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Abstract An edge-coloring of a graph G is an assignment of colors to all the edges of G. A gc-

coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least g(v)

times. The maximum integer k such that G has a gc-coloring with k colors is called the gc-chromatic

index of G and denoted by χ′
gc

(G). In this paper, we extend a result on edge-covering coloring of Zhang

and Liu in 2011, and give a new sufficient condition for a simple graph G to satisfy χ′
gc

(G) = δg(G),

where δg(G) = minv∈V (G){� d(v)
g(v)

�}.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. An edge-coloring of a
graph G is an assignment of colors to all the edges of G. Let G be a graph and g be a function
which assigns a positive integer g(v) to each vertex v ∈ V (G). Let C = {c1, c2, . . . , ck} be an
available color set. A gc-coloring of a graph G is an edge-coloring of G such that each color of
C appears at each vertex v ∈ V (G) at least g(v) times. The maximum integer k such that G

has a gc-coloring with k colors is called the gc-chromatic index of G and denoted by χ′
gc

(G).
If g(v) = 1 for all v ∈ V (G), the gc-coloring is reduced to the edge-covering coloring, in which
each color appears at each vertex at least once, and the gc-chromatic index of G is reduced to
the edge-covering coloring chromatic index of G and denoted by χ′

c(G). Denote the maximum
and minimum degree of G by Δ(G) and δ(G), respectively.

We define

δg(G) = min
v∈V (G)

{⌊
d(v)
g(v)

⌋}
,

Vδg
(G) = {v ∈ V (G) : d(v) = g(v)δg(G)}.

Clearly, G has no gc-coloring if and only if δg(G)=0. If δg(G)=1, then χ′
gc

(G)=1. In the rest of
the article, we concentrate ourselves on the case that δg(G) ≥ 2. We call the subgraph induced
by Vδg

(G) the gc-core of G and denote it by Gδg
.
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Lemma 1.1 ([3]) Let G be a graph associated a positive integer function g : V (G) → Z+.
Then

δg(G) − 1 ≤ χ′
gc

(G) ≤ δg(G).

G is said to be of gc-class 1 if χ′
gc

(G)=δg(G) and of gc-class 2 otherwise. In this paper,
this classification problem on gc-coloring will be concerned. Zhang and Liu [6] studied the
edge-covering colorings of graphs and got some sufficient conditions for χ′

c(G)=δ(G). In this
article, we extend one of their results to gc-colorings of graphs and obtain a similar conclusion.
Also, we find a new sufficient condition for a graph G to satisfy χ′

gc
(G)=δg(G).

Let k ≥ 2 be an integer and C = {c1, c2, . . . , ck}. Given an edge-coloring of G with k colors
in C, for each v ∈ V (G), let ci(v) denote the number of edges incident with v and colored with
ci (1 ≤ i ≤ k). Call an edge-coloring of G with k colors in C equitable if |ci(v) − cj(v)| ≤ 1 for
any v ∈ V (G) and i, j with 1 ≤ i < j ≤ k.

Let t be a positive integer. The notation t|d(v) denotes that t divides d(v). Define that
Vt(G) = {v ∈ V (G) : t|d(v)}. Call the subgraph of G induced by Vt(G) the t-core of G.
We call a graph G t-peelable, if all the vertices of G can be iteratively peeled off in an order
v1, v2, . . . , vn using the following t-peeling operation: For each 1 ≤ i ≤ n, peel off vertex vi

if vi has at most one neighbor v′ satisfying that v′ ∈ Vt(G) and dGi−1(v
′) = dG(v′), where

Gi−1 = G − {v1, v2, . . . , vi−1} (2 ≤ i ≤ n) and G0 = G.

Theorem 1.2 ([5]) Let G be a graph and k ≥ 2 be an integer. If G is k-peelable, then G has
an equitable edge-coloring with k colors.

Corollary 1.3 Let G be a graph associated a positive integer function g : V (G) → Z+ and
δg(G) ≥ 2. If G is δg(G)-peelable, then G is of gc-class 1.

Proof By Theorem 1.2, G has an equitable edge-coloring with δg(G) colors. Assume that
there exist a vertex v ∈ V (G) and a color α ∈ C such that α(v) < g(v). Since d(v) ≥ δg(G)g(v)
for each v ∈ V (G) by the definition of δg(G), there must exist another color β ∈ C which has
β(v) > g(v). This means that β(v) − α(v) ≥ 2, a contradiction. So G is of gc-class 1. �

By imitating [6], we give the following concept. We call a graph G weakly-δg(G)-peelable, if
all the vertices of G can be iteratively peeled off in an order v1, v2, . . . , vn using the following
weakly-δg(G)-peeling operation: For each 1 ≤ i ≤ n, peel off vertex vi if vi has at most one
neighbor v′ satisfying that v′ ∈ Vδg

(G) and dGi−1(v
′) = dG(v′) in Gi−1, where Gi−1 = G −

{v1, v2, . . . , vi−1} (2 ≤ i ≤ n) and G0 = G.

Claim 1 Let G be a graph associated a positive integer function g : V (G) → Z+ and δg(G) ≥
2. If G is δg(G)-peelable, then G is weakly-δg(G)-peelable. Conversely, this is not always true.

Proof Let k = δg(G). For a graph G, it is easy to see Vk(G) ⊇ Vδg
(G) according to their

definitions. So if G is δg(G)-peelable, then G is weakly-δg(G)-peelable. Conversely, we can
not ensure Vk(G) = Vδg

(G) for every graph. For example, K5 has vertices v1, v2, . . . , v5, in
which g(v1) = g(v2) = 2, g(v3) = g(v4) = g(v5) = 1. It is easy to verify that this graph is
weakly-2-peelable but not 2-peelable. �

By Claim 1, the following result extends Corollary 1.3.

Theorem 1.4 Let G be a graph associated a positive integer function g : V (G) → Z+ and
δg(G) > 0. If G is weakly-δg(G)-peelable, then G is of gc-class 1.
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Let G be a graph which is not weakly-δg(G)-peelable. Call R(G) the remaining subgraph
of G, which is obtained from G by peeling as many vertices as possible using weakly-δg(G)-
peeling operation. Construct a new graph R′(G) by sticking some pendent edges to each vertex
v ∈ R(G) so that dR′(G)(v) = dG(v). We call R′(G) the degree restoration of the remaining
subgraph of G (the DRRS of G, for short). It is easy to see that both R(G) and R′(G) are
determined uniquely by G and the associated function g. When each vertex of G has at least
two neighbors in Gδg

, R(G) = R′(G) = G. If g is a nonnegative integer function, then an
edge-coloring of G satisfying that each color of C appears at each v ∈ V (G) at least g(v) times
is called a general gc-coloring of G. When g is a positive integer function, a general gc-coloring
of G is a gc-coloring of G. For the DRRS of G, R′(G), define that

gR′(G)(v) =

⎧⎨
⎩

gG(v), v ∈ V (R′(G)) ∩ V (G);

0, v ∈ V (R′(G))\V (G).

Theorem 1.5 Let G be a graph associated a positive integer function g : V (G) → Z+ and
δg(G) ≥ 2, G be not weakly-δg(G)-peelable. If the DRRS of G has a general gc-coloring with
δg(G) colors, then G is of gc-class 1.

2 The Proofs of Main Theorems

The reader refers to [1] for usual definitions and notations. Some concepts and notations are
needed before proving the results. For two colors α, β and w ∈ V (G), let G(w; α, β) be the
component of G, which is induced by the edges colored with α and β and contains w. An
(α, β)-alternating walk K of G is a sequence v0e1v1e2 · · · vr−1ervr of vertices and edges of G in
which

(i) for 1 ≤ i ≤ r, the vertices vi−1 and vi are distinct and are both incident with the edge
ei;

(ii) the edges are all distinct and are colored alternately by α and β;
(iii) e1 is colored by α and α(v0) > β(v0). γ(vr) > γ(vr), where γ denotes the color of er

and γ denotes the other color of α, β.

Proof of Theorem 1.4 The case δg(G) = 1 is trivial. So we assume that δg(G) ≥ 2 and
the vertices of G can be peeled off in this order v1, v2, . . . , vn, where n = |V (G)|, using the
weakly-δg(G)-peeling operation. Let k = δg(G).

If Vk(G) = Vδg
(G), then G is δg(G)-peelable. By Corollary 1.3, G is of gc-class 1.

Otherwise, Vk(G) ⊃ Vδg
(G). We denote T = Vk(G)\Vδg

(G). For each vertex v ∈ T ,
dG(v) = m(v) × δg(G), where m(v) > g(v) is an integer. Construct a new graph G′ from G

as follows: add to G an arbitrary (k + 1)-regular graph H, where V (H) = {w1, w2, . . . , wh},
and join w1 ∈ V (H) to each vertex in T by a new edge. Let g(v) = 1 for each v ∈ V (H).
Then δg(G′) = δg(G). Clearly, Vk(G′) ∩ (V (G)\Vk(G)) = ∅. Since v /∈ Vk(G′) for any v ∈ T ,
Vk(G′)\{w1} = Vδg

(G) whether vertex w1 belongs to Vk(G′) or not. Thus the vertices of G′

can be peeled off in the order w1, w2, . . . , wh, v1, v2, . . . , vn using the k-peeling operation, that
is, graph G′ is k-peelable. By Theorem 1.2, G′ has an equitable edge-coloring with k = δg(G)
colors. Denote an equitable edge-coloring of G′ with δg(G) colors by η. Note that each color
appears at each vertex v ∈ V (G′) at least g(v) times in η. In particular, each color appears at
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each vertex v ∈ T at least g(v)+1 times. Therefore, we can obtain a gc-coloring of G with δg(G)
colors by restricting η to graph G. Then χ′

gc
(G) = δg(G).

By Theorem 1.4, we easily get next result.

Corollary 2.1 Let G be a graph associated a positive integer function g : V (G) → Z+. If Gδg

is a forest, then G is of gc-class 1.

Proof Since Gδg
is a forest, there is a vertex of degree one in Gδg

, saying v1. We can first
peel off v1. Gδg

− {v1} is also a forest including a vertex of degree one, saying v2. We continue
peeling off v2. By this analogy, we can peel off all the vertices of Gδg

and then peel off the other
vertices of G. So G is weakly-δg(G)-peelable. By Theorem 1.4, G is of gc-class 1. �

Lemma 2.2 ([2]) Let G be a connected graph. Then G has a 2-edge coloring ζ such that
(a) If G is Eulerian and |E(G)| is odd, then for an arbitrary vertex u ∈ V (G), we have

|1(u) − 2(u)| = 2 and 1(v) − 2(v) = 0 for all v ∈ V (G)\{u}.
(b) If G is Eulerian and |E(G)| is even, then 1(v) − 2(v) = 0 for all v ∈ V (G).
(c) If G is not Eulerian, then |1(v) − 2(v)| ≤ 1 for all v ∈ V (G).

Let η be an edge-coloring of G with the colors in C and H = G(u; α, β), where α, β ∈ C.
We call H an obstruction (to gc-coloring) if H is an odd Eulerian graph, α(u) = g(u) + 1,
β(u) = g(u) − 1, and α(v) = β(v) = g(v) for all v ∈ V (H)\{u}. So any obstruction does not
contain a vertex v with g(v) = 0. For an edge-coloring, let σ(v) denote the number of different
colors appearing at v at least g(v) times.

Lemma 2.3 Let G be a graph associated a nonnegative integer function g : V (G) → Z+
0 , u ∈

V (G), C = {c1, c2, . . . , ck} and α, β ∈ C. Assume that η is an edge-coloring of G satisfying that
α(u) + β(u) ≥ 2g(u), min{α(u), β(u)} ≥ g(u)− 1, and σ(v) = k for each v ∈ V (G)\{u}. Then
we can recolor subgraph H = G(u; α, β) such that min{α(v), β(v)} ≥ g(v) for each v ∈ V (H) if
H is not an obstruction.

Proof If H is not an Eulerian graph, by Lemma 2.2, we can recolor H such that |α(v)−β(v)| ≤
1 for each v ∈ V (H). So we get min{α(v), β(v)} ≥ g(v) for each v ∈ V (H). If H is an Eulerian
graph and E(H) is even, by Lemma 2.2, we can recolor H such that α(v) − β(v) = 0 for all
v ∈ V (H). We are done, too. If H is an Eulerian graph and E(H) is odd, then dH(v) is even
for each v ∈ V (H). If dH(v) = 2g(v) for each v ∈ V (H), then α(v) = β(v) = g(v) for each
v ∈ V (H)\{u} according to σ(v) = k for each v ∈ V (G)\{u}. If α(u) = β(u) = g(u), then the
number of edges colored with α (or β) in H is

∑
v∈V (H) g(v)

2 = E(H)
2 , a contradiction with E(H)

odd. Thus we must have max{α(u), β(u)} = g(u)+ 1, min{α(u), β(u)} = g(u)− 1. This means
that H is an obstruction, a contradiction. Then there must exist a vertex x ∈ V (H) so that
dH(x) ≥ 2g(x)+2. By Lemma 2.2, we can recolor H so that |α(x)−β(x)| = 2, α(v)−β(v) = 0
for all v ∈ V (H)\{x}. We also get min{α(v), β(v)} ≥ g(v) for each v ∈ V (H) whether x = u

or not. �
Next, we give the proof of Theorem 1.5.

Proof of Theorem 1.5 Let C = {c1, c2, . . . , ck} be a color set, where k = δg(G). δg(G) ≥ 2 and
g > 0 imply that d(v) ≥ 2g(v) for each v ∈ V (G), that is, G has no pendent edge. Assume that
u1, u2, . . . , us (s < n) can be iteratively peeled off using the weakly-δg(G)-peeling operation,
and R(G) = G−{u1, u2, . . . , us}. Let R′ = R′(G) and η be a general gc-coloring of R′ with the
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colors in C. If R(G) = G, we are done. So we next assume that 1 ≤ s < n. Add us to R′. Join
us to v ∈ V (R′) if v is adjacent to us in G and delete a pendent edge at v. Use the color of the
pendent edge to color edge usv. Stick some new pendent edges to us such that the degree of
us equals dG(us). Color the pendent edges at us with the colors in C. The resulting graph is
denoted by G′

s−1. In particular, we always define g(v) = 0 for each vertex v with degree one in
these new pendent edges. Next, we give a general gc-coloring of G′

s−1.
According to the definition of weakly-δg(G)-peeling operation, we just need to discuss two

cases.

Case 1 us is not adjacent to a vertex, which belongs to Vδg
(G) and has no pendent edge in

G′
s−1.

If each color appears at least g(us) times at us, we get a required edge-coloring of G′
s−1.

Otherwise, minc∈C{c(us)} < g(us) and maxc∈C{c(us)} > g(us). If β(us) = minc∈C{c(us)} ≤
g(us) − 2, then there exists a color α0 ∈ C such that α0(us) ≥ g(us) + 1. Choose an (α0, β)-
alternating walk K starting at us. Two cases will be considered.

(a) K stops at us.
(b) K does not stop at us.
If (a) happens, exchange the two colors on K. Then α0(us) decreases by 2 and α0(us) ≥

g(us) − 1, β(us) increases by 2. If (b) happens, exchange the two colors on K. Then α0(us)
decreases by 1 and α0(us) ≥ g(us), β(us) increases by 1. If we still have β(us) ≤ g(us) − 2,
then there exists a color α1 ∈ C such that α1(us) ≥ g(us) + 1. (α1 may be the same as α0 if
there is still α0(us) ≥ g(us)+1.) Continue finding an (α1, β)-alternating walk K starting at us

and exchange the two colors on K. This way goes on till β(us) ≥ g(us) − 1. In short, we can
recolor G′

s−1 such that minc∈C{c(us)} ≥ g(us) − 1. Assume that minc∈C{c(us)} = g(us) − 1.
Let σ(v) = |{c ∈ C : c(v) ≥ g(v)}|. So σ(us) < k. Let α0(us) = maxc∈C{c(us)} and
β(us) = minc∈C{c(us)}. Next, we prove that G′

s−1 could be recolored such that σ(us) increases
by 1 and σ(v) does not decrease for each v ∈ V (G′

s−1)\{us}.
If α0(us) ≥ g(us) + 2, noting that β(us) = minc∈C{c(us)} = g(us) − 1, then H0 =

G′
s−1(us; α0, β) is not an obstruction. By Lemma 2.3, we can get a required edge-coloring

of G′
s−1.
Now we assume β(us) = g(us) − 1, α0(us) = g(us) + 1.
If H0 = G′

s−1(us; α0, β) is not an obstruction, we can get a required edge-coloring of G′
s−1

by Lemma 2.3. So we just consider that H0 is an obstruction with α0(us) = g(us) + 1, β(us) =
g(us) − 1 and α0(v) = β(v) = g(v) for each v ∈ V (H0)\{us}. We give the following iterative
process for stage i (i ≥ 1). At the start of the i-th stage, Hi−1 = G′

s−1(us; αi−1, β) is an
obstruction. There are two cases to be considered.
Case 1.1 At us, there exists an αi−1-edge ei−1 = usyi−1 such that yi−1 /∈ Vδg

(G).
We can choose a color αi such that αi(yi−1) ≥ g(yi−1) + 1. Clearly, such αi exists by

d(yi−1) > g(yi−1)δg(G). If αi(yi−1) > g(yi−1) + 1, recolor ei−1 with β. Then αi−1(us) =
β(us) = g(us), αi−1(yi−1) = g(yi−1) − 1. Therefore σ(yi−1) = k − 1, σ(us) increases by 1 and
T = G′

s−1(yi−1; αi, αi−1) is not an obstruction. Note that there are αi(us) ≥ g(us) − 1 and
min{αi(v), αi−1(v)} ≥ g(v) for each v ∈ V (T )\{yi−1, us} (∗). If us /∈ V (T ), by Lemma 2.3, we
can get a required edge-coloring of G′

s−1. If us ∈ V (T ), by Lemma 2.2, we discuss three cases.
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(i) When T is an odd Eulerian graph implying that αi(yi−1) ≥ g(yi−1) + 3 and αi(us) ≥
g(us), we can recolor T such that min{αi(yi−1), αi−1(yi−1)} ≥ g(yi−1) and αi(v) = αi−1(v) ≥
g(v) for each v ∈ V (T )\{yi−1}.

(ii) When T is an even Eulerian graph, we can recolor T such that αi(v) = αi−1(v) ≥ g(v)
for each v ∈ V (T ).

(iii) When T is not an Eulerian graph, we can recolor T such that |αi(v)−αi−1(v)| ≤ 1 for
each v ∈ V (T ). (For v ∈ V (T )\{us}, (∗) implies that min{αi(v), αi−1(v)} ≥ g(v). For us, (∗)
implies that σ(us) does not decrease whether αi(us) = g(us) − 1 or αi(us) ≥ g(us) before T is
recolored.)

In any case, we make σ(yi−1) = k and σ(us) increase by 1 comparing to that one before
recoloring ei−1. That is to say, we get a required edge-coloring of G′

s−1. Thus, we assume
αi(yi−1) = g(yi−1) + 1. We argue three cases, noting that minc∈C{c(us)} = g(us) − 1 and
maxc∈C{c(us)} = g(us) + 1.

(1) αi(us) = g(us) − 1.
G′

s−1(us; αi, αi−1) contains yi−1, αi(yi−1) = αi−1(yi−1) + 1 = g(yi−1) + 1 and αi−1(us) =
g(us)+1. Thus, G′

s−1(us; αi−1, αi) is not an obstruction. By Lemma 2.3, we can get a required
edge-coloring of G′

s−1.
(2) αi(us) = g(us) + 1.
In G′

s−1 − ei−1, choose an (αi, αi−1)-alternating walk K starting at yi−1, K must be one of
the following three cases.

(a) K does not stop at us or yi−1.
(b) K stops at us.
(c) K stops at yi−1 with an edge colored αi.
When (a) or (b) happens, we first exchange the two colors on K, then recolor ei−1 by β.

Clearly, the resulting coloring is a required edge-coloring of G′
s−1. When (c) happens, we first

exchange the two colors on K, then recolor ei−1 by αi. Thus, αi(us) = g(us) + 2, which means
that G′

s−1(us; αi, β) is not an obstruction. By Lemma 2.3, we can get a required edge-coloring
of G′

s−1.
(3) αi(us) = g(us).
In G′

s−1 − ei−1, choose an (αi, αi−1)-alternating walk K starting at yi−1. K must be one
of the following cases.

(a) K does not stop at yi−1 or us.
(b) K stops at yi−1 with an edge colored αi.
When (a) happens, first exchange the two colors on K and then recolor edge ei−1 by β.

The resulting coloring is a required edge-coloring of G′
s−1. If (b) happens, exchange the two

colors on K and then recolor ei−1 by αi. If Hi = G′
s−1(us; αi, β) is not an obstruction, we

have a required edge-coloring of G′
s−1 by Lemma 2.3. If Hi is an obstruction, consider a

maximal (αi−1, β)-alternating walk X starting at us in G′
s−1. We claim that each X does

not end at us. If X returns to us with an αi−1-edge, then we can extend it with a new β-
edge by αi−1(us) = β(us) + 1. If there exists an X ending at a vertex v /∈ {yi−1, us}, then
exchange the two colors on X. Thus, we have αi(us) − 1 = αi−1(us) + 1 = β(us) = g(us)
and αi(yi−1) = αi−1(yi−1) − 1 = β(yi−1) = g(yi−1). Subgraph H = G(us; αi−1, αi) is not an
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obstruction, because H contains the odd degree vertex yi−1. So we can get a required edge-
coloring of G′

s−1 by Lemma 2.3. If every X ends at yi−1, we denote this case by (A). Since H

is an obstruction when (A) happens, there exists an edge colored αi incident with us different
from ei−1. Denote the edge by ei and the other end of ei by yi. So we can go to the (i + 1)-th
stage.
Case 1.2 For each αi−1-edge usw, w ∈ Vδg

(G).
We get an αi−1-edge ei−1 = usyi−1. Here yi−1 ∈ Vδg

(G) and yi−1 has at least one pendent
edge in G′

s−1. Choose such a pendent edge and denote it by yi−1y
′
i−1. Let αi be the color

of yi−1y
′
i−1. Since Hi−1 = G′

s−1(us; αi−1, β) is an obstruction, αi �= αi−1. We consider the
following three cases.

(1) αi(us) = g(us) − 1.
Exchange the two colors on walk usyi−1y

′
i−1. Clearly, the resulting coloring is a required

edge-coloring of G′
s−1.

(2) αi(us) = g(us) + 1.
We exchange the two colors on walk usyi−1y

′
i−1, then αi(us) = g(us)+2, β(us) = g(us)−1.

We know G′
s−1(us; αi, β) is not an obstruction. So we can get a required edge-coloring of G′

s−1

by Lemma 2.3.
(3) αi(us) = g(us).
Exchange the two colors on walk usyi−1y

′
i−1. If Hi = G′

s−1(us; αi, β) is not an obstruction,
we can get a required edge-coloring of G′

s−1 by Lemma 2.3. If Hi is an obstruction, there exists
an αi-edge incident with us different from ei−1. Denote the edge by ei and the other vertex
incident with ei by yi. Then go to the (i + 1)-th stage. Denote this case by (B).

Hence, at the start of the i-th stage (i ≥ 2), the following conditions have been satisfied.
(I) Distinct vertices y0, y1, . . . , yi−1.
(II) Distinct edges e0, e1, . . . , ei−1, where ej = usyj , 0 ≤ j ≤ i − 1.
(III) Distinct colors α0, α1, . . . , αi−1, β. At the start of the i-th stage, ei−1 is colored with

αi−1. At the end of the j-th stage, ej−1 is colored with αj , 1 ≤ j ≤ i − 1. When αi is chosen
distinct from α0, α1, . . . , αi−1, there is no edge colored with α0, α1, . . . , αi−2 or β is recolored
in the i-th stage.

(IV) At the start of the i-th stage, Hi−1 = G′
s−1(us; αi−1, β) is an obstruction, in which

αi−1(us)− 1 = β(us) + 1 = g(us) and αi−1(v) = β(v) = g(v) for each v ∈ V (Hi−1)\{us}. Also,
Hi−1 contains ei−1.

Since |C| = k, we could get a color αi ∈ {α0, α1, . . . , αi−1} in some stage i (1 ≤ i ≤ k − 1).
If αi ∈ {α0, α1, . . . , αi−1} and (A) or (B) happens at the i-th stage (i ≥ 2), then the iterative

process would end. Assume that αi occurs exactly once in the sequence {α0, α1, . . . , αi−1}. Let
αi = αp for 0 ≤ p ≤ i − 2. We know αi �= αi−1, yi−1 �= yp, by the discussion above. In this
case, we consider two subcases.
Case I (A) happens in the (p + 1)-th stage and (A) or (B) happens in the i-th stage.

At the start of the (p + 1)-th stage, Hp = G′
s−1(us; αp, β) is an obstruction with αp(us) =

β(us) + 2 = g(us)+ 1. Since (A) happens in the (p+ 1)-th stage, ep is recolored by αp+1. Thus
at the end of the (p + 1)-th stage, we have αp(us) = g(us), β(us) = g(us) − 1. We can find an
(αp, β)-alternating walk X starting at us and ending at yp. Between the end of the (p + 1)-th
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stage and the start of the i-th stage, the edges colored with αp and β do not change, and X

remains the same.
If (A) happens in the i-th stage, then exchange the two colors on X. We have αp(us) =

g(us) − 1, β(us) = g(us), αi−1(us) = g(us) + 1, and the value σ(yp) is unchanged. Since
G′

s−1(us; αi−1, αp) contains yi−1, αp(yi−1) = g(yi−1)+1, and αi−1(yi−1) = g(yi−1), G′(us; αi−1,

αp) is not an obstruction. By Lemma 2.3, we can get a required edge-coloring of G′
s−1.

If (B) happens in the i-th stage, then exchange the two colors on X. Thus αp(us) = g(us)−1,
β(us) = g(us), αi−1(us) = g(us)+1, and the value σ(yp) is unchanged. We recolor edge usyi−1

by αp, recolor edge yi−1y
′
i−1 by αi−1. Thus we get a required edge-coloring of G′

s−1.
Case II (B) happens in the (p + 1)-th stage and (A) or (B) happens in the i-th stage.

At the start of the (p + 1)-th stage, Hp = G′
s−1(us; αp, β) is an obstruction with αp(us) =

g(us) + 1, αp+1(us) = g(us), β(us) = g(us) − 1. Since (B) happens in the (p + 1)-th stage, ep

is recolored by αp+1. So we have αp+1(us) = g(us) + 1, αp(us) = g(us), β(us) = g(us)− 1. We
know that Hp − ep + ypy

′
p contains an (αp, β)-alternating walk X starting at us and ending at

y′
p at the end of (p + 1)-th stage. X remains the same between the end of the (p + 1)-th stage

and the start of i-th stage.
If (A) happens in the i-th stage, exchange the two colors on X. Then we get αi−1(us) =

g(us)+1, αp(us) = g(us)−1, β(us) = g(us). Now G′
s−1(us; αi−1, αp) contains yi−1, αp(yi−1) =

αi−1(yi−1)+1 = g(yi−1)+1. So G′
s−1(us; αi−1, αp) is not an obstruction. We can get a required

edge-coloring of G′
s−1 by Lemma 2.3.

If (B) happens in the i-th stage, exchange the two colors on X. Then we get αi−1(us) =
g(us)+1, αp(us) = g(us)−1, β(us) = g(us). Since yi−1y

′
i−1 /∈ X, it is still colored with αp. We

recolor the edge usyi−1 by αp, the edge yi−1y
′
i−1 by αi−1. Thus we get a required edge-coloring

of G′
s−1.
If σ(us) < k, we construct a new iterative process to make σ(us) increase. Thus we can get

a general gc-coloring of G′
s−1 in finite iterative processes.

Case 2 us is exactly adjacent to a vertex, which belongs to Vδg
(G) and has no pendent edge

in G′
s−1.

If us is adjacent to a vertex w ∈ Vδg
(G) which has no pendent edge in G′

s−1, then we delete
the edge usw and add a pendent edge to us and w, respectively. Color the two pendent edges
with the color of usw. The resulting graph is denoted by G′′

s−1.
By Case 1, we can get a general gc-coloring of G′′

s−1. Join us and w, then delete a pendent
edge at w and us, respectively. The resulting graph is G′

s−1. We denote the two pendent edges
ex (colored with λ) and ey (colored with γ), respectively. Recolor the edge usw by λ. If each
color appears at least g(us) times at us, we get a required edge-coloring. Otherwise, we have
γ(us) = g(us) − 1 and c(us) ≥ g(us) for each c ∈ C\{γ}. We can find a new color as α0 such
that α0(us) = maxc∈C{c(us)} ≥ g(us) + 1. If G′

s−1(us; α0, γ) is not an obstruction, we can get
a general gc-coloring of G′

s−1. If G′
s−1(us; α0, γ) is an obstruction, we can find an edge usy0

colored with α0 different from edge usw. Then we can construct a new iterative process same
as Case 1, because us is not adjacent to a vertex, which belongs to Vδg

(G) and has no pendent
edge, except w. So this case is converted into Case 1.

In a word, we can get a general gc-coloring of G′
s−1. Similarly, we can get a general gc-
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coloring of G′
s−2, G

′
s−3, . . . , G

′
1, G

′
0 = G with δg(G) colors. So G is of gc-class 1.

By the proof of Theorem 1.5, we can get a more general result.

Theorem 2.4 Let G be a graph associated a positive integer function g : V (G) → Z+, and
δg(G) ≥ 2. Let H denote a graph obtained from G by peeling off some vertices of G using weakly-
δg(G)-peeling operation. If the degree restoration of H has a general gc-coloring of δg(G) colors,
then G is of gc-class 1.

Song and Liu [4] obtain the following result.

Theorem 2.5 ([4]) Let G be a graph. If g(v) is positive and even for all v ∈ V (G), then
χ′

gc
(G) = δg(G).

By Theorems 1.5 and 2.5, we can get a result as below.

Corollary 2.6 Let G be a graph, which is associated a positive integer function g : V (G) →
Z+ and not weakly-δg(G)-peelable. Denote the remaining subgraph by R(G). For each vertex
v ∈ V (R(G)), if g(v) > 0 and g(v) is even, then G is of gc-class 1.

Proof Denote the DRRS of G by R′(G). For each vertex x ∈ V (R′(G)) which has degree one,
we know gR′(G)(x) = 0. We construct a new graph T (G) as follows based on graph R′(G): stick
to x a 4δg(G)-regular graph Hx in such a way that a vertex of Hx coincides with x, and define
gT (G)(v) = 2 for each v ∈ V (Hx). Clearly, δg(T (G)) = δg(G) and gT (G)(v) is positive and even
for each v ∈ V (T (G)). By Theorem 2.5, T (G) is of gc-class 1. Let η be a gc-coloring of T (G)
with δg(G) colors. Restrict η to graph R′(G), we obtain a general gc-coloring of R′(G) with
δg(G) colors. By Theorem 1.5, G is of gc-class 1. �

Acknowledgements We thank the referees for their time and comments.

References
[1] Bondy, J. A., Murty, U. S. R.: Graph theory with applications, Macmillan, London, 1976

[2] Hakimi, S. L., Kariv, O.: A generalization of edge-coloring in graphs. J. Graph Theory, 10, 139–154 (1986)

[3] Song, H., Liu, G.: On f -edge cover-coloring of simple graphs. Acta Math. Scientia, 25B(1), 145–151 (2005)

[4] Song, H., Liu, G.: On f -edge cover-coloring of graphs. Acta Math. Sin., Chin. Ser., 48(5), 919–928 (2005)

[5] Zhang, X., Liu, G.: Equitable edge-coloring of simple graph. J. Graph Theory, 66, 175–197 (2011)

[6] Zhang, X., Liu, G.: On edge covering coloring of graphs. Information Processing Letters, 111, 1004–1006

(2011)


