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Abstract In this paper, we introduce the fractional wavelet transformations (FrWT) involving Han-
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1 Introduction

Let us define the space L,’Lru(]), 1 <p<ooand I =(0,00), consisting all those real valued

measurable function f on I such that the integral fooo |f ()Pt “3" dt exists and finite. Also the
space L>°(I) is the collection of almost everywhere bounded integrable functions. Hence, the

norm is endowed with

S 1/p
» ([Tropesa) " 1sp<o wrer -
L, = :
| esssup (1), p=oo
tel

As per fractionalization of conventional Hankel transforms [5, 7], the two variants of fractional
powers a (0 < a < m) of Hankel-Clifford transformations of order v > 0 are generalization of a
pair of Hankel-Clifford transformations [2, 6] defined by Prasad and Kumar [11]. The modified
versions of [11] are defined as:

The first FrHCIT of function f is defined by

(hg ) (@) = flw) = / R W) f (1), (1.2)
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where
Vi Cou (tw esc? ajellttwleotagr o o ny,
KT (t,w) =1 Cy (tw)wH, a=T7, (1.3)
5(t - w)v a =nm,

QD@ 3)

where n € Z, 75, = © Gn oy C,.u(t) = t7#/2],(2v/t) and J, is the Bessel function of first
kind of order v.

Analogously, the second FrHCIIT of function g is defined by

(150,0)) =3) = [ K5 0laldt = o (12, ("9)) o). (1.4
where
¥, O, (tw esc? ar)el Tl eotagi o o
K5 (t,w) = § Cyu(tw)t”, a=7T (1.5)
ot —w), a=nm

with n and v, being the same as above.

The inverse of (1.2) and (1.4) are respectively defined as follows:

) = (05,07 D) = (b ) /K () (16)

and
910 = (15,0790 = (152,00 = [ K3 (.09, (1.7

where K7%(w,t) and K3%(w,t) are complex conjugate of K¢(w,t) and K§(w,t), that is, K7%(w,
t) = Ky %(w,t) and K3%(w,t) = K5 “(w,t) respectively. The first and second FrHCIIT’s are
adjoint of each other. We note that (h;/ju)_l = hf/fu and (h;rv/ju)_l = h;r/fu

The Dirac-delta function is a very peculiar kind of function; it vanishes for all ¢ # 0, and it
tends to infinity in an appropriate way when ¢ = 0. Here we express the Dirac-delta function
0(t —a) as

o(t—a)=a" /000 WC,, (tw)Cp y (aw)dw. (1.8)

Now, we have interesting properties of kernels stated in the following lemma:

Lemma 1.1 If K§(t,w) is the kernel of the transformation (1.4), then
() fo° K (t,w)KE (w, 2)dw = K§TP (1, 2),
(i) f,° K$(a,w)K3%(w, t)dw = §(t — a).

Proof (i) Using (1.5) and C,, ,(z) = 27#/2.],(2\/x), we have

/KQtw 5w, 2)dw

1(y+1)(oz+[3 )

— ( . ) 6)#+1 ei(tcot (x+zcotﬁ)(tz C802 acch ﬁ)—p,/2tu
S111 ¢ S1n

X / gilcotateot Hw 1 (9 cse av/tw)J, (2 esc Bv/wz)dw
0
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Using [1, p.55] the last integral can be solved and then on simplification yields the required
result.
(ii) An application of (1.8) gives the result. O

Remark 1.2 If K{(¢,w) is the kernel of the transformation (1.2), then
(i) fooo Kf(t,w)Klﬂ(w, 2)dw = Kla+5(t, 2),
(ii) [,° K¢ (a,w)K;{%(w, t)dw = §(t — a).

1.1 Fractional Hankel-Clifford Integral Translation and Convolution
Let A(t,w, z) denote the area of a triangle having sides t,w, z [19]. Then for v > 0, arbitrary

real parameter y and 0 < o < w, we define

@ * 2v—1,—i(t+w-+2) cot
(75,,) " AR lemitheta)

Dy palt,w, z) = (1.9)

vt )
22V (csc a)3v 2 (twz) 2MF(1/ +1/2)/7
where if such a triangle exists and zero otherwise. Clearly, D, , o(t,w, 2) > 0 and is symmetric
int,w,z.

Lemma 1.3 For 0 < t,w,z < oo, we have

oo
’yl‘f‘,u / Cyp(ws csc? oz)el(w“) cot W'Dy pa(t,w, 2)dw
0

— e itk eota  (tsesc? a)Cy (25 csc? a)el* Ot s R (1.10)
and
00 —i(t+2) cot 2 vor
e iwcot o, HEY _ ¢ (tZCSC ) 2
FYV’“/O D, 0(t,w,z)e w 2 dw= (v +1) (1.11)
Proof From Prasad et al. [14], we have
AQV—].

/0 T (V5) . (25) 1 (21/28) (Vo) s = 22v (tw2) /DT (v +1/2)/r

Then by using the relation C,, ,(t) = t~*/2.],(2v/t), we may write

e 3p—v
(’yfi#) eTittwEz)cota /0 Cy u(ts csc? a)Cy u(ws csc? a)Cy . (zs csc? a)s Y ds

a V¥ A2v—1_,—i(t+w+z)cot
(V)" A% temiete)

22 (csc )V 2 (twz) "2 I(v+1/2)y/m
= DV’M’a(tv W, Z)

Now, applying the second FrHCIT (1.4), the relation (1.10) is established and then setting
s =0 we obtain (1.11).

This completes the proof of Lemma 1.3. (|
Let ¢, € L I u(I ). Then, the fractional Hankel-Clifford integral convolution is defined by
oo
: prtv
()0 =5 [ (am) @0 ) (112)
0

where the fractional Hankel-Clifford integral translation ,7; of ¥ is defined by
(aTt'l/}) (w) = Ya (ta w)
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:73#/ D,W(t,w,z)eizcomz“?”w(z)dz, (1.13)
0

provided that the above integrals exists and 0 < ¢, w, z < co.
Parseval’s identity  If f and § are the second FrHCIIT of f (t) and g(t) respectively, then under

certain assumptions,

/ f@®)g*(®)ttdt = / f(w)§* (w)wHdw (1.14)
holds.

2 The Fractional Bessel-Clifford Wavelets

Fractional wavelets (see [13, 16]) are a family of functions constructed from translation, dilation
and chirp modulation of the mother wavelet ) € L2(R). In the present work based on the ideas
of fractional wavelets and inspired by the work of [8, 9, 12, 17], mathematically we define the
fractional wavelet ¥ 4, of function (Bessel-Clifford wavelet) ¢ € L2, (I) with dilation and

translation parameters a > 0,b > 0 respectively and 0 < o < 7, as

"/)b,a,oz(t) = Da(oﬂ’b@[})(t) = D(ﬂ/)a(b, t)
:af,uflei(}lfl)(tqtb)cota (b/a t/a)

— g h1 1(1—1)(t+b)cota oz / D, ”ua b/a t/a Z) 1zcotaz“;"w(z)dz7 (2_1)

where D, denotes the fractional dilation operator.

A Bessel-Clifford wavelet is a function ¢ € L7, ,(I), which satisfies the condition

oo 2
= [ o 150555 02 ) o < (22)

then CY 1o 18 known as the admissibility condition of the Bessel-Clifford wavelet.

Proposition 2.1 If¢ € LV+H(I), then the second FrHCIT of 1y q.o s given by
(B30 Wb,a0) (@) = (aw) 2" e e Detbleora gy, (b cse® o)
X hg

S leT 70tz g (2)] (aw).

Proof Let ¢ € L2, ,(I). Then using (2.1), (1.10) and (1.3), we have
(hg 20 Hq/)b a, o) (W) = rylfiu/ Cu,u(tw csc? a)ei(ter) cot O‘tﬂ1/)b,a,a(t)dt
0
:’yséu /oo CVH(tWCSC Oé) 1(t+w)cotatya p—1 1(t+b)( )COtOé
“Jo

X 73»/1/0 Y(2) Dy pa(b/a,t/a, z)e iz cota “2 dzdt

p—v u+1

(o)
:'y,‘j‘u/ ellw=beotary  (bwesc? a)C, ,(zawesc? a)(aw) 2 h(z)2" 2" dz
0

_ (aw) "7 e~ il(a=1)w+b] cot O‘Cl,,u(bw csc2 oz)h(g’,y,u[e_”“’t a,”y 1#(2:)](@(4))

This proves Proposition 2.1. O



Fractional Wavelet Packet Transformations 787

3 Fractional Wavelet Transformation (FrWT)

In this section, we now introduce the fractional wavelet transformation (FrWT) associated
with the second FrHCUT of a function f € L2, ,(I) with respect to Bessel-Clifford wavelet

YelLZ, , (I)as

(HWS £)(b,a) = / Ui (D F (1),
=g #1 /00 e i(a—1)(t+b) cot Y (b/a,t/a) f(t)thdt. (3.1)
0

Using Parseval’s formula (1.14) and Proposition 2.1, the fractional wavelet transformation of a

function f € L7, ,(I) can be written in the following form

1 KoV to
(HWZf)(b,a) = o hs , ul(aw) "2 ell@m2ocota fy)

v
X (S (€002 72" 4 (2)))* (aw)] (). (3.2)
Theorem 3.1 If ¢ and ¢ are Bessel-Clifford wavelets and f,g € LVJF#(I), then
(i) (HWg(B1f + B29)) (b,a) = BL(HWG f) (b, a) + B2(HW(9) (b, a);
(i) (WG, 1 ,00)) (. a) = B7 (HWG ) (b,a) + 85 (HW f) (b, a);
(iii) (HWS(a7ef)) (b,a) = a=#~ e DY) (HWS (o7y/0¢)) " (c/a,1/a), ¢ > 0;
(iv) (HW%wa)) b,a) = (HWZf) (b,ac), ¢ > 0; where (1, B2 are scalars.

Proof The proof is obvious and is omitted. O

Theorem 3.2 Let ¢ and ¢ be two Bessel-Clifford wavelets and (HWG f)(b,a) and (HW3,g)(b,

) denote the FrW'T of f and g € L2, ,(I) respectively. Then

v+pu

/ / (HWS f )(ngg)*(b,a)b“dbd = (sin® ) 1CPY / f(t)g* (t)t dt,

a

where
Cra :/0 TR, (0T ()] (w)
X[h5, (710272 g(2))] () dw < oo (3-3)
Proof Using (3.2) and Parseval’s identity (1.14), we have

/ / (HWS f )(ngg)*(b,a)budbda
(sin? @)+ / / @) F @) (§) (@) G, (=<2 ()] (aw)

x[hs,

2V,u

(e7ieot ez 2" ()] (aw) dwda

= (sin’ « “+1C¢7;ﬁ / W) () (w)wdw.
Then, by utilizing Parseval’s identity (1.14), Theorem 3.2 is established. d

Remark 3.3 The following are its deductions:
(i) If f =g, then

/ / (HWS f) (b, a) (HWGf)" (b,a)b“dbd = (sin? )" +1Cf;"a/oo|f(t)|2t“dt.
0
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(ii) If ¢ = 4, then

/0 / (HWS £) (b, a) (ngg)*(b,a)budbd = (sin® )" *'Cy, . / ft)g* (1)t at.

a

(iii) If ¢ = ¢ and f = g, then
/OOO /Ooo | (HW;ZJC) (b, a)‘Qb”dbd (sm a)u+1cgzu . /OOO |f(t)|2t”dt,

where C¥ , . is given by (2.2).

U, 1,0
Theorem 3.4 (Inversion formula) Let f € LU_W( ). If ¢ and ¢ are Bessel-Clifford wavelets,

then f can be reconstructed by the formula

(csc? a)rtt da
=" / / (HWSF) (b @) (®pdb"

U,

Proof Let f € L2, ,(I). Then for any arbitrary g € LV_W(I), we have from Theorem 3.2,

v+pu
(sin” o) “HC‘M’ / f®)g*(t)t dt
(e% yo da’ * yo
- " (HW 1) (b, )b o (1)1 D ) g,
0 o Jo
which on simplification yield the theorem. O

4 Examples of Second FrHCIIT and FrWT
4.1 Table of the Second FrHCIIT of Some Functions:

F@) (h3w,uf)(w)
§(z —p) yg pel@tPleotepic (pwesc? a)
t*V/Qefit CDtaJH (2\/pt) FZ:’,HM) eiu cot #/Q(w csc a) (n+v)/2

v—p—1

x(wesc? a — p) i p<wescla < oo

—p/2  —it(cot a—iq) 'Yz(/x,u iw cot 2 —p/2
t e Ju(24/pt) e 2(u)csc ) b
_ (wcese® a+p) 24/ pw csc? a
Xe q L,( p )
t(uf,u,)/Zefit(cot afl)L;/l(t) ,yg’ueiw cot \7/12 (w cse a)(2n+1/ u+1/2)/2 —wese? a
t(u—u)/2e—itcota(p2+t)—1 ’YﬁueiuCOta(wCSCQ a) ;/,/2 VK (2p\/waC2 )

v— —it cot —v— o 22vt1/2r/2-—0 1wc0 e
=/ 2giteotap2 _pymv=1/2 e AT gl cot

vep—1/2
x (wesc? a) E sin(2pvw csc? a)

where p > 0, ¢ > 0, n is an integer, Re v > Re > —1, I,,, K, and L} are known as modified

Bessel functions of the first, third kind and generalized Laguerre polynomial respectively.

Example 4.1 Assume that f(t) = e~i{(cote=ip) 4 5 (),
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Then the FrWT of f(t) is given by
WS F0)0.0) = [ 005 0t
_ (,ysiu)*aﬂkl /OO efi(ter)(ifl)cota
0

x { / h $(2) Dy pa(bjast/a, z)e Cotaz“?”dz] ) F)trdt.
0

Substituting the value of D, , o(b/a,t/a,z) from (1.12) in the last integral and evaluating the

resulting integral by means of the formula [3, p. 29], then we have
(HWZf(£)) (b, a)

oo
— afu/272bf,u/2pfy(csca)273,u+ueibcotoz/ 1/}*(2)21//2
0

X /0Oo exp (_S Z;CZ a) J,(2Vzs esc? @) g, (24/(b/a)s csc? a)dsdz.
Now, evaluating the last integral by means of the formula [3, p. 23], we have
(HW%f(t))(b, a) = a_”/Qb_“/2p_”+1(csc a)”_3“eibcom
X /OOO V¥ (2)2"/? exp(— (b + az)p) 1, (2pVabz)dz,
where I, (x) is the modified Bessel function of first kind of order v.

5 Fractional Powers of Bessel-Clifford Wavelet Packet Transformation (FrBWPT)

Posch [10] studied the wave packet transformation as applied to signal processing using the
Weyl operator and established some fruitful properties. Huang and Suter [4] introduced the
fractional wave packet transformation associated with fractional Fourier transform and obtained
some properties including the version of the Resolution of the Identity for fractional wave packet
transformation. In this section, we introduce the fractional powers of Bessel-Clifford wavelet
packet transformation (FrBWPT) involving second FrHCIIT as

BWPGf)(ub.a) = [ KE (100 O (5.1)

where K§(t,u) and )y 4, are defined as (1.5) and (2.1) respectively.
More precisely, the FrBWPT is given by

(BWPG £)(u,b,a) =5, / b Cy pu(ut csc? )elvrheotays (1) f(t)thdt. (5.2)
Assuming ’
fu.a(t) = 73HCV,M(Ut csc? a)ei(“+t) ot f(t),
and using Parseval’s identity (1.14), (5.2) becomes
BWPEN)wb.0) = [ fuua)f ) (53)
We see that i

fuya(w) = 'yl‘ji# /OO Cyu(tw csc? a)ei(”“) COt‘)‘t"]”uﬂ(t)dlf
0
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2 [ '
= (’yﬁu) / Cy u(tw csc? a)Cy ,(ut csc? a)el(“+“+2t) ot f(t)thdt
0

o0
_ (’Ysiu) 2 eiQ(w+u) cot / (efi(w%»u) cot acv,u (tw CSC2 oz)C'WL(tu CSC2 a)
0

p—v

wtv
it cot oct 2 )

it cot at

xXe e

F(t)dt.
Using (1.10) and (1.13), we have

Fualw) = (73,u)3 oi2(w+u) cot a /OOO /OOO Cyu(tzesc? a)eltFaeotape  (y w, 2)
xziett ot ey T £ (1) dzdt
- (73,/1)2 ei2(wtu) cot o /000 h%’y’ﬂ(eit cot oy U5 f®)(2)Dy,, o (u,w, 2)2"dz
= g (P g (e f) () ). (54)
Hence, from (5.4) and Proposition 2.1, (5.3) may be written as
(BWPY, f)(u,b,a)

o0
. . h—v
_ 'YSMGIQu cot a / Cu,u(bw csc? a)el(w-‘rb) Cota(aw) 2" plaw cot

)

x{hg,, . (e7 2tz 2" ) (aw) )

X a2 TG (1S ) () ()
12ucotahgyu[(aw) > emwcota{h;y#(eqzcotaz”;“d))(aw)}*
ENMIO! (5.5)
Theorem 5.1 If ¢ and ¢ are two Bessel-Clifford wavelets and (BWPG f)(u,b,a) and (BW
Pgg)(u,b,a) denote the F'BWPT s of f and g € L,,JW(I) respectively, then

=e

—iz cot aha

itcotay”,
2,V”u( t 2

X aTu(Z 2 e e

/ / (BWPS f)(u, b, a) (BWPY, )(u,b,a)b”dbdj

— e, / (Cop(ut esc? @) F(1)g" (1) dt, (5.6)
0

where CPY , is as (3.3).
Proof Using (5.5), we have
/ / (BWPS ) (u, b, a)(BWP g)* (u, b, a)bﬂdbd;‘

/ / aw)t " ary (22 e TR (et f) (2) (w)

{hg,, (e 2" 9)} (aw) {3, (e 2" )} aw)

—v . ven * d
X(ama(z"2 et Ry (et er s g) () (w)wtdw ™

oo
ot [ amde g e () )
0

a

p—v

X(oﬂ—u(z 2 e—lzcotozha

g, (e 93" 0)(2))) (w)whdw,
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Hence by using Parseval’s identity (1.14), then the above expression becomes

/ / (BWPS f)(u, b, a)(BWPg)* (u,b,a)b“dbia

=Cha /0 (15 pamu(z"2" €750 hg (et f) (2)) ()] (8)

X[hS, paTu(z2 T FORG (N g) (2)) (W) (1) dt.

Now, we see that

—izcot aha

S (@ 2" £)(2)) (@)](2)

t+w) cot v

[h;V’#aTu(z "2
oo

= 'YSiH Cl/hu(tw CSC2 oz)ei( wH
0

71z cotapa s

itcotay”,
QI/H( t 2

XaTu(z" () (w)dw
— ('7311)2/0 Cl,,u(twcsc2 a)ei(t“’)com/o Dy, o(u,w, 2)

xhS (et s" £)(2) 2t dz)wh dw.

2,v,u

Therefore, using (1.10) and (1.6) in (5.8), we obtain

(B paTu(z"2 e 77N hg (00" f) (2)) (w))(1)

oo
i i n—v
:73#/ emiutzcotar  (utesc? a)C, (2t ese? a)eltotot
0

xhs,, (et 2" f)(2)2dz
— 621(1+v)(a—7r/2)e—i(u—3t) cot aCV’H(’U,t CSC2 Oé)f(t)

Similarly, we get

[h%u,uam(zu;”e_izmahg‘,y,u(eimmtugug)( D))" ()
_ ef2i(1+u)(a77r/2)ei(u73t) cot acyﬁu(ut cse )g* (t)
Hence, using (5.9) and (5.10) in (5.7), we have
d
/ / (BWPS ) (u, b, a)(BWPS )" (u, b, a)bdb""
a

—co, / (Coplut csc? @) 2 (£)g" (1)t
Thus, we obtain the required result.

Remark 5.2 The following are its deductions:
(i) If f =g, then

/ / (BWPS /) (u, b, a)(BWPS f)* (u,b,a)b“db(ia

=it [ Cuntutesc® )P0 v,

(ii) If ¢ = 4, then

/ / (BWPS f)(u, b, @) (BWPSg)* (u, b, a)bdb da
0o Jo a

791

(5.10)

(5.11)
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= Ciu,a/ (Coulut esc? ) f(t)g* ()" dt,
0

(iii) If ¢ =4 and f = g, then
/ / (BWPS, f)(u, b a)\Qb"dbd —cyw/o (O, (ut esc? @))?| f(2)|*tHdt

where CY, , is as in (2.2).

[T
Theorem 5.3 (Inversion formula) Let f € L2, (I) and (BWPS, f)(u,b,a) be the correspond-
ing F'tBWPT. Then f can be reconstructed by the formula

71(t+u ) cot

’Yl/ H da
t) = (BWPS b, a,a(t)VMdb
1) = Cf,p, v u(ut csc? o / / o /)b, a)aa(t) a
or
(csc? a)rtl da
fual) = ) / / (BWPS £) (1, b, )i 00 ()00

where CO¥ . is as (3.3).

[NTNeY

Proof Let us consider an arbitrary function g € L7, ,(I). Then from Theorem 5.1, we have

Cf;fa /0 (Cy pu(ut csc? o)) f(t)g* (t)t'dt

B /oo /W(BWsz)(u, b,a)(BWPS.g)* (u, b, a)budbia

/ / (BWP f)(u, b, a) (/ KS (8, u)5 oot )g(t)dt)*b"dbdj

Fyl/ N / / / BWP f u, b CL)CV7H(ut CSC2 a)e—i(t-‘ru) cot «

XPp g0 (t )b“db g*(t)thdt,
which on comparing yields the requ1red result. O
Note 5.4 Similar results of Sections 2—-5 can be found by using first FrHCIIT.

6 Example of FrBWPT
Example 6.1 Assume that f(t) = 5(tt_c), 0 < ¢ < o0, then the Fr BWPT is given by

o0
(BWPS f)(u,b,a) = / K (1 u)i o o f(8)dE
= /YV L / CV 'u,(tu CSC2 Oé) (t+u) cot aa/—“ 1 71(t+b)( )Cota

bt (bja t/a) F(£)Edt
— CSC2 a/ CVM(tU CSC2 a)ei(tJru) cot ocafp,fl 1(t+b)( )cota
0

*

Y(z)dz| f(t)t"dt.

ptv

X {/ Dy a(bfa,t/a, 2)e® <0t 2
0
Using (1.9), we have
(BWPf)(u, b, a)
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fyyua p—1 1(u+b ) cot « / / A2v—1 (t 9 )
i ucsc” o
22”F(u +1/2)/m(csc? o (bt/a2)"' Con

a(t —

XeiQtCOta’(/J*(Z)tu )dtdz

_ 2 ) (v=31) /2= (uF0) /2 (1—v—2) /2 4i(b+u-2c) cot 2
=7, u(csc a) sy " uree)eotad (cucsc” ar)

AQV ld
g2 y+1/2 m/ v “

where A denotes the area of a triangle having sides b/a, ¢/a and z if such a triangle exists.

7 Fractional Bessel Integral Transformation

It is seen that for p = 0 the two variants of FrHCIIT’s defined in (1.2) and (1.4) coincide that
is these are act as a self-adjoint transformation. We named this transformation as fractional

Bessel integral transformation, which is denoted by H* and defined on function f € Ll as

- [ Katwerso (7.1)
0
where the kernel

J ) t i(t+w) cota ,
Koltw) = (2 csc ay/tw)el a #£nw (72)
5(t —w), a =nm,

and 7% = !tV 2) csca.

The corresponding inversion formula is given by

- /ooo K (1) (9° ) (@) deo, (7.3)

where the kernel K (¢,w) is complex conjugate of Ky (¢, w).
The K, (¢, w) has the following properties:

Kalt,w) = Ko(w,t),

/ Kao(t,w)Kp(w, 2)dw = Kots(t, 2),
0

/w Ko (t, @)K (£, w)dt = §(w — a).
0

We note that
Kh(t,w) = K_o(t,w).

Let ®, ¥ € L'(I). Then we define the fractional Bessel integral convolution (® x, ¥)(¢) by

(P ko T)(t) =72 /Ooo(agt@)(w)\ll(w)eiwmt “dw, 0<w < oo, (7.4)
where the fractional Bessel integral translation (,5:®)(w) is given by

(ast®P)(w) =75 /000 Dy o(t,w, 2)e* d(2)dz, 0<t,w < oo, (7.5)

provided the integrals convergent, and

(,_Yﬁz)* A2uflefi(t+w+z) cot o

Dl/,(l(t7waz) = l//2 )
22 (csc o) (V2 (twz2) T (v + 1/2) /7

(7.6)
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where A(t,w, z) denotes the area of a triangle having sides ¢,w, z [19] if such a triangle exists
and zero otherwise. Clearly, D, ,(t,w,2) > 0 and is symmetric in ¢, w, 2.
We now prove the following inequality which shall be used in the sequel:

Lemma 7.1 If® € L*(I) and |®|| = 1, then

> 5 (tesc? a)
| lesmyepas < Lo 0

Proof By employing (7.5), using the Cauchy—Schwartz inequality and by Lemma 1.3 for p1 = 0,

we have ( o
twcsc? a)
ast®)(W)[> < |78 Dyt “2|9(2)|de. 7.7
el < gl G N [T Dt e Pa: (77)
Again using Lemma 1.3 for = 0, we get the required inequality. O

8 Fractional Wavelet Packet Integral Transformation (FrWPIT)

In this section, we study the FrWPIT. Let us define the fractional wavelets ¥y, , , of any Bessel
wavelet ¥ € L?(I) by

Vha.a(t) = Dalass¥)(t)

Fv+1) -1y —i(t—a)cot
— v q] 1 a)cot o .1
(CSC a)y a (Otgb/a )(t/a)e (8 )

for all 0 < a;b € R and ®, denotes the fractional dilation operator.

Now, the fractional wavelet transformation of a function f € L2(I) with respect to wavelet
W € L2(I) is defined by

000 = [ a0

Wave packet transform is a generalization of wavelet transformation which have applications
in signal processing [10], pattern recognition [18] and many more. The fractional wave packet
transform (FrWPT) associated with Fourier/fractional Fourier transform have been studied
[4, 10, 15]. Motivated by their works, in this paper we introduce the fractional wavelet packet
integral transformation (FrWPIT) involving fractional Bessel integral transformation, denoted
by (Bof)(w,b,a) for a given signal f(t) as follows:

(P f)(w.b.a) = / Kot )] o o (8)F (1) (8.2)

It is important to see that FrWPIT is a function of time, frequency and scale with parameter
a. Now, we will show a version of Resolution of Identity for the transformation (8.2) stated as

follows:

Proposition 8.1 If ¥ € L*(I), (B*f)(w,b,a) and (PB°g)(w,b,a) denote the FrWPIT s of
functions f and g € L2(I) respectively, then

// (1) Wba)(ma)(Wbadwdb</ F(6)g* (D)t dt.

Proof Using (8.1) and by an application of Lemma 7.1, we have

/ / (B f)(w, b,a)(P*g)" (w, b, a)dwdb
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— [ [ ] Kt @10t [ Kot W00 (¢t it

:/ / / U a0 () haa(t) f(t)g" () /Oo Ko(t,w)K: (', w)dwdt' dtdb
0 0 0 0
[ [ W 0nar 105 60 - it

= [ [ WeaatoP 15 et

(T Y [T / (wst/a )t/ P (0)g" (e
=(Fc;121) [ s0s o [ lsga )0/ P
/ f(t)g™ (t)t"dt.

This proves the proposition. O

Remark 8.2 As a consequence, we have the energy-preserving property by putting f = g in

/Oo /Oo (B £)(w, b, a)|? dwdb < /Oo\f(t)|2t”dt.
0 0 0

In the beginning, we established some properties of the kernels K{*(z,y) and K (z,y). Then,

Proposition 8.1:

9 Conclusion

we introduced the concept of FrWT and studied their basic properties. Also, a table of sec-
ond FrHCIT and examples of FrWT have been obtained. Thereafter, combining the idea of
FrHCIIT and FrWT, we defined the FrBWPT. The Parseval’s relation and an inversion formula
of FrBWPT have been established. Moreover, we have observed that for u = 0 the two variant
of FrHCIIT coincide, which give forth the fractional Bessel integral transformation. In the last

we introduced the concept of FrWPIT and derived a version of the resolution of the identity.
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