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Abstract Motivated by the theory of isoparametric hypersurfaces, we study submanifolds whose

tubular hypersurfaces have some constant higher order mean curvatures. Here a k-th order mean

curvature Qν
k (k ≥ 1) of a submanifold Mn is defined as the k-th power sum of the principal curvatures,

or equivalently, of the shape operator with respect to the unit normal vector ν. We show that if

all nearby tubular hypersurfaces of M have some constant higher order mean curvatures, then the

submanifold M itself has some constant higher order mean curvatures Qν
k independent of the choice of

ν. Many identities involving higher order mean curvatures and Jacobi operators on such submanifolds

are also obtained. In particular, we generalize several classical results in isoparametric theory given

by E. Cartan, K. Nomizu, H. F. Münzner, Q. M. Wang, et al. As an application, we finally get a

geometrical filtration for the focal submanifolds of isoparametric functions on a complete Riemannian

manifold.
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1 Introduction

A hypersurface Mn of a Riemannian manifold Nn+1 is called isoparametric, if Mn is locally a
regular level set of a function f , so-called isoparametric function, with the property that both
‖∇f‖2 and Δf are constant on the level sets of f . One can show that Mn is an isoparamet-
ric hypersurface of Nn+1 if and only if its nearby parallel hypersurfaces have constant mean
curvature (for recent progress and applications see for example in [9, 11, 24, 29–33]).

The theory of isoparametric hypersurfaces originated from studies on hypersurfaces of con-
stant principal curvatures in real space forms. On this topic, Cartan started a series of researches
by proving the following characterization (cf. [5–8]):
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Theorem ([5]) A hypersurface in a real space form has constant principal curvatures if and
only if its nearby parallel hypersurfaces have constant mean curvature.

Therefore, a hypersurface in a real space form has constant principal curvatures if and only
if it is isoparametric. This characterization does not hold in more general ambient spaces; see
[18, 34] and [13] where counterexamples are given in complex projective spaces and complex
hyperbolic spaces. However, under an additional assumption that it is a curvature-adapted
hypersurface, this characterization also holds in a locally rank one symmetric space as showed
in [18, Theorem 1.4]. Note that in a real space form every hypersurface is curvature-adapted and
thus this assumption is superfluous. In this paper, by applying the Riccati equation and some
algebraic geometry, we will give a generalization of this characterization for these two cases by
using “higher order mean curvature” instead of (1st order) mean curvature; see Theorems 1.1
and 1.2 later. Here higher order mean curvatures will be defined by power sum polynomials of
the principal curvatures other than elementary symmetric polynomials as usual.

Noticing that parallel hypersurfaces of a hypersurface M can be looked as half-tubular hy-
persurfaces of M , we turn to consider submanifolds whose tubular hypersurfaces have some
constant higher order mean curvatures. Recall that in the classical theory of isoparametric
hypersurfaces in unit spheres, Nomizu [28] showed that each compact isoparametric hypersur-
face is a tubular hypersurface of some (exactly two) submanifolds, namely focal submanifolds,
and by using the constancy of the mean curvature of these tubular hypersurfaces, he proved
that the focal submanifolds are minimal. Later, as a fundamental step in his remarkable work,
Münzner [25] proved that these focal submanifolds have constant principal curvatures which
implies the austerity2) and also the minimality of the focal submanifolds. Here we say that a
submanifold of higher codimension has constant principal curvatures, if the set of the eigen-
values of the shape operator Sν at any point is independent of the choices of the unit normal
vector ν and the point of the submanifold. This is different from that in [2] where the principal
curvatures are constant with respect to a (local) parallel normal vector field and thus may
depend on the choices of unit normal vectors.

When the ambient space is a general complete Riemannian manifold Nn+1 and f is a global
isoparametric function on N , Wang [35] showed that (1) there are at most two singular level
sets, namely the focal varieties of f , and they are submanifolds (both may be disconnected
and of different dimensions3)) of N ; (2) each regular level set (isoparametric hypersurface) of
f is a tubular hypersurface around either of the focal varieties; (3) (claimed without proof)
the focal varieties are minimal. Based on the structural results (1)–(2) for the focal varieties,
Wang’s claim (3) just asserts the minimality of submanifolds whose tubular hypersurfaces have
constant (1st order) mean curvature, which generalizes Nomizu’s result to arbitrary Riemannian
manifolds (see a more general result of this form for compact submanifolds in [23]). However,
Münzner’s result mentioned above does not hold in this general case, but it indeed holds for
submanifolds whose tubular hypersurfaces have constant principal curvatures (and thus each

2) A submanifold of a Riemannian manifold is called an austere submanifold in the sense of [20] if its principal

curvatures in any normal direction occur as pairs of opposite signs.

3) Henceforth, a connected component of the focal varieties of an isoparametric function f on a complete

Riemannian manifold N will be called a focal submanifold of f .
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higher order mean curvature is constant); see a proof of this assertion and Wang’s claim (3) in
[17]. In this paper, we will study submanifolds whose tubular hypersurfaces have some constant
higher order mean curvatures in a general Riemannian manifold. By some technical treatment
for the Taylor expansion formulae of higher order mean curvatures of the tubular hypersurfaces,
we will show that such submanifolds must have some higher order mean curvatures and some
curvature invariants involving the Jacobi operator of the ambient space being constant, which in
particular will generalize the results mentioned above given by [25, 28, 35] and [17]; see Theorem
1.4 later. As an application, we finally get a geometrical filtration for the focal submanifolds
of isoparametric functions on a complete Riemannian manifold according to the filtration of
isoparametric functions introduced by [18]; see Theorem 1.6 later.

To state the theorems explicitly, we have to set up some notations. First of all, as in [18], we
denote by ρk (resp. σi) the k-th power sum polynomial (resp. the i-th elementary symmetric
polynomial) in n variables for k ≥ 1 and ρ0 ≡ n (resp. 1 ≤ i ≤ n and σ0 ≡ 1). For an n by n

real symmetric matrix (or self-dual operator) A with n real eigenvalues (μ1, . . . , μn) =: μ, we
denote by ρk(A) := tr(Ak) = ρk(μ) and σi(A) = σi(μ).

Let Mm be a submanifold of a Riemannian manifold Nn+1. For any unit normal vector
ν ∈ V1M (unit normal bundle of M), denote by Sν the shape operator of Mm in direction
ν. Then for any k ≥ 1, we define the k-th order mean curvature Qν

k in direction ν by the
k-th power sum polynomial of the shape operator other than the k-th elementary symmetric
polynomial as usual, i.e.,

Qν
k := ρk(Sν) = tr((Sν)k).

When M is a hypersurface and ν is a fixed global unit normal vector field, we simply write the
k-th order mean curvature Qν

k by Qk. Recall that in [18], we introduced the following notions:
For 1 ≤ k ≤ n, a non-constant smooth function f on a Riemannian manifold Nn+1 is called
k-isoparametric, if ‖∇f‖2 and ρ1(Hf ), ρ2(Hf ), . . . , ρk(Hf ) are constant on the level sets of f , 4)

where Hf is the Hessian of f on Nn+1; a hypersurface Mn of Nn+1 is called k-isoparametric, if
Mn is locally a regular level set of a k-isoparametric function on Nn+1; an n-isoparametric func-
tion (hypersurface) on Nn+1 is also called a totally isoparametric function (hypersurface). Note
that 1-isoparametric functions (hypersurfaces) are just isoparametric functions (hypersurfaces).
It was proved there that Mn is a k-isoparametric hypersurface if and only if its nearby parallel
hypersurfaces have constant higher order mean curvatures Q1, Q2, . . . , Qk. Therefore, the sets of
1-, 2-, . . ., n-isoparametric functions (hypersurfaces) give a filtration for isoparametric functions
(hypersurfaces) on a Riemannian manifold Nn+1 with the filtered geometrical property that
1-isoparametric hypersurfaces have constant (1st order) mean curvature, 2-isoparametric hyper-
surfaces have constant 1st and 2nd order mean curvatures, and so on, finally, n-isoparametric
hypersurfaces have constant principal curvatures.

Let R be the Riemannian curvature tensor and ∇ the Levi–Civita connection of Nn+1. In
this paper, we use the curvature convention as the following: for any tangent vectors (vector

4) In [18], we assumed some smoothness of these functions as one-parameter functions of f for some regularity

reasons; also see a note given in [17]. Anyway, without confusion, we emphasize the geometrical meaning behind

the algebraic definitions.
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fields) X, Y, Z, W of Nn+1,

R(X, Y, Z) = RXY Z := (∇[X,Y ] − [∇X ,∇Y ])Z,

and then the covariant derivative ∇R is also a tensor field and can be written as:

(∇R)(X, Y, Z, W ) = (∇W R)(X, Y, Z)

:= ∇W (RXY Z) − R(∇W X)Y Z − RX(∇W Y )Z − RXY (∇W Z).

For any tangent vector ξ ∈ T N , the Jacobi operator Kξ : T N → T N of Nn+1 in direction ξ is
defined by

Kξ(X) := RξXξ for X ∈ T N. (1.1)

Note that by properties of the Riemannian curvature tensor, Kξ is a self-dual linear operator,
tr(Kξ) = Ric(ξ) is just the Ricci curvature in direction ξ, and Kξ = K−ξ, Kξ(ξ) ≡ 0. Then
without confusion, we will use the same symbol Kξ when the Jacobi operator is looked as a
self-dual operator on the subspace ξ⊥ normal to ξ in T N . Recall that a submanifold Mm

of Nn+1 is called curvature-adapted (or compatible), if the direct sum Sν ⊕ In−m of the shape
operator Sν and the identity map commutes with the Jacobi operator Kν , or equivalently, these
two self-dual operators are simultaneously diagonalizable, for any unit normal vector ν of M

(cf. [1, 19]).
Corresponding to the decomposition of the tangent bundle T N on Mm, we would like to

decompose the Jacobi operator Kν (ν ∈ V1M) into two self-dual linear operators, say tangent
Jacobi operator K�

ν : T M → T M and vertical Jacobi operator K⊥
ν : VM → VM as the

following:

K�
ν (X) := projection to T M of Kν(X) for X ∈ T M,

K⊥
ν (η) := projection to VM of Kν(η) for η ∈ VM.

Obviously, K�
ν , K⊥

ν are self-dual linear operators and K�
ν = K�

−ν , K⊥
ν = K⊥

−ν , K⊥
ν (ν) ≡ 0.

Without confusion, we denote by the same symbol K⊥
ν when the vertical Jacobi operator K⊥

ν is
restricted to the subspace ν⊥ ∩VM in VM . Then under any orthonormal frame {e1, . . . , en+1}
of T N on M with e1, . . . , em tangent to M and em+1, . . . , en, en+1 = ν normal to M , the Jacobi
operator Kν can be expressed as the following symmetric matrix

Kν =

⎛
⎜⎜⎝

K�
ν Bν 0

Bt
ν K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ , (1.2)

where K�
ν and K⊥

ν are the matrix expressions of the tangent and (restricted) vertical Jacobi
operators, Bν is an m by (n − m) matrix with the property that Bν = B−ν .

Finally, for any tangent vector (field) ξ ∈ T N , we need to introduce another self-dual linear
operator, say covariant Jacobi operator Kξ : T N → T N , from covariant derivative of the
Riemannian curvature tensor R as the following:

Kξ(X) := (∇R)(ξ, X, ξ, ξ) = (∇ξR)(ξ, X, ξ) for X ∈ T N. (1.3)

Note that when ∇ξξ = 0, Kξ = ∇ξKξ is just the covariant derivative of the Jacobi operator Kξ

in direction ξ. By properties of the Riemannian curvature tensor and its covariant derivative,
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it is easily seen that Kξ is a self-dual linear operator and K−ξ = −Kξ, Kξ(ξ) ≡ 0. In the same
way as the decomposition (1.2) of the Jacobi operator Kν (ν ∈ V1M), we also decompose the
covariant Jacobi operator Kν into two self dual operators, say covariant tangent Jacobi operator
K�

ν : T M → T M and covariant vertical Jacobi operator K⊥
ν : VM → VM , as the following:

K�
ν (X) := projection to T M of Kν(X) for X ∈ T M,

K⊥
ν (η) := projection to VM of Kν(η) for η ∈ VM.

Obviously, K�
ν , K⊥

ν are self-dual linear operators and K�
−ν = −K�

ν , K⊥
−ν = −K⊥

ν , K⊥
ν (ν) ≡ 0.

Without confusion, we denote by the same symbol K⊥
ν when the covariant vertical Jacobi

operator K⊥
ν is restricted to the subspace ν⊥∩VM in VM . Under the same orthonormal frame

as in (1.2), the covariant Jacobi operator can be expressed as the following symmetric matrix

Kν =

⎛
⎜⎜⎝

K�
ν Bν 0

Bt
ν K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ , (1.4)

where K�
ν and K⊥

ν are the matrix expressions of the covariant tangent and (restricted) covariant
vertical Jacobi operators, Bν is an m by (n − m) matrix with the property that B−ν = −Bν .

Now we are ready to state the theorems. Firstly, for the hypersurface case, by applying
the Riccati equation and some algebraic geometry, we obtain the following generalizations of
Cartan’s theorem (see [5]) and Theorem 1.4 of [18], respectively.

Theorem 1.1 A hypersurface in a real space form has constant principal curvatures if and
only if for some k ≥ 1, its nearby parallel hypersurfaces have constant k-th order mean curvature
Qk.

Theorem 1.2 A curvature-adapted hypersurface in a locally rank one symmetric space has
constant principal curvatures if and only if for some k ≥ 1, its nearby parallel hypersurfaces
have constant k-th order mean curvature Qk.

Remark 1.3 In these cases, the hypersurface is totally isoparametric. On the other hand, it
is still unknown whether a hypersurface of constant principal curvatures in a locally rank one
symmetric space other than real space forms is totally isoparametric.

For general submanifolds, by some technical treatment for the Taylor expansion formulae
of higher order mean curvatures of the tubular hypersurfaces, we obtain the following general-
izations of those results on geometry of the focal submanifolds in the theory of isoparametric
hypersurfaces given by [25, 28, 35] and [17].

Theorem 1.4 Let Mm be a submanifold of a Riemannian manifold Nn+1. Suppose that on
any nearby tubular hypersurface Mn

t of Mm in Nn+1 (t ∈ (0, ε)),
(a) for 1 ≤ l ≤ 4, the l-th, (l + 1)-th, . . ., (l + [ l

2 ])-th order mean curvatures Ql, Ql+1, . . . ,

Ql+[ l
2 ] are constant;

(b) for l ≥ 5, the l-th, (l + 1)-th, . . ., (l + [ l
2 ] + 1)-th order mean curvatures Ql, Ql+1, . . . ,

Ql+[ l
2 ]+1 are constant.

Then the l-th order mean curvature Qν
l in any direction ν is a constant independent of the

choices of the unit normal vector ν and the point of Mm, and so are the curvature invariants:
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ρ[ l
2 ](K

⊥
ν ) when l is even; and tr((K⊥

ν )[
l
2 ]−1K⊥

ν ) when l ≥ 3 is odd. In particular, when l is odd,

Qν
l ≡ 0 and tr((K⊥

ν )[
l
2 ]−1K⊥

ν ) ≡ 0. Furthermore, if in addition we assume the constancy of
Ql−1 in (a) and (b) for l ≥ 2, then we have a new constant curvature invariant tr((Sν)l−2K�

ν )
which also vanishes when l is odd.

Remark 1.5 As indicated by the theorem, if we assume more constant higher order mean
curvatures on tubular hypersurfaces, we would possibly get more constant curvature invariants
such as tr((K⊥

ν )i(K⊥
ν )j), tr((Sν)i(K�

ν )j) and even tr((Sν)i(K�
ν )j) on the submanifold, though

the computations would be rather complicated. See Theorem 4.4 for a more detailed description.

At last, we conclude this section by the following geometrical filtration for the focal subman-
ifolds of isoparametric functions on a complete Riemannian manifold according to the filtration
of isoparametric functions by 1-, 2-, . . ., n-isoparametric functions.

Theorem 1.6 Let Mm be a focal submanifold of an isoparametric function f on a complete
Riemannian manifold Nn+1. Suppose f is k-isoparametric, 1 ≤ k ≤ n.

(i) If k = 1, then for any unit normal vector ν on M ,

Qν
1 ≡ 0, Qν

2 + tr(K�
ν ) +

1
3
tr(K⊥

ν ) ≡ Const,

Qν
3 + tr(SνK�

ν ) +
1
2
tr(K�

ν ) +
1
4
tr(K⊥

ν ) ≡ 0,

in particular, M is a minimal submanifold in N ;
(ii) If k = 2, then besides the identities in (i), we have further

Qν
2 − 2

3
tr(K⊥

ν ) ≡ Const, Qν
3 + tr(SνK�

ν ) − 1
4
tr(K⊥

ν ) ≡ 0,

and thus tr(Kν) = Ric(ν) ≡ Const, tr(Kν) ≡ 0;
(iii) If k = 3, then besides the identities in (i)–(ii), we have further

tr(K⊥
ν ) ≡ Const, Qν

3 +
3
4
tr(K⊥

ν ) ≡ 0,

and thus Qν
2 ≡ Const, tr(SνK�

ν ) − tr(K⊥
ν ) ≡ 0;

(iv) If k = 4, then besides the identities in (i)–(iii), we have further

tr(K⊥
ν ) ≡ 0,

and thus Qν
3 ≡ 0, tr(SνK�

ν ) ≡ 0;
(v) If k = 5, then besides the identities in (i)–(iv), we have further

Qν
4 − 2

9
ρ2(K⊥

ν ) ≡ Const, 3tr(S2
νK�

ν ) + ρ2(K⊥
ν ) ≡ Const;

(vi) If k = 6, then besides the identities in (i)–(v), we have further

ρ2(K⊥
ν ) ≡ Const, 2tr(S3

νK�
ν ) + 3Qν

5 +
1
12

tr(K⊥
ν K⊥

ν ) ≡ 0;

and thus Qν
4 ≡ Const, tr(S2

νK�
ν ) ≡ Const;

(vii) If k = 3d + 1, d ≥ 2, then besides the identities for k ≤ 3d, we have further

Qν
2d ≡ Const, ρd(K⊥

ν ) ≡ Const, tr(S2d−2
ν K�

ν ) ≡ Const,

Qν
2d+1 − d 3−d+14−1tr((K⊥

ν )d−1K⊥
ν ) ≡ 0,
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(2d)tr(S2d−1
ν K�

ν ) + (3d + 1)Qν
2d+1 ≡ 0;

(viii) If k = 3d + 2, d ≥ 2, then besides the identities in (i)–(vii), we have further

Qν
2d+1 ≡ 0, tr(S2d−1

ν K�
ν ) ≡ 0, tr((K⊥

ν )d−1K⊥
ν ) ≡ 0,

(2d + 1)tr(S2d
ν K�

ν ) + (3d + 2)Qν
2d+2 − 3−d−1ρd+1(K⊥

ν ) ≡ Const;

(ix) If k = 3d + 3, d ≥ 2, then besides the identities in (i)–(viii), we have further

Qν
2d+2 + 3−d−1ρd+1(K⊥

ν ) ≡ Const;

2tr(S2d+1
ν K�

ν ) + 3Qν
2d+3 + 3−d4−1tr((K⊥

ν )dK⊥
ν ) ≡ 0.

Furthermore,

(a) if m = 0, i.e., M is a point, then the Ricci curvature of N is constant on M ;

(b) if m = n, i.e., M is a hypersurface, then M is a k-isoparametric hypersurface with
Q1 = Q3 = · · · = Q2j+1 ≡ 0 for 2j + 1 ≤ k;

(c) if m ≤ [ 2k+1
3 ] for k ≤ 6, or m ≤ [2k−1

3 ] for k ≥ 7, or k = n, then M is an austere
submanifold of constant principal curvatures in N , if in addition m = 2, n ≥ 4; or m = 3, n ≥
5; or m = 4, n ≥ 10, then M is a totally geodesic submanifold;

(d) if m ≥ n− [k
3 ] for k ≤ 6, or m ≥ n− [k−1

3 ] for k ≥ 7, or k = n, then the vertical Jacobi
operator K⊥

ν has constant eigenvalues independent of the choices of the unit normal vector ν

and the point of M , or equivalently, the restriction of the Riemannian curvature model (T N, R)
of N to the normal bundle of M is an Osserman curvature model.

Remark 1.7 Recall that [15] introduced (2j)-th mean curvature function K2j and (2j + 1)-
th mean curvature vector field H2j+1 on a submanifold Mm of a Riemannian manifold Nn+1

which generalize higher order mean curvature functions on a hypersurface, and showed that
K2j (resp. H2j+1) equals, up to a constant factor, the integral of σ2j(Sν) (resp. νσ2j+1(Sν))
over the unit normal sphere of M in N . Consequently, by Newton’s identities, Kl ≡ Const
(l even) and Hl ≡ 0 (l odd) on the focal submanifold Mm of a k-isoparametric function with
l ≤ [2k+1

3 ] for k ≤ 6, or l ≤ [2k−1
3 ] for k ≥ 7.

Remark 1.8 An isoparametric function is called a properly isoparametric function if the fo-
cal submanifolds have codimension greater than 1 (cf. [16]). So f in case (b) is not properly
isoparametric and since in this case the focal submanifolds or their normal line bundles could
be non-orientable, there may be no global unit normal vector fields, in which case the conclu-
sion in (b) should be considered as local property on M . Note that classically isoparametric
hypersurfaces in unit spheres are assumed to be connected and thus the focal submanifolds
have codimension greater than one.

Remark 1.9 It was proved by Chi [10] and Nikolayevsky [26, 27] that an Osserman curvature
model of dimension q �= 16 is isomorphic to one of the curvature models given by Clifford module
structures (see a detailed introduction in [3]). In particular, if q is odd, then the Jacobi operator
of an Osserman curvature model has only one constant eigenvalue except the trivial eigenvalue
0. So if n − m is even in (d), then the restricted vertical Jacobi operator K⊥

ν ≡ Const · id and
thus the sectional curvatures of N in normal planes of M are constant.
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2 Shape Operators of Tubular Hypersurfaces

In this section, by using the Fermi coordinates, we will mainly derive a Taylor expansion
formula up to order 2 about t of the shape operator S(t) of the tubular hypersurface Mn

t of
radius t ∈ (0, ε) around a submanifold Mm. This Taylor expansion formula up to order 1 has
been given in [17].

Let Mm be a submanifold of a Riemannian manifold Nn+1 and Mn
t be the tubular hyper-

surface around M of sufficiently small radius t ∈ (0, ε). Then the “outward” unit normal vector
field νt of Mt for t ∈ (0, ε) forms a unit vector field, say ξ, on an open subset NεM :=

⋃
t∈(0,ε) Mt

of Nn+1. The shape operator S(t) of Mt with respect to νt at a point q ∈ Mt is just the re-
striction to Mt of the tensorial operator S : T (NεM) → T (NεM) defined by

S(X) := −∇Xξ (2.1)

for X ∈ Tq(NεM), where ∇ denotes the covariant derivative in N . It is easily seen that S is
self-dual and S(ξ) = 0. Taking covariant derivative of S with respect to ξ gives the well-known
Riccati equation (cf. [19]):

∇ξS = S2 + Kξ,

and its restriction to Mt can be written as

S′(t) = S(t)2 + R(t), (2.2)

where S′(t) := (∇ξS)|T Mt
= (∇νt

S)|T Mt
, Kξ is the Jacobi operator of N in direction ξ defined

in (1.1) and R(t) := Kξ|T Mt
= Kνt

|T Mt
.

Now we choose a system of Fermi coordinates in a neighborhood Ũ of any point p ∈ M in
N as follows (cf. [17]). First we choose normal geodesic coordinates (y1, . . . , ym) centered at
p in a neighborhood U of p in M . Then in U we fix orthonormal sections Em+1, . . . , En, En+1

of the normal bundle VM of M in N such that they are parallel with respect to the normal
connection along any geodesic ray from p in M and En+1|p = ν for a given unit normal vector
ν of M at p. The Fermi coordinates (x1, . . . , xn, xn+1) of (U ⊂ M ⊂) Ũ ⊂ N centered at p are
defined by

xa

(
expq

( n+1∑
j=m+1

tjEj(q)
))

= ya(q), a = 1, . . . , m,

xi

(
expq

( n+1∑
j=m+1

tjEj(q)
))

= ti, i = m + 1, . . . , n + 1

for q ∈ U and any sufficiently small numbers tm+1, . . . , tn+1 with
∑

i t2i < ε2. Then the
Generalized Gauss Lemma shows that in Ũ − M ⊂ NεM ,

ξ =
n∑

i=m+1

xi

σ
∂xi = ∇σ, (2.3)

where σ :=
√∑

i x2
i is the distance function to M in Ũ (cf. [19]). It follows from the definition

that along the normal geodesic ην(t) := expp(tν) in Ũ ,

∂xn+1|ην(t) = η′
ν(t) = νt = ξ|ηv(t) for t ∈ (0, ε). (2.4)



482 Jin T. S. and Ge J. Q.

Moreover, the coordinate vector fields ∂x1, . . . , ∂xn+1 satisfy

∇∂xa
∂xb|p ∈ VpM, ∇∂xa

∂xi|p ∈ TpM, ∇∂xi
∂xj |U = 0, (2.5)

〈∂xα, ∂xβ〉|p = δαβ , 〈∂xa, ∂xi〉|U = 0, 〈∂xi, ∂xj〉|U = δij ,

where 〈·, ·〉 denotes the metric, and the indices convention is that indices a, b, . . . ∈ {1, . . . , m},
indices i, j, . . . ∈ {m+1, . . . , n+1} and indices α, β, . . . ∈ {1, . . . , n+1}. Then ∂x1|p, . . . , ∂xm|p
form an orthonormal frame of TpM and ∂xm+1|p, . . . , ∂xn+1|p = ν form an orthonormal frame
of VpM , and under these frames, the Jacobi operator Kν , the covariant Jacobi operator Kν of
N can be written as real symmetric matrices as (1.2) and (1.4) respectively.

Now in Ũ − M ⊂ NεM , we express the self-dual operator S defined by (2.1) as a real
matrix S = (Sαβ) (not symmetric in general) of order n + 1 under the coordinate vector fields
∂x1, . . . , ∂xn+1, i.e., S(∂xα) :=

∑n+1
β=1 Sαβ∂xβ . By properties of the Fermi coordinates, in [17]

we obtained the following expansion formula of S.

Proposition 2.1 ([17]) With notations as above, at the point ην(t) = expp(tν) ∈ Mt for any
t ∈ (0, ε), the following expansion formula holds

S =

⎛
⎜⎜⎝

Sν + t(S2
ν + K�

ν ) + O(t2) tBν + O(t2) O(t2)
t
3Bt

ν + O(t2) −1
t I + t

3K⊥
ν + O(t2) O(t2)

0 0 0

⎞
⎟⎟⎠ , (2.6)

where Sν := (hν
ab) is the matrix of the shape operator of M in direction ν under the orthonormal

frame ∂x1|p, . . . , ∂xm|p, O(t2) denotes matrices with elements of t’s order not less than 2.

Rewrite the expansion formula (2.6) by power series about t as:

S =
∞∑

r=0

tr−1Sr =
1
t
S0 + S1 + tS2 + t2S3 + O(t3), (2.7)

where

S0 =

⎛
⎜⎜⎝

0 0 0

0 −I 0

0 0 0

⎞
⎟⎟⎠ , S1 =

⎛
⎜⎜⎝

Sν 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ , S2 =

⎛
⎜⎜⎝

S2
ν + K�

ν Bν 0
1
3Bt

ν
1
3K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ ,

and Sr, r ≥ 3, are matrices independent of t.

To calculate the coefficient matrix S3 of t2 for this expansion formula, we need the following
lemmas.

Lemma 2.2 ([17, 21]) Let gαβ := 〈∂xα, ∂xβ〉 and G := (gαβ) be the matrix of the metric.
Then at the point ην(t) = expp(tν) ∈ Mt, we have

gab(t) = δab − 2hν
abt +

( ∑
c

hν
ach

ν
cb − 〈Rν∂xa

ν, ∂xb〉
)

t2 + O(t3),

gai(t) = −2
3
〈Rν∂xa

ν, ∂xi〉t2 + O(t3),

gij(t) = δij −
1
3
〈Rν∂xi

ν, ∂xj〉t2 + O(t3),
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or in matrix form,

G(t) = I + t

⎛
⎜⎜⎝

−2Sν 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ + t2

⎛
⎜⎜⎝

S2
ν − K�

ν −2
3Bν 0

−2
3Bt

ν −1
3K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ + O(t3).

Lemma 2.3 ([17]) Put ∇∂xα
∂xn+1 :=

∑
β wαβ∂xβ and W := (wαβ). Then at the point

ην(t) = expp(tν) ∈ Mt, we have

∇∂xa
∂xn+1 = −

∑
b

hν
ab∂xb − t

∑
b

(∑
c

hν
ach

ν
cb + 〈Rν∂xa

ν, ∂xb〉
)

∂xb

−t
∑

k

〈Rν∂xa
ν, ∂xk〉∂xk +

∑
α

O(t2)α∂xα,

∇∂xi
∂xn+1 = − t

3

∑
b

〈Rν∂xi
ν, ∂xb〉∂xb −

t

3

∑
k

〈Rν∂xi
ν, ∂xk〉∂xk +

∑
α

O(t2)α∂xα,

or in matrix form,

W (t) =

⎛
⎜⎜⎝

−Sν 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ + t

⎛
⎜⎜⎝

−S2
ν − K�

ν −Bν 0

−1
3Bt

ν −1
3K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ + O(t2).

Lemma 2.4 At the point p ∈ M , we have

∇ν∇∂xn+1∇∂xn+1∂xa = −∇ν(R∂xn+1∂xa
∂xn+1) = −Kν(∂xa) − Kν(∇ν∂xa);

∇ν∇∂xn+1∇∂xn+1∂xi = −1
2
∇ν(R∂xn+1∂xi

∂xn+1) = −1
2
Kν(∂xi);

∇ν∇∂xn+1∂xa = −Rν∂xa
∂xn+1 = −Kν(∂xa);

∇ν∇∂xn+1∂xi = −1
3
Rν∂xi

∂xn+1 = −1
3
Kν(∂xi).

Proof It follows from (2.4) that along the geodesic ην(t) = expp(tν), ∇∂xn+1∂xn+1 = ∇ξξ = 0
and thus Kξ = ∇ξKξ by definition (1.3). Then the first equalities in the identities follow from
Lemmas 9.19 and 9.20 in [19] and the second equalities follow immediately from (1.1), (1.3)
and (2.5). �

Lemma 2.5 Let W (t) :=
∑∞

r=0 trWr be the matrix in Lemma 2.3 with Wrs independent of t.
Then

W2 =

⎛
⎜⎜⎝

−1
2K�

ν − S3
ν − K�

ν Sν −1
2Bν 0

−1
4Bt

ν − 1
3Bt

νSν −1
4K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ .

Proof Put uαβ := 〈∇∂xα
∂xn+1, ∂xβ〉 and U(t) := (uαβ)|ην(t). Then U(t) = W (t)G(t), and

thus

U ′′(0) = W ′′(0)G(0) + 2W ′(0)G′(0) + W (0)G′′(0),
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where G(t) is the matrix in Lemma 2.2 and so G(0) = I,

G′(0) =

⎛
⎜⎜⎝

−2Sν 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ , G′′(0) = 2

⎛
⎜⎜⎝

S2
ν − K�

ν −2
3Bν 0

−2
3Bt

ν −1
3K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ , (2.8)

and by Lemma 2.3,

W (0) =

⎛
⎜⎜⎝

−Sν 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ , W ′(0) =

⎛
⎜⎜⎝

−S2
ν − K�

ν −Bν 0

− 1
3Bt

ν −1
3K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ . (2.9)

On the other hand,

u′′
αβ(0) = ννt〈∇∂xα

∂xn+1, ∂xβ〉 = ν∂xn+1〈∇∂xα
∂xn+1, ∂xβ〉

= 〈∇ν∂xα,∇ν∇∂xn+1∂xβ〉 + 2〈∇ν∇∂xn+1∂xα,∇ν∂xβ〉
+〈∇ν∇∂xn+1∇∂xn+1∂xα, ∂xβ〉,

then by Lemma 2.4, we can get

U ′′(0) =

⎛
⎜⎜⎝

−K�
ν + 2K�

ν Sν + 2SνK�
ν −Bν + 4

3SνBν 0

−1
2Bt

ν + 2
3Bt

νSν −1
2K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ .

Combining the above formulae, we can get the required formula for W2 by the following

W2 =
1
2
W ′′(0) =

1
2
(U ′′(0) − 2W ′(0)G′(0) − W (0)G′′(0)). �

Corollary 2.6 Let S3 be the coefficient matrix of t2 in (2.7). Then

S3 =

⎛
⎜⎜⎝

1
2K�

ν + S3
ν + K�

ν Sν
1
2Bν 0

1
4Bt

ν + 1
3Bt

νSν
1
4K⊥

ν 0

0 0 0

⎞
⎟⎟⎠ . (2.10)

Proof It follows from (2.1), (2.3) and (2.4) that at the point ην(t) = expp(tν) ∈ Mt,

−S(∂xa) = ∇∂xa
ξ = ∇∂xa

( ∑
j

xj

σ
∂xj

)
=

∑
j

xj

σ
∇∂xa

∂xj = ∇∂xa
∂xn+1;

−S(∂xi) = ∇∂xi
ξ = ∇∂xi

( ∑
j

xj

σ
∂xj

)
=

∑
j

∂xi

(
xj

σ

)
∂xj +

∑
j

xj

σ
∇∂xi

∂xj

=
1
t
∂xi −

1
t
δi n+1 ∂xn+1 + ∇∂xi

∂xn+1,

which, together with Lemmas 2.3 and 2.5, gives the required formula for S3 immediately. �
Finally we conclude this section by the following expansion formula for the Jacobi operator

Kξ.
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Corollary 2.7 At the point ην(t) = expp(tν) ∈ Mt, we have

Kξ = Kνt
= Kν + t

⎛
⎜⎜⎝

K�
ν − SνK�

ν + K�
ν Sν Bν − SνBν 0

Bt
ν + Bt

νSν K⊥
ν 0

0 0 0

⎞
⎟⎟⎠ + O(t2).

Proof Obviously, it suffices to verify the coefficient matrix, say K1, of t in this expansion
formula for Kξ. Firstly by (2.4) and (1.3), we know that ∇ξξ ≡ 0 and thus Kξ = ∇ξKξ. Then
by the Taylor expansion formula, we calculate the coefficient matrix K1 as follows:

ν〈Kξ(∂xα), ∂xβ〉 = 〈∇ξ(Kξ(∂xα)), ∂xβ〉|p + 〈Kξ(∂xα),∇ξ∂xβ〉|p
= 〈(∇ξKξ)(∂xα) + Kξ(∇ξ∂xα), ∂xβ〉|p + 〈Kξ(∂xα),∇ξ∂xβ〉|p
= 〈Kξ(∂xα), ∂xβ〉|p + 〈∇ξ∂xα, Kξ(∂xβ)〉|p + 〈∇ξ∂xβ , Kξ(∂xα)〉|p,

or in matrix form,
(ν〈Kξ(∂xα), ∂xβ〉) = Kν + U(0)Kν + KνU(0)t,

where U(0) = W (0) as in Lemma 2.5; on the other hand,

(ν〈Kξ(∂xα), ∂xβ〉) =
d

dt

∣∣∣∣
t=0

(Kνt
G(t)) = K1 + KνG′(0);

and therefore,
K1 = Kν + W (0)Kν + KνW (0)t − KνG′(0),

which gives the required formula by using (1.2), (1.4), (2.8) and (2.9). �

3 Hypersurface Case

In this section, we deal with the hypersurface case in our subject by proving Theorems 1.1
and 1.2. Throughout this paper, unless stated otherwise, notations will be consistent with
those in previous sections.

Firstly, we establish a lemma on algebraic geometry which will be useful in the proof of the
theorems.

Lemma 3.1 For each m, n ≥ 1, define polynomials Pk ∈ C[x1, . . . , xn] by

Pk := ρk(x1, . . . , xn) + P̃k−1(x1, . . . , xn) for k = m, m + 1, . . . , m + n − 1,

where ρk is the k-th power sum polynomial, P̃k−1 is an arbitrary polynomial of degree less than
k. Then Pm, Pm+1, . . . , Pm+n−1 form a regular sequence in C[x1, . . . , xn]. Consequently, the
dimension of each variety Vk in Cn defined by Pm = Pm+1 = · · · = Pm+k−1 = 0 is less than or
equal to n − k for k = 1, . . . , n. In particular, Vn is a finite subset of C

n.

Proof The proof is similar to that of Lemma 4.4 in [18]. For completeness, we repeat it as
follows.

Firstly recall (cf. [14, 22]) that a sequence r1, . . . , rk in a commutative ring R with identity
is called a regular sequence if (1) the ideal (r1, . . . , rk) �= R; (2) r1 is not a zero divisor in R;
and (3) ri+1 is not a zero divisor in the quotient ring R/(r1, . . . , ri) for i = 1, . . . , k − 1.

Now we will work on the polynomial ring R = C[x1, . . . , xn]. Obviously, it is a Cohen–
Macaulay ring, possessing the property that dim(R/(r1, . . . , rk)) = n−k for a regular sequence
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r1, . . . , rk in R. Meanwhile, we know that dim(Vk) = dim(R/I(Vk)), where I(Vk) ⊃ (r1, . . . , rk)
is the ideal of the variety

Vk := {x ∈ C
n|r1(x) = · · · = rk(x) = 0}.

Therefore, when r1, . . . , rn form a regular sequence, dim(Vk) ≤ n−k for k = 1, . . . , n. In partic-
ular, dim(Vn) = 0. The last assertion in the lemma is due to the facts that every variety in Cn

can be expressed as a union of finite irreducible varieties and that a zero-dimensional irreducible
variety in Cn is just a point. So it suffices to show that the polynomials Pm, Pm+1 . . . , Pm+n−1

form a regular sequence in R.
Obviously, Pm forms a regular sequence in R. Suppose that Pm, Pm+1, . . . , Pm+n−1 do not

form a regular sequence, there exists some k with 1 ≤ k < n such that Pm+k is a zero divisor
modulo (Pm, . . . , Pm+k−1) in R. Then we may choose a relation of minimal degree of the form

fmPm + fm+1Pm+1 + · · · + fm+kPm+k = 0, (3.1)

where fm, . . . , fm+k are polynomials of minimal degrees modulo (Pm, . . . , Pm+k−1). Denote by
D(> 0) the maximal degree of fkPk’s. Let fi1Pi1 , . . . , fir

Pir
be those of maximal degree D

for some m ≤ i1 < · · · < ir ≤ m + k. Then one can pick out the homogeneous components
f̃i1ρi1 , . . . , f̃ir

ρir
of maximal degree from them in (3.1) such that

f̃i1ρi1 + · · · + f̃ir
ρir

= 0, (3.2)

where f̃i1 , . . . , f̃ir
are the homogeneous components of maximal degrees of fi1 , . . . , fir

, respec-
tively. Recall a recent result showed in [12] that the power sum polynomials ρm, ρm+1, . . . ,

ρm+n−1 form a regular sequence in R. Then by (3.2), r > 1 and f̃ir
∈ (ρm, ρm+1, . . . , ρir−1),

which imply that there exist homogeneous polynomials am, am+1, . . . , air−1 such that

f̃ir
= amρm + am+1ρm+1 + · · · + air−1ρir−1,

and therefore,

fir
= amPm + am+1Pm+1 + · · · + air−1Pir−1 + f̂ir

≡ f̂ir
mod (Pm, . . . , Pm+k−1),

where f̂ir
is a polynomial of degree less than D − ir = deg(fir

), which contradicts the original
choice of minimal relation (3.1).

The proof is now complete. �
Let Mn be a curvature-adapted hypersurface in a real space form or locally rank one sym-

metric space Nn+1. Denote by Mt, t ∈ (−ε, ε), nearby parallel hypersurfaces of M0 = M and
νt the unit normal vector field on Mt. As is well known, a hypersurface in a real space form
is always curvature-adapted as mentioned in Introduction, and moreover, its parallel hypersur-
faces have common principal eigenvectors up to parallel translations along normal geodesics,
which is a nice property also preserved by a curvature-adapted hypersurface in a symmetric
space in which case parallel hypersurfaces are still curvature-adapted (cf. [19]). Now in both
cases, the Jacobi operator Kξ of N has constant eigenvalues independent of the choices of the
unit tangent vector ξ and the point of N . Therefore, one can choose the principal orthonormal
eigenvectors {ei(t)|i = 1, . . . , n} of Mt such that they are parallel along normal geodesics and
simultaneously diagonalize the shape operator S(t) of Mt and the restricted Jacobi operator
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R(t) := Kνt
|TMt

of N as the following symmetric matrices:

S(t) = diag(μ1(t), . . . , μn(t)), R(t) = diag(κ1, . . . , κn),

where μi(t)’s are principal curvature functions of Mt, κi ≡ c for M in a real space form with
constant sectional curvature c, or κi ∈ {c, 4c} for M in a locally rank one symmetric space with
non-constant sectional curvature. Moreover, since ∇νt

ei(t) = 0,

S′(t) := ∇νt
S(t) = diag(μ′

1(t), . . . , μ
′
n(t)),

and thus the Riccati equation (2.2) can be written as

μ′
i(t) = μi(t)2 + κi for i = 1, . . . , n. (3.3)

We are now ready to prove the theorems for the hypersurface case in our subject.

Proof of Theorems 1.1 and 1.2 Recall that the k-th order mean curvature Qk(t) of Mt is
defined by the k-th power sum polynomial of the principal curvatures μ1(t), . . . , μn(t) for any
k ≥ 1, i.e.,

Qk(t) = tr(S(t)k) =
n∑

i=1

μi(t)k = ρk(μ1(t), . . . , μn(t)). (3.4)

Taking derivative of Qk(t) with respect to t by applying (3.3), we get

1
k

Q′
k(t) =

n∑
i=1

(μi(t)k+1 + κiμi(t)k−1) = Qk+1 +
n∑

i=1

κiμi(t)k−1. (3.5)

Similarly, for any j ≥ 1, taking the j-th derivative of Qk(t) with respect to t by applying (3.3),
we can get

1
k(k + 1) · · · (k + j − 1)

Q
(j)
k (t) = Qk+j + P̂k+j−1(μ1(t), . . . , μn(t)), (3.6)

where P̂k+j−1 is some polynomial of degree less than k + j with constant coefficients in n

variables.
Now assume that for some k ≥ 1, Qk(t) is constant on Mt for any t ∈ (−ε, ε) and thus it is

a smooth function depending only on t, so are the derived functions Q
(j)
k (t) for all j ≥ 1. Then

for any fixed t ∈ (−ε, ε), (3.4)–(3.6) show that the principal curvatures (μ1(t), . . . , μn(t)) of Mt

are solutions of the algebraic equations

Pl(x1, . . . , xn) := ρl(x1, . . . , xn) + P̃l−1(x1, . . . , xn) = 0 for l = k, k + 1 . . . , (3.7)

where ρl is the l-th power sum polynomial, P̃l−1 = P̂l−1 − (k−1)!
(l−1)! Q

(l−k)
k (t) is a polynomial of

degree less than l with constant coefficients. In particular, (μ1(t), . . . , μn(t)) belongs to the
variety Vn in Cn defined by Pk = Pk+1 = · · · = Pk+n−1 = 0. Therefore, by Lemma 3.1, we
know that (μ1(t), . . . , μn(t)) belongs to a finite subset of Cn and thus μi(t)’s are constant on
Mt since Mt is connected. It means that M has constant principal curvatures and is totally
isoparametric.

Conversely, if M has constant principal curvatures, by the Riccati equation (3.3), we know
immediately (cf. [18]) that μi(t)’s are constant on Mt and so each order mean curvatures are
constant on Mt.

The proof is now complete. �
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4 General Submanifold Case

In this section, we deal with the general submanifold case in our subject. Firstly, by using
the Taylor expansion formula of the shape operator obtained in Section 2, we derive a power
series expansion formula for higher order mean curvatures of tubular hypersurfaces around a
submanifold in a general Riemannian manifold. Then through some involved calculations and
technical treatments of this formula, we obtain Theorem 4.4 and give a proof of Theorem 1.4.

As in Section 2, let Mm be a submanifold of a Riemannian manifold Nn+1 and Mn
t be the

tubular hypersurface around M of sufficiently small radius t ∈ (0, ε). Since the shape operator
S(t) of Mt is the restriction of the operator S defined in (2.1) to T Mt and S(νt) = S(ξ)|Mt

= 0,
it follows that S(t) has the same nonzero eigenvalues as S. Therefore, the k-th order mean
curvature Qk(t) of Mt can be calculated by

Qk(t) = tr(S(t)k) = tr(Sk) = tr(Ŝ(t)k),

where Ŝ(t) is the left-up n by n submatrix of S in (2.6) and by (2.7), (2.10), at the point
ην(t) = expp(tν) ∈ Mt for any t ∈ (0, ε), we have the following expansion formula

tŜ(t) = −A0 +
∞∑

r=1

Art
r, (4.1)

where

A0 =

⎛
⎝0 0

0 I

⎞
⎠ , A2 =

⎛
⎝S2

ν + K�
ν Bν

1
3Bt

ν
1
3K⊥

ν

⎞
⎠ ,

A1 =

⎛
⎝Sν 0

0 0

⎞
⎠ , A3 =

⎛
⎝

1
2K�

ν + S3
ν + K�

ν Sν
1
2Bν

1
4Bt

ν + 1
3Bt

νSν
1
4K⊥

ν

⎞
⎠ ,

and Ar, r ≥ 4, are n by n matrices independent of t.
Put Υi(t) := tiQi(t) = tr((tŜ(t))i) =

∑∞
r=0 Υirt

r, i ≥ 1. Then by comparing the coefficient
of tr in the extended formula for Υi(t) with (4.1) substituted, we get

Υir =
∑

σ∈Pir

(−1)σ0
∑

τ∈Si(σ)

tr(Aτ1Aτ2 · · ·Aτi
) for i ≥ 1, r ≥ 0, (4.2)

where

Pir :=
{

σ = (σ0, σ1, . . . , σr) ∈ Z
r+1

∣∣∣∣
r∑

s=0

σs = i,
r∑

s=0

sσs = r, σs ≥ 0
}

;

and for σ = (σ0, σ1, . . . , σr) ∈ Pir, Σ(σ) := {s | 0 ≤ s ≤ r, σs > 0},

Si(σ) := {τ = (τ1, . . . , τi) ∈ Z
i | ∀ s ∈ Σ(σ), ∃ σs elements of τ equal s.}.

Obviously,

Υi0 = (−1)itr(Ai
0) = (−1)i(n − m), Υi1 = δi1tr(A1) for i ≥ 1,

Υ1r = tr(Ar) for r ≥ 1.
(4.3)

From now on, we assume i ≥ 2, r ≥ 2 and put

d(i, r) := min
{[

i

2

]
,

[
r

2

]}
, D(i, r) := min

{
i − 1,

[
r

2

]}
.
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Note that A0A1 = A1A0 = 0 and tr(CD) = tr(DC), then tr(Aτ1Aτ2 · · ·Aτi
) = 0 if 0 and 1

occur in some successive indices τj , τj+1 (j mod i). Since A2
0 = A0, we can reduce the sequence

in non-vanishing tr(Aτ1Aτ2 · · ·Aτi
)s such that A0 occurs separately. Moreover, one can see that

A0 occurs separately at most d(i, r) times with some As or AsA
ιs
1 As′ (s, s′ ≥ 2, ιs ≥ 1) between,

in fact, each non-vanishing tr(Aτ1Aτ2 · · ·Aτi
), τ ∈ Si(σ), σ ∈ Pir with σ0 > 0 can be written

as

tr(Aλ0
0 · Ãs1A

λ1
0 · Ãs2A

λ2
0 · · · · · Ãsc

Aλc
0 ), (4.4)

where Ãs = As or AsA
ιs
1 As′ with s, s′ ≥ 2, ιs ≥ 1, the sum of λs equals σ0, the sum of ιs equals

σ1, and 1 ≤ c ≤ D(i, r). According to these, we will refine the summation (4.2) or actually the
index sets Pir and Si(σ) as follows.

For 0 ≤ a ≤ i − 1, denote by Tir(a) the set of all non-vanishing tr(Aτ1Aτ2 · · ·Aτi
)s, τ ∈

Si(σ), σ ∈ Pir with σ0 = a, where the elements with different indices are looked as different
though they may have the same value. For 1 ≤ c ≤ D(i, r), put

Ac
ir := {a ∈ Z

+ | ∃ elements in Tir(a) of the form (4.4)}.

Then by straightforward calculations, we get

Ac
ir =

⎧⎪⎪⎨
⎪⎪⎩

{1}, i = 2, c = 1, r ≥ 2,

{i − c}, i ≥ 3, 2c ≤ r ≤ 2c + 2,

{a | i − r + c + 1 ≤ a ≤ i − c − 2, a ≥ 1} ∪ {i − c}, i ≥ 3, r ≥ 2c + 3.

It follows immediately from the definitions that Tir(a) is empty if a > 0 is not in Ac
ir for

any 1 ≤ c ≤ D(i, r). For example, T33(1) is empty since now each tr(Aτ1Aτ2Aτ3) equals
tr(A0A1A2) = tr(A1A0A2) = 0. On the other hand, putting

Λc(a) :=
{

λ = (λ0, λ1, . . . , λc) ∈ Z
c+1

∣∣∣∣
c∑

s=0

λs = a, λs ≥ 0
}

,

Tir(λ) := {ω ∈ Tir(a) | ω is of the form (4.4) with (λ0, . . . , λc) = λ}, for λ ∈ Λc(a),

we can divide Tir(a) (a > 0) into subsets Tir(λ), λ ∈ Λc(a), 1 ≤ c ≤ D(i, r). Note that each
Tir(λ) should be empty if Tir(a) is empty. Furthermore, for 1 ≤ b ≤ c, putting

Λc
b := {μ = (μ1, . . . , μb) | 1 ≤ μ1 < · · · < μb < c},

Λ
c

b := {μ = (μ1, . . . , μb) | 1 ≤ μ1 < · · · < μb−1 < μb = c},

and for μ ∈ Λc
b,

Λc(a, μ) :=
{

λ ∈ Λc(a)
∣∣∣∣

b∑
s=1

λμs
= a, λμs

≥ 1
}

,

and for μ ∈ Λ
c

b,

Λc(a, μ) :=
{

λ ∈ Λc(a)
∣∣∣∣λ0 + λc +

b−1∑
s=1

λμs
= a, λ0 + λc ≥ 1, λμs

≥ 1 for s < b

}
,

we can divide the index set Λc(a) into subsets Λc(a, μ), μ ∈ Λc
b or Λ

c

b, 1 ≤ b ≤ c. Since the
number of elements of Λc(a, μ) is independent of the choices of μ ∈ Λc

b (resp. μ ∈ Λ
c

b) and c, we



490 Jin T. S. and Ge J. Q.

denote it by Θ(a, b) (resp. Θ(a, b)) which would be zero for b > a. In fact, by a detailed study
of the definitions, it turns out that the 2-parameter function Θ satisfies the inductive relation

Θ(a + 1, b) − Θ(a, b) = Θ(a, b − 1), (4.5)

with initial conditions Θ(a, b) = 0 for a < b or b < 0, Θ(a, 1) = 1 (Θ(a, 0) :≡ 0) for a ≥ 1,
and so does the 2-parameter function Θ with initial conditions Θ(a, b) = 0 for a < b or b < 0,
Θ(a, 1) = a + 1 (Θ(a, 0) :≡ 1) for a ≥ 1. Notice that for each μ ∈ Λc

b or Λ
c

b, respectively,
each element λ of the index subset Λc(a, μ) corresponds to the same subset Tir(λ), denoted by
Tir(a, μ) which is non-empty for a ∈ Ac

ir
5), whose elements have values of the following form:

tr((Ãs1 · · · Ãsμ1
)A0 · (Ãsμ1+1 · · · Ãsμ2

)A0 · · · (Ãsμb−1+1 · · · Ãsμb
)A0 · (Ãsμb+1 · · · Ãsc

))

or, respectively,

tr((Ãs1 · · · Ãsμ1
)A0 · (Ãsμ1+1 · · · Ãsμ2

)A0 · · · (Ãsμb−1+1 · · · Ãsc
)A0). (4.6)

Then we can define

Ωc
ir(a, b) :=

∑
μ∈Λc

b

∑
ω∈Tir(a,μ)

ω, Ω
c

ir(a, b) :=
∑

μ∈Λ
c
b

∑
ω∈Tir(a,μ)

ω, (4.7)

which are essentially identical when c > b (the first is zero when c = b) since, by the symmetry
of the trace function, both are the sum of all non-vanishing elements tr(Aτ1 · · ·Aτi

), τ ∈ Si(σ),
σ ∈ Pir with σ0 = a (without counting multiplicities Θ, Θ), of the form (4.6) with b copies of
A0 occurring separately among c number of Ãs where Ãs = As or AsA

ιs
1 As′ (s, s′ ≥ 2, ιs ≥ 1).

Equipped with these refinements, we are ready to derive a more tractable formula than (4.2)
for the coefficients Υir in the power series expression of the i-th order mean curvature Qi(t) of
the tubular hypersurface Mn

t .

Proposition 4.1 With notations as above, we have for i ≥ 2, r ≥ 2,

Υir =
∑

ω∈Tir(0)

ω +
D(i,r)∑
c=1

∑
a∈Ac

ir

(−1)a
c∑

b=1

(Θ(a, b)Ωc
ir(a, b) + Θ(a, b)Ω

c

ir(a, b)). (4.8)

Remark 4.2 As footnoted before, the index b in the summation actually takes values from
1 to min{c, d(i, r)}, though it does not matter for the calculation since when c ≥ b > d(i, r),
Ac

ir � a ≤ i − c ≤ d(i, r) < b and thus Θ(a, b) = Θ(a, b) = 0.

Remark 4.3 For example, we list some low order cases as follows:

Υ22 = tr(A2
1) − 2tr(A2A0), Υi2 = (−1)i−1i tr(A2A0), for i ≥ 3;

Υ23 = 2tr(A1A2) − 2tr(A3A0), Υ33 = tr(A3
1) + 3tr(A3A0),

Υi3 = (−1)i−1i tr(A3A0), for i ≥ 4;

Υ24 = 2tr(A1A3) + tr(A2
2) − 2tr(A4A0), Υ34 = 3tr(A2

1A2) + 3tr(A4A0) − 3tr(A2
2A0),

Υ44 = tr(A4
1) − 4tr(A4A0) + 4tr(A2

2A0) + 2tr(A2A0A2A0),

Υi4 = (−1)i−1i tr(A4A0) + (−1)i−2(i tr(A2
2A0) +

i(i − 3)
2

tr(A2A0A2A0)), for i ≥ 5.

5) Then in this case, 2b ≤ b + c ≤ a + c ≤ i and so b ≤ min{[ i
2
], [ r

2
]} =: d(i, r) is just the number of copies of A0

occurring separately in non-vanishing tr(Aτ1Aτ2 · · ·Aτi )s with some Ãs between.
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Proof Based on the refinements above, direct calculations show

Υir =
i−1∑
a=0

(−1)a
∑

ω∈Tir(a)

ω =
∑

ω∈Tir(0)

ω +
i−1∑
a=1

(−1)a

D(i,r)∑
c=1

∑
λ∈Λc(a)

∑
ω∈Tir(λ)

ω

=
∑

ω∈Tir(0)

ω +
D(i,r)∑
c=1

∑
a∈Ac

ir

(−1)a
c∑

b=1

( ∑
μ∈Λc

b

+
∑

μ∈Λ
c
b

) ∑
λ∈Λc(a,μ)

∑
ω∈Tir(λ)

ω

=
∑

ω∈Tir(0)

ω +
D(i,r)∑
c=1

∑
a∈Ac

ir

(−1)a
c∑

b=1

( ∑
μ∈Λc

b

+
∑

μ∈Λ
c
b

) ∑
λ∈Λc(a,μ)

∑
ω∈Tir(a,μ)

ω

=
∑

ω∈Tir(0)

ω +
D(i,r)∑
c=1

∑
a∈Ac

ir

(−1)a
c∑

b=1

( ∑
μ∈Λc

b

Θ(a, b) +
∑

μ∈Λ
c
b

Θ(a, b)
) ∑

ω∈Tir(a,μ)

ω

=
∑

ω∈Tir(0)

ω +
D(i,r)∑
c=1

∑
a∈Ac

ir

(−1)a
c∑

b=1

(Θ(a, b)Ωc
ir(a, b) + Θ(a, b)Ω

c

ir(a, b)).

The examples in Remark 4.3 can be verified by (4.8) immediately. �
Now we consider the cases when i ≥ r ≥ 2. Obviously, we have now

d(i, r) = D(i, r) =
[
r

2

]
=: d.

It is easily seen from the definitions that Trr(0) consists of only one element tr(Ar
1) and Tir(0)

is empty for i > r. Moreover, for each e ≥ 1, the map from Prr to Pr+e r defined by

(σ0, σ1, . . . , σr) �→ (σ0 + e, σ1, . . . , σr)

gives a one-to-one correspondence. Consequently, we have

Ac
r+e r = {a + e | a ∈ Ac

rr} for 1 ≤ c ≤ d,

Tr+e r(a + e, μ) = Trr(a, μ) for a ∈ Ac
rr, μ ∈ Λc

b or Λ
c

b,

and thus

Ωc
r+e r(a + e, b) = Ωc

rr(a, b), Ω
c

r+e r(a + e, b) = Ω
c

rr(a, b) for a ∈ Ac
rr, 1 ≤ b ≤ c.

Therefore, the formulae for Υrr and Υr+e r (r ≥ 2, e ≥ 1) in the form (4.8) can be rewritten
as

Υrr = tr(Ar
1) +

d∑
c=1

∑
a∈Ac

rr

(−1)a
c∑

b=1

(Θ(a, b)Ωc
rr(a, b) + Θ(a, b)Ω

c

rr(a, b)), (4.9)

Υr+e r =
d∑

c=1

∑
a∈Ac

rr

(−1)a+e
c∑

b=1

(Θ(a + e, b)Ωc
rr(a, b) + Θ(a + e, b)Ω

c

rr(a, b)). (4.10)

Similarly, for r ≥ 3, Tr−1 r(0) consists of (r − 1) copies of tr(Ar−2
1 A2). Moreover, we have

Ac
r−1 r = {a − 1 | a ∈ Ac

rr} for 1 ≤ c ≤ d,

Tr−1 r(a − 1, μ) = Trr(a, μ) for a ∈ Ac
rr, a − 1 ≥ b, μ ∈ Λc

b or Λ
c

b,
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and thus

Ωc
r−1 r(a − 1, b) = Ωc

rr(a, b), Ω
c

r−1 r(a − 1, b) = Ω
c

rr(a, b) for a ∈ Ac
rr, a − 1 ≥ b, 1 ≤ b ≤ c.

Therefore, the formula for Υr−1 r (r ≥ 3) can be rewritten as

Υr−1 r = (r − 1)tr(Ar−2
1 A2) +

d∑
c=1

∑
a∈Ac

rr

(−1)a−1
c∑

b=1

(Θ(a − 1, b)Ωc
rr(a, b)

+ Θ(a − 1, b)Ω
c

rr(a, b)), (4.11)

which also holds for r = 2 by (4.3) and the initial conditions of Θ, Θ.
Taking iterative sum of (4.5), we obtain the following useful formula for Θ and Θ:

C0
eΘ(a, b) − C1

eΘ(a + 1, b) + · · · + (−1)eCe
eΘ(a + e, b) = (−1)eΘ(a, b − e) (4.12)

for any a, b ∈ Z and e ≥ 0, where Cj
e = e!

j!(e−j)! . For r ≥ 2, e ≥ 0, put

Φr(e) := C0
eΥrr + C1

eΥr+1 r + · · · + Ce
eΥr+e r,

Ψr(e) := C0
eΥr−1 r + C1

eΥrr + · · · + Ce
eΥr−1+e r.

Then taking sum of (4.9), (4.10) and (4.11) iteratively by using (4.12), we obtain

Φr(e) = tr(Ar
1) +

d∑
c=1

∑
a∈Ac

rr

(−1)a+e
c∑

b=1

(Θ(a, b − e)Ωc
rr(a, b) + Θ(a, b − e)Ω

c

rr(a, b)),

Ψr(e) = (r − 1)tr(Ar−2
1 A2) + e tr(Ar

1)

+
d∑

c=1

∑
a∈Ac

rr

(−1)a−1+e
c∑

b=1

(Θ(a − 1, b − e)Ωc
rr(a, b) + Θ(a − 1, b − e)Ω

c

rr(a, b)).

In particular, since Ad
rr = {r − d}, by the initial conditions of Θ, Θ, we have

Φr(d) = tr(Ar
1) + (−1)rΩ

d

rr(r − d, d),

Φr(d + 1) = tr(Ar
1),

Ψr(d) = (r − 1)tr(Ar−2
1 A2) + d tr(Ar

1) + (−1)r−1Ω
d

rr(r − d, d),

Ψr(d + 1) = (r − 1)tr(Ar−2
1 A2) + (d + 1) tr(Ar

1),

where by (4.7),

Ω
d

rr(r − d, d) =

⎧⎨
⎩

tr((A2A0)d), for r = 2d;

d tr((A2A0)d−1A3A0), for r = 2d + 1.

Recalling the formulae of Ar in (4.1), then the above formulae can be rewritten as (d ≥ 1)

Φ2d(d) = tr(S2d
ν ) + 3−dtr((K⊥

ν )d),

Φ2d+1(d) = tr(S2d+1
ν ) − d 3−d+14−1tr((K⊥

ν )d−1K⊥
ν ),

Φ2d(d + 1) = tr(S2d
ν ),

Φ2d+1(d + 1) = tr(S2d+1
ν ), (4.13)

Ψ2d(d) = (2d − 1)tr(S2d−2
ν K�

ν ) + (3d − 1) tr(S2d
ν ) − 3−dtr((K⊥

ν )d),

Ψ2d+1(d) = (2d)tr(S2d−1
ν K�

ν ) + (3d) tr(S2d+1
ν ) + d 3−d+14−1tr((K⊥

ν )d−1K⊥
ν ),
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Ψ2d(d + 1) = (2d − 1)tr(S2d−2
ν K�

ν ) + (3d) tr(S2d
ν ),

Ψ2d+1(d + 1) = (2d)tr(S2d−1
ν K�

ν ) + (3d + 1) tr(S2d+1
ν ).

In conclusion, we get the following

Theorem 4.4 Let Mm be a submanifold of a Riemannian manifold Nn+1 and Mn
t be the

tubular hypersurface around M of sufficiently small radius t ∈ (0, ε). For any integer d ≥ 1,
(i) if each Mn

t has constant Q2d, Q2d+1, . . . , Q3d, then on M ,

Qν
2d + 3−dρd(K⊥

ν ) ≡ Const;

(ii) if each Mn
t has constant Q2d+1, Q2d+2, . . . , Q3d+1, then on M ,

Qν
2d+1 − d 3−d+14−1tr((K⊥

ν )d−1K⊥
ν ) ≡ 0;

(iii) if each Mn
t has constant Q2d, Q2d+1, . . . , Q3d+1, then on M ,

Qν
2d ≡ Const;

(iv) if each Mn
t has constant Q2d+1, Q2d+2, . . . , Q3d+2, then on M ,

Qν
2d+1 ≡ 0;

(v) if each Mn
t has constant Q2d−1, Q2d, . . . , Q3d−1, then on M ,

(2d − 1)tr(S2d−2
ν K�

ν ) + (3d − 1) Qν
2d − 3−dρd(K⊥

ν ) ≡ Const;

(vi) if each Mn
t has constant Q2d, Q2d+1, . . . , Q3d, then on M ,

(2d)tr(S2d−1
ν K�

ν ) + (3d) Qν
2d+1 + d 3−d+14−1tr((K⊥

ν )d−1K⊥
ν ) ≡ 0;

(vii) if each Mn
t has constant Q2d−1, Q2d, . . . , Q3d, then on M ,

(2d − 1)tr(S2d−2
ν K�

ν ) + (3d) Qν
2d ≡ Const;

(viii) if each Mn
t has constant Q2d, Q2d+1, . . . , Q3d+1, then on M ,

(2d)tr(S2d−1
ν K�

ν ) + (3d + 1) Qν
2d+1 ≡ 0.

Proof Recall the definition of Υir which is the coefficient of tr defined over the unit normal
bundle V1M of M in the power series expansion of Υi(t) := tiQi(t) with respect to t ∈ (0, ε),
where Qi(t) is the i-th order mean curvature of Mn

t . Therefore, if Qi(t) is constant on Mn
t and

thus is a function depending only on t, then Υir would be constant on V1M for each r ≥ 0,
which implies that each Φr(e), Ψr(e) (r = 2d, 2d+1, e = d, d+1) in the sequence (4.13) would
be constant under the corresponding assumptions listed in the proposition. This verifies the
identities in the cases where the vanishing assertion in (ii), (iv), (vi), (viii) is because of the
anti-symmetry with respect to ν of Qν

2d+1, tr((K⊥
ν )d−1K⊥

ν ) and tr(S2d−1
ν K�

ν ). �
Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4 The case (b) follows directly from Theorem 4.4 with d = [ l
2 ]. It suffices

to prove the case (a) for 1 ≤ l ≤ 4.
For l = 1, it follows from (4.3) that Qν

1 = tr(A1) = Υ11 which is the coefficient of t1 in
the power series expansion of Υ1(t) := tQ1(t) with respect to t ∈ (0, ε). Therefore, if Q1(t) is
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constant on each tubular hypersurface Mn
t , then Qν

1 is constant on the unit normal bundle of
M and thus vanishes since Q−ν

1 = −Qν
1 .

For l = 2, if Q2(t), Q3(t) are constant on each tubular hypersurface Mn
t , then as the

coefficients of t2 in the power series expansions of t2Q2(t) and t3Q3(t), Υ22 and Υ32 would be
constant. So in this case, by Remark 4.3, we get

Υ22 = Qν
2 − 2

3
tr(K⊥

ν ) ≡ Const, Υ32 = tr(K⊥
ν ) ≡ Const,

which verify the first assertion. If in addition Q1(t) is constant on Mn
t , then by (4.3),

Υ12 = tr(A2) = Qν
2 + tr(K�

ν ) +
1
3
tr(K⊥

ν ) ≡ Const,

which implies tr(K�
ν ) ≡ Const and thus verifies the second assertion.

For l = 3, if Q3(t), Q4(t) are constant on each tubular hypersurface Mn
t , then as the

coefficients of t3 in the power series expansions of t3Q3(t) and t4Q4(t), Υ33 and Υ43 would be
constant. So in this case, by Remark 4.3 and the anti-symmetry of Qν

3 and tr(K⊥
ν ) with respect

to ν, we get

Υ33 = Qν
3 +

3
4
tr(K⊥

ν ) ≡ 0, Υ43 = −tr(K⊥
ν ) ≡ 0,

which verify the first assertion. If in addition Q2(t) is constant on Mn
t , then by Remark 4.3

and the anti-symmetry of Qν
3 and tr(SνK�

ν ) with respect to ν,

Υ23 = 2Qν
3 + 2tr(SνK�

ν ) − 1
2
tr(K⊥

ν ) ≡ 0,

which implies tr(SνK�
ν ) ≡ 0 and thus verifies the second assertion.

For l = 4, if Q4(t), Q5(t), Q6(t) are constant on each tubular hypersurface Mn
t , then as the

coefficients of t4 in the power series expansions of t4Q4(t), t5Q5(t) and t6Q6(t), Υ44, Υ54 and
Υ64 would be constant. So in this case, by Remark 4.3, we get

Υ44 = Qν
4 − 4(tr(A4A0) − tr(A2

2A0)) +
2
9
ρ2(K⊥

ν ) ≡ Const,

Υ54 = 5(tr(A4A0) − tr(A2
2A0)) −

5
9
ρ2(K⊥

ν ) ≡ Const,

Υ64 = −6(tr(A4A0) − tr(A2
2A0)) + ρ2(K⊥

ν ) ≡ Const,

which imply that Qν
4 ≡ Const, ρ2(K⊥

ν ) ≡ Const, tr(A4A0)− tr(A2
2A0) ≡ Const and thus verify

the first assertion. If in addition Q3(t) is constant on Mn
t , then by Remark 4.3,

Υ34 = 3Qν
4 + 3tr(S2

νK�
ν ) + 3(tr(A4A0) − tr(A2

2A0)) ≡ Const,

which implies tr(S2
νK�

ν ) ≡ Const and thus verifies the second assertion.
The proof is now complete. �

5 Focal Submanifolds

This section is devoted to the proof of Theorem 1.6 which is a geometrical filtration for the focal
submanifolds of isoparametric functions on a complete Riemannian manifold. The assertions
in (i)–(ix) of this theorem essentially come from Theorem 1.4 and Theorem 4.4, while (a)–(d)
of this theorem treat some special cases as corollaries of (i)–(ix) and the following preliminary
on austere submanifolds.
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Proposition 5.1 Let Mm be an austere submanifold of constant principal curvatures in a
Riemannian manifold Nn+1. If m = 2, n ≥ 4; or m = 3, n ≥ 5; or m = 4, n ≥ 10, then M is a
totally geodesic submanifold in N .

Proof Recall that a submanifold Mm is called an austere submanifold of constant principal
curvatures if there exist some constants λ1, . . . , λp such that the shape operator Sν of M with
respect to any unit normal vector ν at any point has eigenvalues λ1,−λ1, . . . , λp,−λp, 0, . . . , 0
((m − 2p) zeroes). In particular, on such submanifold, we have

‖Sν‖2 ≡ Const =: C,

which implies that for any orthonormal frame {em+1, . . . , en+1} of the normal bundle VM of
M ,

〈Sei
, Sej

〉 = Cδij for i, j = m + 1, . . . , n + 1.

Therefore, if M is not totally geodesic and thus C > 0, then Sem+1 , . . . , Sen+1 are independent
self-dual operators on the tangent bundle T M of M with constant eigenvalues of opposite signs,
which means that at any point q of M the space Sq of shape operators Sν , ν ∈ VqM , is an
(n + 1 − m)-dimensional subspace of self-dual operators on TqM .

If the shape operators are looked as quadratic functions on TqM via the metric, then Sq is an
(n+1−m)-dimensional austere subspace of quadratic functions on TqM in the sense of [4] where,
among other things, Bryant solved the classification problem of maximal austere subspaces of
quadratic functions on a real vector space of dimension m = 2, 3, or 4. In particular, it follows
from his classification that each maximal austere subspace is of dimension 2 when m = 2 or 3,
and not greater than 6 when m = 4. Consequently, n + 1 − m = dim(Sq) ≤ 2 when m = 2 or
3, and n + 1−m = dim(Sq) ≤ 6 when m = 4, which verifies the assertions by contradiction. �

One can see from the proof above that for fixed m and sufficiently large n, an austere
submanifold Mm of constant principal curvatures in Nn+1 should be totally geodesic. It is
interesting to find out an optimal relationship for such pairs of (m, n).

Proof of Theorem 1.6 First of all, by definition f is a k-isoparametric function if and only if
each regular level hypersurface Mn

t of f has constant higher order mean curvatures Q1(t), . . . ,
Qk(t). As showed in section 4, if f is a k-isoparametric function, then the coefficients Υir in
the power series expansion formula of tiQi(t) are constant for 1 ≤ i ≤ k, r ≥ 0.

Now we come to verify the assertions listed in the theorem case by case.
(i) k = 1. By (4.3) and (4.1),

Υ11 = tr(A1) = tr(Sν) ≡ Const,

Υ12 = tr(A2) = Qν
2 + tr(K�

ν ) +
1
3
tr(K⊥

ν ) ≡ Const,

Υ13 = tr(A3) = Qν
3 + tr(SνK�

ν ) +
1
2
tr(K�

ν ) +
1
4
tr(K⊥

ν ) ≡ Const.

Moreover, since S−ν = −Sν , K�
−ν = K�

ν , K�
−ν = −K�

ν and K⊥
−ν = −K⊥

ν , we know that Υ11

and Υ13 are anti-symmetric with respect to ν and thus Υ11 = Υ13 ≡ 0.
(ii) k = 2. As in the proof of Theorem 1.4, by Remark 4.3, we can get

Υ22 = Qν
2 − 2

3
tr(K⊥

ν ) ≡ Const,
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1
2
Υ23 = Qν

3 + tr(SνK�
ν ) − 1

4
tr(K⊥

ν ) ≡ 0.

Combining these with (i), we get

tr(Kν) = tr(K�
ν ) + tr(K⊥

ν ) = Υ12 − Υ22 ≡ Const,
1
2
tr(Kν) =

1
2
tr(K�

ν ) +
1
2
tr(K⊥

ν ) = Υ13 −
1
2
Υ23 ≡ 0.

(iii) k = 3. Similarly as before, we can get

Υ32 = tr(K⊥
ν ) ≡ Const,

Υ33 = Qν
3 +

3
4
tr(K⊥

ν ) ≡ 0.

Combining these with (ii), we get

Qν
2 = Υ22 +

2
3
Υ32 ≡ Const,

tr(SνK�
ν ) − tr(K⊥

ν ) =
1
2
Υ23 − Υ33 ≡ 0.

(iv) k = 4. Similarly as before, we can get

Υ43 = −tr(K⊥
ν ) ≡ 0,

which implies Qν
3 = Υ33 + 3

4Υ43 ≡ 0, tr(SνK�
ν ) = 1

2Υ23 − Υ33 − Υ43 ≡ 0.

(v) k = 5. Similarly as before, we can get

Qν
4 − 2

9
ρ2(K⊥

ν ) = Υ44 +
4
5
Υ54 ≡ Const,

3tr(S2
νK�

ν ) + ρ2(K⊥
ν ) = Υ34 − 3Υ44 − 3Υ54 ≡ Const.

(vi) k = 6. Similarly as before, we can get

ρ2(K⊥
ν ) = 18

(
1
5
Υ54 +

1
6
Υ64

)
≡ Const,

which, together with (v), implies Qν
4 ≡ Const, tr(S2

νK�
ν ) ≡ Const. By (vi) of Theorem 4.4, we

can get 2tr(S3
νK�

ν ) + 3Qν
5 + 1

12 tr(K⊥
ν K⊥

ν ) ≡ 0.

(vii) k = 3d + 1, d ≥ 2. The identities listed in this case successively come from (iii), (i),
(v), (ii), (viii) of Theorem 4.4 since now Mn

t has constant Q1, . . . , Q3d+1.
(viii) k = 3d + 2, d ≥ 2. The identities listed in this case successively come from (iv), (viii),

(vi), (v) of Theorem 4.4 since now Mn
t has constant Q1, . . . , Q3d+2.

(ix) k = 3d + 3, d ≥ 2. The identities listed in this case successively come from (i), (vi) of
Theorem 4.4 since now Mn

t has constant Q1, . . . , Q3d+3.
(a) m = 0. Obviously, Qν

2 = tr(K�
ν ) ≡ 0, which, together with the second identity in (i),

implies Ric(ν) = tr(Kν) = tr(K⊥
ν ) ≡ Const for any k ≥ 1.

(b) m = n. By continuity it is easily seen that each higher order mean curvature Qi(t)
of Mn

t converges to Qi of M when t goes to 0, i.e., Qi = limt→0 Qi(t). Therefore, if f is
k-isoparametric, then Qi(t) and hence Qi are constant functions on Mn

t and M respectively,
which shows that M is k-isoparametric since (locally) Mn

t consists of two equidistant parallel
hypersurfaces, say M+

t and M−
t , on both “sides” of M . The odd order mean curvatures Q2j+1

(2j + 1 ≤ k) vanish on M because of the anti-symmetry of odd order mean curvatures with
respect to unit normal vectors and the identically constancy of Q2j+1(t) on M+

t and M−
t .
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(c) For m ≤ [2k+1
3 ], k ≤ 6, (i)–(vi) above show that Mm has constant Qν

1 , . . . , Qν
m and

thus has constant principal curvatures which occur in opposite signs since all odd order mean
curvatures vanish. For m ≤ [ 2k−1

3 ], k ≥ 7, (vii)–(ix) derive the same conclusion as above. For
k = n, i.e., f is totally isoparametric, then each order mean curvature of Mn

t is constant, which
by Theorem 1.4 implies that M has constant each order mean curvature and thus is an austere
submanifold of constant principal curvatures. The second part of this case has been proved in
Proposition 5.1.

(d) Similarly as in (c), it is easily seen that under each assumption of m and k, ρ1(K⊥
ν ), . . . ,

ρn−m(K⊥
ν ) are constant on M and thus the (restricted) vertical Jacobi operator K⊥

ν has con-
stant eigenvalues since the restricted vertical Jacobi operator K⊥

ν is a self-dual operator of order
(n − m).

The proof is now complete. �
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17, 177–191 (1938)

[6] Cartan, E.: Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques.

Math. Z., 45, 335–367 (1939)

[7] Cartan, E.: Sur quelque familles remarquables d’hypersurfaces. C. R. Congrès Math. Liège, 30–41 (1939)
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