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Abstract The paper explores the connection of Graph-Lagrangians and its maximum cliques for
3-uniform hypergraphs. Motzkin and Straus showed that the Graph-Lagrangian of a graph is the
Graph-Lagrangian of its maximum cliques. This connection provided a new proof of Turan classical
result on the Turdn density of complete graphs. Since then, Graph-Lagrangian has become a useful tool
in extremal problems for hypergraphs. Peng and Zhao attempted to explore the relationship between
the Graph-Lagrangian of a hypergraph and the order of its maximum cliques for hypergraphs when
the number of edges is in certain range. They showed that if G is a 3-uniform graph with m edges
containing a clique of order t — 1, then M(G) = A([t — 1]®) provided (*3") < m < (3") + (*37).
They also conjectured: If G is an r-uniform graph with m edges not containing a clique of order ¢t — 1,
then A\(G) < A([t — 1]) provided (tzl) <m < (tzl) + (;:i) It has been shown that to verify this
conjecture for 3-uniform graphs, it is sufficient to verify the conjecture for left-compressed 3-uniform
graphs with m = (t,gl) + (t;2). Regarding this conjecture, we show: If GG is a left-compressed 3-uniform
graph on the vertex set [t] with m edges and |[t — 1]® \ E(G)| = p, then A(G) < A([t — 1]®)) provided

m=("3") + (*;%) and t > 17p/2 + 11.
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1 Introduction

In 1965, Motzkin and Straus [5] established a connection between the order of a maximum clique
and the Graph-Lagrangian of a graph. This connection and its extensions were successfully em-
ployed in optimization to provide heuristics for the maximum clique problem. This connection
provided another proof of Turdn’s theorem [15] which pushed the development of extremal
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graph theory. More generally, the connection between Graph-Lagrangians and Turdn densities
can be used to give another proof of the fundamental result of Erdés—Stone—Simonovits on
Turan densities of graphs (see Keevash’s survey paper [4]). However, the obvious generalization
of Motzkin and Straus’ result to r-uniform hypergraphs is false, i.e., the Graph-Lagrangian of
a hypergraph is not always the same as the Graph-Lagrangian of its maximum cliques. There
are many examples of r-uniform hypergraphs other than complete r-uniform hypergraphs that
do not achieve their Graph-Lagrangian on any proper subhypergraph. In spite of this, the
Graph-Lagrangian has been a useful tool in extremal problems in combinatorics. In 1980’s,
Sidorenko [9] and Frankl and Fiiredi [1] developed the method of applying Graph-Lagrangians
in determining hypergraph Turdn densities. More recent applications of Graph-Lagrangians can
be found in Keevash’s survey paper [4] and [3]. In most applications in extremal combinatorics,
we need an upper bound of Graph-Lagrangians of hypergraphs. In the course of estimating
Turan densities of hypergraphs by applying the Graph-Lagrangians of related hypergraphs,
Frankl and Fiiredi [1] asked the following question: Given r > 3 and m € N how large can the
Graph-Lagrangian of an r-graph with m edges be? They proposed the following conjecture:
The r-graph with m edges formed by taking the first m sets in the colex ordering of N(") has
the largest Graph-Lagrangian of all r-graphs with m edges. The Moztkin—Straus result implies
that this conjecture is true for » = 2. For r > 3, this conjecture seems to be very challenging.
Talbot first confirmed this conjecture for some cases in [11]. Later Tang et al. confirmed this

conjecture for some more cases in [10, 12-14].

Although the obvious generalization of Motzkin and Straus’ result to r-uniform hyper-
graphs is false, in [7], Peng and Zhao attempted to explore the relationship between the Graph-
Lagrangian of a hypergraph and the size of its maximum cliques for hypergraphs when the
number of edges is in certain range. The authors proposed a pair of conjectures in [7] on
the relationship between the Graph-Lagrangian of a hypergraph and the size of its maximum
cliques for hypergraphs when the number of edges is in certain range. This pair of conjectures
also refine Frankl and Fiiredi’s conjecture for this range of edges numbers. The authors in [7]
confirmed one of the conjectures for 3-uniform hypergraph, that is, the Graph-Lagrangian of
a 3-uniform hypergraph is the Graph-Lagrangian of its maximum cliques when the number of
edges is in certain range. In this paper, we show that for that range of the number of edges, if
a 3-uniform hypergraph does not contain a clique of such a size, then the Graph-Lagrangian of
such a 3-uniform hypergraph is strictly less than the Graph-Lagrangian of a complete 3-uniform
hypergraph of such a size under some conditions.

2 Definitions and Main Results

For a set V and a positive integer 7, let V(") denote the family of all r-subsets of V. An
r-uniform graph or r-graph G consists of a set V(G) of vertices and a set E(G) C V(G)") of
edges. An edge e = {ay,as,...,a,} will be simply denoted by ajas...a,. An r-graph H is
a subgraph of an r-graph G, denoted by H C G if V(H) C V(G) and E(H) C E(G). The
complement of an r-graph G is denoted by G°. A complete r-graph on t vertices is also called
a clique of order t. Let N be the set of all positive integers. For any integer n € N, we denote

the set {1,2,3,...,n} by [n]. Let [n](") represent the complete r-uniform graph on the vertex
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set [n]. When r = 2, an r-uniform graph is a simple graph. When r > 3, an r-graph is often
called a hypergraph.

For distinct A, B € N(") we say that A is less than B in the colex ordering if max(AAB) € B,
where AAB = (A\ B)U (B\ A). For example, since max({2,4,6}A{1,5,6}) € {1,5,6}, so we
have 246 < 156 in N In colex ordering, 123 < 124 < 134 < 234 < 125 < 135 < 235 < 145 <
245 < 345 < 126 < 136 < 236 < 146 < 246 < 346 < 156 < 256 < 356 < 456 < 127 < --- . Note
that the first (;) r-tuples in the colex ordering of N(") are the edges of [t]("). Formally, we let
Cy.m denote the r-graph with m edges formed by taking the first m sets in the colex ordering
of N(™),

For an r-graph G = (V,E) and i € V, let E; = {A € V"=V : AU {i} € E}. For a pair of
vertices 4,5 € V, let E;; = {Be€ VU=2 : BU{i,j} € E}. Let Ef = {Ac V=D : AU {i} €
VUNE} and E; = {B € V""% : BU{i,j} € VI"\E}. Denote E;\; = E; N EX.

An r-tuple iyis-- -4, is called a descendant of an r-tuple jijo---j, if iy < js for each
1<s<r,and iy +is+--~+1i < j1+7jo+ -+ 7jr. And j1jo---j, is called an ancestor
of iyig -+ -1i,. The r-tuple iyis-- -4, is called a direct descendant of jijo---j, if iyig---i, is a
descendant of jijo---j, and jy + jo + -+ jr =41 +i2 + -+ 4. + 1. j1jo---Jj, has lower
hierarchy than ¢14s - - -4, if j1jo - - j, is an ancestor of i1is - - - 4,. This is a partial order on the

set of all r-tuples.

Definition 2.1  For an r-uniform graph G with the vertex set [n], edge set E(G) and a vector
Z=(x1,...,2,) € R, define

/\(G, f) = Z .Z‘ilxiz e J?ir.
i112-1,,€E(G)
Let S ={Z = (1, 22,...,2n) : iy @ = Lx; > 0 for i = 1,2,...,n}. The Graph-Lagrangian
of G, denoted by \(G), is defined as

A(G) = max{\(G, ) : & € S}.

The value z; is called the weight of the vertex i. A vector & = (z1,22,...,2,) € R™ is
called a legal weighting for G if € S. A vector § € S is called an optimal weighting for G if
MG, ¥) = MG). The following fact is easily implied by the definition of the Graph-Lagrangian.

Fact 2.2 Let G1, G2 be r-uniform graphs and G; C Ga. Then A(G1) < A(G2).

In [5], Motzkin and Straus provided the following expression for the Graph-Lagrangian of
a 2-graph.

Theorem 2.3 ([5]) If G is a 2-graph in which a largest clique has order t, then A\(G) =
M®) = $1-1).

The obvious generalization of Motzkin and Straus’ result to hypergraphs is false because
there are many examples of hypergraphs (other than a complete hypergraph) that do not
achieve their Graph-Lagrangians on any proper subhypergraph. In [7], the authors attempted
to explore the relationship between the Graph-Lagrangian of a hypergraph and the order of its
maximum cliques of hypergraphs when the number of edges is in a certain range. The following

two conjectures are proposed in [7].
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Conjecture 2.4 ([7]) Let m and t be positive integers satisfying ( ) m < ( . ) (T 1)
Let G be an r-graph with m edges and contain a clique of order t—1. Then \(G) = A([t—1]).

The upper bound ( - ) + (3721) in this conjecture is the best possible. For example, if

m = (tzl) + (- %) +1, then \(C.) > A([t — 1)), where C,., is the r-graph on the vertex set
[t] and with the edge set [t — 1] U {iy - -ip_1t,iy---ip_1 € [t—=2]C"DIU{1--- (r —2)(t—1)t}.
Take = (21,...,2¢) € S, where 1 =z = -+ = 249 = ﬁ and z;_1 = x; = 2(t171)' Then

AMCrm) = MCrm, @) > At = 1]™).
Conjecture 2.5 ([7]) Let m and t be positive integers satisfying (tzl) <m< ("] . ) (t_2)

r—1

Let G be an r-graph with m edges and contain no clique of order t—1. Then M\(G) < A([t—1]).
Peng and Zhao proved that Conjecture 2.4 holds for » = 3 in [7].

Theorem 2.6 ([7]) Let m and t be positive integers satisfying (' ) <m< (% N+ (32). Let
G be a 3-graph with m edges and G contain a clique of order t — 1. Then M(G) = \([t — 1]®)).

There are also some partial results in [6, 8, 10, 12, 13] to support Conjecture 2.5. This pair

of conjectures are also related to a long-standing conjecture of Frankl and Fiiredi.
Conjecture 2.7 ([1]) C,.,, has the largest Graph-Lagrangian of all r-graphs with m edges. In
particular, the r-graph with (i) edges and the largest Graph-Lagrangian is [t](r),

The following result in [11] states that the value of A(C,.,,) can be easily figured out when
m is in certain ranges.
Lemma 2.8 ([11]) For any integers m, t, and r satisfying (tzl) <m< (tzl) + (::?), we have
MCrm) = M[t — 1]™).

Clearly, Conjectures 2.4 and 2.5 refined Conjecture 2.7 when m is in this range.

Definition 2.9 Anr-graph G = (V, E) on the vertez set [n] is left-compressed if j1j2 -+ jr € E
implies 1113 - - - i, € E provided i, < j, for every p,1 <p <.
Remark 2.10 An r-graph G = (V,E) is left-compressed if and only if E;; = 0 for any
1<i<j<n.

The following result showed in [8] says that we only need to consider left-compressed 3-
graphs G on t vertices with (tgl) + (t52) edges to verify Conjecture 2.5 for r = 3.
Lemma 2.11 ([8]) To verify Conjecture 2.5 for r = 3, it is sufficient to show that for a
left-compressed 3-graph G on the vertex set [t] with (tgl) + (t 2) edges and not containing a
clique of order t — 1, the inequality \(G) < M([t — 1]®) holds.

The following provide some partial results to Conjecture 2.5 for r = 3.
Theorem 2.12 ([8]) Let G be a left-compressed 3-graph with (tgl)—i—(tj) edges and containing
no clique of ordert — 1. If 6 <t < 13, then \(G) < ([t — 1]®)).
Theorem 2.13 ([14]) Let G be a left-compressed 3-graph on the vertex set [t] with (tgl) + (t;2)
edges and |[t — 1]®) \ E(G)| = 1. Then A(G) < X[t — 1]®) for t > 6.

Regarding Conjecture 2.5, we show the following result in this paper.

Theorem 2.14 Let m, p and t be positive integers satisfying m = (tgl) + (tgz) and t >

17p/2411. Let G be a left-compressed 3-graph on the vertex set [t] with m edges and |[t — 1]\
E(G)| =p. Then A(G) < A([t —1]®).
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The paper is organized as follows. In Sections 3, we give some useful results. In Section 4,
we give some preliminary results to the proof of Theorem 2.14. In Sections 5, we give the proof

of our main result.

3 Useful Results

We will impose one additional condition on any optimal weighting & = (z1, 22, ...,z,) for an
r-graph G:

[{i: x; > 0}| is minimal,i.e., if 7 is a legal weighting for G satisfying

[{i:y; >0} < [{i:2; >0}, then \(G,§) < A(G). (3.1)

When the theory of Lagrange multipliers is applied to find the optimum of A(G), subject to
Yo, x; = 1, notice that A(E;, Z) corresponds to the partial derivative of A(G, Z) with respect
to x;. The following lemma gives some necessary conditions of an optimal vector of A(G).

Lemma 3.1 ([2]) Let G = (V, E) be an r-graph on the vertezx set [n] and & = (x1,z2,...,%y,)
be an optimal legal weighting for G with k (< n) non-zero weights x1,xa,...,x;. Then for
every {i,7} € [k]®, (a) M(Ei, 7) = M(E;, %) = r\(G). (b) If ¥ satisfies the condition (3.1), then
there is an edge in E containing both ¢ and j.
Remark 3.2 Let & = (x1,22,...,%,) be an optimal legal weighting for G with k (< n)
non-zero weights x1,xs,...,xgx. Let 1 <i < j <k.

(a) Lemma 3.1 part (a) implies that z;A(Eyj, Z) + M(Ej j, T) = 2;M(Ejj, £) + M(Ej\;, 7). In
particular, if G is left-compressed, then (z; — x;)A(Eij, ¥) = AM(Ej\ j, ).

(b) If G is left-compressed, then

= 2 3.2
holds. If G is left-compressed and E;\; = 0, then z; = x;.
(c) By (3.2), if G is left-compressed, then
T1 > Tp > >y, > 0. (3.3)

4 Some Preliminary Results Used in Proof of Theorem 2.14
In this section, we will show the following preliminary results and their implications.

Theorem 4.1 Let m, t and p be positive integers satisfying m = (tgl) + (tf) andt > 3p+8.
Let G be a left compressed 3-graph on the vertexr set [t] with m edges and let the triple with
the minimum colex ordering in the complement of G be (t —2 — p)(t — 2)(t — 1), then A(G) <

At - 1@).

Theorem 4.2 Let m, t and p be positive integers satisfying m = (tgl) + (’?2) andt > 2p+16.
Let G be a left compressed 3-graph on the vertex set [t] with m edges and let the triple with the
minimum colex ordering in the complement of G be (t —3 — p)(t — 3)(t — 1), then A(G) <

([t = 1)),

The following results are implied by the above two theorems.
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Corollary 4.3 Let m, t be positive integers satisfying m = (tgl) + (t;2). Let G be a left-

compressed 3-graph on the vertex set [t] with m edges and |[t — 1]\ B(G)| = 2. Then A\(G) <
At —1]®).

Corollary 4.4 Let m, t and p be positive integers satisfying m = (tgl) + (t;2). Let G be
a left-compressed 3-graph on the vertex set [t] with m edges and |[t — 1)) \ E(G)| = 3, then
MG) < ([t —1)®)) fort > 18.

Corollary 4.5 Let m and t be positive integers satisfying m = (tgl) + (tEQ). Let G be a
left-compressed 3-graph on the vertex set [t] with m edges and |[t — 1]®) \ E(G)| = 4. Then
MG) < ([t = 1)®)) fort > 19.

4.1 Proofs of Theorem 4.1 and Corollary 4.3

Proof of Theorem 4.1  Let & = (x1,2,...,2:) be an optimal weighting of a left-compressed
3-graph G = ([t], E) satisfying the condition in Theorem 4.1. Then by Remark 3.2, 1 > xo >
o>y If 2y = 0, then A(G) < A([t — 1]®). So we assume that x; > 0.

We apply induction on p. When p = 1, this is contained in Theorem 2.13. Then suppose
that p > 2 and the assertion holds for smaller values of p.

Let i be the largest integer such that i(t — 1)t € E. Note that 1 < i <t —3 —p and
G is left-compressed. Let G' = GU{(t —2 —p)(t — 2)(t — 1)}\{i(t — 1)t}. By the induction
assumption, we have \(G’, Z) < A(G") < A([t — 1]®)). If we can prove that (G, Z) < MG, T),
then consequently, A\(G) < A([t — 1]®)). Now we show that \(G,Z) < M\(G’, ). Note that

MG, Z) = MG, T) = t4—0_pTi_oTp—1 — BT 1T = (Tp—2_pTi—2 — TiTy)Te_1. (4.1)

By Remark 3.2(b),
)‘(Ei\(t—2—p)a f)

-, 4.2
A Ej(t—2—p), T) (42)

Ti=Tp—2-p+

and
ME -2\t T)

Ti_o = Ty + —.
2 ' A(E(t—2)t7x)

(4.3)

Combining equations (4.1)—(4.3), we get

MG, 7)) — MG, T)
ME(t-2)\t: T) MEi\(t—2-p): T)
=Tt—2-p (It + W Ti—1 — | Te—2-p + m L1t
ME(t-2)\t: T) MEi\(t—2-p); T) )
= — 0 5 Lt—2—p— 0 T LTi—_1- 4.4
( ME268) " MEBigapp®) )T (44

Since G is left-compressed, then [t — 1]®N\E = {j(t —2)(t — 1) : t =3 —p < j < t — 3}, and
it,i(t — 1), (t —2)(t = 1) and (t = 2)t ¢ Ej (1—2), hence MN(Ej -2, %) < (1 =2 — 24 _2)2s 1 +
(1 =2 —240)x; and AN(E;4—2),Z) = 1 — 2; — o, then

AMEn 1, T 1= — 2y 0)m 1 + (1 — 35 — 7y
(Ea(t—2) q) gxt,2+( T — Tp_o)—1 + (1 — 2 — Tp_2)2y
A Ej(t—2), T) 1—m; — ®—2

=Ty_o+ Ty_1 + T4 (45)

Ty = Tr—2 +
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Hence

A Ei(t—2—p), T) = ME(t—2),T) > (1 =2y =40 p) = (1 =2 — - — 242 )
> T o+ T 1+T—1; >0

and A(E;¢—2-p), Z) > ME(4—2), Z). In view of (4.4), to show \(G,Z) < NG, ), it is sufficient

to show that
AME(—an\t, T) > M Ep\(1—2-p), T)- (4.6)

Let D = {jk: jk € [t — 3]® and jkt ¢ E}. Assume that |[D|=1.
If | <2, we claim that (t —5—p+1)(t — 1)t ¢ E. Otherwise (t —5—p+1)(t — 1)t € E,
then |E(Ct72)t| <p+2—1 Since G is left—compressed, and [t —5 — p + 1] € E_1), then

m=E|=|En[t-1® |+ [t -2]?nE|+ | Et—1)]

#((% ) 2) (7)ot vemsmne
(37)+ (57) emmmmr

(5 () remms

=)+ (%)

a contradiction. As (t —5—p+1)(t — 1)t ¢ E, then

Y

—

ME(t—20\t>T) 2> Tt—2-pA(E(r—2-p)(t—2) N Ei_o_py: ) + (A(D, F)
FTp 5 priTp—1 o+ T3 pTi—1)
> (xt,g,p)\(E(ct727p)t, ) — Ty pTi—2 — T2 pTi—1) + 3T4_3_pTt—1
= Tt—2p(MEG_2_pys T) — T2 — Te—1) + 3T4—3-pT4—1
> @2 p(MEG_a_pyp: @) — T2 — T—1) + 3T4—aTr—1.
If I > 3, then A(D, &) > 3x4_4x4—3 > 3044241, and
ME(t-2)\t:T) = Tt—2-p M E—2-p)(t-2) N Ef_o_p)i: T) + A(D, 7)
> (xt,g,p)\(E(ctfzfp)t, T) — Ty_opTi—a — Ti—o—pTi—1) + 3T4—_aTi—3
= l’t,Q,p()\(E(ct727p)t, Z)— 40— xp—1) + 3x4_4—3
> xt—Q—p(A(E(Ct_Q_p)ty T) —Ty_g — Tp—1) + 3Tp—azi_1.

In both cases, A(E_oy\¢, T) > xt,g,p()\(E(CF%p)t, T) — @49 — Ty4_1) + 3Tp_4Ts_1.
On the other hand,

AEi\(t-2-p), T) = fﬂt)‘(E(thzfp)p T) + 9Tty
= xt(A(E(Ct,Q,p)t, T) = Tpog — Tp—1) + Tp—2Tp—1 + Tp—2Ty + Tp_14,

and
A(E(ct72fp)t) > T2+ Tp-1.
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Combining the above inequalities, we get that

ME -2\t T) — MEi\(t—2-p), L) = Tt—2-p(MEG_2_p)ps T) — T2 — Te—1)
+ 3Ty_gxp_1 — xt()\(Eft_Q_p)t, Z) — Ty
- It—l) — Tt—2Tp—1 — Lt—2Tt — Tt—1T¢
> (Tt—2—p — Tt) (MEG_a_pyt, T) — Te—2 — T4-1) > 0.

Therefore, (4.6) holds. This completes the proof of Theorem 4.1. |

Proof of Corollary 4.3  Since |[t — 1] \ E(G)| = 2 and G is left-compressed, then [t — 1](3) \
EG) ={t-3)t—-2)(t—1),(t—4)(t—2)(t —1)}. If t > 14, then it is guaranteed by the case
p = 2 of Theorem 4.1. If ¢ < 13, then Theorem 2.12 implies it. This completes the proof of
Corollary 4.3. O

4.2 Proofs of Theorem 4.2 and Corollary 4.4

Proof of Theorem 4.2 Let & = (x1,2,...,2:) be an optimal weighting of a left-compressed
3-graph G = ([t], F) satisfying the condition in Theorem 4.2. Then x; > a9 > -+ > z;. If
xy = 0, then A(G) < A([t — 1]®). So we assume that x; > 0.

We apply induction on p. When p = 1, then [t — 1]®) \ E D {(t — 3)(t — 2)(t — 1), (t —
DH(t—-2)(t—1),(t—4)(t—3)(t—1)}. Let i be the largest integer such that i(t — 1)t € E. Note
that 1 < ¢ <t —5 and G is left-compressed. Let G' = GJ{(t —4)(t — 3)(t — 1) }\{(¢t — 1)t}.
Then G’ is left-compressed. By Theorem 4.1, \(G',Z) < MG') < A([t — 1]®)). If we can
prove that A(G,#) < A(G',Z), then consequently, \(G) < A([t — 1]®®)). Now we show that
MG, %) < MG, Z). Note that

MG Z) = NG, %) = p—a4m4— 3741 — T4 1T = (T4_4Ty—3 — TiTy)Tp_1- (4.7)

By Remark 3.2(b),
A(Ei—1), T)

T; = Ti_4 + — 4.8
T N Eig—), 7) (48)
and
A E )\t T)
Ti_g = Tp + —— L 4.9
e ' A(E(t—3)t7x) (4.9)
Combining equations (4.7)—(4.9), we get
MG, 7) — MG, 7)
AME@—3)\t,T) ANE (1—a), T)
= m-alo A(E 3y, T) Jai—s = (Ta b AN Ej(t—4), ) Joe1mt
ME@—s)¢, T) A B (-1, T)
= o 4T — 1T 4.10
)‘(E(t—3)t7x) et )\(Ei(t—4),$) e ( )
Similar to (4.5),
ANEp (1), & 1=z — 2 )apq + (1 — 2 — 2y
2y = oy B2 ®) (U2 = 2ea)Tes (L 2 = 222
A Ej(t—2), T) 1—m; — ®—2

S Ti—o + Ti_1 + X¢. (411)
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Hence
MEit—1),T) = ME(4—3)6, %) > (1 =23 —244) — (1 = Tp—g4 — T4_3 — Ty_2 — T4_1 — Ty)
=X 3+ X o+x1+x —x; >0,
80 AN(Ej(t—4), T) > M E(4—3)s, T). Clearly, x;_4 > x4, and it is sufficient to show that
ME -3\, T) > M Ei (1-1), L) (4.12)

Let D= {jk:jkec[t—2]®, j#t-3 k#t—3and jkt ¢ E}, let F = {j(t—3)t:j €
[t —2] and j(¢t — 3)t ¢ E}. Assume that |D| =1, where [ > 1. Clearly, |F| <[+ 1.

If I < 3, then (¢t —8+1)(t— 1)t ¢ E. Otherwise, (t — 8 +1)(t — 1)t € E. Since G is
left-compressed, and [t — 8 +1] € E(;_1y, then

=B = |EN[t =10+t = 2]® 0 E| + | B¢y

Bl -1+ ( ) D] - F)+E<t_1>t|

(
() =2+ (57) o) s
_(t;1)+( 22>+t—2l—11

=)+ (%)

a contradiction. As (t —8+1)(t — 1)t ¢ E, then
AME@-3)\1, T)
> T a M E—ay(t—3) N Ef_g), @) + A(D, L) + Te—sp1Te—1 + -+ Te—5Te—1

> T a M E—ay(t—3) N Ef_g), @) + lwe—azi2 + (4 — D)Te—5241

A(
>z 4)\(E(t s ) — XpgTp3 — Tp—gTp1 + lTp_gx—o0 + (4 — Day_s5241
> T a(MEG_gyp, T) — Te—3) + 3044711
If [ > 4, then
ME(—s0i @) = 21— aMEayt—3) N Efy_p, &) + (D, T)
> (xt,4)\(E(Ct74)t,f) — L4 4Tp_3 — TpaTy—1) + X4 gTp o
> 2 a(MEG )y, ) — Te—3) + 3T4—aTs—1.
Hence A(E—s)\¢, T) > ¢ 4()\(E€t_4)t,f) — Z4—3) + 3x4_42¢—1 holds in both cases.
On the other hand,
MEi\ (t-1), T) = xt)\(E(Ct_4)t,f) + T4 3Ti_1 + Tp_2Ti_1
= 2t (MEG_1y1: @) — Te—3) + Tp—3T¢—1 + Tp—2Te—1 + T34,
and

)‘(EE:tle)tv T) > @3+ 22+ T41

Combining the above inequalities, we get that A(E_2y\¢, ¥) — A(Ej (¢—4), Z) > 0. Therefore
(4.12) holds when p = 1.
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Suppose then that p > 2 and the assertion holds for smaller values of p. Let i be the largest
integer such that i(t — 1)t € E. Note that 1 < i <¢—4 —p and G is left-compressed. Let
G'=GU{(t-3-p)(t—3)(t—1)}\{i(t — 1)t}. Then G’ is left-compressed. By the induction
assumption, we have \(G’, Z) < A(G") < A([t — 1]®)). If we can prove that (G, T) < MG, T),
then consequently, A\(G) < A([t — 1]®)). Now we show that \(G,Z) < M\(G’, ). Note that

MG, %) = NG, T) = 243 pT—3T4-1 — TiTp— 10 = (T—3—pTi—3 — TiTy)Tp—1. (4.13)

By Remark 3.2(b), ME »
i\(t=3-p): T

T; = X4_3_p + — 4.14
i A(Ei(t—?)—p)vx) ( )
and AE 0
(t—=3)\t>» L
Tpg = @ + S TINE T 415
3 ! A(E(t73)t7x) ( )
Combining equations (4.13)—(4.15), we get
MG, Z) — NG, 7)
/\(E(ts)\uf)) ( /\(Ei\(tSp)af)>
=Tt 3 pl i+ L 1y — T3+~ |11
e p( TN E—gyn D) )T T N By 7))
AE(_snp, & MEn s, &
_ (Mmt_g_p _ (W—?’“f)xt)xt_l. (4.16)
)‘(E(t—B)tvx) A(Ei(t—?)—p)vx)

Since G is left-compressed, and it,i(t — 1), (t — 2)(t — 1) and (t — 2)t ¢ E;\ (—2), hence
AMEp (-2, %) < (I = =2 2)xe1 + (1 — 25 — 24_0)x 2 and N(Ejy—g), L) = 1 — 2 — 242,
then

AME 1, T 1— 2 — 2 )1 + (1 — 2 — 20
(Ea(t—2) q) gxt,2+( T — Tp_o)o1 + (1 — 2 — 24_0)my
M Ej(t—2), T) 11—z — ®—3

< Ty + Tp—1 + T¢. (417)

Ty = Tr—2 +

Hence
M Ei(t-3-p): T) = ME(1-3)t, T)
>(l—zi—ap3-p) — (1 —T43-p — Ty — Tp—3 — Ty—9 — Ty—1 — T¢)
>xp 4+ T3+ T ot Ti 1+ —2; >0
and A(Ej(t—3—p), Z) > M E—g), L). Clearly x;_3_, > . In view of (4.16), to show A\ (G, Z) <
MG, ©), it is sufficient to show that
/\(E(t—3)\t7 ) > )\(Ez‘\(t—:s—p); z). (4.18)

Let I = {jk:jkect—2]® j#t-3 k#t—3and jkt ¢ E},let J = {j(t—3):j€[t—2]
and j(t — 3)t ¢ E}. Assume that |I| =1, then [ > p. Clearly, |J| <1+ 1.

If I <3, then p < 3. We claim that (t—7—p+I)(t—1)t ¢ E. Otherwise, (t—7—p+1)(t—1)t €
E. Since G is left-compressed, and [t — 7 —p 4 1] C E(;_1);, then

m = |E| = |EN[t = 1P| +|[t = 2] 0 Ey| + Byl

() ()2 e
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= (t;1> + (t;2> +t—2p—20—9
> (t_1> + (t_2> +1,
3 2
contradiction. As (t —7—p+1)(t — 1)t ¢ E, then
ME(t—3)\t> %) = Te—a N E(t—a)(t-3) N E{_gy, T)
+ (ML, %) + 27 ppaT—1 + A+ T4 pTy 1)
> T a(MEG_ayp &) — Tt—aTi—3 — T—aTy—1)
+ (lp—gwi—o+ (4 = Dapg_pri_1)
> xt,4)\(E(ct74)t, ) — Xp_g@p 3 — Tp_gTp 1 + 4T 424 1
> xt,4()\(E(Ct74)t, ) — x4—3) + 3T4_gws_1.
If | > 4, then
ME (-0 @) = - aMEg-ay1—3) N Efy_ gy &) + ML &)
> Tt aNEf_gy, T) — Tp—aZp—3 — Tp—aTy1 + 44Ty o
> Tt a(MEG_ayp, T) — T—3) + 3T4—a2s—1.
Hence A(E(i—3)\t, ) 2 @i—a(A(Ef,_ 4, &) — Te—3) + 3—a24—1 holds in both cases.
On the other hand,
AMEi\ (t—1): T) = B ANEG_gy4, T) + Te—3T4—1 + Te—2T4-1
= xt()\(E(ct%)t, T) — xp—3) + Tp—3Ti—1 + Tp—2Ti—1 + Tr_3Ty,
and
MEG gyt = Tt—3 + T2 + Tp—1.
Combining the above inequalities, we get that A(E;_s)\¢, Z) — AM(Ej\ (t—4), T) > 0. Therefore,
(4.18) holds in this case. This completes the proof. O

Proof of Corollary 4.4  Since |[t —1]®) \ E(G)| = 3 and G is left-compressed, then [t — 1)) \
B(G) = {(t = 3)(t = 2)(t — 1), (t— 4)(¢ = 2)(t — 1), (t = 5)(t — 2)(t — 1)} or [t — 1]® \ B(G) =
{t-=3)t—-2)¢t—-1),t—-4)(t—-2)t—-1),(t—4)(t—3)(t—1)}. The first case follows from
Theorem 4.1. The second case follows from Theorem 4.2 by taking p = 1. This completes the
proof of Corollary 4.4. O

4.3 Proof of Corollary 4.5

Proof There are 3 possible cases for [t — 1]\ E.

Case 1 [t—1]ON\E = {(t=3)t—2)(t—1),(t—4)(t—2)(t—1),(t—5)t—2)(t—1),(t—
6)(—2)(t—1)k

Case 2 [t—1]ON\E = {(t=3)(t—2)(t —1),(t —4)(t —2)(t — 1), (t = 5)(t — 2)(t — 1), (t —
4Ht=3)t -1}

Case 3 [t—1|CN\E ={(t-3)t—-2)(t—1),(t—4)(t—-2)t—1),t—4)(t-3)(t—-1),(—
4)(t—-3)(t—2)}.
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Cases 1 and 2 follow from Theorems 4.1 and 4.2 respectively. So what remains is to consider
Case 3.

Let & = (x1,22,...,2+) be an optimal weighting of a left-compressed 3-graph G = ([t], E)
satisfying the conditions in Corollary 4.5. Then zy > a9 > -+ > ;. If x; = 0, then A\(G) <
A([t—1]®). So we assume that x; > 0. Let i be the largest integer such that i(t — 1)t € E. Let
G'=GU{(t—4)(t—3)(t—2)\{i(t — 1)t}. By Theorem 4.2, \(G’,Z) < \(G") < A([t — 1]®).
If we can prove that \(G,#) < A\(G’, %), then consequently, \(G) < \([t — 1]©®)). Now we show
that AM(G, Z) < A(G', Z). Note that

/] - —
MG ZT) = MG, %) = T4y 3T4_0 — T4Ty 104 > Ty 4Ty 3T 2 — TiTy_ oLy

= (Tp_ai—3 — T;X4)Ty—2. (4.19)

By Remark 3.2(b), AE 3
i\(t—4)> T

P = Ty 4.20
1'7, l‘t 4 + )\(E,L(t74)7f) ) ( )
and ME 0
(t—3)\t» L
Tp_3 =T+ ————. 4.21
e ! A(E(t—3)t7x) ( )
Combining equations (4.19)—(4.21), we get
NG, 7) — MG, T)
ME@—s)\¢, T) ME (t—a), T)
= T4 <$t + W T2 — | Ty—g + W TyoT¢
ANEq_s, T MEn ), 7
_ (M s M@x”. (4.22)
A(E(t—3)t7x) )\(Ei(t—zl),ilf)

Since G is left-compressed, and it,i(t — 1),(t — 2)(t — 1) and (t — 2)t ¢ Ej (s—2), hence
ME (t-2), %) < (I=zi—2po)xs 1 +(1—2—22)ri+as g3 and A(Ej—9), T) = 1—2;—24 2,
then
A(Ei(1-2), T)

M Ei(i—2), %)
(1= = 9)wp 1+ (1 — i — T4 2) T4 + T4 443
11—z — @3

T; = T2+

<z o+
S T3+ Tp—2 + Te—1 + 2 (4.23)
Hence
A(Ei(tfél)af) - )\(E(tfza)mf) > (1 — Ty — $t74) - (1 — T4 — Tt-3 — Tt—2 — Tg—1 — $t)
=Tt-3+ Tp—2 +Tp—1 + Tt — X4
>0

and A(Ej(;—4), %) > MEu_3),T). Clearly 244 > x;. In view of (4.22), it is sufficient to show
that
ME@—sn\e: T) > ME\(1—4), T)- (4.24)

Let D= {jk:jket—2? j#t-3k#t—3and jkt ¢ E},let F = {j(t—3):j €
[t —2] and j(t — 3)t ¢ E}. Assume that |D| =1, where [ > 1. Clearly, |F| <[+ 1.
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If | <3, then (t — 10+ 1)(t — 1)t ¢ E. Otherwise (t — 10+ )(t — 1)t € E. Since G is
left-compressed, and [t — 10 + 1] € E(;_1y, then

m=E|=|En[t-1® |+ [t -2]?nE|+ | Et—1)t]

t—1 t—2
> (( )—4) + (( )—21—1) +(t—10+1)
3 2
t—1 t—2
= t—1—15
(5)+(%7)
S t—1 n t—2 L1
- 3 2 )
contradiction. As (¢t —10+1)(t — 1)t ¢ E, then
ME(—3)\t>T)
> T a M E—ay(1-3) N Ef_gy @) + (M(D, &) + Te—1041@¢—1 + -+ + Te—52¢-1)
> ($t74)\(E(Ct,4)tyf) — X4 ATy 3 — Ty 4Ty — T4 aTy_1)
Hay_gxi o+ (6 — D521
> It—4()\(E(Ct_4)t, T) — T3 — Ty—2) + Tp—aTy—o + 4424 1.
If I > 4, as G is left-compressed, then (t — 6)(t — 2)t € E(G°), (t —6)(t — 1)t € E(G°) and
(t—5)(t — 1)t € E(G), and hence,
ME(t—3)\t+ %) = Tt—a M E(t—ay(t—3) N E{_ay4: T) +1T—ami2 + 2245741
> T4 aA(E( gy, &) — Be—ai—3 — Ty—aTp—2 — Te—aTy—1
+4T 4Ty 2 + 2T 5741
> $t74(>\(E&,4)t7 T) — a3 — Tp—2) + Ty_a®y_o + 4T4_434_1.
Hence A(E;—s)\¢, T) > xt_4()\(E(Ct_4)t, Z) —x4_3 — Tp—2) + T4_axy—o + 4x4 41 holds in both
cases.
On the other hand,
A(Ei\ (t-1), T) = It)\(E(Ct_4)t, T) + Ty 309+ Ty_3T_1 + Ty_2Ty 1
= 2t (MEG_1y4 T) — Te—3 — Ty—2) + Te—3T—2 + Te—3T4—1
+2Ty 9Ty 1 + T4_3T¢ + Ty_oTy
< xt()‘(E(ct74)ta T) — T3 — Ty—2) + Tp—aTp—o +4xp_ax4 1,
and
A(E(Ct_4)ta X)) > a3+ Ti_o+ Tp_1.
Combining the above inequalities, we get that A(E;_s)\¢, Z) — A(E4\ (t—4), ) > 0. Therefore,
(4.24) holds in this case. This completes the proof of Theorem 4.5. ]

5 Proof of Theorem 2.14

Proof of Theorem 2.14 ~ We adopt mathematical induction on p. When p = 1, A\(G) <
A([t = 1]®) by Theorem 2.13. Assume that the result holds when |[t — 1|3\ E(G)| < p— 1, we
will show that it holds when |[t — 1]\ E| = p.
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Let m and t be positive integers satisfying m = (tgl) + (tf) and t > 17p/2+ 11. Let G =
(V, E) be a left-compressed 3-graph with m edges on the vertex set [t] and |[t — 1|3\ E(G)| = p.

Let & = (z1,22,...,2¢) be an optimal weighting of left-compressed 3-graph G = ([t], E).
Then x1 > x93 > -+ > xy. If 2, = 0, then A(G) < A([t — 1]®) and the conclusion is true. So we
assume that xz; > 0.

Let (t—7)(t—k)(t—1) be the triple in G¢ with the minimum colex ordering, where j > k > I.
Let i be the largest integer such that i(t—1)t € G. Let G’ = GU{(t—7)(t—k)(t—1) \{i(t—1)¢t}.
If we can prove that A(G,#) < A(G',Z), then |[t — 1]®\E(G")| < p — 1 and by the induction
assumption, we have that A\(G',Z) < A([t — 1]®)). Consequently, \(G) < ([t — 1]®)). Now we

show that A\(G, %) < A\(G',Z). By Remark 3.2(b), z; = --- = x;. Note that
/\(G/, f) - )\(G,f) = Tp—jTt—kTt—] — LiTt—1Tt = Tp—jTt—kTr—] — L1Lt—1L¢
> Ty Ty Ty — T1Ty—1 Ty (5.1)

If k+1 =3, then 17p/2 + 11 > 3p + 8. By Theorem 4.1, we have \(G) < ([t — 1]®)).
So we assume that k 4+ [ > 4, noting that k > 3.

Claim1l p>2j+k+101-09.

Proof 1If the first triple in colex ordering in G¢ is {(t — j)(t — 3)(t — 1)}, or the first two triples
in colex ordering in G are {(t —5)(t — 3)(t — 1), (t — 5)(t — 4)(t — 1)}, or the first two triples
in colex ordering in G° are {(t —4)(t — 3)(t — 1), (t —4)(t — 3)(t — 2)}, then p is equal to the
number of edges in E€t72)(t71) adding the number of j + k + 1 — 7 edges of E¢ — E(CFQ)(

t—1)
andp=75—-3+1+j+k+1—-7=2j+k+1—9. Otherwise, p is not less than the number of
edges in E(Ct—2)(t—1) adding the number of at least j + k + [ — 6 edges of E¢ — E(Ct—2)(t—1)7 and
p>j—3+1+j+k+1—-6=2j4+k+1—8. So the conclusion holds. O

Let us continue the proof of Theorem 2.14.
By Remark 3.2(b), we have

A B (t—j), T)

T =Ti—; + —=, 5.2
T T N By, 7) (5:2)
and AE 5
(t—k)\ts T
Tp_fp = Xp + ———————. 5.3
e ! A(E(t—k)tax) ( )
Combining equations (5.1)-(5.3), we get
MG, T) — MG, T)
AME(t—py\t, T) AE (t—5), T)
> s RN 2 e — (g + SO )
= ](xt+ ME(—kyt, T) S A(E1(t—jy, T) S
ME (g, & AMEp (i, &
= 7( (t k)\t x) 7( 1\(t ]) x)xt,1$t. (54)

Ty Tp—1 — =

/\(E(t—k)t,fl?) et /\(El(t—j)afl?)
Sincep > j—2,t > 17Tp/2+11, j > 4, then 14+p < t—15p/2—10 < t—155/24+5 < t—j, that

isl+p <t—j—1<t—Fk—1,hencepri_; < zo+ - +214p < Tot+  +Tt_p—1+Tp—py1+ - +T¢.
By Remark 3.2(b),

AEN (t—k), T)

T = Tk + —
' ME1(t—k), T)
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(T2 4+ T k1 + Tppp1 o+ Ty2) T+ PT T
To+ -+ Tppg—1 + Tp—py1 + -+ Tt
< T p+Tig+ T < 3T < 3Tp_p—1- (5.5)

<xpg+

Hence

ABE1(t—j), T) = ME(—pye, T) = T + g1+ + Ty + 21+ T2
_(1'1 4.+ xt—j—l)

=T+ T +"'+.’I]t7j+1 — x> 07 (56)
SO )\(El(t,]),f) > )\(E(t,k)t,f).
By (5.1) and (5.5), we have
)\(G/, f) - )\(G7 f) Z Tt—jTt—kTt—1 — S.It_kIt_lIt. (57)

If ¢, ; > 3z, then A(G', Z) — A(G, Z) > 0, so the conclusion holds. Now let us assume that
2y—j < 3z¢. Then

Tt S xt,j < 31',5. (58)
In view of (5.4) and (5.6), to show that A\(G, %) < A\(G', ), it is sufficient to show that
)‘(E(tfk)\tu ) > A(El\(tfj)u ). (5.9)

Denote Vo = [t]\{1,¢,t — k,t —j}. In order to show (5.9), we estimate the terms z,z, (with
positive or negative sign) contributing to A(E;—p)\¢ Z) — AM(E1\(1—j), Z) by dividing into three
cases: ¢s € VO(Q), gs € {1,t,t —k,t —j} x Vo, or gs € {1,t,t — k,t — 5} 3.

Claim 2 If 1 < 51,92 < 82, q151 € Ep—p)\e N VO(Z), G252 € Ep\—j) N VO(Q), then 3xq, x5, >
Ty Ty, 3Lqy T, = Ty—kTi—q, a0d Tg, T, > Tp—p Ty

Proof Since g1s1(t —k) € E, (t—j)(t—k)(t—1) ¢ E, and ¢; < s1, then ¢t <t —k —1. So
T Ty > Ty iy and 3z, Ts, > 3T 1Ty > Ty 1X4—p by (5.8).

Next we show that either ¢; < g2 or s1 < so. Otherwise, assume that ¢; > ¢o, and s1 > ss.
Since q151 € E_p)\s ﬂVO(Q), and G is left-compressed, then ¢1s1(t—k) € E. Since t—j < t—k,
then ¢a282(t — j) € E, which is a contradiction. Hence either ¢; < g2 or $1 < s2. If both ¢; < ¢2
and s; < sy holds, then x4, xs, > x4,%s,. Therefore, what remains is to consider the case
q1 < g2 and s; > s9, and the case ¢1 > ¢2 and s; < so.

Casel ¢ <gqq2,and s1 > so.

Since gas2 € Ep\(1—jy, (t —J)(t —k)(t —1) ¢ E, and g2 < 89, s0 by (5.8) s >t — k, and
xy > x4—1/3. Therefore, we have that xq, s, > Tg, @ > T, Tt > T, Tp—/3 > Tg,s,/3. That
18 3xg, Ty, 2 TgyTs,y.

Case 2 ¢ > q2, and s1 < $o.

Recall that ¢1 <t —k —1, and 21 < 3z4_k_1 by (5.5). Therefore, we have that =, z,, >
Ty Ty = Tp—g—1Tsy > T1Tsy /3 > Tg,Ts, /3. That is, 3xg, zs, > Tg,Ts,-

We have shown that 3xq, s, > 2, %s,, 3Tq, Ts; > Ti—pTi—y, and Tq,Ts, > X412, Which
complete the proof. O
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To continue the proof of Theorem 2.14, we estimate the terms x4, (with positive or negative
sign) contributing to A(E—p)\¢ Z) — M Ep\(1—j), Z) by dividing into three cases: g¢s € VO(Q),
qs € {1, t,t —k,t —j} x Vo, or gs € {1,t,t —k,t —j}(2).

Step 1 Let gs € VO(Q). The terms z42, in this type contribute to
ME—r\t, T) = AEN (1—j), T)
is Z Ty Loy — Z LgyTsy- (5.10)
QISIEE(t—k)\th()@) Q2S2EE1\(t—j)nV()(2)

So we need to estimate the number of terms in Ey\_j) N VO(Z) and Eg_py\¢ N VO(Q).
Claim 3 (Vo(z) N E(t—k)\t) N (VO(2) N El\(t—j)) = 0.
Proof 1f gs € VO(Q) N E—py\t, then ¢gs(t — k) € E, and ¢s(t — j) € E, s0 gs ¢ %(2) N B (t—j)-
Similarly, if ¢s € VO(2) N B\ (t—j), then gs(t —j) ¢ E, and ¢s(t —k) ¢ E, s0 g5 ¢ VO(Z) N E(—k\¢-
Hence (V{® N By i) N (VP N B jy) = 0. 0
Claim 4 |Ey ;N V7| <p.
Proof Since |[t —1]®) \ E| = p, then the number of pairs ¢s € V0(2) such that ¢s(t —j) ¢ E are
less than or equal to p. O

Claim 5 |Eq gy N V| > (2t — 5p — 4)/3.
Proof Note that (t —k)s,ts ¢ E_py\. Since 1st € E, then 1s ¢ E;_j)\,. Hence

B ini NV | = B ppal = [{(t = 5)s = (t = §)s € B_ipe}- (5.11)

If (t — j)s € Eq—_g)\+, note that s # t — k,t,t — 1, so (t — j)st € E°, (t — k)st € £, and
(t —1)st € E°. Hence 3|{(t —j)s: (t — j)s € Eq_py\+}| < |Ef| =t — 2 — p. Therefore,

t—2—0p
[ Et—ry\e N V2| > | Et—ry\e| — B
o\ e t—2—p
= [EA\E_i| — —s
t—2— 2t — 4 —
>t-2-2p- T P _ - o (5.12)

Step 2 Let g € {1,t,t — k,t — j}, and s € V. We estimate the terms z,z, in this type
contributing to AM(Eq_g)\¢, T) — M Er\ (1—j), T)-

Since 1st € F and 1s(t —j) € E, then 1s ¢ E_py\¢, and 1s ¢ E1\(;—j). So we only consider
the cases that ¢ € {t,t —k,t —j}, and s € [t]\{¢t,t — k,t — j}. Then the terms z,x, in this type
contribute to

AME(—rnt> ) — ME1 (1—j), T)
is 21 M E(—j)(t—k) VEG_jy T) = 2 MEG_ ) ©) — 2ok MEG_jy - p)> L)
> ftfj(A(E(ct,j)t,f) —Tp—1 — " — Tp— — xtfk)
—TMEG_jyer &) — Tk (Te—1 + -+ @)
> xt—j(A(Egt_j)tva_f) —Tyoq — o — Ty — Tp—k)
_xt()‘(E(thj)wf) —Tp1 = = Tpog — Ty k)

—xp(@por o F T F B—g) — T+ Tg)
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> —xy(xi1+ k) — Te—p(Tem1 -+ X—g)
> —(l + I)It_kIt - Z.It_kl't_l. (513)

Step 3 Let gs € {1,¢t,t — k,t — j}(2). Estimate the terms z,2, in this type contributing to
ME@—rn\t: ) = AME1\(1—j), T)-
Since the situation is similar to Step 2 when ¢ = 1 or s = 1, then we only need to consider

the case that gs € {t,t — k,t — j}(z). So the terms ¢s in this type contribute to
A(E(t—k)\t, f) — )‘(El\(t—j)a f) is R T (514)
By (5.10), (5.13) and (5.14), we get

ME i\t T) — AE1\ (1—j), L)
= E : LTgTsy — E : LgyLsy
(2) ) (2)
qG151€EE¢ 1)\ :NVy q252€E1\ (1—5NVy

—(l + 1)$t_k;$t — ll‘t_k.’Et_l — Lt Tt. (515)

By Claims 2-5, to show that A(Eq_gy\¢, T) > AM(E1\(t—j), L), it is sufficient to have (2t —4 —
5p)/3 > 3(p+1)+(I+1)+1, that is ¢t > Tp+61+5. Since p > 2j+k+1—9 > 2(14+2)+I+1+1-9 =
4l — 4, then I <p/d+1and 7p+6l+5<17p/2+11. So t > 17p/2 + 11, which is guaranteed
by the condition of this theorem. This completes the proof. d
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