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Abstract Let H be a Hilbert space with dimH ≥ 2 and Z ∈ B(H) be an arbitrary but fixed operator.

In this paper we show that an additive map Φ : B(H) → B(H) satisfies Φ(AB) = Φ(A)B = AΦ(B)

for any A, B ∈ B(H) with AB = Z if and only if Φ(AB) = Φ(A)B = AΦ(B), ∀A, B ∈ B(H), that is,

Φ is a centralizer. Similar results are obtained for Hilbert space nest algebras. In addition, we show

that Φ(A2) = AΦ(A) = Φ(A)A for any A ∈ B(H) with A2 = 0 if and only if Φ(A) = AΦ(I) = Φ(I)A,

∀A ∈ B(H), and generalize main results in Linear Algebra and its Application, 450, 243–249 (2014) to

infinite dimensional case. New equivalent characterization of centralizers on B(H) is obtained.
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1 Introduction

Let R be a ring with the unit I and Φ : R → R be an additive map. Φ is called a left
centralizer if Φ(AB) = Φ(A)B, ∀A, B ∈ R, a right centralizer if Φ(AB) = AΦ(B), ∀A, B ∈ R,
and a centralizer if it is both a left and right centralizer, that is, Φ(AB) = Φ(A)B = AΦ(B),
∀A, B ∈ R. As well known that right (left) centralizers and centralizers are very important
in both theory and applications, and were studied intensively (see [1, 4, 7, 8] and references
therein). For example, centralizers were studied in the general framework of semiprime rings
by Vukmann and Kosi-Ulbl [8]. Recently some mathematicians characterized left and right
centralizers by local actions. In [1], Bresar characterized an additive map behaving like a right
(left) centralizer when acting on zero-product elements, that is, an additive map Φ : R → R
satisfying

Φ(AB) = AΦ(B) (Φ(A)B) for any A, B ∈ R with AB = 0. (1.1)

They proved that an additive map from a prime ring into itself satisfying (1.1) if and only if
Φ(AB) = AΦ(B) (Φ(A)B), ∀A, B ∈ R, that is, Φ is a right (left) centralizer. In [2], Chen
studied a linear map Φ : Mn(F) → Mn(F) (n �= 3) satisfying

Φ(A2) = AΦ(A) for any A ∈ Mn(F) with A2 = 0. (1.2)
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It is obvious that each right centralizer satisfies (1.2), but the reverse is not true. In fact, they
proved that such map has the form Φ(A) = SA + trace(A)T, ∀A ∈ Mn(F). For centralizers,
Qi [7] showed that an additive map Φ from a prime ring R into itself satisfies

Φ(AB) = AΦ(B) = Φ(A)B for any A, B ∈ R with AB = P, P 2 = P, P �= 0, I

if and only if Φ(AB) = AΦ(B) = Φ(A)B, ∀A, B ∈ R, that is, Φ is a centralizer. Motivated by
results in [1, 2, 7], more generally we say an additive map Φ : R → R is centralized at a fixed
point Z ∈ R if

Φ(AB) = AΦ(B) = Φ(A)B for any A, B ∈ R with AB = Z, (1.3)

and such point is called a centralized point of R. It is obvious that an additive map Φ : R → R
is a centralizer if and only if it is centralized at each Z ∈ R. It is natural and interesting to
ask the question whether or not an additive map is a centralizer if it is centralized at one given
point. We say that Z is an additive full-centralized point of a ring R if every additive map
from R into itself that is centralized at Z is in fact a centralizer. Main results in [1, 7] show
that 0 and every nontrivial idempotent are full-centralized points of a prime ring. In this paper,
we will show that every operator is a full-centralized point of B(H) and a Hilbert space nest
algebra AlgN .

Let H be a Hilbert space over the real number field R or the complex number field C

with dimH ≥ 2 and B(H) be the algebra of all bounded linear operators on H. A nest N in
B(H) is a totally ordered family of orthogonal projections in B(H) such that for every family
{Pλ} of elements of N , both ∨Pλ and ∧Pλ belong to N , and which includes 0 and I. The
nest subalgebra of B(H) associated to a nest N , denoted by AlgN , is the set of all elements
A ∈ B(H) satisfying PAP = AP for each P ∈ N .

2 Centralizers on B(H)

In this section, first we characterize left or right centralizers on B(H) by additive maps behaving
like left or right centralizers at an injective or a dense range operator product elements. As its
application, we show that every operator is a full-centralized point of B(H) and AlgN .

To prove our main result, Lemmas 2.1–2.3 are necessary. In the proof of Lemmas 2.1–2.3,
the statement that any operator in B(H) is a sum of two invertible operators will be used
without mentioning.

Lemma 2.1 Let Φ : B(H) → B(H) be an additive map. Then
(1) For an operator Z ∈ B(H) with dense range, Φ(AB) = Φ(A)B for any A, B ∈ B(H)

with AB = Z if and only if Φ(AB) = Φ(A)B, ∀A, B ∈ B(H), that is, Φ is a left centralizer.
(2) For an injective operator Z ∈ B(H), Φ(AB) = AΦ(B) for any A, B ∈ B(H) with

AB = Z if and only if Φ(AB) = AΦ(B), ∀A, B ∈ B(H), that is, Φ is a right centralizer.

Proof We only check (1), (2) is similar. The “if” part of (1) is obvious, we only check its
“only if” part. For any invertible operator A ∈ B(H), it follows from Z = IZ and Z = A−1AZ

that Φ(Z) = Φ(I)Z, Φ(Z) = Φ(A−1)AZ and Φ(I)Z = Φ(A−1)AZ. Now the fact that Z is an
operator with dense range implies Φ(A−1)A = Φ(I), and hence Φ(A−1) = Φ(I)A−1. Therefore,
Φ(A) = Φ(I)A, ∀A ∈ B(H) and (1) is true. The proof is complete.
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From now on, fix a nontrivial idempotent P ∈ B(H), and set P1 = P, P2 = I − P and
Aij = PiB(H)Pj , 1 ≤ i, j ≤ 2. Then B(H) = A11 + A12 + A21 + A22, which is the Pierce
decomposition of B(H). For any A ∈ B(H), Aij = PiAPj , 1 ≤ i, j ≤ 2.

Lemma 2.2 For Z ∈ B(H) such that Z21 = 0, if an additive map Φ : B(H) → B(H) satisfies

Φ(AB) = Φ(A)B for any A, B ∈ B(H) with AB = Z, (2.1)

then for any A11 ∈ A11, A12 ∈ A12, A22 ∈ A22,

Φ(A11)P2 = 0, Φ(A11A12)P2 = Φ(A11)A12, Φ(A12)A12 = 0.

Proof For any invertible operator A11 ∈ A11 with A−1
11 ∈ A11 and B22, C22 ∈ A22 such that

B22C22 = Z22, by (2.1) and

(A11 + t(A11A12 + B22))((A−1
11 Z − A12C22) + t−1C22) = Z, ∀t ∈ Q, ∀A12 ∈ A12, (2.2)

we have

Φ(Z) = Φ((A11 + t(A11A12 + B22)))((A−1
11 Z − A12C22) + t−1C22)

= Φ(A11)(A−1
11 Z − A12C22) + Φ(A11A12 + B22)C22

+ tΦ(A11A12 + B22)(A−1
11 Z − A12C22) + t−1Φ(A11)C22.

This implies

Φ(A11)(A−1
11 Z − A12C22) + Φ(A11A12 + B22)C22 = Φ(Z), (2.3)

Φ(A11A12 + B22)(A−1
11 Z − A12C22) = 0, (2.4)

Φ(A11)C22 = 0. (2.5)

By (2.3), (2.4) and replacing A12 with tA12 for arbitrary t ∈ Q, we have

Φ(A11)A12C22 = Φ(A11A12)C22, Φ(A11A12)A12C22 = 0, (2.6)

Φ(A11A12)A−1
11 Z = Φ(B22)A12C22. (2.7)

Let C22 = P2. Then (2.5) implies Φ(A11)P2 = 0 for any invertible operator A11 ∈ A11, thus

Φ(A11)P2 = 0, ∀A11 ∈ A11. (2.8)

Similarly, taking C22 = P2 in the first equality of (2.6), we have

Φ(A11)A12 = Φ(A11A12)P2, ∀A11 ∈ A11, A12 ∈ A12. (2.9)

Letting A11 = P1, C22 = P2 in the second equality of (2.6), one gets

Φ(A12)A12 = 0, ∀A12 ∈ A12. (2.10)

The proof of this lemma is complete.

Lemma 2.3 For Z ∈ B(H) such that Z21 = 0, if an additive map Φ : B(H) → B(H) satisfies

Φ(AB) = AΦ(B) for any A, B ∈ B(H) with AB = Z, (2.11)

then for any A11 ∈ A11, A12 ∈ A12, A22 ∈ A22,

P1Φ(A22) = 0, P1Φ(A12A22) = A12Φ(A22), A12Φ(A12) = 0.
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Proof It follows from (2.2) and (2.11) that (A11 + t(A11A12 + B22))Φ((A−1
11 Z − A12C22) +

t−1C22) = Φ(Z), ∀t ∈ Q. This implies

A11Φ(A−1
11 Z − A12C22) + (A11A12 + B22)Φ(C22) = Φ(Z), (2.12)

(A11A12 + B22)Φ(A−1
11 Z − A12C22) = 0, (2.13)

A11Φ(C22) = 0. (2.14)

By (2.12) and replacing A12 with tA12 for arbitrary t ∈ Q, we have

A11Φ(A12C22) = A11A12Φ(C22). (2.15)

A11A12Φ(A12C22) = 0. (2.16)

Let B22 = Z22D22 and C22 = D−1
22 in (2.14), where D22 ∈ A22 is invertible in A22. Then

B22C22 = Z22. Thus (2.14) entails P1Φ(D−1
22 ) = 0 and

P1Φ(A22) = 0, ∀A22 ∈ A22. (2.17)

Similarly, by (2.15) and (2.16), we have

P1Φ(A12A22) = A12Φ(A22), A12Φ(A12) = 0, ∀A12 ∈ A12, A22 ∈ A22. (2.18)

The proof is complete.

By Lemmas 2.2 and 2.3, we can show an additive map Φ : B(H) → B(H) is a centralizer if
and only if it is centralized at an arbitrary but fixed operator, new equivalent characterization
of centralizers on B(H) is obtained.

Theorem 2.4 Assume H is a Hilbert space with dimH ≥ 2 and Z ∈ B(H) is an arbitrary but
fixed operator. Then an additive map Φ : B(H) → B(H) satisfies Φ(AB) = Φ(A)B = AΦ(B)
for any A, B ∈ B(H) with AB = Z if and only if Φ(AB) = Φ(A)B = AΦ(B), ∀A, B ∈ B(H).

Proof The “if” part is obvious, we only check the “only if” part. If Z = 0, the conclusion
follows from main results in [1]. Next we assume Z �= 0.

Case 1 ran(Z) �= H, where ran(Z) denotes the range of Z.
Let P be the nontrivial orthogonal projection from H onto the closure of ran(Z). Then

(I − P )Z = 0. Set P1 = P and P2 = I − P . Then the condition (I − P )Z = P2Z = 0 implies
Z21 = Z22 = 0, and thus by Lemmas 2.2–2.3 we see (2.7) holds for any B22, C22 ∈ A22 with
B22C22 = 0. Letting C22 = 0 and A1 = P1 in (2.7), we get Φ(A12)P1Z = 0. Since ran(Z) = P1,
thus

Φ(A12)P1 = 0, ∀A12 ∈ A12. (2.19)

It follows from P1Z = Z and P1(Z + A21) = Z that Φ(P1)Z = P1Φ(Z) = Φ(Z) and Φ(P1)(Z +
A21) = Φ(Z) = P1Φ(Z + A21), and hence

Φ(Z) = P1Φ(Z) = Φ(P1)Z, Φ(P1)A21 = P1Φ(A21) = 0, ∀A21 ∈ A21. (2.20)

For any A12 ∈ A12, A21 ∈ A21, it follows from (P1 + A12)(Z − A12A21 − A12 + A21 + P2) = Z

that (P1 + A12)Φ(Z − A12A21 − A12 + A21 + P2) = Φ(Z). By Lemmas 2.2–2.3 and (2.20), we
have −P1Φ(A12A21)+A12Φ(Z)−A12Φ(A12A21)+A12Φ(A21) = 0. Replacing A21 and A12 with
sA21 and tA12 respectively for arbitrary s, t ∈ Q, one gets

A12Φ(Z) = 0, P1Φ(A12A21) = A12Φ(A21), ∀A12 ∈ A12, A21 ∈ A21. (2.21)
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Since B(H) is a prime algebra, thus (2.20) and (2.21) imply P2Φ(Z) = 0, P2Φ(P1)Z = 0 and
P2Φ(P1)P1 = 0 since ran(Z) = P1. By Lemma 2.2, we have P2Φ(A12)P2 = P2Φ(P1)A12 = 0.

This and (2.19) imply Φ(A12) ∈ A12. Lemmas 2.2–2.3 entail P2Φ(A11A12)P2 = P2Φ(A11)A12 =
0 and P1Φ(A12A22)P1 = A12Φ(A22)P1 = 0, thus P2Φ(A11)P1 = 0 and P2Φ(A22)P1 = 0.
Therefore, Φ(A11) ∈ A11, Φ(A22) ∈ A22, and Φ(I) = Φ(P1)+Φ(P2) = P1Φ(P1)P1+P2Φ(P2)P2.
Now by (2.21), we get A12Φ(A21)P2 = P1Φ(A12A21)P2 = 0, and hence P2Φ(A21)P2 = 0. This
and (2.20) imply Φ(A21) ∈ A21.

Next we show Φ is a centralizer. Lemmas 2.2–2.3 entail

P1Φ(A12)P2 = A12Φ(P2) = Φ(P1)A12, ∀A12 ∈ A12. (2.22)

and P1Φ(A11A12)P2 = Φ(P1)A11A12 = A11A12Φ(P2)P2 = A11Φ(P1)A12. On the other hand,
Lemma 2.2 and (2.11) imply P1Φ(A11A12)P2 = P1Φ(A11)A12. Thus

P1Φ(A11)P1 = P1Φ(P1)A11 = A11Φ(P1)P1,

Φ(A11) = A11Φ(P1) = Φ(P1)A11, ∀A11 ∈ A11. (2.23)

Similarly,

Φ(A22) = A22Φ(P2) = Φ(P2)A22, ∀A22 ∈ A22. (2.24)

Now (2.21)–(2.22) imply

A12Φ(A21)P1 = P1Φ(A12A21)P1 = A12A21Φ(P1)P1

= A12A21Φ(P1) = Φ(P1)P1A12A21 = A12Φ(P2)A21.

Since B(H) is a prime algebra, thus

Φ(A21) = A21Φ(P1) = Φ(P2)A21, ∀A21 ∈ A21. (2.25)

Therefore, for any A =
∑2

i,j=1 Aij , i, j = 1, 2, we have

Φ(A) = Φ(A11) + Φ(A12) + Φ(A21) + Φ(A22)

= A11Φ(P1) + A12Φ(P2) + A21Φ(P1) + A22Φ(P2)

= (A11 + A12 + A21 + A22)(Φ(P1) + Φ(P2))

= Φ(P1)A11 + Φ(P1)A12 + Φ(P2)A21 + Φ(P2)A22

= (Φ(P1) + Φ(P2))(A11 + A12 + A21 + A22),

and Φ(A) = Φ(I)A = AΦ(I), ∀A ∈ B(H). Now it is easy to verify Φ(AB) = Φ(A)B =
AΦ(B), ∀A, B ∈ B(H), that is, Φ is a centralizer.

Case 2 ran(Z) = H.
If Z is an injective operator, by Lemma 2.1 Φ is a centralizer.
If Z is not an injective operator, then ran(Z∗) �= H. Define an additive map Φ∗ : B(H) →

B(H) by Φ∗(A∗) = Φ(A)∗, ∀A ∈ B(H). Then for any A, B ∈ B(H) with B∗A∗ = Z∗ and
AB = Z, we have

Φ∗(B∗A∗) = Φ∗((AB)∗) = Φ(AB)∗ = (Φ(A)B)∗ = (AΦ(B))∗

= B∗Φ(A)∗ = Φ(B)∗A∗ = B∗Φ∗(A∗) = Φ∗(B∗)A∗,
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that is, Φ∗ is centralized at Z∗. Therefore, Φ∗ is a centralizer by case 1, which implies Φ is a
centralizer. The proof of this theorem is complete.

Next we show each operator is a full-centralized point of a Hilbert space nest algebra AlgN .
This result has been got in [5], here we give a short proof of it.

Theorem 2.5 Let AlgN be a Hilbert space nest algebra. Assume Z ∈ AlgN is an arbitrary but
fixed operator. Then an additive map Φ : AlgN → AlgN satisfies Φ(AB) = Φ(A)B = AΦ(B)
for any A, B ∈ AlgN with AB = Z if and only if Φ(AB) = Φ(A)B = AΦ(B), ∀A, B ∈ AlgN .

Proof Only the “only if” part needs to be checked. If N = {0, I}, then AlgN = B(H), the
conclusion follows from Theorem 2.4.

If there is a nontrivial projection P ∈ N , let P1 = P and P2 = I − P . We can decompose
A = AlgN as A = A11 + A12 + A22, Aij = PiAlgNPj , 1 ≤ i ≤ j ≤ 2. Since P1B(H)P2 ⊆
P1AlgNP2, thus for A11 ∈ A11 and A22 ∈ A22, the condition A11A12 = 0, ∀A12 ∈ A12 implies
A11 = 0, and A12A22 = 0, ∀A12 ∈ A12 implies A22 = 0. Therefore by the fact P2AlgNP1 = {0}
and similar arguments as that in the proof of Theorem 2.4, we can show Φ is a centralizer. The
proof is complete.

3 Left or Right Centralizers on B(H)

In this section, we characterize left or right centralizers on B(H) by square zero operators and
involutions, and generalize main results in [2] to infinite-dimensional case. To prove our main
result, the following two theorems are necessary.

Theorem 3.1 ([6]) Let H be an infinite-dimensional Hilbert space. Then every operator
A ∈ B(H) is a sum of five square-zero operators.

Recall that a von Neumann algebra A is a C∗-subalgebra of some B(H), which satisfies the
double commutant property: A′′ = A, where A′ = {T | T ∈ B(H), TA = AT, ∀A ∈ A} and
A′′ = {A′}′. A von Neumann algebra is called properly infinite if it contains no nonzero finite
central projection (see [3]). In particular, B(H) is a properly infinite von Neumann algebra if
H is an infinite dimensional Hilbert space.

Theorem 3.2 ([6]) Let A be a properly infinite von Neumann algebra. Then every operator
A ∈ A is a sum of five idempotents.

It is well known that if H is infinite-dimensional, B(H) does not admit a nontrivial finite
trace. Comparing with main results in [2], we have

Theorem 3.3 Let H be an infinite-dimensional Hilbert space, and Φ : B(H) → B(H) be an
additive map. Then

(1) AΦ(A) = 0 for any A ∈ B(H) with A2 = 0 if and only if Φ(A) = AΦ(I), ∀A ∈ B(H).
(2) Φ(A)A = 0 for any A ∈ B(H) with A2 = 0 if and only if Φ(A) = Φ(I)A, ∀A ∈ B(H).
(3) AΦ(A) = Φ(A)A = 0 for any A ∈ B(H) with A2 = 0 if and only if Φ(A) = AΦ(I) =

Φ(I)A, ∀A ∈ B(H).

Proof (1) and (2) imply (3). We only check (1), (2) can be obtained by similar argument.
The “if” part of (1) is obvious, its “only if” part need to be checked.

Claim Φ(P ) = PΦ(I), ∀P ∈ B(H), P 2 = P .
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Case 1 P is an idempotent with infinite-dimensional range and infinite-dimensional kernel.
Let H = H1 + H2, H1 = P (H), H2 = (I − P )(H). Denote the restriction of P to H1

and that of I − P to H2 by P̃ and Ĩ − P respectively. Then P̃ ∈ B(H1), Ĩ − P ∈ B(H2),
Theorem 3.1 implies both P̃ and Ĩ − P can be written as sum of five square-zero operators,
P̃ = Ã1 + Ã2 + · · ·+ Ã5, Ĩ − P = B̃1 + B̃2 + · · ·+ B̃5 with Ãi ∈ B(H1), B̃i ∈ B(H2), Ãi

2
= 0 and

B̃i

2
= 0 for each i = 1, 2, . . . , 5. For each i = 1, 2, . . . , 5, let Ai and Bi be the extensions of Ãi

and B̃i to H such that PAiP = Ãi, (I−P )Bi(I−P ) = B̃i. Then we have P = A1+A2+· · ·+A5

and I − P = B1 + B2 + · · · + B5, with A2
i = 0, B2

i = 0, ∀i = 1, 2, . . . , 5. Thus AiΦ(Ai) = 0,
BjΦ(Bj) = 0, (Ai +Bj)2 = 0 and 0 = (Ai +Bj)Φ(Ai +Bj) = AiΦ(Ai)+BjΦ(Bj)+AiΦ(Bj)+
BjΦ(Ai) = AiΦ(Bj) + BjΦ(Ai), 1 ≤ i, j ≤ 5. Consequently,

0 = PΦ(I − P ) + (I − P )Φ(P ) = PΦ(I) − 2PΦ(P ) + Φ(P ).

Multiplying this equality by P from the left side, we get PΦ(P ) = PΦ(I) and Φ(P ) = PΦ(I).

Case 2 P is an idempotent with finite-dimensional range or finite-dimensional kernel.
If P has finite-dimensional range, let K1 and K2 be orthogonal infinite dimensional sub-

spaces of H with (I −P )(H) = K1 ⊕K2 and Qi be the orthogonal projection onto Ki, i = 1, 1.
Then PQi = QiP = 0, i = 1, 2, Q1Q2 = Q2Q1 = 0, I = P + Q1 + Q2 and Q1, Q2 have infinite
dimensional ranges and and infinite-dimensional kernel. By Case 1, we have Φ(Qi) = QiΦ(I),
i = 1, 2. Thus Φ(I −P ) = Φ(Q1 + Q2) = Q1Φ(I) + Q2Φ(I) = (I −P )Φ(I) and Φ(P ) = PΦ(I).

If P ∈ B(H) is an idempotent with finite-dimensional kernel, we have Φ(P ) = PΦ(I) by
considering I − P .

These facts imply Φ(P ) = PΦ(I) for any idempotent P ∈ B(H). Therefore, Φ(A) =
AΦ(I), ∀A ∈ B(H) by Theorem 3.2. The proof of this theorem is complete.

Next we characterize left or right centralizers on properly infinite von Neumann algebras
by involutions.

Theorem 3.4 Let A be a properly infinite von Neumann algebra and Φ : A → A be an
additive map. Then

(1) Φ(A2) = AΦ(A) for any A ∈ A with A2 = I if and only if Φ(A) = AΦ(I), ∀A ∈ A.

(2) Φ(A2) = Φ(A)A for any A ∈ A with A2 = I if and only if Φ(A) = Φ(I)A, ∀A ∈ A.

(3) Φ(A2) = AΦ(A) = Φ(A)A for any A ∈ A with A2 = I if and only if Φ(A) = AΦ(I) =
Φ(I)A, ∀A ∈ A.

Proof We only check the “only of” part of (1). For any idempotent P ∈ A, it follows from
(I − 2P )2 = I that (I − 2P )Φ(I − 2P ) = Φ((I − 2P )2) = Φ(I). This implies Φ(P ) + PΦ(I) =
2PΦ(P ), and thus Φ(P ) = PΦ(I) and Φ(A) = AΦ(I), ∀A ∈ A by Theorem 3.2. The proof is
complete.

Using the fact that any von Neumann algebra is the closed linear span of its projection and
by similar argument as that in the proof of Theorem 3.4, we have

Theorem 3.5 Let A be a von Neumann algebra and Φ : A → A be a bounded linear map.
Then

(1) Φ(A2) = AΦ(A) for any A ∈ A with A2 = I if and only if Φ(A) = AΦ(I), ∀A ∈ A.

(2) Φ(A2) = Φ(A)A for any A ∈ A with A2 = I if and only if Φ(A) = Φ(I)A, ∀A ∈ A.
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(3) Φ(A2) = AΦ(A) = Φ(A)A for any A ∈ A with A2 = I if and only if Φ(A) = AΦ(I) =
Φ(I)A, ∀A ∈ A.
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