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Abstract In this paper, the problem of construction of exponentially many minimum genus embed-

dings of complete graphs in surfaces are studied. There are three approaches to solve this problem. The

first approach is to construct exponentially many graphs by the theory of graceful labeling of paths; the

second approach is to find a current assignment of the current graph by the theory of current graph;

the third approach is to find exponentially many embedding (or rotation) schemes of complete graph

by finding exponentially many distinct maximum genus embeddings of the current graph. According to

this three approaches, we can construct exponentially many minimum genus embeddings of complete

graph K12s+8 in orientable surfaces, which show that there are at least 10
3
× ( 200

9
)s distinct minimum

genus embeddings for K12s+8 in orientable surfaces. We have also proved that K12s+8 has at least
10
3
× ( 200

9
)s distinct minimum genus embeddings in non-orientable surfaces.
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1 Introduction

For the former, there are many results on the maximum genus orientable embeddings, for
instance, papers such as Xuong [16], Liu [10–12] and Skoviera [15] studied this problem. Graph
embedding theory has been widely used in very large scale integrated circuit, see [12]. In the
history, finding a genus embedding for a complete graph was a long and difficult way, as surveyed
in Ringel’s monograph [14], which completed the proof of the well known Heawood Conjecture
and gave the birth of modern topological graph. Since then Lawrencenko [8] showed that K7 has
exactly one genus embedding in orientable surfaces; Lawrencenko et al. [9] obtained that K19

has at least three genus embeddings in orientable surfaces; Bonnington et al. [2] proved that, for
s ≥ 2, K12s+7 has at least two genus embeddings in orientable surfaces; Goddyn et al. [4] showed
that, for s ≥ 2, K12s+7 has at least 11s genus embeddings in orientable surfaces; Bonnington
et al. [3] proved that, for n ≡ 7, 19 (mod 36) and n ≡ 19, 55 (mod 108), Kn has, respectively,
2

n2
54 −O(n) and 2

2n2
81 −O(n) genus embeddings in orientable surfaces; Korzhik and Voss [6] obtained
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that both K12s+4 and K12s+7 has at least 4s genus embeddings in orientable surfaces; Korzhik
and Voss [7] showed that, for any i ∈ {1, 2, 3, . . . , 11}−{3, 4, 7}, K12+i (for s ≥ d(i) ∈ 1, 2, 3, 4),
has at least h(i)4s distinct genus embeddings in orientable surfaces, h(i) ∈ {1, 1

2 , 1
4 , 1

8}; Ren
and Bai [13] proved that the complete graph Kn with order n ≡ 4, 7, 10 (mod 12) has at least
C2

n
4 distinct genus embeddings in orientable surfaces, where C = 1, 2

−3
4 or 2−

3
2 with respect

to n ≡ 4, 7, 10 (mod 12), respectively.

In this paper, we will show that the complete graph K12s+8 has at least 2s+4×( 5
3 )2s+1×22s−3

distinct minimum genus embeddings in orientable surfaces, we will also show that the complete
graph K12s+8 has at least 2s+5 × ( 5

3 )2s+1 × 22s−4 distinct minimum genus embeddings in non-
orientable surfaces. But Korzhik and Voss [7] have only showed that K12s+8 has at least 22s−3

orientable genus embeddings. Korzhik and Voss [5] have only showed that K12s+8 has at least
22s−4 nonorientable genus embeddings.

2 Construction of Current Graph

Let G = (V, E) be a connected graph with |V (G)| vertices and |E(G)| edges. If there exists
f : V (G) → {1, 2, . . . , |E(G)|+1} being an injective mapping, then we define an induced function
f ′ : E(G) → {1, 2, . . . , |E(G)|} by setting f ′(e) = |f(u) − f(v)| for all e = (u, v) ∈ E(G). If
f ′ maps E(G) onto {1, 2, . . . , |E(G)|}, then f is said to be a graceful labeling of G, where the
graph G is said to be a graceful graph.

See Figure 1, let P be a path on 2s + 1 vertices and let f be a graceful labeling of P , so
that f is a bijection from the vertex set of P onto the set of labels {1, 2, . . . , 2s, 2s + 1}, v is
one vertex of P with valence one. In the next steps, we add two new vertices b and t together
with the edge bt and the 4s + 2 edges of the form bu and ut where u ranges over all vertices
of P . According to those steps, a new graph F is obtained, where F triangulates the plane;
and F is embedded so that b and t are the “bottom” and “top” vertices while P shows up as
a “horizontal” path. Now, we transform f to a function f ′ on the vertex set of F defined by
f ′(b) = 1, f ′(t) = 6s+4, and f ′(u) = 3f(u) for each vertex u of P . Observe that f ′ is a graceful
labeling of the graph F , since the induced edge-labels on the 2s edges of P and on the edge bt,
on the 2s + 1 edges bu, and on the 2s + 1 edges ut, coincide with the sets of integers between
1 and 6s + 3 which are congruent to 0, 2, and 1, respectively. We direct each edge-labels of F

from the vertex carrying the smaller value of f ′ to the vertex with the larger value.

P

t

b

v

Figure 1 The graph F

In Figure 1, we identify the three vertices t, v and b of the graph F , a new graph G can
be obtained, see Figure 2. For any edge e, e ∈ E(F ) and its corresponding edge e ∈ E(G),
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f ′(e(F )) = f ′(e(G)), i.e., the edge-label f ′(e) on the edge e of F and the edge-label f ′(e) on the
edge e of G is the same, the direction of the edge-label on the edge e of F and the edge-label
on the edge e of G is also the same.

Let G∗ be the dual graph to the (plane) graph G, shown in Figure 2 in dashed lines. We
now transform the edge-labels of the labeling f ′ of G into a current assignment f∗ on G∗ as
follows. Firstly, we fix a clockwise orientation of every face of plane embedding of G; then, we
direct every edge e∗ of G∗ towards the face whose orientation on the face boundary agrees with
the orientation of e. Finally, for any directed edge e of G, the current f∗(e∗) on the directed
edge e∗ of G∗ dual to e is defined to be equal to f ′(e).

From the construction of the labels of the graph F , we know that, if f ′(v) is odd number,
the current of the left top horizontal edge incident with the valence one of G∗ is odd number, the
current of the left bottom horizontal edge incident with the valence one of G∗ is even number;
if f ′(v) is even number, the current of the left top horizontal edge incident with the valence one
of G∗ is even number, the current of the left bottom horizontal edge incident with the valence
one of G∗ is odd number, and the current of right edge incident with vertex of valence one of
G∗ is 6s + 3.

P

(t, v, b)

G

G∗

Figure 2 The graph G and its dual G∗

We consider any triangle v1v2v3 in the plane embedding of F (see Figure 1). The way the
labeling f ′ was introduced implies that we may always choose the notation for three vertices
such that the boundary of the triangle consists of the directed path v1v2v3 and the directed edges
v1v3. Moreover, with this notation we have f ′(v1v2) + f ′(v2v3) = f ′(v1v3) for any triangular
face of F . Therefore, at each vertex of valence three of G∗, we have either two incoming dual
directed edges and one outgoing dual directed edge, or one incoming dual directed edge and
two outgoing dual directed edges. In the first case, the sum of the currents on the incoming
dual edges is equal to the current on the outgoing dual edge; the situation in the second case is
analogous. Therefore, the current assignment f∗ satisfies the Kirchhoff’s Current Law at each
vertex of valence three of G∗.
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3 Rotation System

A spanning tree T in a graph G is called optimal if the number of odd components, denoted by
ω(T ), of G− T is smallest among all spanning trees of G. It is well known that ω(T ) is related
to graph embeddings, especially in the maximum orientable embeddings of graphs.

Theorem 3.1 ([11, 16]) The maximum genus of a graph G in orientable surfaces is

γM (G) =
β(G) − ω(T )

2
,

where β(G) is the Betti-number of G and ω(T ) is the number of odd components in an optimal
tree T in G.

Theorem 3.2 ([12, 16]) Let T be an optimal tree in a graph G with ω(T ) odd components in
G − T . Then edges of E(G)− E(T ) may be partitioned as follows

E(G) − E(T ) =
s⋃

i=1

{e2i−1, e2i} ∪ {f1, f2, . . . , fm},

where for each i : 1 ≤ i ≤ s, e2i−1 ∩ e2i 	= φ and {f1, f2, . . . , fm} is a matching of G and
s = γM (G), m = ω(T ).

Fact Let H be a connected graph embedded in some orientable surfaces Sh with a single
region whose boundary is W . Then for every vertex x ∈ V (H), dH(x) = k ⇔ W visits x exactly
k times (i.e., there are exactly dH(x) copies of x on W ).

Theorem 3.3 If G is a loopless 3-regular graph with n vertices. Then G has at least 2
n−γ

M
(G)

distinct orientable maximum genus embeddings, where γ
M

(G) is the orientable maximum genus
of G.

Proof Let T be an optimal tree of G. By Theorem 3.2, E(G) − E(T ) may be partitioned as
follows

E(G) − E(T ) =
s⋃

i=1

{e2i−1, e2i} ∪ {f1, f2, . . . , fm},

where for each i : 1 ≤ i ≤ s, e2i−1 ∩ e2i 	= φ and {f1, f2, . . . , fm} is a matching of G and
s = γM (G), m = ω(T ). Let ei = (xi, yi)(1 ≤ i ≤ 2s) and x2j−1 = x2j ∈ e2j−1 ∩ e2j(1 ≤ j ≤ s).

Let v1, v2, . . . , vn be vertices of T , v1, v2, . . . , vα be its inner vertices. Any rotation scheme
determines a planar embedding of T with a single region (face) whose boundary is W0. For
every inner vertex vi, if dT (vi) = 2, then there are two ways for an edge in E(G) − E(T )
to be incident to vi (dT (vi) = 2, the vertex vi of T has two corner, G is loopless 3-regular
graph, dG(vi) = 3, an edge in E(G) − E(T ) to be incident to vi in one corner); If dT (vi) = 3,
vi will also contributes two ways in the rotation scheme of T (G is loopless 3-regular graph,
dT (vi) = dG(vi) = 3). Each case vi will contribute two ways in constructing of maximum
genus embeddings of G. Hence all the inner vertices in T give at least 2α ways to construct an
maximum genus embeddings of G.

Consider the vertex x1 ∈ e1 ∩ e2 and fix it at a copy of x1 on W0. Then choose a copy of
y1 and y2, respectively, on W0 (note that there are, respectively, dG0(x1), dG0(y1) and dG0(y2)
ways of doing so), where G0 = T . Then we find a new facial walk W1 (containing W0 and the
edges e1, e2). We choose the labeling of y1 and y2 so that, in W0, the selected copies of vertices
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W0 W0 + {e1, e2}

Figure 3 Adding a pair of “V” type of edges into a single face

will result in another one-face graph in higher surface

x1, y1 and y2 occur in the order x1, y1, y2. Between the two consecutive edges at the current
rotation at x1, W0 goes e, x1, e′. We extend the rotation W0 at x1 from . . . , e, e′, . . . to
. . . , e, x1y1, x1y2, e

′, . . .. Likewise we insert the edge x1y1 between the consecutive (at that copy
of y1) edges and the same for x1y2 at y2 (as shown in Figure 3, e1 = x1y1, e2 = x1y2). Now we
obtain G1 = G0+{e1, e2} to have its maximum genus embeddings on S1, the torus, with a single
region (face) bounded by edges of W1. It is clear that there are at least dG0(x1)dG0(y1)dG0(y2)
ways to construct the facial walk W1 by the Fact.

Repeat the above procedure for i = 1, 2, . . . , s, we can add all {e2i−1, e2i}. we can also
add each fi ∈ {f1, f2, . . . , fm} into the inner region of Ws, a facial walk of Gs into Ss, each
fi = (x2s+i, y2s+i) has exactly dGs

(x2s+i)dGs
(y2s+i) ways to be putted into Ws (E(G)−E(T ) =

∪s
i=1{e2i−1, e2i} ∪ {f1, f2, . . . , fm}, i : 1 ≤ i ≤ s, e2i−1 ∩ e2i 	= φ, {f1, f2, . . . , fm} is a matching

of G and s = γM (G), m = ω(T ). We can add each fi, but it does not yield a single face
embedding of Gs.

Here G is a loopless 3-regular graph of order n, apart from the vertices x2i−1 = x2i (i =
1, 2, . . . , γ

M
(G)), the remaining n − γ

M
(G) vertices v each contributes a term (dG(v) − 1)! = 2

to the orientable maximum genus of G. Therefore, G has at least 2n−γM (G) distinct orientable
maximum genus embeddings, γM (G) is the orientable maximum genus of G.

This completes the proof of Theorem 3.3. �

4 Two Extremal Embeddings

From [14], we know, for each σ ∈ Π (Π is a set of rotation systems), the pair (f∗, σ) determines
a cyclic embedding of K12s+8. Here, we first find the set Π of rotation systems of K12s+8.
Rule Δ∗ [14] If in line i has: · · · jk · · · , then in line k must have: · · · ij · · · .
Additive Rule [14] 〈i〉 = 〈0〉+ i; ∗+ i = ∗, ∗ = x, y, z, . . . , 1 ≤ i ≤ n, the number row 〈i〉 is
obtained; the letter row (〈x〉, 〈y〉, 〈z〉, . . .) can be obtained from number rows by Rule Δ∗.

Theorem 4.1 ([1]) Let Pn be a path of order n, the number of graceful labeling of path Pn is
larger than (5/3)n for sufficiently large n.

Theorem 4.2 ([12]) Let β(G) be the Betti-number of G. If β(G) = 0 (mod 2), then G can
be embedded in an orientable surface with one face.

Theorem 4.3 The current graph G∗ (See Figure 2, also see Figure 4) has at least 23s+1

distinct orientable maximum genus embeddings.

Proof Here G∗ has 4s + 4 vertices and 6s + 3 edges, β(G∗) = 0 (mod 2), by Theorem 4.2, G∗
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can be embedded in an orientable surface with one face.

See Figure 5, G∗ has an optimal tree T (G∗). Similar to the proof of Theorem 3.3, G∗ has
at least 23s+1 distinct orientable maximum genus embeddings.

This completes the proof of Theorem 4.3. �

6s + 3

Z12s+6

x

y

Figure 4 The current graph G∗

x

y

Figure 5 T (G∗)

Theorem 4.4 To each graceful labeling f of a path on 2s+1 vertices, s ≥ 2, there corresponds
a collection Cf of 23s+1 distinct oriented genus embeddings of a complete graph on 12s + 8
vertices. Moreover, if f and g are distinct graceful labeling of a path on 2s + 1 vertices, then
no genus embedding in Cf is isomorphic to a genus embedding in Cg.

Proof In Section 2, to each graceful labeling f of a path on 2s + 1 vertices, s ≥ 2, there
corresponds a graph G∗ (see Figure 2), β(G∗) = 0 (mod 2). By Theorem 4.2, G∗ can be
embedded in an oriented surface with one face. G∗ has an optimal tree T (G∗) (see Figure 5).
G∗ − T (G∗) has 2s edges, and is connected. We now find an embedding of G∗ in oriented
surfaces with single face as follows. As we have done in the proof of Theorem 3.3, first, one
find a planar embedding of the optimal tree T (G∗) with a single face whose boundary is W0 ,
then, repeat adding s pairs “V”-type-edges into a single face. According to this, G∗ can be
embedded in an oriented surface with a single face, and the oriented surface with genus s.

We assume the current f∗ on G∗ is the group Z12s+6, the additive group of integers modulo
12s + 6. G∗ may be embedded in an oriented surface with a single face. As we know from [14],
for each single face embedding of G∗ has a circular rotation, the circular rotation induces exactly
one circuit, record the currents sequentially, as they occur in the circuit. We take this currents
sequentially and x, y as row 0 of a rotation scheme of K12s+8. By Additive Rule, all row i

(i = 1, 2, . . . , 12s + 5, x, y) can be obtained.

By Theorem 4.3, there exists a set Π of 23s+1 different rotation systems σ for G∗. As we
know from Subsection 7.6 of [14], for each σ ∈ Π, the pair (f∗, σ) determines a cyclic oriented
genus embedding of K12s+8.

To finish the proof of the theorem, it remains to show that for any two grace labeling f and
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g of the path P and for any two distinct rotation systems σ, τ ∈ Π, the pairs (f∗, σ) and (g∗, τ )
determine isomorphic oriented genus embeddings if and only if f∗ = g∗ and σ = τ (which also
implies that each collection Cf of 23s+1 pairwise non–isomorphic oriented embeddings).

According to Theorem 2 of [5], the case of orientable embeddings can be stated as follows:
The pairs (f∗, σ) and (g∗, τ ) determine isomorphic oriented genus embeddings of K12s+8,

if and only if the graph G∗ admits an automorphism ϕ (regard as a permutation of the arc
set A(G∗)) and the group Z12s+8 admits an automorphism α such that ϕσ(e) = τϕ(e) and
g∗ϕ(e) = αf∗(e) for every arc e ∈ A(G∗).

Because the current on the left two horizontal edges incident with the valence one of G∗

(see Figure 4), one is odd number, another is even. Therefore, the current graph G∗ has only
one automorphism which, in Figure 4, is the identity. Therefore, to each graceful labeling f

of a path on 2s + 1 vertices, s ≥ 2, there corresponds a collection Cf of 23s+1 cyclic genus
embeddings of a complete graph on 12s + 8 vertices.

This complete the proof of Theorem 4.4. �

Theorem 4.5 If s is sufficiently large, the complete graph K12s+8 has at least 10
3 × ( 200

9 )s

distinct genus embeddings in orientable surfaces.

Proof By Theorems 4.1 and 4.4, Theorem 4.5 is obtained. �
We have proved that K12s+8 has at least 10

3 ×( 200
9 )s distinct genus embeddings in orientable

surfaces. We will prove a stronger result as follows.

Theorem 4.6 If s is sufficiently large, the complete graph K12s+8 has at least 10
3 × ( 200

9 )s

distinct minimum genus embeddings in orientable surfaces.

Proof Let γ(G) be the minimal genus of G in orientable surfaces, in (4.13) of [14], γ(Kn) =
{ (n−3)(n−4)

12 } for n ≥ 3.
In Figure 4, if the current on the edge incident with the vertex x of G∗ is odd number,

the current on the edge incident with the vertex y of G∗ is even number. From Subsection 7.6
of [14], we know that the current graph (Figure 4) generates the row 0 and a scheme with
rows 0, 1, 2, . . . , 12s + 5, x, y0 and y1. Since the current on the arc incident with y is even,
which generates the even subgroup of Z12s+6, the letter y splits into y0 and y1. The graph
G12s+9 represented by this scheme is the following: The vertices 0, 1, 2, . . . , 12s + 5, x are
all mutually adjacent, y0 is adjacent to 0, 2, 4, . . . and y1 is adjacent to 1, 3, 5, . . . . There
are no other arcs in the graph G12s+9. The scheme represents a triangular embedding of
G12s+9 into an orientable surface S. The genus p of S can be determined by using the formula
α1 = 3α0 − 3E(S) = 3α0 − 6 + 6p of Theorem 4.4 of [14], α0 is the number of vertices, α1 is
the number of edges, E(S) is Euler characteristic. We obtain p = 12s2 + 9s + 1.

If we put n = 12s + 8 into the right-hand side of the formula γ(Kn) = { (n−3)(n−4)
12 }, we

get 12s2 + 9s + 2. This means we are forced to use one handle in order to manufacture the
missing adjacency between x and y0 and between y0 and y1. Then γ(Kn) = { (n−3)(n−4)

12 } will
be proven for n = 12s + 8.

If the current on the edge incident with the vertex x of G∗ is even number, the current on
the edge incident with the vertex y of G∗ is odd number. This case is analogous.

This complete the proof of Theorem 4.6. �
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Theorem 4.7 If s is sufficiently large, the complete graph K12s+8 has at least 10
3 × ( 200

9 )s

distinct minimum genus embeddings in non-orientable surfaces.

Proof Let γ∗(G) be the minimal genus of G in non-orientable surfaces, in (4.19) of [14],
γ∗(Kn) = { (n−3)(n−4)

6 } for n 	= 7 and n ≥ 3.

In Figure 4, if the current on the edge incident with the vertex x of G∗ is odd number,
the current on the edge incident with the vertex y of G∗ is even number. Consider the dual
map on S. By the proof of Theorem 4.6, we can construct a certain map M with countries
0, 1, 2, . . . , 12s+5, x, y0, y1 on a certain orientable surface S, the genus of S equal 12s2 +9s+1,
E(S) = −24s2 − 18s.

In the map M the country x must be adjacent to an even numbered country α and an odd
numbered country β with α and β adjacent to each other. Moreover, the country y0 must be
adjacent to α and y1 to β. Excise the interior of a closed 2-cell inside country α and identity
opposite points on the boundary. Do the same for β. This construction adds two cross caps to
S giving us the new surface S′. Therefore E(S′) = E(S) − 2.

Erase the boundary between y0 and y1 and call this newly created country y. The map on
S′ has n = 12s+8 countries each adjacent to all the others. S′ is non-orientable, E(S′) = 2−q,
the genus q = 24s2 + 18s + 4. Then γ∗(Kn) = { (n−3)(n−4)

6 } will be proven for n = 12s + 8.

If the current on the edge incident with the vertex x of G∗ is even number, the current on
the edge incident with the vertex y of G∗ is odd number. This case is analogous.

This complete the proof of Theorem 4.7. �
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