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1 Introduction

Topological dynamics is a branch of the theory of dynamical systems in which qualitative,
asymptotic properties of dynamical systems are studied, where a dynamical system is a phase
(or state) space X endowed with an evolution map T from X to itself. In this survey, we
require that the phase space X is a compact metric space and the evolution map T : X → X is
continuous.

The mathematical term chaos was first introduced by Li and Yorke in 1975 [69], where the
authors established a simple criterion on the existence of chaos for interval maps, known as
“period three implies chaos”. Since then, the study of chaos theory has played a big role in
dynamical systems, even in nonlinear science.

In common usage, “chaos” means “a state of disorder”. However, in chaos theory, the term
is defined more precisely. Various alternative, but closely related definitions of chaos have been
proposed after Li–Yorke chaos.

Although there is still no definitive, universally accepted mathematical definition of chaos
(in our opinion it is also impossible), most definitions of chaos are based on one of the following
aspects:

1. complex trajectory behavior of points, such as Li–Yorke chaos and distributional chaos;
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2. sensitivity dependence on initial conditions, such as Devaney chaos, Auslander–Yorke
chaos and Li–Yorke sensitivity;

3. fast growth of different orbits of length n, such as having positive topological entropy, or
its variants;

4. strong recurrence property, such as weakly mixing property and weakly mixing sets.
Since there are so many papers dealing with the chaos theory in topological dynamics, we

are not able to give a survey on all of them. We only can select those which we are familiar with,
and are closely related to our interest, knowledge and ability. As we said before it is impossible
to give a universe definition of chaos which covers all the features of the complex behaviors of a
dynamical system, it is thus important to know the relationships among the various definitions
of chaos. So we will focus on Li–Yorke chaos, Devaney chaos, distributional chaos, positive
topological entropy, weakly mixing sets, sensitivity and so on, and their relationships in this
survey. See [14, 85] for related surveys.

Now we outline the development of chaos theory for general topological dynamical systems
briefly. The notions of topological entropy and weak mixing were introduced by Adler et al. [1]
in 1965 and Furstenberg [25] in 1967 respectively. After the mathematical term of chaos by Li–
Yorke appearing in 1975, Devaney [19] defined a kind of chaos, known as Devaney chaos today,
in 1989 based on the notion of sensitivity introduced by Guckenheimer [35]. The implication
among them has attracted a lot of attention. In 1991, Iwanik [50] showed that weak mixing
implies Li–Yorke chaos. A breakthrough concerning the relationships among positive entropy,
Li–Yorke chaos and Devaney chaos came in 2002. In that year, it was shown by Huang and
Ye [46] that Devaney chaos implies Li–Yorke one by proving that a non-periodic transitive
system with a periodic point is Li–Yorke chaotic; Blanchard et al. [15] proved that positive
entropy also implies Li–Yorke chaos (we remark that the authors obtained this result using
ergodic method, and for a combinatorial proof see [53]). Moreover, the result also holds for
sofic group actions by Kerr and Li [54, Corollary 8.4].

In 1991, Xiong and Yang [109] showed that in a weakly mixing system there are considerably
many points in the domain whose orbits display highly erratic time dependence. It is known
that a dynamical system with positive entropy may not contain any weakly mixing subsystem.
Capturing a common feature of positive entropy and weak mixing, Blanchard and Huang [17]
in 2008 defined the notion of weakly mixing set and showed that positive entropy implies the
existence of weakly mixing sets which also implies Li–Yorke chaos. A further discussion along
the line will be appeared in a forthcoming paper by Huang et al. [41].

Distributional chaos was introduced in 1994 by Schweizer and Smı́tal [92], and there are at
least three versions of distributional chaos in the literature (DC1, DC2 and DC3). It is known
that positive entropy does not imply DC1 chaos [86] and Smı́tal conjectured that positive
entropy implies DC2 chaos. Observing that DC2 chaos is equivalent to so called mean Li–
Yorke chaos, recently Downarowicz [21] proved that positive entropy indeed implies DC2 chaos.
An alternative proof can be found in [40] by Huang et al.. We remark that both proofs use
ergodic theory heavily and there is no combinatorial proof at this moment.

This survey will be organized as follows. In Section 2, we provide basic definitions in topo-
logical dynamics. Li–Yorke chaos, sensitivity and chaos in transitive systems will be discussed
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in Sections 3–5. In Section 6, we review the results on distributional chaos. In the following
two sections, we focus on weakly mixing sets and chaos in the induced spaces.

2 Preliminaries

In this section, we provide some basic notations, definitions and results which will be used later
in this survey.

Denote by N (Z+, Z, respectively) the set of all positive integers (non-negative integers,
integers, respectively). The cardinality of a set A is usually denoted by |A|.

Let X be a compact metric space. A subset A of X is called a perfect set if it is a closed
set with no isolated points; a Cantor set if it is homeomorphic to the standard middle third
Cantor set; a Mycielski set if it is a union of countably many Cantor sets. For convenience, we
restate here a version of Mycielski’s theorem (see [79, Theorem 1]) which we shall use.

Theorem 2.1 (Mycielski Theorem) Let X be a perfect compact metric space. If R is a dense
Gδ subset of Xn, then there exists a dense Mycielski set K ⊂ X such that for any distinct n

points x1, x2, . . . , xn ∈ K, the tuple (x1, x2, . . . , xn) is in R.

2.1 Topological Dynamics

By a (topological) dynamical system, we mean a pair (X, T ), where X is a compact metric space
and T : X → X is a continuous map. The metric on X is usually denoted by d. One can think
of X as a state space for some system, and T as the evolution law of some discrete autonomous
dynamics on X: if x is a point in X, denoting the current state of a system, then Tx can
be interpreted as the state of the same system after one unit of time has elapsed. For every
non-negative integer n, we can define the iterates Tn : X → X as T 0 = id the identity map on
X and Tn+1 = Tn ◦T . One of the main topics of study in dynamical systems is the asymptotic
behaviour of Tn as n → ∞.

Note that we always assume that the state space X is not empty. If the state space X

contains only one point, then we say that the dynamical system on X is trivial, because in this
case the unique map on X is the identity map.

For any n ≥ 2, the n-th fold product of (X, T ) is denoted by (Xn, T (n)), where Xn =
X × X × · · · × X (n-times) and T (n) = T × T × · · · × T (n-times). We set the diagonal of Xn

as Δn = {(x, x, . . . , x) ∈ Xn : x ∈ X}, and set Δ(n) = {(x1, x2, . . . , xn) ∈ Xn : there exist 1 ≤
i < j ≤ n such that xi = xj}.

The orbit of a point x in X is the set Orb(x, T ) = {x, Tx, T 2x, . . . }; the ω-limit set of x,
denoted by ω(x, T ), is the limit set of the orbit of x, that is,

ω(x, T ) =
∞⋂

n=1

{T ix : i ≥ n}.

A point x ∈ X is called recurrent if there exists an increasing sequence {pi} in N such that
limi→∞ T pix = x. Clearly, x is recurrent if and only if x ∈ ω(x, T ).

If Y is a non-empty closed invariant (i.e., TY ⊂ Y ) subset of X, then (Y, T ) is also a
dynamical system, we call it as a subsystem of (X, T ). A dynamical system (X, T ) is called
minimal if it contains no proper subsystems. A subset A of X is minimal if (A, T ) forms a
minimal subsystem of (X, T ). It is easy to see that a non-empty closed invariant set A ⊂ X
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is minimal if and only if the orbit of every point of A is dense in A. A point x ∈ X is called
minimal or almost periodic if it belongs to a minimal set.

A dynamical system (X, T ) is called transitive if for every two non-empty open subsets U

and V of X there is a positive integer n such that TnU ∩ V 
= ∅; totally transitive if (X, Tn)
is transitive for all n ∈ N; weakly mixing if the product system (X × X, T × T ) is transitive;
strongly mixing if for every two non-empty open subsets U and V of X there is N > 0 such
that TnU ∩ V 
= ∅ for all n ≥ N . Any point with dense orbit is called a transitive point. In a
transitive system the set of all transitive points is a dense Gδ subset of X and we denote it by
Trans(X, T ). For more details related to transitivity see [57].

Let (X, T ) be a dynamical system. A pair (x, y) of points in X is called asymptotic if
limn→∞ d(Tnx, Tny) = 0; proximal if lim infn→∞ d(Tnx, Tny) = 0; distal if lim infn→∞ d(Tnx,

Tny) > 0. The system (X, T ) is called proximal if any two points in X form a proximal pair;
distal if any two distinct points in X form a distal pair.

Let (X, T ) and (Y, S) be two dynamical systems. If there is a continuous surjection π : X →
Y which intertwines the actions (i.e., π ◦ T = S ◦ π), then we say that π is a factor map, (Y, S)
is a factor of (X, T ) or (X, T ) is an extension of (Y, S). The factor map π is almost one-to-one
if there exists a residual subset G of X such that π−1(π(x)) = {x} for any x ∈ G.

In 1965, Adler et al. introduced topological entropy in topological dynamics [1]. Let Co
X be

the set of finite open covers of X. Given two open covers U and V , their join is the cover

{U ∩ V : U ∈ U , V ∈ V}.
We define N(U ) as the minimum cardinality of subcovers of U . The topological entropy of T

with respect to U is

htop(T,U) = lim
N→∞

1
N

log N

( N−1∨

i=0

T−iU
)

.

The topological entropy of (X, T ) is defined by

htop(T ) = sup
U∈Co

X

htop(T,U).

We refer the reader to [28, 103] for more information on topological entropy, and [31] for a
survey of local entropy theory.

2.2 Furstenberg Family

The idea of using families of subsets of Z+ when dealing with dynamical properties of maps
was first used by Gottschalk and Hedlund [34], and then further developed by Furstenberg [26].
For a systematic study and recent results, see [2, 43, 47, 59, 93, 108]. Here we recall some basic
facts related to Furstenberg families.

A Furstenberg family (or just family) F is a collection of subsets of Z+ which is upwards
hereditary, that is, if F1 ∈ F and F1 ⊂ F2 then F2 ∈ F . A family F is proper if N ∈ F and
∅ 
∈ F . If F1 and F2 are families, then we define

F1 · F2 = {F1 ∩ F2 : F1 ∈ F1, F2 ∈ F2}.
If F is a family, the dual family of F , denoted by κF , is the family

{F ⊂ N : F ∩ F ′ 
= ∅, ∀F ′ ∈ F}.
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We denote by Finf the family of infinite subsets of N. The dual family of Finf is just the
collection of co-finite subsets of Z+, denoted by Fcf . A family F is called full if it is proper and
F · κF ⊂ Finf .

For a sequence {pi}∞i=1 in N, define the finite sums of {pi}∞i=1 as

FS{pi}∞i=1 =
{∑

i∈α

pi : α is a non-empty finite subset of N

}
.

A subset F of Z+ is called an IP-set if there exists a sequence {pi}∞i=1 in N such that FS{pi}∞i=1 ⊂
F . We denote by Fip the family of all IP-sets.

A subset F of Z+ is called thick if it contains arbitrarily long runs of positive integers, i.e.,
for every n ∈ N there exists some an ∈ Z+ such that {an, an + 1, . . . , an + n} ⊂ F ; syndetic if
it has bounded gaps, i.e., there is N ∈ N such that [n, n + N ] ∩ F 
= ∅ for every n ∈ Z+. The
families of all thick sets and syndetic sets are denoted by Ft and Fs, respectively. It is easy to
see that κFs = Ft.

Let (X, T ) be a dynamical system. For x ∈ X and a non-empty subset U of X, we define
the entering time set of x into U as

N(x, U) = {n ∈ Z+ : Tnx ∈ U}.

If U is a neighborhood of x, then we usually call N(x, U) the return time set of x into U .
Clearly, a point x is recurrent if and only if for every open neighborhood U of x, the return
time set N(x, U) is infinite. In general, we can define recurrence with respect to a Furstenberg
family.

Definition 2.2 Let (X, T ) be a dynamical system and F be a Furstenberg family. A point
x ∈ X is said to be F-recurrent if for every open neighborhood U of x, N(x, U) ∈ F .

It is well known that the following lemma holds (see, e.g., [2, 26]).

Lemma 2.3 Let (X, T ) be a dynamical system and x ∈ X. Then

1. x is a minimal point if and only if it is an Fs-recurrent point ;

2. x is a recurrent point if and only if it is an Fip-recurrent point.

For two non-empty subsets U and V of X, we define the hitting time set of U and V as

N(U, V ) = {n ∈ Z+ : TnU ∩ V 
= ∅}.

If U is a non-empty open subset of X, then we usually call N(U, U) the return time set of U .
Clearly, a dynamical system (X, T ) is transitive (resp. strongly mixing) if and only if for any
two non-empty open subsets U , V of X, the hitting time set N(U, V ) is infinite (resp. co-finite).

Definition 2.4 Let (X, T ) be a dynamical system and F be a family. We say that (X, T ) is

1. F-transitive if for any two non-empty open subsets U , V of X, N(U, V ) ∈ F ;

2. F-mixing if the product system (X × X, T × T ) is F-transitive.

Theorem 2.5 ([25]) Let (X, T ) be a dynamical system. Then (X, T ) is weakly mixing if and
only if it is Ft-transitive.
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3 Li–Yorke Chaos

The mathematical terminology “chaos” was first introduced in 1975 by Li and Yorke to describe
the complex behavior of trajectories. It turns out that it is the common feature of all known
definitions of chaos.

3.1 Li–Yorke Chaos and Its Relation with Topological Entropy

Following the idea in [69], we usually define the Li–Yorke chaos as follows.

Definition 3.1 Let (X, T ) be a dynamical system. A pair (x, y) ∈ X ×X is called scrambled
if

lim inf
n→∞ d(Tnx, Tny) = 0 and lim sup

n→∞
d(Tnx, Tny) > 0,

that is (x, y) is proximal but not asymptotic. A subset C of X is called scrambled if any two
distinct points x, y ∈ C form a scrambled pair. The dynamical system (X, T ) is called Li–Yorke
chaotic if there is an uncountable scrambled set in X.

It is worth to notice that the terminology “scrambled set” was introduced in 1983 by Smı́tal
in [95]. Note that we should assume that a scrambled set contains at least two points. We will
keep this convention throughout this paper.

In [69], Li and Yorke showed that

Theorem 3.2 If a continuous map f : [0, 1] → [0, 1] has a periodic point of period 3, then it
is Li–Yorke chaotic.

Definition 3.3 Let (X, T ) be a dynamical system. For a given positive number δ > 0, a pair
(x, y) ∈ X × X is called δ-scrambled, if

lim inf
n→∞ d(Tnx, Tny) = 0 and lim sup

n→∞
d(Tnx, Tny) > δ.

A subset C of X is δ-scrambled if any two distinct points x, y in C form a δ-scrambled pair. The
dynamical system (X, T ) is called Li–Yorke δ-chaotic, if there exists an uncountable δ-scrambled
set in X.

Note that the Auslander–Floyd system [7] is Li–Yorke chaotic, but for any δ > 0, there is
no uncountable δ-scrambled sets.

In [51], Janková and Smı́tal showed that, if a continuous map f : [0, 1] → [0, 1] has positive
topological entropy, then there exists a perfect δ-scrambled set for some δ > 0. A natural
question is that whether there exists a Li–Yorke chaotic map with zero topological entropy.
This was shown, independently, by Xiong [106] and Smı́tal [96] in 1986.

Theorem 3.4 There exists a continuous map f : [0, 1] → [0, 1], which is Li–Yorke chaotic but
has zero topological entropy.

In 1991, using Mycielski Theorem 2.1, Iwanik [50] showed that every weakly mixing system
is Li–Yorke chaotic.

Theorem 3.5 ([50]) If a non-trivial dynamical system (X, T ) is weakly mixing, then there
exists a dense Mycielski δ-scrambled subset of X for some δ > 0.

As already mentioned above, for interval maps positive topological entropy implies Li–Yorke
chaos. It used to be a long-standing open problem whether this also holds for general topological
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dynamical systems. In 2002, Blanchard et al. gave a positive answer by using ergodic theory
method.

Theorem 3.6 ([15]) If a dynamical system (X, T ) has positive topological entropy, then there
exists a Mycielski δ-scrambled set for some δ > 0.

In fact, we know from the proof of Theorem 3.6 that if (X, T ) has an ergodic invariant
measure which is not measurable distal then same conclusion holds. In 2007, Kerr and Li [53]
gave a new proof of Theorem 3.6 by using combinatorial method. First we recall the definition
of IE-tuples.

Definition 3.7 Let (X, T ) be a topological dynamical system and k ≥ 2. For a tuple Ã =
(A1, . . . , Ak) of subsets of X, we say that a subset J of Z+ is an independence set for Ã if for
any non-empty finite subset I of J , we have

⋂

i∈I

T−iAs(i) 
= ∅

for any s ∈ {1, . . . , k}I .
A tuple x̃ = (x1, . . . , xk) ∈ Xk is called an IE-tuple if for every product neighborhood

U1 × · · · × Uk of x̃ the tuple (U1, . . . , Uk) has an independence set of positive density.

The following theorem characterizes positive topological entropy and has many applications.
It was first proved by Huang and Ye using the notion of interpolating sets [49], and we state
it here using the notion of independence by Kerr and Li [53]. Recall for a dynamical system
(X, T ), a tuple (x1, . . . , xk) ∈ Xk is an entropy tuple if xi 
= xj for i 
= j and for any disjoint
closed neighborhoods Vi of xi, the open cover {V c

1 , . . . , V c
k } has positive entropy. When k = 2,

we call it an entropy pair. A subset A of X is an entropy set if any tuple of points in A with
pairwise different coordinates is an entropy tuple.

Theorem 3.8 ([49, 53]) Let (X, T ) be a dynamical system. Then a tuple on X is an entropy
tuple if and only if it is a non-diagonal IE-tuple. In particular, the system (X, T ) has zero
topological entropy if and only if every IE-pair is diagonal (i.e., all of its entries are equal).

By developing some deep combinatorial tools, Kerr and Li showed

Theorem 3.9 ([53]) Let (X, T ) be a dynamical system. Suppose that k ≥ 2 and x̃ =
(x1, . . . , xk) is a non-diagonal IE-tuple. For each 1 ≤ j ≤ k, let Aj be a neighborhood of
xj. Then there exists a Cantor set Zj ⊂ Aj for each j = 1, . . . , k such that the following hold :

1. every tuple of finite points in Z :=
⋃

j Zj is an IE-tuple ;
2. for all m ∈ N, distinct y1, . . . , ym ∈ Z and y′

1, . . . , y
′
m ∈ Z one has

lim inf
n→∞ max

1≤i≤m
d(Tnyi, y

′
i) = 0.

In particular, Z is δ-scrambled for some δ > 0.

Recently, Kerr and Li showed that Theorem 3.9 also holds for sofic group actions (see [54,
Corollary 8.4]).

3.2 Completely Scrambled Systems and Invariant Scrambled Sets

Definition 3.10 We say that a dynamical system (X, T ) is completely scrambled if the whole
space X is scrambled.
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It should be noticed that for any δ > 0, the whole space cannot be δ-scrambled [18].
Recall that a dynamical system (X, T ) is proximal if any two points in X form a proximal pair.
Clearly, every completely scrambled system is proximal. We have the following characterization
of proximal systems.

Theorem 3.11 ([6, 42]) A dynamical system (X, T ) is proximal if and only if it has a fixed
point which is the unique minimal point in X.

In 1997, Mai [73] showed that there are some completely scrambled systems on non-compact
spaces.

Theorem 3.12 Let X be a metric space uniformly homeomorphic to the n-dimensional open
cube In = (0, 1)n, n ≥ 2. Then there exists a homeomorphism f : X → X such that the whole
space X is a scrambled set of X.

In 2001, Huang and Ye [45] showed that on some compact spaces there are also some
completely scrambled systems.

Theorem 3.13 There are “many” compacta admitting completely scrambled homeomorphisms,
which include some countable compacta, the Cantor set and continua of arbitrary dimension.

Huang and Ye also mentioned in [45] that an example of completely scrambled transi-
tive homeomorphism is a consequence of construction of uniformly rigid proximal systems by
Katznelson and Weiss [52]. Recall that a dynamical system (X, T ) is uniformly rigid if

lim inf
n→∞ sup

x∈X
d(Tn(x), x) = 0.

Later in [46], they showed that every almost equicontinuous but not minimal system has a com-
pletely scrambled factor. These examples are not weakly mixing, so the existence of completely
scrambled weakly mixing homeomorphism is left open in [45]. Recently, Forýs et al. in [24]
constructed two kinds of completely scrambled systems which are weakly mixing, proximal and
uniformly rigid. The first possible approach is derived from results of Akin and Glasner [4]
by a combination of abstract arguments. The second method is obtained by modifying the
construction of Katznelson and Weiss from [52]. More precisely, we have the following result.

Theorem 3.14 ([24]) There are completely scrambled systems which are weakly mixing, prox-
imal and uniformly rigid.

On the other hand, Blanchard et al. [16] proved that any positive topological entropy system
cannot be completely scrambled by showing that there are “many” non-diagonal asymptotic
pairs in any dynamical system with positive topological entropy.

Theorem 3.15 ([16]) Let (X, T ) be a dynamical system and μ be an ergodic invariant measure
on (X, T ) with positive entropy. Then for μ-a.e. x ∈ X, there exists a point y ∈ X\{x} such
that (x, y) is asymptotic.

Recently in [44], Huang et al. generalized Theorem 3.15 to positive entropy G-systems
for certain countable, discrete, infinite left-orderable amenable groups G. We remark that the
following question remains open.

Problem 1 Let T be a homeomorphism on a compact metric space X. If for any two distinct
points x, y ∈ X, (x, y) is either Li–Yorke scrambled for T or Li–Yorke scrambled for T−1, does
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T have zero topological entropy?

Let S be a scrambled set of a dynamical system (X, T ). It is easy to see that for any n ≥ 1,
TnS is also a scrambled set of (X, T ). It is interesting to consider that whether a scrambled
set may be invariant under T . Since the space X is compact, if (x, f(x)) is scrambled for some
x ∈ X, then there is a fixed point in X. It is shown in [22] that

Theorem 3.16 Let f : [0, 1] → [0, 1] be a continuous map. Then f has positive topological
entropy if and only if fn has an uncountable invariant scrambled set for some n > 0.

In 2009, Yuan and Lü proved that

Theorem 3.17 ([112]) Let (X, T ) be a non-trivial transitive system. If (X, T ) has a fixed
point, then there exists a dense Mycielski subset K of X such that K is an invariant scrambled
set.

In 2010, Balibrea et al. studied invariant δ-scrambled sets and showed that

Theorem 3.18 ([9]) Let (X, T ) be a non-trivial strongly mixing system. If (X, T ) has a fixed
point, then there exist δ > 0 and a dense Mycielski subset S of X such that S is an invariant
δ-scrambled set.

They also conjectured in [9] that there exists a weakly mixing system which has a fixed
point but without invariant δ-scrambled sets. The authors in [24] found that the existence of
invariant δ-scrambled sets is relative to the property of uniform rigidity. It is shown in [24]
that a necessary condition for a dynamical system possessing invariant δ-scrambled sets for
some δ > 0 is not uniformly rigid, and this condition (with a fixed point) is also sufficient for
transitive systems.

Theorem 3.19 ([24]) Let (X, T ) be a non-trivial transitive system. Then (X, T ) contains a
dense Mycielski invariant δ-scrambled set for some δ > 0 if and only if it has a fixed point and
is not uniformly rigid.

Combining Theorems 3.14 and 3.19, the above mentioned conjecture from [9] has an af-
firmative answer. This is because by Theorem 3.14 there exist weakly mixing, proximal and
uniformly rigid systems which have a fixed point, but by Theorem 3.19 they do not have any
invariant δ-scrambled set.

As far as we know, whenever a dynamical system has been shown to be Li–Yorke chaotic
the proof implies the existence of a Cantor or Mycielski scrambled set. This naturally arises
the following problem:

Problem 2 If a dynamical system is Li–Yorke chaotic, dose there exist a Cantor scrambled
set?

Although we do not know the answer of Problem 2, there are severe restrictions on the
Li–Yorke chaotic dynamical systems without a Cantor scrambled set, if they exist (see [18]).
On the other hand, we have

Theorem 3.20 ([18]) If a dynamical system (X, T ) is Li–Yorke δ-chaotic for some δ > 0,
then it does have some Cantor δ-scrambled set.

The key point is that the collection of δ-scrambled pairs is a Gδ subset of X ×X, then one
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can apply the Mycielski Theorem to get a Cantor δ-scrambled set. But in general the collection
of scrambled pairs is a Bore set of X × X but may be not Gδ. By [99, Example 3.6] there
exists a dynamical system such that the collection of scrambled pairs is dense in X × X but
not residual.

4 Sensitive Dependence on Initial Conditions

We say that a dynamical system (X, T ) has sensitive dependence on initial conditions (or just
sensitive) if there exists some δ > 0 such that for each x ∈ X and each ε > 0 there is y ∈ X

with d(x, y) < ε and n ∈ N such that d(Tnx, Tny) > δ. The initial idea goes back at least
to Lorentz [72] and the phrase — sensitive dependence on initial conditions — was used by
Ruelle [88] to indicate some exponential rate of divergence of orbits of nearby points. As far
as we know the first to formulate the sensitivity was Guckenheimer [35], in his study on maps
of the interval (he required the condition to hold for a set of positive Lebesgue measure). The
precise expression of sensitivity in the above form was introduced by Auslander and Yorke [8].

4.1 Equicontinuity and Sensitivity

The opposite side of sensitivity is the notion of equicontinuity.

Definition 4.1 A dynamical system (X, T ) is called equicontinuous if for every ε > 0 there
exists some δ > 0 such that whenever x, y ∈ X with d(x, y) < δ, d(Tnx, Tny) < ε for n =
0, 1, 2, . . . , that is the family of maps {Tn : n ∈ Z+} is uniformly equicontinuous.

Equicontinuous systems have simple dynamical behaviors. It is well known that a dynamical
system (X, T ) with T being surjective is equicontinuous if and only if there exists a compatible
metric ρ on X such that T acts on X as an isometry, i.e., ρ(Tx, Ty) = ρ(x, y) for any x, y ∈ X.
See [74] for the structure of equicontinuous systems.

We have the following dichotomy result for minimal systems.

Theorem 4.2 ([8]) A minimal system is either equicontinuous or sensitive.

Equicontinuity can be localized in an obvious way.

Definition 4.3 Let (X, T ) be a dynamical system. A point x ∈ X is called an equicontinuous
point if for any ε > 0, there exists some δ > 0 such that d(x, y) < δ implies d(Tnx, Tny) <

ε for all n ∈ N. A transitive system is called almost equicontinuous if there exists some
equicontinuous point.

We have the following dichotomy result for transitive systems.

Theorem 4.4 ([3, 29]) Let (X, T ) be a transitive system. Then either
1. (X, T ) is almost equicontinuous, in this case the collection of equicontinuous points

coincides with the collection of transitive points ; or
2. (X, T ) is sensitive.

It is interesting that almost equicontinuity is closely related to the uniform rigid property
which was introduced by Glasner and Maon in [33] as a topological analogue of rigidity in
ergodic theory.

Theorem 4.5 ([29]) Let (X, T ) be a transitive system. Then it is uniformly rigid if and only
if it is a factor of an almost equicontinuous system. In particular, every almost equicontinuous
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system is uniformly rigid.

It is shown in [33] that every uniformly rigid system has zero topological entropy. Then by
Theorem 4.5 every almost equicontinuous system also has zero topological entropy.

4.2 n-sensitivity and Sensitive Sets

Among other things, Xiong [107] introduced a new notion called n-sensitivity, which says
roughly that in each non-empty open subset there are n distinct points whose trajectories
are apart from (at least for one common moment) a given positive constant pairwise.

Definition 4.6 Let (X, T ) be a dynamical system and n ≥ 2. The system (X, T ) is called n-
sensitive, if there exists some δ > 0 such that for any x ∈ X and ε > 0 there are x1, x2, . . . , xn ∈
B(x, ε) and k ∈ N satisfying

min
1≤i<j≤n

d(T kxi, T
kxj) > δ.

Proposition 4.7 ([107]) If a dynamical system (X, T ) is weakly mixing, then it is n-sensitive
for all n ≥ 2. Moreover, if a dynamical system (X, T ) on a locally connected space X is
sensitive, then it is n-sensitive for all n ≥ 2.

In [94], Shao et al. studied the properties of n-sensitivity for minimal systems, and showed
that n-sensitivity and (n + 1)-sensitivity are essentially different.

Theorem 4.8 ([94]) For every n ≥ 2, there exists a minimal system (X, T ) which is n-
sensitive but not (n + 1)-sensitive.

Recently, using ideas and results from local entropy theory, Ye and Zhang [111] and Huang
et al. [42] developed a theory of sensitive sets, which measures the “degree” of sensitivity both
in the topological and the measure-theoretical setting.

Definition 4.9 Let (X, T ) be a dynamical system. A subset A of X is sensitive if for any
n ≥ 2, any n distinct points x1, x2, . . . , xn in A, any neighborhood Ui of xi, i = 1, 2, . . . , n,
and any non-empty open subset U of X there exist k ∈ N and yi ∈ U such that T kyi ∈ Ui for
i = 1, 2, . . . , n.

It is shown in [111] that a transitive system is n-sensitive if and only if there exists a sensitive
set with cardinality n. Moreover, a dynamical system is weakly mixing if and only if the whole
space X is sensitive.

Theorem 4.10 ([111]) If a dynamical system is transitive, then every entropy set is also a
sensitive set. This implies that if a transitive system has positive topological entropy, then there
exists an uncountable sensitive set.

The number of minimal subsets is related to the cardinality of sensitive sets. For example,
it was shown in [111] that if a transitive system has a dense set of minimal points but is not
minimal, then there exists an infinite sensitive set. Moreover, if there are uncountable pairwise
disjoint minimal subsets, then there exists an uncountable sensitive set.

In 2011, Huang et al. got a fine structure of sensitive sets in minimal systems.

Theorem 4.11 ([42]) Let (X, T ) be a minimal dynamical system and π : (X, T ) → (Y, S) be
the factor map to the maximal equicontinuous factor of (X, T ). Then

1. each sensitive set of (X, T ) is contained in some π−1(y) for some y ∈ Y ;
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2. for each y ∈ Y , π−1(y) is a sensitive set of (X, T ).

Consequently, (X, T ) is n-sensitive, not (n+1)-sensitive, if and only if maxy∈Y #(π−1(y)) =
n.

4.3 Li–Yorke Sensitivity

A concept that combines sensitivity and Li–Yorke δ-scrambled pairs was proposed by Akin and
Kolyada in [6], which is called Li–Yorke sensitivity.

Definition 4.12 A dynamical system (X, T ) is called Li–Yorke sensitive if there exists some
δ > 0 such that for any x ∈ X and ε > 0, there is y ∈ X satisfying d(x, y) < ε such that

lim inf
n→∞ d(Tnx, Tny) = 0 and lim sup

n→∞
d(Tnx, Tny) > δ.

Let (X, T ) be a dynamical system and x ∈ X. The proximal cell of x is the set {y ∈ X :
(x, y) is proximal }. First, it was proved in [55] that for a weakly mixing (X, T ) the set of points
x at which the proximal cell is residual in X is itself residual in X. Later it was proved by
Furstenberg [26] that the proximal cell of every point is residual, provided that the system is
minimal and weakly mixing. Finally, Akin and Kolyada proved in [6] that in any weakly mixing
system the proximal cell of every point is residual. Note that the authors in [43] got more about
the structure of the proximal cells of F-mixing systems, where F is an Furstenberg family.

In [6], Akin and Kolyada also proved that

Theorem 4.13 ([6]) If a non-trivial dynamical system (X, T ) is weakly mixing, then it is
Li–Yorke sensitive.

See a survey paper [56] for more results about Li–Yorke sensitivity and its relation to other
concepts of chaos. But the following question remains open.

Problem 3 Are all Li–Yorke sensitive systems Li–Yorke chaotic?

4.4 Mean Equicontinuity and Mean Sensitivity

Definition 4.14 A dynamical system (X, T ) is called mean equicontinuous if for every ε > 0,
there exists some δ > 0 such that whenever x, y ∈ X with d(x, y) < δ,

lim sup
n→∞

1
n

n−1∑

i=0

d(T ix, T iy) < ε.

This definition is equivalent to the notion of mean-L-stability which was first introduced
by Fomin [23]. It is an open question if every ergodic invariant measure on a mean-L-stable
system has discrete spectrum [91]. The authors in [65] firstly gave an affirmative answer to this
question. See [27] for another approach to this question.

Theorem 4.15 ([65]) If a dynamical system (X, T ) is mean equicontinuous, then every ergodic
invariant measure on (X, T ) has discrete spectrum and hence the topological entropy of (X, T )
is zero.

Similarly, we can define the local version and the opposite side of mean equicontinuity.

Definition 4.16 Let (X, T ) be a dynamical system. A point x ∈ X is called mean equicon-
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tinuous if for every ε > 0, there exists some δ > 0 such that for every y ∈ X with d(x, y) < δ,

lim sup
n→∞

1
n

n−1∑

i=0

d(T ix, T iy) < ε.

A transitive system is called almost mean equicontinuous if there is at least one mean equicon-
tinuous point.

Definition 4.17 A dynamical system (X, T ) is called mean sensitive there exists some δ > 0
such that for every x ∈ X and every neighborhood U of x, there exists y ∈ U and n ∈ N such
that

lim sup
n→∞

1
n

n−1∑

i=0

d(T ix, T iy) > δ.

We have the following dichotomy for transitive systems and minimal systems.

Theorem 4.18 ([65]) If a dynamical system (X, T ) is transitive, then (X, T ) is either almost
mean equicontinuous or mean sensitive. In particular, if (X, T ) is a minimal system, then
(X, T ) is either mean equicontinuous or mean sensitive.

Recall that an almost equicontinuous system is uniformly rigid and thus has zero topological
entropy. The following Theorem 4.19 shows that an almost mean equicontinuous system behaves
quite differently.

Theorem 4.19 ([65]) In the full shift (Σ2, σ), every minimal subshift (Y, σ) is contained in
an almost mean equicontinuous subshift (X, σ).

Since it is well known that there are many minimal subshifts of (Σ2, σ) with positive topo-
logical entropy, an immediate corollary of Theorem 4.19 is the following result.

Corollary 4.20 There exist many almost mean equicontinuous systems which have positive
topological entropy.

Globally speaking a mean equicontinuous system is “simple”, since it is a Banach proximal
extension of an equicontinuous system and each of its ergodic measures has discrete spectrum.
Unfortunately, the local version does not behave so well, as Theorem 4.19 shows. We will
introduce the notion of Banach mean equicontinuity, whose local version has the better behavior
that we are looking for.

Let (X, T ) be a dynamical system. We say that (X, T ) is Banach mean equicontinuous if
for every ε > 0, there exists some δ > 0 such that whenever x, y ∈ X with d(x, y) < δ,

lim sup
M−N→∞

1
M − N

M−1∑

i=N

d(T ix, T iy) < ε.

A point x ∈ X is called Banach mean equicontinuous if for every ε > 0, there exists some
δ > 0 such that for every y ∈ B(x, δ),

lim sup
M−N→∞

1
M − N

M−1∑

i=N

d(T ix, T iy) < ε.

We say that a transitive system (X, T ) is almost Banach mean equicontinuous if there exists a
transitive point which is Banach mean equicontinuous.



96 Li J. and Ye X. D.

A dynamical system (X, T ) is Banach mean sensitive if there exists some δ > 0 such that
for every x ∈ X and every ε > 0 there is y ∈ B(x, ε) satisfying

lim sup
M−N→∞

1
M − N

M−1∑

i=N

d(T ix, T iy) > δ.

We also have the following dichotomy for transitive systems and minimal systems.

Theorem 4.21 ([65]) If a dynamical system (X, T ) is transitive, then (X, T ) is either almost
Banach mean equicontinuous or Banach mean sensitive. If (X, T ) is a minimal system, then
(X, T ) is either Banach mean equicontinuous or Banach mean sensitive.

Theorem 4.22 ([65]) Let (X, T ) be a transitive system. If the topological entropy of (X, T )
is positive, then (X, T ) is Banach mean sensitive.

Combining Theorems 4.21 and 4.22, we have the following corollary.

Corollary 4.23 If (X, T ) is almost Banach mean equicontinuous, then the topological entropy
of (X, T ) is zero.

By Corollary 4.20, there are many almost mean equicontinuous systems which have positive
entropy. Then by Corollary 4.23, they are not almost Banach mean equicontinuous. But the
following question is still open.

Problem 4 Is there a minimal system which is mean equicontinuous but not Banach mean
equicontinuous?

4.5 Other Generalization of Sensitivity

Note that sensitivity can be generalized in other ways, see [38, 76, 104] for example.

Let (X, T ) be a dynamical system. For δ > 0 and a non-empty open subset U , let

N(δ, U) = {n ∈ N : ∃x, y ∈ U with d(Tnx, Tny) > δ}
= {n ∈ N : diam(Tn(U)) > δ}.

Let F be a Furstenberg family. According to Moothathu [76], we say that a dynamical
system (X, T ) is F-sensitive if there exists some δ > 0 such that for any non-empty open subset
U of X, N(δ, U) ∈ F . F-sensitivity for some special families were discussed in [27, 67, 71, 102].

A dynamical system (X, T ) is called multi-sensitive if there exists some δ > 0 such that for
any finite open non-empty subsets U1, . . . , Un of X,

n⋂

i=1

N(δ, Ui) 
= ∅.

In [38] among other things, Huang et al. proved that for a minimal system thick sensitivity
is equivalent to multi-sensitivity. Moreover, they showed the following dichotomy for minimal
systems.

Theorem 4.24 Let (X, T ) be a minimal system. Then (X, T ) is multi-sensitive if and only
if it is not an almost one-to-one extension of its maximal equicontinuous factor.

Results similar to Theorem 4.24 for other families will be appeared in [110] by Ye and Yu.
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5 Chaos in Transitive Systems

In this section, we discuss various kinds of chaos in transitive systems.

5.1 Auslander–Yorke Chaos

In [8] Auslander and Yorke defined a kind of chaos as “topological transitivity plus pointwise
instability”. This leads to the following definition of Auslander–Yorke chaos.

Definition 5.1 A dynamical system (X, T ) is called Auslander–Yorke chaotic if it both tran-
sitive and sensitive.

Due to Ruelle and Takens’ work on turbulence [89], Auslander–Yorke chaos was also called
Ruelle–Takens chaos (see [107] for example). It should be noticed that there is no impli-
cation relation between Li–Yorke chaos and Auslander–Yorke chaos. For example, any non-
equicontinuous distal minimal system is sensitive, so it is Auslander–Yorke chaotic, but it has
no Li–Yorke scrambled pairs. On the other hand, there are non-periodic transitive systems with
a fixed point that are not sensitive [4]; by Theorem 5.6 they are Li–Yorke chaotic.

The work of Wiggins [105] leads to the following definition.

Definition 5.2 A dynamical system (X, T ) is called Wiggins chaotic if there exists a subsys-
tem (Y, T ) of (X, T ) such that (Y, T ) is both transitive and sensitive.

In [90], Ruette investigated transitive and sensitive subsystems for interval maps. She
showed that

Theorem 5.3 1. For a transitive map f : [0, 1] → [0, 1], if it is Wiggins chaotic, then it is
also Li–Yorke chaotic.

2. There exists a continuous map f : [0, 1] → [0, 1] of zero topological entropy which is
Wiggins chaotic.

3. There exists a Li–Yorke chaotic continuous map f : [0, 1] → [0, 1] which is not Wiggins
chaotic.

5.2 Devaney Chaos

In his book [19], Devaney proposed a new kind of chaos, which is usually called Devaney chaos.

Definition 5.4 A dynamical system (X, T ) is called Devaney chaotic if it satisfies the follow-
ing three properties :

1. (X, T ) is transitive ;
2. (X, T ) has sensitive dependence on initial conditions ;
3. the set of periodic points of (X, T ) is dense in X.

Sensitive dependence is widely understood as the central idea in Devaney chaos, but it is
implied by transitivity and density of periodic points, see [12] or [29]. In 1993, Li [68] showed
that

Theorem 5.5 Let f : [0, 1] → [0, 1] be a continuous map. Then f has positive topological
entropy if and only if there exists a Devaney chaotic subsystem.

In 1996, Akin et al. [3] discussed in details when a transitive map is sensitive. An important
question is that: does Devaney chaos imply Li–Yorke chaos? In 2002, Huang and Ye gave a
positive answer to this long-standing open problem.
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Theorem 5.6 ([46]) Let (X, T ) be a non-periodic transitive system. If there exists a periodic
point, then it is Li–Yorke chaos. Particularly, Devaney chaos implies Li–Yorke chaos.

A key result in the proof of Theorem 5.6 is called Huang–Ye equivalences in [6]. To state
this result, we need some notations.

For every ε > 0, let Vε = {(x, y) ∈ X × X : d(x, y) ≤ ε} and

Asymε(T ) =
∞⋃

n=0

( ∞⋂

k=n

T−kVε

)
.

For every x ∈ X, let

Asymε(T )(x) =
{
y ∈ X : (x, y) ∈ Asymε(T )

}
.

Theorem 5.7 (Huang–Ye Equivalences) For a dynamical system (X, T ) the following condi-
tions are equivalent.

1. (X, T ) is sensitive.
2. There exists ε > 0 such that Asymε(T ) is a first category subset of X × X.
3. There exists ε > 0 such that for every x ∈ X, Asymε(T )(x) is a first category subset of

X.
4. There exists ε > 0 such that for every x ∈ X, x ∈ X\Asymε(T )(x).
5. There exists ε > 0 such that the set

{
(x, y) ∈ X × X : lim sup

n→∞
d(Tnx, Tny) > ε

}

is dense in X × X.

Note that the first part of Theorem 5.6 does not involve the sensitive property directly. In
2004, Mai proved that Devaney chaos implies the existence of δ-scrambled sets for some δ > 0.
Using a method of direct construction, he showed that

Theorem 5.8 ([75]) Let (X, T ) be a non-periodic transitive system. If there exists a periodic
point of period p, then there exist Cantor sets C1 ⊂ C2 ⊂ · · · in X consisting of transitive
points such that

1. each Cn is a synchronously proximal set, that is lim infk→∞ diam(T kCn) = 0;
2. S :=

⋃
n Cn is scrambled, and

⋃p−1
i=0 T iS is dense in X;

3. furthermore, if (X, T ) is sensitive, then S is δ-scrambled for some δ > 0.

5.3 Multivariant Li–Yorke Chaos

The scrambled set in Li–Yorke chaos only compares the trajectories of two points. It is natural
to consider the trajectories of finite points. In 2005, Xiong introduced the following multivariant
chaos in the sense of Li–Yorke.

Definition 5.9 ([107]) Let (X, T ) be a dynamical system and n ≥ 2. A tuple (x1, x2, . . . ,

xn) ∈ Xn is called n-scrambled if

lim inf
k→∞

max
1≤i<j≤n

d
(
fk(xi), fk(xj)

)
= 0

and
lim sup

k→∞
min

1≤i<j≤n
d
(
fk(xi), fk(xj)

)
> δ > 0.
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A subset C of X is called n-scrambled if any pairwise distinct n points in C form an n-scrambled
tuple. The dynamical system (X, T ) is called Li–Yorke n-chaotic if there exists an uncountable
n-scrambled set.

Similarly, if the separated constant δ is uniform for all pairwise distinct n-tuples in C, we
can define n-δ-scrambled sets and Li–Yorke n-δ-chaos.

Theorem 5.10 ([107]) Let (X, T ) be a non-trivial transitive system. If (X, T ) has a fixed
point, then there exists a dense Mycielski subset C of X such that C is n-scrambled for all
n ≥ 2.

In 2011, Li proved that there is no 3-scrambled tuples for an interval map with zero topo-
logical entropy.

Theorem 5.11 ([58]) Let f : [0, 1] → [0, 1] be a continuous map. If f has zero topological
entropy, then there is no 3-scrambled tuples.

Note that there exists a continuous map f : [0, 1] → [0, 1], which is Li–Yorke chaotic but has
zero topological entropy (see Theorem 3.4). Then we have the following result, which shows
that Li–Yorke 2-chaos and 3-chaos are essentially different.

Corollary 5.12 There exists a Li–Yorke 2-chaotic system which has no 3-scrambled tuples.

5.4 Uniform Chaos

Recall that a dynamical system (X, T ) is scattering if for any minimal system (Y, S) the product
system (X × Y, T × S) is transitive. It is not hard to show that every weakly mixing system is
scattering. In [46], Huang and Ye also proved that scattering implies Li–Yorke chaos.

Theorem 5.13 If a non-trivial dynamical system (X, T ) is scattering, then there is a dense
Mycielski scrambled set.

Since every system has a minimal subsystem, for a scattering system (X, T ) there exists a
subsystem (Y, S) of (X, T ) such that (X × Y, T × T ) is transitive. In 2010, Akin et al. showed
that a dynamical system satisfying this property is more complicated than Li–Yorke chaos, and
proposed the concept of uniform chaos [5].

Definition 5.14 Let (X, T ) be a dynamical system. A subset K of X is said to be

(1) uniformly recurrent if for every ε > 0 there exists an n ∈ N with d(Tnx, x) < ε for all
x ∈ K;

(2) recurrent if every finite subset of K is uniformly recurrent ;
(3) uniformly proximal if for every ε > 0 there exists an n ∈ N with diam(TnK) < ε;

(4) proximal if every finite subset of K is uniformly proximal.

Definition 5.15 Let (X, T ) be a dynamical system. A subset K ⊂ X is called a uniformly
chaotic set if there are Cantor sets C1 ⊂ C2 ⊂ · · · such that

1. for each N ∈ N, CN is uniformly recurrent ;

2. for each N ∈ N, CN is uniformly proximal ;

3. K :=
⋃∞

i=1 Cn is a recurrent subset of X and also a proximal subset of X.
The system (X, T ) is called (densely) uniformly chaotic if it has a (dense) uniformly chaotic

subset of X.
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By the definition, any uniformly chaotic set is scrambled, then uniform chaos implies Li–
Yorke chaos. The following is the main result of [5].

Theorem 5.16 Let (X, T ) be a non-trivial dynamical system. If there exists a subsystem
(Y, T ) of (X, T ) such that (X×Y, T ×T ) is transitive, then (X, T ) is densely uniformly chaotic.

As a corollary, we can show that many transitive systems are uniformly chaotic. Note that
a dynamical system is weakly scattering if its product with any minimal equicontinuous system
is transitive.

Corollary 5.17 If (X, T ) is a dynamical system without isolated points and satisfies one of
the following properties, then it is densely uniformly chaotic :

1. (X, T ) is transitive and has a fixed point ;
2. (X, T ) is totally transitive with a periodic point ;
3. (X, T ) is scattering ;
4. (X, T ) is weakly scattering with an equicontinuous minimal subsystem ;
5. (X, T ) is weakly mixing.
Furthermore, if (X, T ) is transitive and has a periodic point of period p, then there is

a closed T p-invariant subset X0 of X, such that (X0, T
p) is densely uniformly chaotic and

X =
⋃p−1

j=0 T jX0. In particular, (X, T ) is uniformly chaotic.

Remark 5.18 By Corollary 5.17, Devaney chaos implies uniform chaos.

6 Various Types of Distributional Chaos and Its Generalization

6.1 Distributional chaos

In [92], Schweizer and Smı́tal used ideas from probability theory to develop a new definition of
chaos, so called distributional chaos. Let (X, T ) be a dynamical system. For a pair of points
x, y in X and a positive integer n, we define a function Φn

xy on the real line by

Φn
xy(t) =

1
n

#
{
0 ≤ i ≤ n − 1: d(T ix, T iy) < t

}
,

where #(·) denotes the number of elements of a set. Clearly, the function Φn
xy is non-decreasing,

has minimal value 0 (since Φn
xy(t) = 0 for all t ≤ 0), has maximum value 1 (since Φn

xy(t) = 1
for all t greater than the diameter of X), and is left continuous. Then Φn

xy is a distribution
function whose value at t may be interpreted as the probability that the distance between the
initial segment of length n of the trajectories of x and y is less than t.

We are interested in the asymptotic behavior of the function Φn
xy as n gets large. To this

end, we consider the functions Φ∗
xy and Φxy defined by

Φ∗
xy(t) = lim sup

n→∞
Φn

xy(t) and Φxy(t) = lim inf
n→∞ Φn

xy(t).

Then Φ∗
xy and Φxy are distribution functions with Φxy(t) ≤ Φ∗

xy(t) for all t. It follows that Φ∗
xy

is an asymptotic measure of how close x and y can come together, while Φxy is an asymptotic
measure of their maximum separation. We shall refer to Φ∗

xy as the upper distribution, and to
Φxy as the lower distribution of x and y.

Definition 6.1 Let (X, T ) be a dynamical system. A pair (x, y) ∈ X × X is called distribu-
tionally scrambled if
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1. for every t > 0, Φ∗
xy(t) = 1, and

2. there exists some δ > 0 such that Φxy(δ) = 0.
A subset C of X is called distributionally scrambled if any two distinct points in C form a

distributionally scrambled pair. The dynamical system (X, T ) is called distributionally chaotic
if there exists an uncountable distributionally scrambled set.

Similarly, if the separated constant δ is uniform for all non-diagonal pairs in C, we can
define distributionally δ-scrambled sets and distributional δ-chaos.

According to the definitions, it is clear that any distributionally scrambled pair is scrambled,
and then distributional chaos is stronger than Li–Yorke chaos. In [92], Schweizer and Smı́tal
showed that

Theorem 6.2 ([92]) Let f : [0, 1] → [0, 1] be a continuous map. Then f is distributionally
chaotic if and only if it has positive topological entropy.

In 1998, Liao and Fan [70] constructed a minimal system with zero topological entropy
which is distributionally chaotic. In 2006, Oprocha [80] showed that weak mixing and Devaney
chaos do not imply distributional chaos.

In Section 5.3, Li–Yorke chaos is extended to a multivariant version. In fact, it is clear that
any kind of chaos defined by scrambled pairs can be extended to multivariant version.

In [100], Tan and Fu showed that distributionally n-chaos and (n + 1)-chaos are essentially
different.

Theorem 6.3 ([100]) For every n ≥ 2, there exists a transitive system which is distributionally
n-chaotic but without any distributionally (n + 1)-scrambled tuples.

In 2013, Li and Oprocha showed that

Theorem 6.4 ([62]) For every n ≥ 2, there exists a dynamical system which is distributionally
n-chaotic but not Li–Yorke (n + 1)-chaotic.

Note that the example constructed in the proof of Theorem 6.4 contains (n + 1)-scrambled
tuples. Then, a natural question is as following.

Problem 5 Is there a dynamical system (X, T ) with an uncountable distributionally 2-
scrambled set but without any 3-scrambled tuples?

Recently, Doleželová made some progress on Problem 5, but the original problem is still
open. She showed that

Theorem 6.5 ([20]) There exists a dynamical system X with an infinite extremal distribu-
tionally scrambled set but without any scrambled triple.

Theorem 6.6 ([20]) There exists an invariant Mycielski (not closed) set X in the full shift
with an uncountable extremal distributionally 2-scrambled set but without any 3-scrambled tuple.

6.2 The Three Versions of Distributional Chaos

Presently, we have at least three different definitions of distributionally scrambled pair (see [98]
and [10]). The original distributionally scrambled pair is said to be distributionally scrambled
of type 1.

Definition 6.7 A pair (x, y) ∈ X × X is called distributionally scrambled of type 2 if
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1. for any t > 0, Φ∗
xy(t) = 1, and

2. there exists some δ > 0 such that Φxy(δ) < 1.

A pair (x, y) ∈ X×X is called distributionally scrambled of type 3 if there exists an interval
[a, b] ⊂ (0,∞) such that Φxy(t) < Φ∗

xy(t) for all t ∈ [a, b].

A subset C of X is called distributionally scrambled of type i (i = 1, 2, 3) if any two
distinct points in C form a distributionally scrambled pair of type i. The dynamical system
(X, T ) is called distributionally chaotic of type i (DCi for short) if there exists an uncountable
distributionally scrambled set of type i.

It should be noticed that in [98] and [10] DCi chaos only requires the existence of one
distributionally scrambled pair of type i. It is not hard to see that any distributionally scrambled
pair of type 1 or 2 is topological conjugacy invariant [98]. But a distributionally scrambled pair
of type 3 may not be topological conjugacy invariant [10]. It is also not hard to construct
a dynamical system has a distributionally scrambled pair of type 2, but no distributionally
scrambled pairs of type 1. A really interesting example constructed in [101] shows that there
exists a minimal subshift which is distributionally chaotic of type 2, while it does not contain
any distributionally scrambled pair of type 1.

6.3 The Relation between Distributional Chaos and Positive Topological Entropy

It is known that in general there is no implication relation between DC1 and positive topological
entropy (see [70] and [86]). In [97] Smı́tal conjectured that positive topological entropy does
imply DC2. Oprocha showed that this conjecture is true for uniformly positive entropy minimal
systems [81]. Finally, Downarowicz solved this problem by proving this conjecture in general
case [21].

Theorem 6.8 ([21]) If a dynamical system (X, T ) has positive topological entropy, then there
exists a Cantor distributional δ-scrambled set of type 2 for some δ > 0.

It was observed in [21] that a pair (x, y) is DC2-scrambled if and only if it is mean scrambled
in the Li–Yorke sense, that is,

lim inf
N→∞

1
N

N∑

k=1

d
(
T kx, T ky) = 0

and

lim sup
N→∞

1
N

N∑

k=1

d
(
T kx, T ky) > 0.

Recently, Huang et al. showed that positive topological entropy implies a multivariant version
of mean Li–Yorke chaos.

Theorem 6.9 ([40]) If a dynamical system (X, T ) has positive topological entropy, then there
exists a Mycielski multivariant mean Li–Yorke (δn)-scrambled subset K of X, that is, for every
n ≥ 2 and every n pairwise distinct points x1, . . . , xn ∈ K, we have

lim inf
N→∞

1
N

N∑

k=1

max
1≤i<j≤n

d
(
T kxi, T

kxj) = 0
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and

lim sup
N→∞

1
N

N∑

k=1

min
1≤i<j≤n

d
(
T kxi, T

kxj) > δn > 0.

We remark that the key tool in the proof of Theorem 6.9 is the excellent partition constructed
in [16, Lemma 4], which is different from the one used in [21]. So among other things for n = 2
the authors also obtained a new proof of Theorem 6.8.

Note that in [16] Blanchard et al. showed that the closure of the set of asymptotic pairs
contains the set of entropy pairs. Kerr and Li [53] proved that the intersection of the set of
scrambled pairs with the set of entropy pairs is dense in the set of entropy pairs. We extended
the above mentioned results to the following result.

Theorem 6.10 ([40]) If a dynamical system has positive topological entropy, then for any
n ≥ 2,

1. the intersection of the set of asymptotic n-tuples with the set of topological entropy n-
tuples is dense in the set of topological entropy n-tuples ;

2. the intersection of the set of mean n-scrambled tuples with the set of topological entropy
n-tuples is dense in the set of topological entropy n-tuples.

6.4 Chaos via Furstenberg Families

In Section 2, we have shown that there is a powerful connection between topological dynamics
and Furstenberg families. In 2007, Xiong et al. introduced the notion of chaos via Furstenberg
families. It turned out that the Li–Yorke chaos and some version of distributional chaos can be
described as chaos in Furstenberg families sense.

Definition 6.11 ([101, 108]) Let (X, T ) be a dynamical system. Let F1 and F2 be two Fursten-
berg families. A pair (x, y) ∈ X × X is called (F1,F2)-scrambled if it satisfies

1. for any t > 0, {n ∈ Z+ : d(Tnx, Tny) < t} ∈ F1, and
2. there exists some δ > 0 such that {n ∈ Z+ : d(Tnx, Tny) > δ} ∈ F2.
A subset C of X is called (F1,F2)-scrambled if any two distinct points in C form a (F1,F2)-

scrambled pair. The dynamical system (X, T ) is called (F1,F2)-chaotic if there is an uncount-
able (F1,F2)-scrambled set in X.

Similarly, if the separated constant δ is uniform for all non-diagonal pairs in C, we can
define (F1,F2)-δ-scrambled sets and (F1,F2)-δ-chaos.

Let F be a subset of Z+. The upper density of F is defined as

d(F ) = lim sup
n→∞

1
n

#(F ∩ {0, 1, . . . , n − 1}).

For any a ∈ [0, 1], let

M(a) = {F ⊂ Z+ : F is infinite and d(F ) ≥ a}.
Clearly, every M(a) is a Furstenberg family. The following proposition can be easily verified by
the definitions, which shows that Li–Yorke chaos and distributional chaos can be characterized
via Furstenberg families.

Proposition 6.12 Let (X, T ) be a dynamical system and (x, y) ∈ X × X. Then
(1) (x, y) is scrambled if and only if it is (M(0),M(0))-scrambled.
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(2) (x, y) is distributionally scrambled of type 1 if and only if it is (M(1),M(1))-scrambled.
(3) (x, y) is distributionally scrambled of type 2 if and only if it is (M(1),M(t))-scrambled

with some t > 0.

A Furstenberg family F is said to be compatible with the dynamical system (X, T ), if for
every non-empty open subset U of X the set {x ∈ X : {n ∈ Z+ : Tnx ∈ U} ∈ F } is a Gδ subset
of X.

Lemma 6.13 ([108]) If F = M(t) for some t ∈ [0, 1], then F is compatible with any dynamical
system (X, T ).

We have the following criteria for chaos via compatible Furstenberg families.

Theorem 6.14 ([101, 108]) Let (X, T ) be a dynamical system. Suppose that there exists a
fixed point p ∈ X such that the set

⋃∞
i=1 T−i(p) is dense in X, and a non-empty closed invariant

subset A of X disjoint with the point p such that
⋃∞

i=1 T−iA is dense in X. Then for every
two Furstenberg families F1 and F2 compatible with the system (X × X, T × T ), there exists a
dense Mycielski (F1,F2)-δ-scrambled set for some δ > 0. In particular, the dynamical system
(X, T ) is (M(1),M(1))-δ-chaotic for some δ > 0.

There are two important Furstenberg families: the collections of all syndetic sets and all
sets with Banach density one. They are so specifical that we use terminologies: syndetically
scrambled sets and Banach scrambled sets, when studying chaos via those two Furstenberg
families.

Recall that a subset F of Z+ is syndetic if there is N ∈ N such that [n, n + N ] ∩ F 
=
∅ for every n ∈ Z+. Let (X, T ) be a dynamical system. A pair of points (x, y) ∈ X2 is
called syndetically proximal if for every ε > 0 the set {n ∈ Z+ : d(Tnx, Tny) < ε} is syndetic.
If (X, T ) is proximal, that is every pair in X2 is proximal, then every pair in X2 is also
syndetically proximal [77]. Moothathu studied the syndetically proximal relation, and identified
certain sufficient conditions for the syndetically proximal cell of each point to be small [77]. A
subset S of X is called syndetically scrambled if for any two distinct points x, y ∈ S, (x, y)
is syndetically proximal but not asymptotic. In [78] Moothathu and Oprocha systematically
studied the syndetically proximal relation and the possible existence of syndetically scrambled
sets for many kinds of dynamical systems, including various classes of transitive subshifts,
interval maps, and topologically Anosov maps.

A subset F of Z+ is said to have Banach density one if for every λ < 1 there exists N ≥ 1
such that #(F ∩ I) ≥ λ#(I) for every subinterval I of Z+ with #(I) ≥ N , where #(I) denotes
the number of elements of I. A pair of points (x, y) ∈ X2 is called Banach proximal if for
every ε > 0 the set {n ∈ Z+ : d(Tnx, Tny) < ε} has Banach density one. Clearly, every set with
Banach density one is syndetic, then a Banach proximal pair is syndetically proximal. In [64] Li
and Tu studied the structure of the Banach proximal relation. Particularly, they showed that
for a non-trivial minimal system the Banach proximal cell of every point is of first category.

A subset S of X is called Banach scrambled if for any two distinct points x, y ∈ S, (x, y) is
Banach proximal but not asymptotic. Note that it was shown in [58] that for an interval map
with zero topological entropy, every proximal pair is Banach proximal. Moreover we have

Theorem 6.15 ([64]) Let f : [0, 1] → [0, 1] be a continuous map. If f is Li–Yorke chaotic,
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then it has a Cantor Banach scrambled set.

Theorem 6.16 ([64]) Let f : [0, 1] → [0, 1] be a continuous map. Then f has positive topo-
logical entropy if and only if there is Cantor set S ⊂ [0, 1] such that S is a Banach scrambled
set and fn(S) ⊂ S for some n ≥ 1.

There exists a dynamical system with the whole space being a scrambled set (see Theo-
rems 3.13 and 3.14), and then every pair is syndetically proximal. It is shown in [64] that the
whole space also can be a Banach scrambled set.

Theorem 6.17 ([64]) There exists a transitive system with the whole space being a Banach
scrambled set.

7 Local Aspects of Mixing Properties

As we said before for a dynamical system with positive topological entropy, it is possible that
there is no weakly mixing subsystem. The notion of weakly mixing sets captures some compli-
cated subset of the system.

7.1 Weakly Mixing Sets

In 1991, Xiong and Yang [109] showed that for in a weakly mixing system there are consid-
erably many points in the domain whose orbits display highly erratic time dependence. More
specifically, they showed that

Theorem 7.1 Let (X, T ) be a non-trivial dynamical system. Then
1. (X, T ) is weakly mixing if and only if there exists a c-dense Fσ subset C of X satisfying

for any subset D of C and any continuous map f : D → X, there exists an increasing sequence
{qi} of positive integers such that limi→∞ T qix = f(x) for all x ∈ D;

2. (X, T ) is strongly mixing if and only if for any increasing sequence {pi} of positive integers
there exists a c-dense Fσ subset C of X satisfying for any subset D of C and any continuous
map f : D → X, there exists a subsequence {pni

} of {pi} such that limi→∞ T pni x = f(x) for
all x ∈ D.

In particular, if (X, T ) is weakly mixing, then there exists some δ > 0 such that (X, T ) is
Li–Yorke δ-chaotic.

Note that a subset C is called c-dense in X if for every non-empty open subset U of X, the
intersection C ∩ U has the cardinality of the continuum c.

Inspired by Xiong–Yang’s result (Theorem 7.1), in 2008, Blanchard and Huang [17] intro-
duced the concept of weakly mixing sets, which can be regraded as a local version of weak
mixing.

Definition 7.2 Let (X, T ) be a dynamical system. A closed subset A of X is said to be weakly
mixing if there exists a dense Mycielski subset C of A such that for any subset D of C and
any continuous map f : D → A, there exists an increasing sequence {qi} of positive integers
satisfying limi→∞ T qix = f(x) for all x ∈ D.

Blanchard and Huang showed that in any positive entropy system there are many weakly
mixing sets. More precisely, let WM(X, T ) be the set of weakly mixing sets of (X, T ) and
H(X, T ) be the closure of the set entropy sets in the hyperspace.
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Theorem 7.3 ([17]) If a dynamical system (X, T ) has positive topological entropy, then the
set H(X, T ) ∩ WM(X, T ) is a dense Gδ subset of H(X, T ).

Moreover in [37], Huang showed that in any positive entropy system there is a measure-
theoretically rather big set such that the closure of the stable set of any point from the set
contains a weakly mixing set. Recall that the stable set of a point x ∈ X for T is

W s(X, T ) =
{

y ∈ X : lim inf
n→∞ d(Tnx, Tny) = 0

}
.

Theorem 7.4 ([37]) Let (X, T ) be a dynamical system and μ be an ergodic invariant measure
on (X, T ) with positive entropy. Then for μ-a.e. x ∈ X the closure of the stable set W s(X, T )
contains a weakly mixing set.

Recently in [44], Huang et al. showed the existence of certain chaotic sets in the stable set
of positive entropy G-systems for certain countable, discrete, infinite left-orderable amenable
groups G. We restate [44, Theorem 1.2] in our setting as follows.

Theorem 7.5 ([44]) Let T be a homeomorphism on a compact metric space X. If μ is an
ergodic invariant measure on (X, T ) with positive entropy, then there exists δ > 0 such that for
μ-a.e. x ∈ X the stable set W s(X, T ) contains a Cantor δ-scrambled set for T−1.

Remark 7.6 The authors in [17] also discussed the relation between weakly mixing sets and
other chaotic properties.

1. Positive entropy is strictly stronger than the existence of weakly mixing sets, which in
turn is strictly stronger than Li–Yorke chaos.

2. There exists a Devaney chaotic system without any weakly mixing sets.

The following result is the well known Furstenberg intersection lemma, which shows that
weak mixing implies weak mixing of all finite orders.

Lemma 7.7 ([25]) If a dynamical system (X, T ) is weakly mixing, then for any k ∈ N and
any non-empty open subsets U1, . . . , Uk, V1, . . . , Vk of X,

k⋂

i=1

N(Ui, Vi) 
= ∅.

Using the idea in Lemma 7.7 we can give the following alternative definition of weakly
mixing sets.

Proposition 7.8 ([17]) Let (X, T ) be a dynamical system and let A be a closed subset of X

but not a singleton. Then A is weakly mixing if and only if for any k ∈ N and any choice
of non-empty open subsets U1, . . . , Uk, V1, . . . , Vk of X intersecting A (that is A ∩ Ui 
= ∅,
A ∩ Vi 
= ∅ for i = 1, . . . , k), one has

k⋂

i=1

N(Ui ∩ A, Vi) 
= ∅.

Definition 7.9 Let (X, T ) be a dynamical system, A be a closed subset of X but not a singleton
and k ≥ 2. The set A is said to be weakly mixing of order k if for any choice of non-empty
open subsets U1, . . . , Uk, V1, . . . , Vk of X intersecting A, one has

k⋂

i=1

N(Ui ∩ A, Vi) 
= ∅.
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Then A is weakly mixing if and only if it is weakly mixing of order k for all k ≥ 2.

In 2011, Oprocha and Zhang [82] studied weakly mixing sets of finite order, and constructed
an example showing that the concepts of weakly mixing sets of order 2 and of order 3 are
different. They generalized this result to general weakly mixing sets of finite order in [84].

Theorem 7.10 ([84]) For every n ≥ 2, there exists a minimal subshift on n symbols such that
it contains a perfect weakly mixing set of order n but no non-trivial weakly mixing set of order
n + 1.

Recall that it was shown in [6] that if (X, T ) is weakly mixing, then for every x ∈ X, the
proximal cell of x is residual in X. In [83] Oprocha and Zhang proved that for every closed
weakly mixing set A and every x ∈ A, the proximal cell of x in A is residual in A. In [63]
Li, Oprocha and Zhang showed that the same is true if we consider proximal tuples instead of
pairs. First recall that an n-tuple (x1, x2, . . . , xn) ∈ Xn is proximal if

lim inf
k→∞

max
1≤i<j≤n

d(T k(xi), T k(xj)) = 0.

For x ∈ X, define the n-proximal cell of x as

Pn(x) = {(x1, . . . , xn−1) ∈ Xn−1 : (x, x1, . . . , xn−1) is proximal}.

Theorem 7.11 ([63]) Let (X, T ) be a dynamical system and A ⊂ X be a weakly mixing set.
Then for every x ∈ A and n ≥ 2, the set Pn(x) ∩ An−1 is residual in An−1.

In fact, they proved even more as presented in the following theorem, where LY δ
n (x) is the

n-scrambled cell of x with modular δ > 0.

Theorem 7.12 ([63]) Let (X, T ) be a dynamical system and A ⊂ X be a weakly mixing set.
Then for every n ≥ 2, there exists some δ > 0 such that for every x ∈ A, the set LY δ

n (x)∩An−1

is residual in An−1.

The following result shows that, when we look only at separation of trajectories of tuples,
weak mixing of order 2 is enough to obtain rich structure of such points.

Theorem 7.13 ([63]) Let (X, T ) be a dynamical system and A ⊂ X a weakly mixing set of
order 2. Then A is a sensitive set in

(
Orb(A, T ), T

)
, where Orb(A, T ) = {Tnx : n ≥ 0, x ∈ A}.

In particular, the system
(
Orb(A, T ), T

)
is n-sensitive for every n ≥ 2.

Recall that we have given the definition of independent sets in Definition 3.7. Huang et
al. in [39] studied independent sets via Furstenberg families. In particular, they showed the
following connection between weak mixing and independent sets of open sets.

Theorem 7.14 Let (X, T ) be a dynamical system. Then the following conditions are equiva-
lent :

1. (X, T ) is weakly mixing ;
2. for any two non-empty open subsets U1, U2 of X, (U1, U2) has an infinite independent

set ;
3. for any n ∈ N and non-empty open subsets U1, U2, . . . , Un of X, (U1, U2, . . . , Un) has an

IP-independent set.

In the spirit of [39] we introduce a local version of independence sets as follows.
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Definition 7.15 Let (X, T ) be a dynamical system and A ⊂ X. Let U1, U2, . . . , Un be open
subsets of X intersecting A. We say that a non-empty subset F of Z+ is an independence
set for (U1, U2, . . . , Un) with respect to A, if for every non-empty finite subset J ⊂ F , and
s ∈ {1, 2, . . . , n}J , ⋂

j∈J

T−j(Us(j))

is a non-empty open subset of X intersecting A.

Now we can employ introduced notion, to state a theorem analogous to Theorem 7.14.

Theorem 7.16 ([63]) Let (X, T ) be a dynamical system and A ⊂ X a closed set. Then the
following conditions are equivalent :

1. A is a weakly mixing set ;
2. for every n ≥ 2 and every open subsets U1, U2, . . . , Un of X intersecting A, there exists

t ∈ N such that {0, t} is an independence set for (U1, U2, . . . , Un) with respect to A;
3. for every n ≥ 2 and every open subsets U1, U2, . . . , Un of X intersecting A, there exists a

sequence {tj}∞j=1 in N such that {0} ∪ FS({tj}∞j=1) is an independence set for (U1, U2, . . . , Un)
with respect to A.

7.2 Weakly Mixing Sets via Furstenberg Families

In 2004, Huang et al. generalized Theorem 7.1 to F-mixing systems. Let F be a Furstenberg
family. Recall that a dynamical system (X, T ) is called F-mixing if it is weakly mixing and for
any two non-empty open subsets U and V of X, N(U, V ) ∈ F .

Theorem 7.17 ([43]) Let (X, T ) be a non-trivial dynamical system and F be a Furstenberg
family. Then (X, T ) is F-mixing if and only if for any S ∈ κF , there exists a dense Mycielski
subset C of X satisfying for any subset D of C and any continuous map f : D → X, there
exists an increasing sequence {qi} in S such that limi→∞ T qix = f(x) for all x ∈ D.

It is natural that weakly mixing sets can be also generalized via Furstenberg families.

Definition 7.18 Let (X, T ) be a dynamical system and F be a Furstenberg family. Suppose
that A is a closed subset of X with at least two points. The set A is said to be F-mixing if for
any k ∈ N, any open subsets U1, U2, . . . , Uk, V1, V2, . . . , Vk of X intersecting A,

k⋂

i=1

N(Ui ∩ A, Vi) ∈ F .

Inspired by the proof of Theorem 7.17, we have the following characterization of F-mixing
sets.

Theorem 7.19 ([61]) Let (X, T ) be a dynamical system and F be a Furstenberg family.
Suppose that A is a closed subset of X with at least two points. Then A is an F-mixing set if
and only if for every S ∈ κF (the dual family of F) there are Cantor subsets C1 ⊂ C2 ⊂ · · · of
A such that

(i) K =
⋃∞

n=1 Cn is dense in A;
(ii) for any n ∈ N and any continuous function g : Cn → A, there exists a subsequence {qi}

of S such that limi→∞ T qi(x) = g(x) uniformly on x ∈ Cn;
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(iii) for any subset E of K and any continuous map g : E → A, there exists a subsequence
{qi} of S such that limi→∞ T qi(x) = g(x) for every x ∈ E.

It is shown in [61] that two classes of important dynamical systems have weakly mixing sets
via proper Furstenberg families.

Let F be a subset of Z+. The upper Banach density of F is defined by

BD∗(F ) = lim sup
|I|→∞

|F ∩ I|
|I| ,

where I is taken over all non-empty finite intervals of Z+. The family of sets with positive upper
Banach density is denoted by Fpubd = {F ⊂ Z+ : BD∗(F ) > 0}. We say that F is piecewise
syndetic if it is the intersection of a thick set and a syndetic set. The family of piecewise
syndetic sets is denoted by Fps.

Theorem 7.20 ([61]) Let (X, T ) be a dynamical system.
1. If (X, T ) has positive topological entropy, then it has some Fpubd-mixing sets.
2. If (X, T ) is a non-PI minimal system, then it has some Fps-mixing sets.

8 Chaos in the Induced Spaces

A dynamical system (X, T ) induces two natural systems, one is (K(X), TK) on the hyperspace
K(X) consisting of all closed non-empty subsets of X with the Hausdorff metric, and the other
one is (M(X), TM ) on the probability space M(X) consisting of all Borel probability measures
with the weak*-topology. Bauer and Sigmund [13] first gave a systematic investigation on the
connection of dynamical properties among (X, T ), (K(X), TK) and (M(X), TM ). It was proved
that (X, T ) is weakly mixing (resp. mildly mixing, strongly mixing) if and only if (K(X), TK)
(resp. (M(X), TM )) has the same property. This leads to a natural question:

Problem 6 If one of the dynamical systems (X, T ), (K(X), TK) and (M(X), TM ) is chaotic
in some sense, how about the other two systems?

This question attracted a lot of attention, see, e.g., [11, 36, 87] and references therein, and
many partial answers were obtained. We first show that when the induced system is weakly
mixing.

Theorem 8.1 ([11, 13]) Let (X, T ) be a dynamical system. Then (X, T ) is weakly mixing if
and only if (K(X), TK) is weakly mixing if and only if (K(X), TK) is transitive.

Theorem 8.2 ([13, 66]) Let (X, T ) be a dynamical system. Then (X, T ) is weakly mixing if
and only if (M(X), TM ) is weakly mixing if and only if (M(X), TM) is transitive.

In [30], Glasner and Weiss studied the topological entropy of (K(X), TK) and (M(X), TM ).
They proved that

Theorem 8.3 Let (X, T ) be a dynamical system.
1. The topological entropy of (X, T ) is zero if and only if the one of (M(X), TM ) is also

zero, and the topological entropy of (X, T ) is positive if and only if the one of (M(X), TM ) is
infinite.

2. If the topological entropy of (X, T ) is positive, then the topological entropy of (K(X), TK)
is infinite, while there exists a minimal system (X, T ) of zero topological entropy and (K(X), TK)
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with positive topological entropy.

To show that when the dynamical system on the hyperspace is Devaney chaotic, we need
to introduce some concepts firstly. We say that a dynamical system (X, T ) has dense small
periodic sets [48] if for any non-empty open subset U of X there exists a non-empty closed
subset Y of U and k ∈ N such that T kY ⊂ Y . Clearly, if a dynamical system has a dense set
of periodic points, then it also has dense small periodic sets. The dynamical system (X, T ) is
called an HY-system if it is totally transitive and has dense small periodic sets. Note that there
exists an HY-system without periodic points (see [48, Example 3.7]). Recently, Li showed in [60]
that (K(X), TK) is Devaney chaotic is equivalent to the origin system (X, T ) is an HY-system.

Theorem 8.4 ([60]) Let (X, T ) be a dynamical system with X being infinite. Then the fol-
lowing conditions are equivalent :

1. (K(X), TK) is Devaney chaotic ;
2. (K(X), TK) is an HY-system ;
3. (X, T ) is an HY-system.

In order to characterize Devaney chaos on the space of probability measures, we need a
notion of an almost HY-system. We say that (X, T ) has almost dense periodic sets if for each
non-empty open subset U ⊂ X and ε > 0, there are k ∈ N and μ ∈ M(X) with T k

Mμ = μ such
that μ(Uc) < ε, where Uc = {x ∈ X : x /∈ U}. We say that (X, T ) is an almost HY-system if it
is totally transitive and has almost dense periodic sets.

Theorem 8.5 ([66]) Let (X, T ) be a dynamical system with X being infinite. Then the fol-
lowing conditions are equivalent :

1. (M(X), TM ) is Devaney chaotic ;
2. (M(X), TM ) is an almost HY-system ;
3. (X, T ) is an almost HY-system.

It is clear that every HY-system is also an almost HY-system. There is a non-trivial minimal
weakly mixing almost-HY-system (see [66, Theorem 4.11]), which is not an HY-system, since
every minimal HY-system is trivial.

Recall that a dynamical system (X, T ) is proximal if any pair (x, y) ∈ X2 is proximal. The
following proposition shows that if (K(X), TK) is proximal then (X, T ) is “almost” trivial.

Proposition 8.6 ([64]) Let (X, T ) be a dynamical system. Then the following conditions are
equivalent :

1. (K(X), TK) is proximal ;
2.

⋂∞
n=1 TnX is a singleton ;

3. X is a uniformly proximal set.

If (M(X), TM ) is proximal, then (X, T ) is called strongly proximal [32]. Note that if (X, T )
is strongly proximal, then it is proximal, since (X, T ) can be regarded as a subsystem of the
proximal system (M(X), TM ). We have the following characterization of strongly proximal
systems.

Theorem 8.7 ([64]) Let (X, T ) be a dynamical system. Then the following conditions are
equivalent :
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1. (X, T ) is strongly proximal ;

2. (X, T ) is proximal and unique ergodic ;

3. every pair (x, y) ∈ X2 is Banach proximal.
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[57] Kolyada, S., Snoha, L.: Some aspects of topological transitivity — a survey. In: Iteration theory (ECIT

94) (Opava), Grazer Math. Ber., Vol. 334, Karl-Franzens-Univ. Graz, Graz, 1997, 3–35

[58] Li, J.: Chaos and entropy for interval maps. J. Dynam. Differential Equations, 23(2), 333–352 (2011)

[59] Li, J.: Transitive points via Furstenberg family. Topology Appl., 158(16), 2221–2231 (2011)

[60] Li, J.: Equivalent conditions of devaney chaos on the hyperspace. J. Univ. Sci. Technol. China, 44(2),

93–95 (2014)

[61] Li, J.: Localization of mixing property via Furstenberg families. Discrete Contin. Dyn. Syst., 35(2),

725–740 (2015)

[62] Li, J., Oprocha, P.: On n-scrambled tuples and distributional chaos in a sequence. J. Difference Equ.

Appl., 19(6), 927–941 (2013)

[63] Li, J., Oprocha, P., Zhang, G.: On recurrence over subsets and weak mixing. preprint (2013)

[64] Li, J., Tu, S.: On proximality with Banach density one. J. Math. Anal. Appl., 416(1), 36–51 (2014)

[65] Li, J., Tu, S., Ye, X.: Mean equicontinuity and mean sensitivity. Ergodic Theory Dynam. Systems, to

appear

[66] Li, J., Yan, K., Ye, X.: Recurrence properties and disjointness on the induced spaces. Discrete Contin.

Dyn. Syst., 35(3), 1059–1073 (2015)

[67] Li, R., Shi, Y.: Stronger forms of sensitivity for measure-preserving maps and semiflows on probability

spaces. Abstr. Appl. Anal., Art. ID 769523, 10 pages (2014)

[68] Li, S.: ω-chaos and topological entropy. Trans. Amer. Math. Soc., 339(1), 243–249 (1993)

[69] Li, T., Yorke, J. A.: Period three implies chaos. Amer. Math. Monthly, 82(10), 985–992 (1975)

[70] Liao, G., Fan, Q.: Minimal subshifts which display Schweizer–Smı́tal chaos and have zero topological

entropy. Sci. China Ser. A, 41(1), 33–38 (1998)

[71] Liu, H., Liao, L., Wang, L.: Thickly syndetical sensitivity of topological dynamical system. Discrete Dyn.

Nat. Soc., Art. ID 583431, 4 pages (2014)

[72] Lorenz, E. N.: Deterministic nonperiodic flow. J. Atmospheric Sci., 20(2), 130–148 (1963)

[73] Mai, J.: Continuous maps with the whole space being a scrambled set. Chinese Sci. Bull., 42(19),

1603–1606 (1997)

[74] Mai, J.: The structure of equicontinuous maps. Trans. Amer. Math. Soc., 355(10), 4125–4136 (2003)

[75] Mai, J.: Devaney’s chaos implies existence of s-scrambled sets. Proc. Amer. Math. Soc., 132(9), 2761–2767

(2004)

[76] Moothathu, T. K. S.: Stronger forms of sensitivity for dynamical systems. Nonlinearity, 20(9), 2115–2126

(2007)

[77] Moothathu, T. K. S.: Syndetically proximal pairs. J. Math. Anal. Appl., 379(2), 656–663 (2011)

[78] Moothathu, T. K. S., Oprocha, P.: Syndetic proximality and scrambled sets. Topol. Methods Nonlinear

Anal., 41(2), 421–461 (2013)

[79] Mycielski, J.: Independent sets in topological algebras. Fund. Math., 55, 139–147 (1964)

[80] Oprocha, P.: Relations between distributional and Devaney chaos. Chaos, 16(3), 033112, 5 (2006)

[81] Oprocha, P.: Minimal systems and distributionally scrambled sets. Bull. Soc. Math. France, 140(3),

401–439 (2012)

[82] Oprocha, P., Zhang, G.: On local aspects of topological weak mixing in dimension one and beyond. Studia

Math., 202(3), 261–288 (2011)

[83] Oprocha, P., Zhang, G.: On weak product recurrence and synchronization of return times. Adv. Math.,

244, 395–412 (2013)

[84] Oprocha, P., Zhang, G.: On local aspects of topological weak mixing, sequence entropy and chaos. Ergodic

Theory Dynam. Systems, 34(5), 1615–1639 (2014)



114 Li J. and Ye X. D.

[85] Oprocha, P., Zhang, G.: Topological aspects of dynamics of pairs, tuples and sets. In: Recent progress in

general topology, III, Atlantis Press, Paris, 2014, 665–709

[86] Piku�la, R.: On some notions of chaos in dimension zero. Colloq. Math., 107(2), 167–177 (2007)

[87] Román-Flores, H.: A note on transitivity in set-valued discrete systems. Chaos Solitons Fractals, 17(1),

99–104 (2003)

[88] Ruelle, D.: Dynamical systems with turbulent behavior. In: Mathematical problems in theoretical physics

(Proc. Internat. Conf., Univ. Rome, Rome, 1977), Lecture Notes in Phys., Vol. 80, Springer, Berlin, 1978,

341–360

[89] Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys., 20, 167–192 (1971)

[90] Ruette, S.: Transitive sensitive subsystems for interval maps. Studia Math., 169(1), 81–104 (2005)

[91] Scarpellini, B.: Stability properties of flows with pure point spectrum. J. London Math. Soc. (2), 26(3),

451–464 (1982)

[92] Schweizer, B., Smı́tal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the

interval. Trans. Amer. Math. Soc., 344(2), 737–754 (1994)

[93] Shao, S.: Proximity and distality via Furstenberg families. Topology Appl., 153(12), 2055–2072 (2006)

[94] Shao, S., Ye, X., Zhang, R.: Sensitivity and regionally proximal relation in minimal systems. Sci. China

Ser. A, 51(6), 987–994 (2008)

[95] Smı́tal, J.: A chaotic function with some extremal properties. Proc. Amer. Math. Soc., 87(1), 54–56

(1983)

[96] Smı́tal, J.: Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc., 297(1), 269–282

(1986)

[97] Smı́tal, J.: Topological entropy and distributional chaos. Real Anal. Exchange, (30th Summer Symposium

Conference), 61–65 (2006)
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[108] Xiong, J., Lü, J., Tan, F.: Furstenberg family and chaos. Sci. China Ser. A, 50(9), 1325–1333 (2007)

[109] Xiong, J., Yang, Z.: Chaos caused by a topologically mixing map. In: Dynamical systems and related

topics (Nagoya, 1990), Adv. Ser. Dynam. Systems, Vol. 9, 550–572, World Sci. Publ., River Edge, NJ,

1991

[110] Ye, X., Yu, T.: Sensitivity, proximal extension and higher order almost automorphy. Preprint (2014)

[111] Ye, X., Zhang, R.: On sensitive sets in topological dynamics. Nonlinearity, 21(7), 1601–1620 (2008)
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