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Abstract Judicious bisection of hypergraphs asks for a balanced bipartition of the vertex set that

optimizes several quantities simultaneously. In this paper, we prove that if G is a hypergraph with

n vertices and mi edges of size i for i = 1, 2, . . . , k, then G admits a bisection in which each vertex

class spans at most m1
2

+ 1
4
m2 + · · · + ( 1

2k )mk + o(m1 + · · · + mk) edges, where G is dense enough

or Δ(G) = o(n) but has no isolated vertex, which turns out to be a bisection version of a conjecture

proposed by Bollobás and Scott.
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1 Introduction

Some notations we use in this paper is in order. Let G be a hypergraph with n vertices and
m edges and let S, V1, V2 be subsets of V (G), respectively. We denote by e(S) the number of
edges of which all end points are in S, d(S) the number of edges adjacent to at least one vertex
in S, and e(V1, V2) the number of edges adjacent to both V1 and V2. Especially for hypergraphs,
we denote by Ei(G) the set of edges of size i, and each edge in Ei(G) is called an i-edge, and
di(v) the number of edges adjacent to v in Ei(G). Thus, the degree of v is d(v) =

∑k
i=1 di(v).

As in graphs, we denote the maximum degree of G by Δ = maxv∈V (G) d(v).
Graph partitioning problems often seek a partition of a graph or hypergraph which optimizes

a single or several quantities. Max Cut [6] and the Bottleneck Bipartition Problem [7] are two
examples.

Unlike classical partitioning problems, judicious partitioning problems seek optimize more
than one parameters simultaneously. In the judicious bipartition of hypergraphs problems, an
early conjecture of Bollobás and Scott [3] was stated as follows.

Conjecture 1.1 Any hypergraph with mi edges of size i, 1 ≤ i ≤ k admits a bipartition of
vertex set into V1, V2, such that for i = 1, 2,

e(Vi) ≤ m1

2
+

1
4
m2 + · · · +

(
1
2k

)

mk + o(m1 + · · · + mk). (1.1)
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Ma et al. [5] proved that a hypergraph G with mi edges of size i, 1 ≤ i ≤ 2, admits a
bipartition V1, V2 such that d(Vi) ≥ m1

2 + 3
4m2 + o(m2). Note that for bipartition, we have

d(V1) + e(V2) = m1 + m2. So this result partially established this conjecture for the case when
k = 2.

Judicious k-partition asks for a required partition of vertex set into k parts, where k is
an integer. For uniform hypergraphs, Bollobás and Scott [2] proved that every 3-uniform
hypergraph with m edges has a vertex-partition into k sets Vi, such that e(Vi) ≤ (1+o(1))

k3 m for
each i = 1, 2, . . . , k. For mixed hypergraphs, Ma et al. [5] showed that a hypergraph G with
mi edges of size i, for i = 1, 2, admits k-partition V1, . . . , Vk, such that for each j = 1, 2, . . . , k,

e(Vj) ≤ m1
k + m2

k2 + o(m2). For more results and problems in k-partition problems, the readers
are referred to [1, 3, 8].

In this paper, we focus on judicious bisection of hypergraphs, which is a bipartition V1, V2

of vertex set with ||V1| − |V2|| ≤ 1. A bisection is also called a balanced bipartition, but the
extremal problems for balanced partitions have been relatively little investigated [3]. Compared
to judicious bipartitions, judicious bisections are more intricate to analyze. For instance, there
even are not any result or conjecture on judicious bisection of hypergraphs.

About hypergraphs, we define a “star” S by adding a new vertex v to a (k − 1)-uniform
complete hypergraph G of order n, such that v is contained in every edge of G. It is easy to
check that S has m =

(
n

k−1

)
edges, and in every bisection of S, e(Vi) =

( n
2

k−1

)
when n is even.

In fact, for large n, e(Vi)
m is far beyond 1

2k . In this paper, we show that the following theorem
is true.

Theorem 1.2 Let ε be a fixed positive constant and let G be a hypergraph, with n vertices and
mi edges of size i for i = 1, 2, . . . , k, such that (i) mi ≥ ε−2 · i(k−1)

2i−1

(
n

i−1

)
, or (ii) Δ ≤ ε2

(k−1)3kn

and has no isolated vertex. If n is sufficiently large, then G admits a bisection V = V1 ∪ V2

such that

e(Vi) ≤ m1

2
+

m2

4
+ · · · + mk

2k
+ ε(m1 + m2 + · · · + mk). (1.2)

In Section 2, Theorem 1.2 is proved, and then we study judicious bisection of k-uniform
hypergraphs. In Section 3, we present some discussion and propose several problems.

2 Hypergraphs with Edges of Size at Most k

To prove Theorem 1.2, we first design a basic random bisection algorithm to locate the 1-edges
equally in each vertex class, then we analyze the variance of the number of edges within the two
vertex sets. It turns out that a second-moment argument would be useful to prove Theorem 1.2.

We begin by pairing the vertices, which itself is a 1-edge. Let T be the set of vertices in
which each vertex is an edge in G, and then run the following algorithm:

Step 1 To randomly pair the vertices within T and within V (G)\T respectively as many as
possible;

Step 2 To split each pair across V1 ∪ V2 independently and uniformly at random.
Note that under this basic algorithm, each Vi contains exactly m1

2 of the 1-edges if m1 is
even, or m1±1

2 of the 1-edges if m1 is odd. In the remained part of this paper, we can always
assume that m1 is even. Otherwise, we let any of the vertex in V (G)\T be a new 1-edge, and
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this affect the number of edges in each Vi by at most 1, which can be absorbed in the term
εm1. We have the following lemma.

Lemma 2.1 Let G be an n-vertex hypergraph with mt edges of size t, t = 1, 2, . . . , k. Then G
admits a bisection such that

e(Vi) ≤ m1

2
+

m2

4
+ · · · + mk

2k
+

k∑

j=2

√
2(k − 1)Λj , i = 1, 2, (2.1)

where

Λj =
1
2j

((

1 − 1
2j

)

mj +
(

1
2
− 1

2j

) ∑

v∈V

dj(v)2
)

.

Proof Let Xi be the number of edges contained in each Vi, and Xj
i be the number of j-edges

lied in Vi after running the basic bisection algorithm as described at the beginning of Section 2
for i = 1, 2, j = 1, 2, . . . , k. It is clear that Xi =

∑k
j=2 Xj

i + m1
2 , and E[Xj

i ] = mj

2j . We need to
prove the following inequality:

P

(

Xj
i ≥ mj

2j
+

√
2(k − 1)Λj

)

<
1

2(k − 1)
for i = 1, 2, j = 2, 3, . . . , k. (2.2)

That is, with positive probability, Xj
i <

mj

2j +
√

2(k − 1)Λj holds for all i = 1, 2, j = 2, 3, . . . , k

simultaneously. It implies that there exists a bisection such that

e(Vi) = Xi =
k∑

j=2

Xj
i +

m1

2

≤ m1

2
+

m2

4
+ · · · + mk

2k
+

k∑

j=2

√
2(k − 1)Λj . (2.3)

By Chebyshev’s inequality, we have

P
(
Xj

i ≥ E[Xj
i ] +

√
2(k − 1)Λj

) ≤ Var[Xj
i ]

2(k − 1)Λj
. (2.4)

Thus it suffices to show that Var[Xj
i ] < Λj . For fixed j, we define an indicator variable Ie

for each j-edge e as follows:

Ie =

⎧
⎨

⎩

1, if all the j endpoints of e fall in V1,

0, otherwise.

Then, we have

Var[Xj
1 ] = E[(Xj

1 − E[Xj
1 ])2]

= E

[( ∑

e∈Ej(G)

(Ie − E[Ie])
)2]

= E

[ ∑

e∈Ej(G)

(Ie − E[Ie])2 +
∑

e�=f∈Ej(G)

(Ie − E[Ie])(If − E[If ])
]

=
∑

e∈Ej(G)

(E[I2
e ] − E[Ie]2) +

∑

e�=f∈Ej(G)

(E[IeIf ] − E[Ie]E[If ])
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≤
(

1
2j

− 1
22j

)

mj +
∑

e�=f∈Ej(G)

(E[IeIf ] − E[Ie]E[If ]).

The last inequality holds because E[I2
e ] − E[Ie]2 = 0 if at least two of the endpoints of e were

initially paired, otherwise it is exactly 1
2j − ( 1

2j )2.

We now bound the second sum in the above inequality. Note that only when all the j

endpoints of e and f are not paired could the term in the second sum be none zero. In
addition, if e and f share no common endpoint, then Ie, If are independent random variables,
from which comes E[IeIf ] − E[Ie]E[If ] = 0. So we only need to consider the edges e and f

sharing at least 1 endpoint and of whose no two endpoints are paired initially. In those cases,
E[Ie]E[If ] = 1

22j , and E[IeIf ] ≤ 1
2j+1 . This is true because for two j-edges e �= f sharing at least

1 endpoint, they contains at least j + 1 distinct endpoints and only when all of the endpoints
lie in V1 could ensure E[IeIf ] > 0, observing that the probability that all unpaired vertices lie
in V1 is at most 1

2j+1 . Hence, we have

∑

e�=f∈Ej(G)

(E[IeIf ] − E[Ie]E[If ]) ≤
∑

e�=f,adjacent

(
1

2j+1
− 1

22j

)

≤
(

1
2j+1

− 1
22j

) ∑

v∈V

dj(v)(dj(v) − 1)

<

(
1

2j+1
− 1

22j

) ∑

v∈V

dj(v)2. (2.5)

Therefore,

Var[Xj
1 ] ≤

(
1
2j

− 1
22j

)

mj +
(

1
2j+1

− 1
22j

) ∑

v∈V

dj(v)2 = Λj . (2.6)

By symmetry, the same inequality holds for Var[Xj
2 ], and this completes the proof. �

Proof of Theorem 1.2 Let ε > 0 be given.

(i) First we suppose that mi ≥ ε−2 · i(k−1)
2i−1

(
n

i−1

)
for i = 2, 3, . . . , k.

First, we have
∑

v∈V dj(v) = jmj . Then, since the number of j-edge that contains v is at
most

(
n

j−1

)
, thus dj(v) ≤ (

n
j−1

)
. Finally, using this bound and letting n be sufficiently large, we

have

Λj =
1
2j

((

1 − 1
2j

)

mj +
(

1
2
− 1

2j

) ∑

v∈V

dj(v)2
)

≤ 1
2j

((

1 − 1
2j

)

mj +
(

1
2
− 1

2j

)(
n

j − 1

) ∑

v∈V

dj(v)
)

=
1
2j

((

1 − 1
2j

)

mj +
(

1
2
− 1

2j

)(
n

j − 1

)

· jmj

)

,

which is less than 1
2j

(
n

j−1

)
jmj for large n. Combined with the condition (i), we have

Λj ≤ 1
2j

(
n

j − 1

)

jmj ≤ ε2m2
j

2(k − 1)
.



Judicious Bisection of Hypergraphs 583

This together with Lemma 3.1 shows that there exists a bisection such that

e(Vi) ≤ 1
2
m1 +

1
4
m2 + · · · + mk

2k
+

k∑

i=2

√

2(k − 1) · ε2m2
i

2(k − 1)

=
1
2
m1 +

1
4
m2 + · · · + mk

2k
+ ε(m2 + · · · + mk).

(ii) By the requirement of the theorem, we may now suppose that Δj ≤ ε2

(k−1)3kn for
j = 2, 3, . . . , k, and G has no isolated vertex.

By applying the bound dj(v) ≤ ε2

(k−1)3kn to Λj and assuming large n, we have

Λj ≤ 1
2j

((

1 − 1
2j

)

mj +
(

1
2
− 1

2j

)
ε2

(k − 1)3k
n

∑

v∈V

dj(v)
)

=
1
2j

((

1 − 1
2j

)

mj +
(

1
2
− 1

2j

)
ε2

(k − 1)3k
n · jmj

)

≤ 1
2j

· ε2

(k − 1)3k
n · jmj

=
ε2

2(k − 1)3
· j

2j−1k
nmj .

Because G has no isolated vertex and the size of edge is at most k, G has at least n
k edges.

Thus, we have

Λj <
ε2

2(k − 1)3
· j

2j−1k
k(m1 + m2 + · · · + mk)mj

≤ ε2

2(k − 1)3
(m1 + m2 + · · · + mk)2,

which together with Lemma 3.1 implies that G admits a bisection such that

e(Vi) ≤ m1

2
+

m2

4
+ · · · + mk

2k

+
k∑

j=2

√

2(k − 1)
ε2

2(k − 1)3
(m1 + m2 + · · · + mk)2

=
m1

2
+

m2

4
+ · · · + mk

2k
+

k∑

j=2

ε

k − 1
(m1 + m2 + · · · + mk)

=
m1

2
+

m2

4
+ · · · + mk

2k
+ ε(m1 + m2 + · · · + mk), i = 1, 2.

This completes the proof. �
Based on the above result, we immediately get the following corollary about r-uniform

hypergraphs.

Corollary 2.2 Let ε be a fixed positive constant and let G be an r-uniform hypergraph, with
n vertices and m edges, such that (i) m ≥ ε−2 · r(r−1)

2r−1

(
n

r−1

)
or (ii) Δ ≤ ε2

(r−1)3rn and has no
isolated vertex. If n is sufficiently large, then G admits a bisection V = V1 ∪ V2 in which each
Vi spans at most ( 1

2r + ε)m edges.
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3 Discussion

Note that when r = 2, Corollary 2.2 shows a weaker result compared to [4, Theorem 1.7].
Because the condition (ii) in Theorem 1.2 additionally requires that there are no isolated vertex
in G, we ask whether one can remove this from (ii)?

Conjecture 3.1 Let G be a hypergraph, with n vertices and mi edges of size i for i =
1, 2, . . . , k, such that Δ = o(n). Then G admits a bisection V = V1 ∪ V2 such that

e(Vi) ≤ m1

2
+

m2

4
+ · · · + mk

2k
+ o(m1 + m2 + · · · + mk). (3.1)

Bollobás and Scott [3] asked what is the smallest c(k) such that every graph G with m

edges and minimal degree k has a bisection with at most c(k)m edges in each vertex class.
Lee et al. [4] asymptotically answered this question by showing that graphs with m edges and
minimum degree at least δ has a bisection in which for each i, the following holds:

e(Vi) ≤
(

δ + 2
4(δ + 1)

+ o(1)
)

m.

It is interesting to know the answer of the same question in an r-uniform hypergraphs version.

Problem What is the smallest cr(k) such that every r-uniform hypergraph G with m edges
and minimal degree as least k has a bisection with at most cr(k)m edges in each vertex class?

The discussion in this section has already shown cr(
(
n−2
r−2

)
) = 1

2r−1 + o(1).
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