〈x∗n, T̃ (0, zn)〉
∣
∣
∣
∣ ≤ λ sup

S∈F(X,X)
‖ST̃‖A≤‖T̃‖A

∣
∣
∣
∣

∑

n

〈x∗n, ST̃ (0, zn)〉
∣
∣
∣
∣.

Thus ∣
∣
∣
∣

∑

n

〈x∗n, xn〉
∣
∣
∣
∣ ≤ λ sup

S∈F(X,X)
‖ST̃‖A≤‖T̃‖A

∣
∣
∣
∣

∑

n

〈x∗n, Sxn〉
∣
∣
∣
∣.

As in the proof of Theorem 3.4, we fix an operator S ∈ F(X,X) with ‖ST̃‖A ≤ ‖T̃‖A. Then

‖ST‖A = ‖ST̃ i1‖A ≤ ‖ST̃‖A ≤ ‖T̃‖A
≤ ε(1 + ε)mA((xn)n) + ‖T‖A.

This implies that
∣
∣
∣
∣

∑

n

〈x∗n, xn〉
∣
∣
∣
∣ ≤ λ sup

S∈F(X,X)
‖ST̃‖A≤‖T̃‖A

∣
∣
∣
∣

∑

n

〈x∗n, Sxn〉
∣
∣
∣
∣
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≤ λ sup
S∈F(X,X)

‖ST‖A≤ε(1+ε)mA((xn)n)+‖T‖A

∣
∣
∣
∣

∑

n

〈x∗n, Sxn〉
∣
∣
∣
∣

=
[

1 + ε(1 + ε)
mA((xn)n)

‖T‖A

]

sup
S∈F(X,X)

‖ST‖A≤λ‖T‖A

∣
∣
∣
∣

∑

n

〈x∗n, Sxn〉
∣
∣
∣
∣.

Letting ε→ 0, we complete the proof.
Consequently, we obtain the symmetric version of Corollary 3.3.

Corollary 3.6 For any λ ≥ 1, the left λ-BAP for A and the left weak λ-BAP for A coincide
whenever A contains F .

4 The p-compact Sets and the p-approximation Property Given by Operator Ide-
als

We begin this section with some characterizations of relatively A-p-compact sets.

Theorem 4.1 Let X be a Banach space, K a subset of X and (A, ‖ · ‖A) a Banach operator
ideal. The following are equivalent.

(a) K is relatively A-p-compact ;
(b) There exist a Banach space Z, an operator T ∈ A(Z,X) and a p-compact subset C of

Z such that K ⊂ T (C).
(c) There exist a Banach space Z, operators T ∈ A(Z,X), S ∈ Kp(lp′ , Z) and a compact

subset M ⊂ Blp′ such that K ⊂ (TS)(M);
(d) There exist a Banach space Z, operators T ∈ A(Z,X) and S ∈ Kp(lp′ , Z) such that

K ⊂ (TS)(Blp′ );
(e) There exist Banach spaces Z and G, operators T ∈ A(Z,X) and S ∈ Kp(G,Z) such that

K ⊂ (TS)(BG). Moreover, mp
A(K) = inf{‖T‖Amp(C) : T,C as in (b)} = inf{‖T‖Akp(S) :

T, S as in (c)} = inf{‖T‖Akp(S) : T, S as in (d)} = inf{‖T‖Akp(S) : T, S as in (e)}.
Proof (a)⇒(b) Suppose that K is relatively A-p-compact. Let ε > 0. Then there exists
a sequence (xn)n ∈ lAp (X) such that K ⊂ p-co{xn} and ‖(xn)n‖Ap < mp

A(K) + ε
2 . By the

definition of ‖ · ‖Ap , there exist an operator T ∈ A(Z,X) and (zn)n ∈ lp(Z) such that xn =
Tzn(n = 1, 2, . . .) and ‖T‖A‖(zn)n‖p < ‖(xn)n‖Ap + ε

2 . This implies that ‖T‖A‖(zn)n‖p <

mp
A(K) + ε. Let C := p-co{zn}. Then C is p-compact and ‖T‖Amp(C) < mp

A(K) + ε. Thus
inf{‖T‖Amp(C) : T,C as in (b)} ≤ mp

A(K).
(b)⇒(c) Take a Banach space Z, an operator T ∈ A(Z,X) and a p-compact subset C of Z

such that K ⊂ T (C) and ‖T‖Amp(C) < inf{‖T‖Amp(C) : T,C as in (b)}+ε. By the definition
of p-compact subsets, there exists a sequence (zn)n ∈ lp(Z) such that C ⊂ {∑n αnzn : (αn)n ∈
Blp′ } and ‖(zn)n‖p < mp(C)+ ε

‖T‖A
. Choose 1 ≤ ξn → ∞ with ‖(ξnzn)n‖p < ‖(zn)n‖p + ε

‖T‖A
.

Define operators

D : lp′ → lp′ , (αn)n �→
(
αn

ξn

)

n

,

and
S : lp′ → Z, (αn)n �→

∑

n

αnξnzn.

Then we can derive that D is compact, ‖D‖ ≤ 1, S is p-compact and kp(S) ≤ ‖(ξnzn)n‖p <

mp(C) + 2ε
‖T‖A

. Thus D(Blp′ ) is relatively compact and K ⊂ (TS)(D(Blp′ )). Moreover,
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‖T‖Akp(S) ≤ inf{‖T‖Amp(C) : T,C as in (b)} + 3ε. Thus, we have inf{‖T‖Akp(S) : T, S
as in (c)} ≤ inf{‖T‖Amp(C) : T,C as in (b)}.

(c)⇒(d) is immediate and inf{‖T‖Akp(S) : T, S as in (d)} ≤ inf{‖T‖Akp(S) : T, S as in
(c)}.

(d)⇒(e) is trivial and inf{‖T‖Akp(S) : T, S as in (e)} ≤ inf{‖T‖Akp(S) : T, S as in (d)}.
(e)⇒(a) Fix ε > 0. By (e), there exist Banach spaces Z and G, operators T ∈ A(Z,X) and

S ∈ Kp(G,Z) such that K ⊂ (TS)(BG) and ‖T‖Akp(S) < inf{‖T‖Akp(S) : T, S as in (e)} + ε.
By the definition of kp(S), there is a sequence (zn)n ∈ lp(Z) such that S(BG) ⊂ {∑n αnzn :
(αn)n ∈ Blp′ } and ‖(zn)n‖p < kp(S) + ε

‖T‖A
. Let xn = Tzn(n = 1, 2, . . .). Then (xn)n ∈ lAp (X)

and K ⊂ p-co{xn}. Thus ‖T‖A‖(zn)n‖p ≤ inf{‖T‖Akp(S) : T, S as in (e)} + 2ε. Therefore, we
have mp

A(K) ≤ inf{‖T‖Akp(S) : T, S as in (e)}.
Corollary 4.2 Let X be a Banach space, K a subset of X and (A, ‖ · ‖A) a Banach operator
ideal. Then K is relatively A-p-compact if and only if K is relatively A◦K-p-compact. Moreover,
mp

A(K) = mp
A◦K(K).

Proof The sufficient part is trivial and mp
A(K) ≤ mp

A◦K(K). On the other hand, let ε > 0.
By Theorem 4.1, there exist a Banach space Z, operators T ∈ A(Z,X), S ∈ Kp(lp′ , Z) and
a compact subset M ⊂ Blp′ such that K ⊂ (TS)(M) and ‖T‖Akp(S) < mp

A(K) + ε. By [3,
Theorem 3.1], there exist a Banach space W , a p-compact operator U : lp′ →W and a compact
operator V : W → Z such that kp(U) ≤ (1 + ε)kp(S), ‖V ‖ ≤ 1 and S = V U . Then we have
K ⊂ (TV U)(M) and TV ∈ A ◦ K. By Theorem 4.1 again, K is relatively A ◦ K-p-compact.
Moreover,

mp
A◦K(K) ≤ ‖TV ‖Akp(U)

≤ ‖T‖A‖V ‖(1 + ε)kp(S)

≤ (1 + ε)(mp
A(K) + ε).

Since ε > 0 is arbitrary, we obtain mp
A◦K(K) ≤ mp

A(K).
Before stating the result, we recall the surjective hull of an operator ideal A. Let (A, ‖ · ‖A)

be a quasi-normed operator ideal. For a pair of Banach spaces X and Y , Asur(X,Y ) denotes
the set of T ∈ L(X,Y ) such that T (BX) ⊂ S(BZ) for some Banach space Z and S ∈ A(Z,X).
For T ∈ Asur(X,Y ), one defines a quasi-norm:

‖T‖Asur = inf{‖S‖A : T (BX) ⊂ S(BZ)}
Then (Asur, ‖ · ‖Asur) becomes a quasi-normed operator ideal. Combining Theorem 4.1(e) with
Corollary 4.2, we obtain the following result.

Corollary 4.3 Let (A, ‖ · ‖A) be a Banach operator ideal. Then

KA
p = KA◦K

p = (A ◦ Kp)sur

holds isometrically.

Theorem 4.4 The following statements are equivalent for a Banach space X and an operator
ideal A.

(a) X has the p-APA;
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(b) For every Banach space Y and every operator T ∈ A(Y,X), we have that

T ∈ {ST : S ∈ F(X,X)}τp ;

(c) For every Banach space Y and every operator T ∈ (A ◦ Kp)(Y,X), we have that

T ∈ {ST : S ∈ F(X,X)}‖·‖;
(d) For every Banach space Y and every operator T ∈ (A ◦ Kp)(Y,X), we have that

T ∈ {ST : S ∈ F(X,X)}τc ;

(e) For every operator T ∈ (A ◦ Kp)(lp′ , X), we have that T ∈ {ST : S ∈ F(X,X)}τc .

Proof (a)⇒(b)⇒(c)⇒(d)⇒(e) are trivial. (e)⇒(a). Given ε > 0 and an A-p-compact subset
K in X. By Theorem 4.1, there exist a Banach space Z, operators T ∈ A(Z,X), S ∈ Kp(lp′ , Z)
and a compact subset M ⊂ Blp′ such that K ⊂ (TS)(M). By (e), there exists an operator
U ∈ F(X,X) such that

‖TSx− UTSx‖ < ε, ∀x ∈M.

This implies that
‖x− Ux‖ < ε, ∀x ∈ K.

Arguing as in [3, Theorem 2.5], we obtain the representation of the dual space (L(X,Y ), τp
(A))∗ for 1 < p <∞. Every element φ ∈ (L(X,Y ), τp (A))∗ has the representation

〈φ, T 〉 =
∑

n

∑

i

z
(n)
i 〈y∗i , Txn〉, T ∈ L(X,Y ),

where (xn)n ∈ lAp (X), zi = (z(n)
i )n ∈ lp∗(i = 1, 2, . . .), (y∗i )i ∈ Y ∗ with

∑
i ‖zi‖‖y∗i ‖ <∞. Thus,

we obtain

Theorem 4.5 Let A be an operator ideal, X be a Banach space and 1 < p ≤ ∞. X has the
p-APA if and only if for every sequence (xn)n ∈ lAp (X) and all sequences zi = (z(n)

i )n ∈ lp∗(i =
1, 2, . . .), (x∗i )i ∈ X∗ with

∑
i ‖zi‖‖x∗i ‖ < ∞ such that

∑
n

∑
i z

(n)
i 〈x∗i , x〉xn = 0 for all x ∈ X,

we have ∑

n

∑

i

z
(n)
i 〈x∗i , xn〉 = 0.

Theorem 4.6 Let A be an operator ideal and 1 < p ≤ ∞. Then a Banach space X has the
p-APA if and only if F(X,Y ) is τp(A)-dense in K(X,Y ) for every Banach space Y .

Proof We only prove the sufficient part. Fix sequences (xn)n ∈ lAp (X), zi = (z(n)
i )n ∈ lp∗(i =

1, 2, . . .), (x∗i )i ∈ X∗ with
∑

i ‖zi‖‖x∗i ‖ <∞ such that
∑

n

∑

i

z
(n)
i 〈x∗i , x〉xn = 0, ∀x ∈ X.

We may assume that 1 ≥ ‖x∗i ‖ → 0 and
∑

i ‖zi‖ < ∞. Then there exists a separable reflexive
space Z, which is a subspace of X∗, such that the inclusion map J : Z → X∗ is compact,
absconv((x∗n)n) ⊂ BZ and ‖J‖ ≤ 1. Moreover, F(X,Z∗) ⊂ {J∗JXS : S ∈ F(X,X)}‖·‖. By the
assumption, we have

J∗JX ∈ K(X,Z∗) ⊂ {J∗JXS : S ∈ F(X,X)}τp(A)
.
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Let ε > 0. Choose δ > 0 with δ
∑

i ‖zi‖ < ε. Since K := {∑n αnxn : (αn)n ∈ Blp∗ } is
A-p-compact, there exists an operator S ∈ F(X,X) such that

sup
(αn)n∈Blp∗

∥
∥
∥
∥J

∗JX

( ∑

n

αnxn

)

− J∗JXS

( ∑

n

αnxn

)∥
∥
∥
∥ < δ.

This implies that for every (αn)n ∈ Blp∗ and i = 1, 2, . . ., we have
∣
∣
∣
∣

〈

J∗JX

( ∑

n

αnxn

)

− J∗JXS

(∑

n

αnxn

)

, x∗i

〉∣
∣
∣
∣ < δ.

That is, ∣
∣
∣
∣

∑

n

αn〈x∗i , xn〉 −
∑

n

αn〈x∗i , Sxn〉
∣
∣
∣
∣ < δ.

In particular,
∣
∣
∣
∣

∑

n

z
(n)
i 〈x∗i , xn〉 −

∑

n

z
(n)
i 〈x∗i , Sxn〉

∣
∣
∣
∣ ≤ δ‖zi‖, i = 1, 2, . . .

Thus
∣
∣
∣
∣

∑

n

∑

i

z
(n)
i 〈x∗i , xn〉

∣
∣
∣
∣ =

∣
∣
∣
∣

∑

n

∑

i

z
(n)
i 〈x∗i , xn〉 −

∑

n

∑

i

z
(n)
i 〈x∗i , Sxn〉

∣
∣
∣
∣ ≤ δ

∑

i

‖zi‖ < ε.

By the arbitrariness of ε, we have
∑

n

∑
i z

(n)
i 〈x∗i , xn〉 = 0. By Theorem 4.5, X has the p-APA.
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