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1 Introduction

In the past fifty years, researchers have given a lot of attentions to the study of existence of
periodic solutions for the following neutral functional differential equations:

dDxt

dt
= f(t, xt), (1.1)

where xt(θ) = x(t + θ), θ ∈ [−τ, 0], τ > 0 is a constant; D : C([−τ, 0], Rn) → R
n is linear,

continuous and atomic at zero; f ∈ C(R × C([−τ, 0], Rn), Rn) with f(t + ω, ϕ) ≡ f(t, ϕ) for
all ϕ ∈ C([−τ, 0], Rn), and for any bounded set Ω ⊂ C([−τ, 0], Rn), f([0, ω] × Ω) is bounded
in R

n. This equation arises in the study of two or more simple oscillatory systems with some
interconnections between them [10, 11], and in modeling physical problems such as the lossless
transmission line networks and, the vibration of masses attached to an elastic bar [4, 24].
Compared with retarded functional differential equations, the study of existence of periodic
solutions for (1.1) is more difficult. This due to the fact that for any ω-periodic solution u(t) of
(1.1), it is only required that D(ut) is continuously differentiable in t, but, generally, u(t) may
not be differentiable in t [1, 10, 11]. Just for this reason, the compact property of some solution
operator associated to (1.1), which is crucial for solving periodic solutions, is far away from
clear. Under the condition that the linear difference operator D is stable, Jack Hale obtained
that any ω-periodic solution to (1.1) has a continuous first derivative [10]. By using this result,
many researchers [2, 8, 13, 23] studied the existence of periodic solutions for (1.1) by means of
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some fixed point theorems. Recently, for the special case of the linear autonomous D-operator
defined by D : C([−τ, 0], R), D(ϕ) = ϕ(0)− kϕ(−τ ), under the condition of |k| > 1, that is the
linear D-operator is un-stable [10], the authors in [16] obtained that any ω-periodic solution to
the difference equation D(xt) = h(t) has a continuous first derivative, where h ∈ C1(R, R) with
h(t+ω) ≡ h(t); and then, the existence of periodic solutions for some kinds of neutral function
differential equations is studied in [12, 17–19] by using Mawhin’s continuation theorem. For
neutral functional differential equation with nonlinear difference D-operator, Corduneanu [5, 6]
studied the existence of solution to an initial value problem, and Burton [3] investigated the
problem of Perron-type stability. But the works to study the existence of periodic solutions for
neutral functional differential equations with nonlinear difference D-operator rarely appeared
[7, 20]. For example, in [7], by using a new topological degree theorem associated to condensing
operator, Erbe et al. studied neutral functional differential equations with nonlinear difference
D-operator in the following form:

d

dt
(x(t) − b̄(t, xt)) = f(t, xt), (1.2)

where x(t) = (x1(t), x2(t), . . . , xn(t))� ∈ R
n, xt(θ) = x(t + θ), θ ∈ [−τ, 0], f and b̄ ∈ C(R ×

C([−τ, 0], Rn), Rn) with f(t+ω, ϕ) ≡ f(t, ϕ) and b̄(t+ω, ϕ) ≡ b̄(t, ϕ) for all ϕ ∈ C([−τ, 0], Rn),
and for any bounded set Ω ⊂ C([−τ, 0], Rn), f([0, ω] × Ω) is bounded in R

n; τ and ω are
two positive constants. Under the crucial condition that B : Pω → Pω, (Bx)(t) = b̄(t, xt) is
condensing, where Pω = {x ∈ C(R, Rn) : x(t + ω) ≡ x(t)}, some results on the existence of
periodic solutions are obtained. In [20], the authors studied the problem of periodic solution
for a neutral functional differential equation with nonlinear difference D-operator defined by

D : C([−τ, 0], Rn) → R
n, D(ϕ) = Bϕ(−τ ) − h(ϕ),

where B = [bij ]n×n is a real matrix and h : C([−τ, 0], Rn) → R
n is continuous. Clearly, the

nonlinear difference D-operator in [20] is autonomous type. Through the discussion that the
operator F : R

n → R
n, F (a) = (I − B)a − h(a) has its inverse F−1 : R

n → R
n, and by

calculating the Brouwer’s degree

deg(Δ1, F
−1(Bρ), 0) �= 0,

the main result on the existence of periodic solutions was obtained. However, if the difference
D-operator is non-autonomous type, the degree deg(Δ1, F

−1(Bρ), 0) is difficult to calculate.
This is due to the fact that F−1(Bρ) is in Pω but not in R

n.
In present paper, we consider the existence of periodic solutions for the following neutral

functional differential equations with non-autonomous difference D-operator:

d2

dt2
(x(t) − Cx(t − τ ) − b(t, xt)) = f(t, xt), (1.3)

where x(t) = (x1(t), x2(t), . . . , xn(t))� ∈ R
n, C = [cij ]n×n is a real matrix and, xt ∈ Cτ :=

C([−τ, 0], Rn) and functions f and b is defined as same as f and b̄ in (1.2), respectively. By
using the degree theory associated to condensing field, some new results on the existence of
ω-periodic solutions to (1.3) are obtained.

The significance of our paper lies in the following two respects. Firstly, the crucial condition
in our paper is that BA−1 : Pω → Pω is a condensing operator, while Erbe et al. in [7] require
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that B : Pω → Pω is condensing, where B : Pω → Pω, (Bx)(t) = b(t, xt) and A : Pω →
Pω, (Ax)(t) = x(t) − Cx(t − τ ). The second is that the main result of our paper is related to
the value of delay τ .

In [20], b̄(t, ϕ), which is defined in (1.2), can be regarded as b̄(t, ϕ) = Cϕ(−τ ) + b(t, ϕ) for
all ϕ ∈ C([−τ, 0], Rn). Clearly, if C = O, then b̄(t, ϕ) ≡ b(t, ϕ) and the linear operator A = I.
This implies that the nonlinear difference operator B : Pω → Pω in [7] is equal to the operator
BA−1 : Pω → Pω. So the crucial condition in present paper generalizes the corresponding ones
of [7].

2 Main Lemmas

Throughout this paper, unless otherwise specified, we use the following notation. Let E and
Y be two Banach spaces with Y ⊂ E. By Θ we denote the set of all bounded subsets of E

and, μ : Θ → R
+ be a measure of non-compactness. Suppose that F : Y → E is a continuous

map with sending bounded sets into bounded sets. F is called a μ-Lipschitzian map with a
constant k ≥ 0, if μ(F (A)) ≤ kμ(A) for all bounded A ⊂ Y . A μ-Lipschitzian map with a
constant k ∈ [0, 1) is called a k-set contractive map or a Darbo map and, if μ(F (A)) < μ(A) for
all bounded A ⊂ Y with μ(A) > 0, then F is called a condensing map. Clearly, a completely
continuous map must be condensing. But, generally, the converse is not true.

Now, let us recall the definition of topological degree associated to condensing field [15, 22].
Let Ω ⊂ E be open bounded, F be a k-set contractive map and 0 �∈ (I − F )(∂Ω). Set
D1 = co(F (Ω)), Dn = coF (Dn−1 ∩ Ω), n = 2, 3, . . . .

(1) If there is an integer n0 such that Dn0 ∩ Ω = φ, define

deg(I − F, Ω, 0) = 0.

(2) If Dn ∩Ω �= φ for n = 1, 2, . . . , let D =
⋂+∞

n=1 Dn. Clearly, D is a bounded closed subset
of Dn (n = 1, 2, . . . , n) and D �= φ. Furthermore, μ(Dn) ≤ knμ(Ω) → 0 as n → ∞, which
implies that D∩Ω =

⋂∞
n=1(Dn ∩Ω) is compact in E. Since F (D∩Ω) ⊂ ⋂∞

n=1 F (Dn ∩Ω) ⊂ D,
F : D ∩ Ω → D is completely continuous. By using the continuation theorem of completely
continuous operator, we see that there is a completely continuous operator F1 : Ω → D such
that F1(x) = F (x) for all x ∈ D ∩ Ω and 0 �∈ (I − F )(∂Ω), and then the degree of k-set
contractive field I − F : Ω → E is well defined in the following form:

deg(I − F, Ω, 0) := deg(I − F1, Ω, 0).

Suppose that Ω ⊂ E is open bounded and F : Ω → E is a a condensing map such that 0 ∈
E\(I−F )(∂Ω). Since (I−F )(∂Ω) is a closed bounded subset of E, τ = dist(0, (I−F )(∂Ω)) > 0.
Taking an arbitrary k-set contractive map f : Ω → E such that

‖Fx − fx‖E <
τ

3
, ∀x ∈ Ω,

then
‖(I − f)(x)‖E ≥ ‖(I − F )(x)‖E − ‖Fx − fx‖E >

2
3
τ,

which implies that the degree deg(I − f, Ω, 0) is valid. Therefore, the degree of condensing field
I − F : Ω → E can be defined as follows:

deg(I − F, Ω, 0) = deg(I − f, Ω, 0).
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This degree has the following basic properties of k-set contractive field degree to which it reduces
when F is a k-set contractive map [22]:

(1) Normalization Let F : Ω → {∗} ⊂ Ω be a constant map. Then

deg(I − F, Ω, 0) = 1.

(2) Existence If deg(I − F, Ω, 0) �= 0, then 0 ∈ (I − F )(Ω).
(3) Additivity If Ω1 and Ω2 are disjoint open subsets of Ω such that

0 �∈ (I − F )[Ω \ (Ω1 ∪ Ω1)],

then

deg(I − F, Ω, 0) = deg(I − F, Ω1, 0) + deg(I − F, Ω2, 0).

(4) Homotopy Invariance Suppose that H : [0, 1] × Ω → E is continuous. For each
t ∈ [0, 1], H(t, ·) : Ω → E is a condensing operator and H(t, x) is continuous with respect to t

uniformly for x ∈ Ω. Let Ft(x) = x − H(t, x). If 0 �∈ Ft(∂Ω) for all t ∈ [0, 1], then

deg(I − Ft, Ω, 0)

is independent of t ∈ [0, 1].
Let L : D(L) ⊂ E → Y be a Fredholm operator with index zero. By [9], this means that L

is linear and ImL is closed in Y , dim kerL = dim Y
ImL < +∞, and there are continuous linear

projectors P : E → E and Q : Y → Y such that ImP = ker L, ker Q = ImL, E = ker L ⊕ ker P

and Y = ImL⊕ImQ. Obviously, L : D(L)∩kerP → ImL has its right inverse. Let KP : ImL →
D(L) ∩ ker P be the right inverse of L : D(L) ∩ kerP → ImL and let J : ImQ → kerL be an
isomorphism, then L + J−1P : D(L) → Y is a bijection. Set TL = (L + J−1P )−1 : Y → D(L).
Then

TLQy = JQy, TL(I − Q)y = KP (I − Q)y for all y ∈ Y (2.1)

and

TLJ−1Px = Px for all x ∈ E. (2.2)

Definition 2.1 Let L : D(L) ⊂ E → Y be a Fredholm operator with index zero, Ω be an open
bounded subset of E with D(L) ∩ Ω �= 0, G : Ω ⊂ E → Y be a continuous map. If QG : Ω → Y

and KP (I − Q)G : Ω → Y are all condensing, then the map G is called L-condensing in Ω.

Lemma 2.2 Suppose that L : D(L) ⊂ E → Y is a Fredholm operator with index zero,
B : E → E and G : E → Y are two maps and, Γ : E → E is a continuous invertiable map with
Γ−1 : E → E being bounded. Then, the existence of solution to the equation

L(Γ(x) − λB(x)) = λG(x), λ ∈ (0, 1), (2.3)

is equivalent to the existence of solution to the following equation:

x = λB(Γ−1(x)) + JQG(Γ−1(x)) + λKP (I − Q)G(Γ−1(x))

+ P (x − λB(Γ−1(x))), λ ∈ (0, 1). (2.4)
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Proof Suppose that u ∈ E is a solution of (2.3). Then for all λ ∈ (0, 1), Γ(u)−λB(u) ∈ D(L)
and

L(Γ(u) − λB(u)) = λG(u),

which implies G(u) ∈ ImL. So QG(u) = 0, and then

L(Γ(u) − λB(u)) = QG(u) + λ(I − Q)G(u),

i.e.,
(L + J−1P )(Γ(u) − λB(u)) = QG(u) + λ(I − Q)G(u) + J−1P (Γ(u) − λB(u)),

which implies

Γ(u) = λB(u) + TLQG(u) + λTL(I − Q)G(u) + TLJ−1P (Γ(u) − λB(u)).

It follows from (2.1) and (2.2) that

Γ(u) = λB(u) + JQG(u) + λKP (I − Q)G(u) + P (Γ(u) − λB(u)).

Since Γ : E → E is a bijective continuous linear operator, it follows from Banach–Schauder
theorem, we know that the linear map Γ−1 : E → E is also continuous. Let Γ(u) = v. Then
v ∈ E and

v = λB(Γ−1(v)) + JQG(Γ−1(v)) + λKP (I − Q)G(Γ−1(v)) + P (v − λB(Γ−1(v))).

This implies that v is a solution to (2.4).
On the other hand, suppose that v ∈ E is a solution to (2.4), and let u = Γ−1(v). Then

Γ(u) − λB(u) = JQG(u) + λKP (I − Q)G(u) + P (Γ(u) − λB(u)),

which leads to
L(Γ(u) − λB(u)) = λG(u), λ ∈ (0, 1).

So u is a solution to (2.3).

Lemma 2.3 Suppose that Γ : E → E is continuous and has its inverse Γ−1 : E → E with

|Γ−1(x1) − Γ−1(x2)|E ≤ k1|x1 − x2|E for all x1, x2 ∈ E, (2.5)

where k1 > 0 is a constant. Furthermore, there is a constant k2 > 0 such that k1k2 < 1 and

|B(x1) − B(x2)|E ≤ k2|x1 − x2|E for all x1, x2 ∈ E. (2.6)

Let L : D ⊂ E → Y be a Fredholm operator with index zero, Ω ⊂ E is open bounded and
GΓ−1 : Ω → Y is L-condensing in Ω such that the following conditions hold:

(1) for every λ ∈ (0, 1), the equation

L(Γ(x) − λB(x)) = λG(x)

has no solution in ∂Ω;
(2) QG(Γ−1(x)) �= 0 for every x ∈ ker L ∩ ∂Ω;
(3) dB{JQGΓ−1, Ω ∩ ker L, 0} �= 0,

where the last number denotes the Brouwer degree at 0 ∈ ImQ. Then the equation

L(Γ(x) − B(x)) = G(x)

has a solution in Ω.
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Proof By Lemma 2.2, we see that the existence of solution to the equation

L(Γ(x) − λB(x)) = λG(x), λ ∈ (0, 1)

is equivalent to the existence of solution to the following equation:

x = Ψ(x, λ) := λB(Γ−1(x)) + JQG(Γ−1(x)) + λKP (I − Q)G(Γ−1(x))

+ P (x − λB(Γ−1(x)), λ ∈ (0, 1). (2.7)

From (2.5)–(2.6), we see

|B(Γ−1(x1)) − B(Γ−1(x2))|E ≤ k1k2|x1 − x2|E for all x1, x2 ∈ E,

which together with k1k2 < 1 implies that BΓ−1 : E → E is condensing. Furthermore, since
GΓ−1 : Ω → Y is L-condensing in Ω, we see that QGΓ−1 and KP (I−Q)GΓ−1 are all condensing
in Ω. It follows from (2.7) that the operator Ψ : Ω × [0, 1] → E is continuous, and for each
λ ∈ [0, 1], Ψ(λ, ·) : Ω → E is a condensing operator; also, Ψ(λ, x) is continuous with respect to
λ uniformly for x ∈ Ω. Bellow, we will show that for every λ ∈ [0, 1], the equation

x = Ψ(x, λ)

has no solution in ∂Ω. In fact, if there is a u ∈ E such that u = Ψ(u, 0), then from (2.7), we
have

u = JQG(Γ−1(u)) + P (u),

which gives u ∈ kerL. Therefore, by the assumption (2), u �∈ ∂Ω.

If there is a u ∈ ∂Ω such that

u = Ψ(u, 1),

then the equation L(Γ(x) − B(x)) = G(x) has a solution in Ω. So, we may assume that the
equation

x = Ψ(x, λ)

has no solution u ∈ ∂Ω for λ = 1.
For λ ∈ (0, 1), it is easy to see from the assumption (1) that the equation

x = Ψ(x, λ)

has no solution u ∈ ∂Ω. Thus, the operator Ψ(x, λ) is homotopy in Ω and, by homotopy
invariance, we have

deg(I − Ψ(·, 1), Ω, 0) = deg(I − Ψ(·, 0), Ω, 0) = deg(I − JQGΓ−1 − P, Ω, 0)

= deg(JQGΓ−1, kerL ∩ Ω, 0).

From the assumption (3), we see that

deg(I − Ψ(·, 1), Ω, 0) �= 0.

By using the normalization of topology degree associated to condensing field, we see that the
equation x = Ψ(x, 1) has a solution in Ω.
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In order to investigate the existence of periodic solutions to (1.3), we should give some
definitions. For a = (a1, a2, . . . , an)� ∈ C

n being a complex vector, |a| = (
∑n

i=1 |ai|2)1/2,
and for a complex matrix H = [hij ]n×n, |H| = (

∑n
i=1

∑n
j=1 |hij |2)1/2. Let Pω = {x : x ∈

C(R, Rn), x(t + ω) ≡ x(t) for all t ∈ R} with the norm |ϕ|Pω
= maxt∈[0,ω] |ϕ(t)|. Clearly, Pω is

a Banach space.
In order to study the existence of periodic solutions for (1.3), we should study some prop-

erties of the following operator:

A : Pω → Pω, [Ax](t) := x(t) − Cx(t − τ ), (2.8)

where C and τ are defined as same as the ones in (1.3).
Since C is an n-order real matrix, it is easy to see that there must be a complex matrix U

such that

UCU−1 = Eλ = diag(J1, J2, . . . , Jm), (2.9)

where

Ji =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λi 1 0 0 · · · 0

0 λi 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 λi 1

0 0 0 · · · 0 λi

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ni×ni

with
∑m

i=1 ni = n, {λi : i = 1, 2, . . . , m} is the set of eigenvalues of matrix C.

Lemma 2.4 ([18]) Suppose that the matrix U and the operator A is defined by (2.8) and (2.9),
respectively, and for all i = 1, 2, . . . , m, |λi| �= 1. Then A has its inverse A−1 : Pω → Pω with
the following properties:

(1) ‖A−1‖ ≤ |U−1‖U |σ0, where σ0 =
∑m

i=1

∑ni

j=1

∑j
k=1

1
|1−|λi‖k ;

(2) For all e ∈ Cω,
∫ ω

0
|[A−1e](s)|pds ≤ σ1|U−1|p|U |p ∫ ω

0
|e(s)|pds, p ∈ [1, +∞), where

σ1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ m∑

i=1

ni∑

j=1

( j∑

k=1

1
|1 − |λi‖k

)2]1/2

, p = 1,

n
2−p
2

[ m∑

i=1

ni∑

j=1

( j∑

k=1

1
|1 − |λi‖k

)q] p
q

, p ∈ (1, 2),

m∑

i=1

ni∑

j=1

( j∑

k=1

1
|1 − |λi‖k

)2

, p = 2,

[ m∑

i=1

ni∑

j=1

( j∑

k=1

1
|1 − |λi‖k

)q] p
q

, p ∈ (2, +∞)

and q > 1 is a constant with 1
p + 1

q = 1;
(3) A−1(Rn) = R

n.

3 Main Results

In this section, we will apply Lemmas 2.3 and 2.4 to study the existence of periodic solutions
for (1.3).
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Theorem 3.1 Suppose that the operator A and the matrix U is defined by (2.8) and (2.9),
respectively, and for all i = 1, 2, . . . , m, |λi| �= 1. Furthermore, b(t, ϕ) is satisfied with

|b(t, ϕ1) − b(t, ϕ2)|
≤ l max

θ∈[−τ,0]
|ϕ1(θ) − ϕ2(θ)| for all t ∈ [0, ω] and ϕ1, ϕ2 ∈ C([−τ, 0], Rn), (3.1)

where l ∈ (0, +∞) is a constant with

l|U−1‖U |
m∑

i=1

ni∑

j=1

j∑

k=1

1
|1 − |λi‖k

< 1. (3.2)

If there is a constant ρ > 0 such that all the following conditions hold:
(D1) For each λ ∈ (0, 1), the equation

d2

dt2
(x(t) − Cx(t − τ ) − λb(t, xt)) = λf(t, xt) (3.3)

has no solution on ∂Ωρ, where Ωρ = {x ∈ Pω : ‖x‖Pω
< ρ};

(D2) The equation

Δ(a) :=
1
ω

∫ ω

0

f(s, A−1a)ds = 0

has no solution on ∂Bρ, where Bρ = {x ∈ R
n : |x| < ρ};

(D3) The Brouwer degree
deg{Δ, Bρ, 0} �= 0.

Then (1.3) has at least one ω-periodic solution in Ωρ.

Proof In order to use Lemma 2.3, set E = Y = Pω,

L : D(L) ⊂ Pω → Pω, (Lx)(t) = x′′(t),

where D(L) = P 2
ω,

B : Pω → Pω, (Bx)(t) = b(t, xt),

Γ : Pω → Pω, [Γx](t) ≡ (Ax)(t) = x(t) − Cx(t − τ ),

and

G : Pω → Pω, (Gx)(t) = f(t, xt). (3.4)

Clearly, (3.1) is converted to

L[(Ax)(t) − λ(Bx)(t)] = λ(Gx)(t). (3.5)

It is easy to see that ker L = R
n and ImL = {y ∈ Pω :

∫ ω

0
y(s)ds = 0}. Thus, dim kerL =

dim Pω

ImL = n < +∞, which implies that L is a Fredholm operator with index zero. Furthermore,
by using Lemma 2.4, we have that A has its inverse A−1 : Pω → Pω with

‖A−1‖ ≤ |U−1‖U |
m∑

i=1

ni∑

j=1

j∑

k=1

1
|1 − |λi‖k

,

i.e.,

‖A−1(x1) − A−1(x2)‖Pω
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= ‖A−1(x1 − x2)‖Pω

≤ |U−1‖U |
m∑

i=1

ni∑

j=1

j∑

k=1

1
|1 − |λi‖k

‖x1 − x2‖Pω
for all x1, x2 ∈ Pω;

and by using (3.1), we see

‖B(x) − B(y)‖Pω
= ‖b(t, xt) − b(t, yt)‖Pω

= max
t∈[0,ω]

|b(t, xt) − b(t, yt)|
≤ l max

t∈[0,ω]
max

θ∈[−τ,0]
|xt(θ) − yt(θ)| = l max

t∈[0,ω]
max

θ∈[−τ,0]
|x(t + θ) − y(t + θ)|

= l‖x − y‖Pω
for all x, y ∈ Pω,

which together with (3.2) yields that the conditions (2.5) and (2.6) in Lemma 2.3 hold. This
implies that BA−1 : Pω → Pω is condensing.

Define P : Pω → Pω, [Px](t) = x(0) for all t ∈ R and Q : Pω → Pω, [Qy](t) = 1
ω

∫ ω

0
y(s)ds.

Obviously, P and Q are projections and

Pω = kerP ⊕ ker L, Pω = ImL ⊕ ImQ.

Clearly, if set J : ImQ → ker L, J(x) = x, i.e., J : R
n → R

n, J(x) = x, then L+J−1P : D(L) ⊂
Pω → Pω has it’s inverse (L + J−1P )−1 : Pω → D(L). In view of J−1Px ≡ 0 for all x ∈ ker P ,
we see TL = (L + J−1P )−1 = KP : ImL → ker P ∩ D(L). By calculating, we have

KP : ImL → kerP ∩ D(L), [KP y](t) =
∫ ω

0

R(t, s)y(s)ds, (3.6)

where

R(t, s) =

⎧
⎪⎨

⎪⎩

(t − ω)s
ω

, 0 ≤ s < t ≤ ω,

(s − ω)t
ω

, 0 ≤ t < s ≤ ω.

By (3.1), it is easy to see that KP (I − Q)GA−1 : Ωρ ⊂ Pω → ker P ∩ D(L) and QGA−1 :
Ωρ ⊂ Pω → Im Q ⊂ Pω are all completely continuous operators. So GA−1 is L-condensing on
Ωρ.

In view of

JQGΓ−1 : Pω → R
n, (JQGΓ−1)(x) =

1
ω

∫ ω

0

f(s, (A−1x)s)ds,

which together with conclusion (3) of Lemma 2.4 (A−1(Rn) = R
n) yields that

Δ(a) :=
1
ω

∫ ω

0

f(s, A−1a)ds = (JQGΓ−1)(a) for all a ∈ R
n

and

deg(Δ, Bρ, 0} = deg(JQGΓ−1, kerL ∩ Ωρ, 0).

It follows from the assumption (D3) that the assumptions (3) in Lemma 2.3 is satisfied. Fur-
thermore, from the fact that the assumptions (D1)–(D2) are satisfied, we can verify that the
assumptions (1)–(2) in Lemma 2.3 hold. Thus, by using Lemma 2.3, we see that (3.1) has at
least one ω-periodic solution in Ωρ.
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For illustrating the application of Theorem 3.1, now, we consider the following equation:

d2

dt2
(x(t) − Cx(t − τ ) − s(x(t − μ))) = g(x(t − γ)) + e(t), (3.7)

where τ, μ and γ are positive constants, C = [cij ]n×n is a real matrix, g, s ∈ C(Rn, Rn), and
e ∈ C(R, Rn) with e(t + ω) ≡ e(t). Let μM = max{√μ1,

√
μ2, . . . ,

√
μn}, where {μi : i =

1, 2, . . . , n} is the set of eigenvalues of matrix CC�. Clearly, (3.7) is a special type of (3.1) for
b(t, xt) = s(xt(−μ)) = s(x(t − μ)) and f(t, xt) = g(xt(−γ)) + e(t) = g(x(t − γ)) + e(t).

For estimating a prior bounds of periodic solutions to (3.7), we give the following results.

Lemma 3.2 ([21]) Let τ ∈ C(R, R) with τ (t + ω) ≡ τ (t) and τ (t) ∈ [0, ω] or τ (t) ∈ [−ω, 0]
for all t ∈ R. Suppose α0 = maxt∈[0,ω] |τ (t)| and u ∈ C1(R, Rn) with u(t + ω) ≡ u(t). Then

∫ ω

0

|u(t) − u(t − τ (t))|pdt ≤ αp
0

∫ ω

0

|u′(t)|pdt, p ∈ (1, +∞).

Lemma 3.3 ([20]) Let

Γλ : Pω → Pω, [Γλx](t) := x(t) − Cx(t − τ ) − λs(x(t − μ), λ ∈ (0, 1). (3.8)

Suppose that the following conditions are satisfied:
(A1) the nonlinear function s is satisfied with s(0) = 0 and |s(x1) − s(x2)| ≤ l|x1 − x2| for

all x1, x2 ∈ R
n, where l ∈ (0, +∞) is a constant;

(A2) for all i = 1, 2, . . . , m, |λi| �= 1, where λi, i = 1, 2, . . . , m is determined by (2.9);
(A3) l|U−1‖U |∑m

i=1

∑ni

j=1

∑j
k=1

1
|1−|λi‖k < 1.

Then for each λ ∈ (0, 1), operator Γλ has a unique inverse Γ−1
λ : Pω → Pω with the following

properties:

(1) ‖Γ−1
λ e‖Pω

≤ |U−1‖U|∑ m
i=1

∑ni
j=1

∑ j
k=1

1
|1−|λi‖k

1−l|U−1‖U|∑ m
i=1

∑ ni
j=1

∑ j
k=1

1
|1−|λi‖k

‖e‖Pω
for all e ∈ Pω and λ ∈ (0, 1);

(2) for each λ ∈ (0, 1), Γ−1
λ is continuous in Pω.

Lemma 3.4 Suppose that the assumptions (A1)–(A3) in Lemma 3.3 hold, and Γλx ∈ C1
ω for

all λ ∈ (0, 1). If |U‖U−1|lσ1/p
1 < 1, then

(∫ ω

0

|x(t) − x(t − γ)|pdt

)1/p

≤ |γ‖U‖U−1|σ1/p
1

1 − l|U‖U−1|σ1/p
1

(∫ ω

0

|(Γλx)′(t)|pdt

)1/p

, λ ∈ (0, 1),

where constant σ1 and matrix U are determined by Lemma 2.4, γ, p are constants with |γ| ∈
(0, ω) and p ∈ (1, +∞).

Proof From (3.8), we see for each λ ∈ (0, 1),

x(t) − Cx(t − τ ) − λs(x(t − μ)) = (Γλx)(t)

and

x(t − γ) − Cx(t − τ − γ) − λs(x(t − μ − γ)) = (Γλx)(t − γ),

which results in

x(t) − x(t − γ) − C(x(t − τ ) − x(t − τ − γ))

= (Γλx)(t) − (Γλx)(t − γ) + λ[s(x(t − μ)) − s(x(t − μ − γ))].
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By using Lemma 2.4, we have
(∫ ω

0

|x(t) − x(t − γ)|pdt

)1/p

≤ |U‖U−1|σ1/p
1

{[∫ ω

0

|(Γλx)(t) − (Γλx)(t − γ)|pdt

]1/p

+λ

[ ∫ ω

0

|s(x(t − μ)) − s(x(t − μ − γ))|pdt

]1/p}

≤ |U‖U−1|σ1/p
1

[∫ ω

0

|(Γλx)(t) − (Γλx)(t − γ)|pdt

]1/p

+λl|U‖U−1|σ1/p
1

(∫ ω

0

|x(t) − x(t − γ)|pdt

)1/p

.

So
(∫ ω

0

|x(t) − x(t − γ)|pdt

)1/p

≤ |U‖U−1|σ1/p
1

1 − |U‖U−1|σ1/p
1

[∫ ω

0

|(Γλx)(t) − (Γλx)(t − γ)|pdt

]1/p

.

Since Γλx ∈ P 1
ω, by using Lemma 3.2, we see

(∫ ω

0

|x(t) − x(t − γ)|pdt

)1/p

≤ |γ‖U‖U−1|σ1/p
1

1 − l|U‖U−1|σ1/p
1

(∫ ω

0

|(Γλx)′(t)|pdt

)1/p

for all λ ∈ (0, 1).

Lemma 3.5 ([14]) If q : R → R
n is continuous differentiable on R and a > 0 is a constant,

then for every t ∈ R the following inequality holds :

|q(t)| ≤ (2a)−
1
2

( ∫ t+a

t−a

|q(s)|2ds

)1/2

+
(

a

2

) 1
2
( ∫ t+a

t−a

|q′(s)|2ds

)1/2

.

Theorem 3.6 Suppose that |τ − γ| < ω and the assumptions (A1)–(A3) in Lemma 3.3
hold. Furthermore, there are positive constants l0 and l1 such that the following conditions
are satisfied:

(S1) x�C�g(x) ≤ −l0|x|2 and |g(x)| ≤ l1|x| for all x ∈ R
n;

(S2) l0 > l1 + ll1, |U‖U−1|lσ1/2
1 < 1 and

μ2
M l21|U |2|U−1|2σ1|τ − γ|2

(l0 − l1 − ll1)(1 − l|U‖U−1|σ1/2
1 )2

< 1,

where l > 0 is determined by the assumption (A1) in Lemma 3.3 and σ1 is determined in
Lemma 2.4 for the case of p = 2.

Then (3.7) has at least one ω-periodic solution.

Proof Suppose that x ∈ Pω is an arbitrary solution to the equation

d2[Γλy](t)
dt2

= λg(y(t − γ)) + λe(t), λ ∈ (0, 1),

i.e.,

d2[Γλx](t)
dt2

= λg(x(t − γ)) + λe(t), λ ∈ (0, 1). (3.9)
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Multiplying both sides of (3.9) with [Γλx]�(t) and integrating it on the interval [0, ω], we have
∫ ω

0

|[Γλx]′(t)|2dt = λ

∫ ω

0

(x�(t − τ )C� − x�(t) + λs�(x(t − τ )))g(x(t− γ))dt

− λ

∫ ω

0

(x�(t) − x�(t − τ )C� − λs�(x(t − τ )))e(t)dt. (3.10)

From the assumption (S2), we have
∫ ω

0

x�(t − τ )C�g(x(t − γ))dt

=
∫ ω

0

x�(t − γ)C�g(x(t − γ))dt +
∫ ω

0

(x�(t − τ ) − x�(t − γ))C�g(x(t − γ))dt

≤ −l0

∫ ω

0

|x(t − γ)|2dt +
(∫ ω

0

|C�g(x(t − γ)|2dt

)1/2 (∫ ω

0

|x(t − τ ) − x(t − γ)|2dt

)1/2

≤ −l0

∫ ω

0

|x(t)|2dt + μM l1

(∫ ω

0

|x(t)|2dt

)1/2 (∫ ω

0

|x(t) − x(t + τ − γ)|2dt

)1/2

.

It follows from Lemma 3.4
∫ ω

0

x(t − τ )C�g(x(t − γ))dt

≤ −l0

∫ ω

0

|x(t)|2dt +
μM l1|τ − γ‖U‖U−1|σ1/2

1

1 − l|U‖U−1|σ1/2
1

(∫ ω

0

|x(t)|2dt

)1/2 (∫ ω

0

|(Γλx)′(t)|2dt

)1/2

.

Moreover, by using the assumptions (A1) and (S1), we have
∫ ω

0

|x�(t)g(x(t − γ))|dt ≤ l1

∫ ω

0

|x(t)|2dt

and

λ

∫ ω

0

|s�(x(t − μ))g(x(t− γ))|dt = λ

∫ ω

0

|s�(x(t − μ))− s(0)‖g(x(t− γ))|dt ≤ l1l

∫ ω

0

|x(t)|2dt.

Substituting the above three formulas into (3.10), we get
∫ ω

0

|[Γλx]′(t)|2dt + λ(l0 − l1 − l1l)
∫ ω

0

|x(t)|2dt

≤ λμM l1|τ − γ‖U‖U−1|σ1/2
1

1 − l|U‖U−1|σ1/2
1

(∫ ω

0

|x(t)|2dt

)1/2 (∫ ω

0

|(Γλx)′(t)|2dt

)1/2

+ λ

∫ ω

0

|(x�(t) − x�(t − τ )C� − λs�(x(t − τ )))e(t)|dt

≤ λμM l1|τ − γ‖U‖U−1|σ1/2
1

1 − l|U‖U−1|σ1/2
1

(∫ ω

0

|x(t)|2dt

)1/2 (∫ ω

0

|(Γλx)′(t)|2dt

)1/2

+ λ(1 + μM + l)
(∫ ω

0

|x(t)|2dt

)1/2 (∫ ω

0

|e(t)|2dt

)1/2

, (3.11)

which results in
(∫ ω

0

|x(t)|2dt

)1/2

≤ μM l1|τ − γ‖U‖U−1|σ1/2
1

(1 − l|U‖U−1|σ1/2
1 )(l0 − l1 − ll1)

(∫ ω

0

|(Γλx)′(t)|2dt

)1/2
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+
1 + μM + l

l0 − l1 − ll1

(∫ ω

0

|e(t)|2dt

)1/2

. (3.12)

It follows from (3.11) that
∫ ω

0

|[Γλx]′(t)|2dt

≤ μ2
M l21|τ − γ|2|U |2|U−1|2σ1

(1 − l|U‖U−1|σ1/2
1 )2(l0 − l1 − ll1)

∫ ω

0

|[Γλx]′(t)|2dt

+
2μM l1|τ − γ‖U‖U−1|σ1/2

1 (1 + μM + l)

(1 − l|U‖U−1|σ1/2
1 )(l0 − l1 − ll1)

(∫ ω

0

|e(t)|2dt

)1/2 (∫ ω

0

|[Γλx]′(t)|2dt

)1/2

+
(1 + μM + l)2

l0 − l1 − ll1

∫ ω

0

|e(t)|2dt,

which together with the condition of

μ2
M l21|τ − γ|2|U |2|U−1|2σ1

(1 − l|U‖U−1|σ1/2
1 )2(l0 − l1 − ll1)

< 1

yields that there is a constant M0 > 0 (independent of λ and x) such that
(∫ ω

0

|[Γλx]′(t)|2dt

)1/2

≤ M0 for all λ ∈ (0, 1). (3.13)

Substituting (3.13) into (3.12), we have
(∫ ω

0

|x(t)|2dt

)1/2

≤ M1,

where M1 > 0 is a constant independent of λ and x; and by(3.8), we have
(∫ ω

0

|[Γλx](t)|2dt

)1/2

=
(∫ ω

0

|(x(t) − Cx(t − τ ) − s(x(t − γ)))�(x(t) − Cx(t − τ ) − s(x(t − γ)))|dt

)1/2

≤ (1 + μ
1/2
M + l1/2)2M1 for all λ ∈ (0, 1). (3.14)

From (3.13) and (3.14), and by using Lemma 3.5, we see that there is a constant M̃2 > 0
(independent of λ and x) such that

‖Γλx‖Pω
≤ ω− 1

2

(∫ ω

0

|[Γλx](t)|2dt

) 1
2

+
(

ω

4

) 1
2

(∫ ω

0

|[Γλx]′(t)|2dt

) 1
2

≤ M̃2 for all λ ∈ (0, 1).

By using Lemma 3.3 again, we have

‖x‖Pω
= ‖Γ−1

λ Γλx‖Pω

≤
|U−1‖U |∑m

i=1

∑ni

j=1

∑j
k=1

1
|1−|λi‖k

1 − l|U−1‖U |∑m
i=1

∑ni

j=1

∑j
k=1

1
|1−|λi‖k

‖Γλx‖Pω

:= M2, (3.15)

where M2 is a constant independent of λ and x.
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Now, let a ∈ R
n such that Δ(a) = 1

ω

∫ ω

0
[g(A−1(a)) + e(t)]dt = 0. Then

g(A−1(a)) + ē = 0.

So
(A−1(a))�C�g(A−1(a)) = −(A−1(a))�C�ē,

where ē = 1
ω

∫ ω

0
e(s)ds. By using the assumption (S1), we see

l0|A−1(a)|2 ≤ −(A−1(a))�C�g(A−1(a)) = (A−1(a))�C�ē ≤ μM |A−1(a)‖ē|,
which leads to

|A−1(a)| ≤ μM

l0
|ē|, (3.16)

i.e.,

|a| = |[AA−1](a)| = |(I − C)A−1](a)| ≤ 1 + μM

l0
μM |ē|.

If set ρ = max{ 1+μM

l0
μM |ē|, M2} + 1, then it follows from (3.15)–(3.16) that the assump-

tions (D1) and (D2) in Theorem 3.1 are satisfied. The reminder is to verify the assump-
tion (D3) of Theorem 3.1. From the assumption (S1), we see x�C�g(x) ≤ −l0|x|2, i.e.,
l0|x|2 ≤ |x�C�g(x)| ≤ l1|Cx‖x|. So

|Cx| ≥ l0
l1
|x|,

which implies that matrix C is nonsingular. Take

H : Bρ × [0, 1] → R
n, H(x, μ) = −μC�A−1x + (1 − μ)g(A−1(x)) + ē.

Then

(A−1x)�CH(x, μ)

= −μ(A−1x)�CC�A−1x + (1 − μ)(A−1x)�C�g(A−1x) + (1 − μ)(A−1x)�C�ē

≤ (1 − μ)(A−1x)�C�g(A−1x) + (1 − μ)(A−1x)�C�ē

≤ −(1 − μ)l0|A−1x|2 + (1 − μ)μM |ē‖A−1x|
for all (x, μ) ∈ Bρ × [0, 1]. Clearly, if x ∈ ∂Bρ, then from (2.8), we have A−1x = (I − C)−1x,
i.e., |A−1x| + |CA−1x| ≥ |x| = ρ, which results in

|A−1x| ≥ ρ

1 + μM
.

In view of ρ = max{ 1+μM

l0
μM |ē|, M2} + 1, we see that

(A−1x)�CH(x, μ)

< −(1 − μ)l0|A−1x|2 + (1 − μ)μM |ē‖A−1x|
< 0

for all (x, μ) ∈ Bρ × [0, 1]. This together with the fact that C and (I − C) are nonsingular
implies that

deg{Δ, Bρ, 0} = deg{H(·, 0), Bρ, 0} = deg{H(·, 1), Bρ, 0} = deg{−CA−1, Bρ, 0}
= deg{−C�(I − C)−1, Bρ, 0} �= 0,
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which follows that the assumption (D3) holds. Thus, by using Theorem 3.1, we see that (3.7)
has a ω-periodic solution u0(t).

For example, we consider the following equation

d2

dt2
(x(t) − 4x(t − τ ) − s(x(t − τ ))) = g(x(t − γ)) + e(t), (3.17)

where x(t) ∈ R, τ, γ are positive constants, s(x) = |x|
1+|x| , g(x) = − x3

1+x2 . e(t) = sin t. Clearly,
we can chose λ1 = 4 and l = 1 such that the assumptions (A1)–(A3) in Lemma 3.3 hold.
Furthermore, we can chose l0 = 4 and l1 = 1 such that x�C�g(x) ≤ −l0|x|2 and |g(x)| ≤ l1|x|
for all x ∈ R. This implies that the assumption (S1) of Theorem 3.6 holds. Since σ1 = 1

9 ,
μM = 4, l0 − l1 − ll1 = 2 > 0 and 1 − |U‖U−1lσ

1/2
1 = 2

3 > 0, we see that if |τ − γ| <
√

2
2 , then

μ2
M l21|U |2|U−1|2σ1|τ − γ|2

(l0 − l1 − ll1)(1 − l|U‖U−1|σ1/2
1 )2

< 1.

Thus, by using Theorem 3.2, we obtain that (3.17) has a 2π-periodic solution u0(t).

Remark 3.7 Since s(x) = |x|
1+|x| is nonlinear and may not be differentiable in t, the result of

above example cannot be obtained by [2, 8, 12, 16–19, 23].

Remark 3.8 From (3.17), we see that the operator B : P2π → P2π, [Bx](t) = 4x(t − τ ) −
|x(t−τ)|

1+|x(t−τ)| is not condensing. So (3.17) cannot be dealt with by methods employed in [7].
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