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Abstract In this paper, continuing with Hu–Li–Vrancken and the recent work of Antić–Dillen-

Schoels–Vrancken, we obtain a decomposition theorem which settled the problem of how to determine

whether a given locally strongly convex affine hypersurface can be decomposed as a generalized Calabi

composition of two affine hyperspheres, based on the properties of its difference tensor K and its affine

shape operator S.
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1 Introduction

In affine differential geometry, Calabi [3] initiated the study of compositions of affine hyper-
spheres. In particular, he introduced a construction, nowadays called the Calabi composi-
tion, which shows how to associate with one (or two) hyperbolic affine hypersphere(s) a new
hyperbolic affine hypersphere. Such Calabi composition was later generalized by Dillen and
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Vrancken [6] systematically to obtain a large class of examples of equiaffine homogeneous affine
hypersurfaces, some of which have appeared in the list of the partial classification of equiaffine
homogeneous affine hypersurfaces [4, 5, 10]. Most recently and importantly, Hu et al. [8] con-
sidered the inverse construction and obtained characterizations of the Calabi composition of
hyperbolic hyperspheres, applying these characterizations they can successfully complete the
classification of locally strongly convex affine hypersurfaces with parallel cubic form [9], and
little later also that of the Lorentzian case [7].

Recently, Antić et al. [1] made further contribution by constructing several generalized
Calabi compositions of two affine hyperspheres, and importantly, they characterized these com-
positions of an affine hypersphere and a point using properties of the difference tensor K and
the affine shape operator S.

Theorem 1.1 ([1]) Let Mn+1 (n ≥ 2) be a locally strongly convex affine hypersurface of the
(n+ 2)-dimensional affine space R

n+2 such that its tangent bundle is an orthogonal sum, with
respect to the affine metric h, of two distributions, a one-dimensional distribution D1 spanned
by a unit vector field T and an n-dimensional distribution D2, such that

K(T, T ) = λ1T, K(T,X) = λ2X,

ST = μ1T, SX = μ2X, ∀X ∈ D2.

Then either Mn+1 is an affine hypersphere such that KT = 0 or is affine congruent to one of
the following immersions :

(1) F (t, x1, . . . , xn) = (γ1(t), γ2(t)g2(x1, . . . , xn)) for γ1, γ2 such that γ′1γ2 − γ1γ
′
2 �= 0 and

εγ′1γ2(γ′1γ
′′
2 − γ′′1 γ

′
2) < 0;

(2) F (t, x1, . . . , xn) = γ1(t)C(x1, . . . , xn) + γ2(t)en+1 for γ1, γ2 such that

sgn(γ′1γ
′′
2 − γ′′1 γ

′
2) = sgn(γ1γ

′
1) �= 0;

(3) F (t, x1, . . . , xn) = C(x1, . . . , xn) + γ2(t)en+1 + γ1(t)en+2 for γ1, γ2 such that

sgn(γ′1γ
′′
2 − γ′′1 γ

′
2) = sgnγ′1 �= 0,

where g2 : R
n → R

n+1 is a proper affine hypersphere centered at the origin with affine mean
curvature ε, and C : R

n → R
n+2 is an improper affine hypersphere, given by

C(x1, . . . , xn) = (x1, . . . , xn, f(x1, . . . , xn), 1),

with the affine normal en+1.

Remark 1.2 The proof in [1] shows that the case that λ1 = 2λ2 exactly occurs when Mn+1

is an affine hypersphere with KT = 0. From the classification of such 3-dimensional affine
hypersphere in [11, 12], we see that they are not related to generalized Calabi compositions.
Therefore in order to exclude such examples, we will assume that λ1 �= 2λ2.

Note that as Riemannian manifold the Calabi composition is, up to a constant factor, a
Riemannian product, whereas the above mentioned generalized Calabi composition is usually
a warped product. The following natural problem in [2] for a composition theorem, related
to the Calabi composition and its generalizations, gives another motivation for studying the
characterization of the generalized Calabi composition.
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Problem 1.3 Let M be a non-degenerate affine hypersurface in R
n+m+2. Under what con-

ditions do there exist affine hyperspheres Mn
2 in R

n+1 and Mm
3 in R

m+1, such that M =
I ×ρ2 M

n
2 ×ρ3 M

m
3 , where I ⊂ R and the functions ρ2 and ρ3 depend only on I (i.e., M admits

a warped product structure)? How can the original immersion be recovered starting from the
immersion of the affine hyperspheres?

In this paper, by extending Theorem 1.1 we will consider a further problem on the reverse
construction of generalized Calabi composition with more factors. Our main result can be
stated as follows:

Theorem 1.4 Let Mn+m+1 (n ≥ 2,m ≥ 2) be a locally strongly convex affine hypersurface of
the affine space R

n+m+2 such that its tangent bundle is an orthogonal sum, with respect to the
affine metric h, of three distributions, a 1-dimensional distribution D1 spanned by a unit vector
field T , an n-dimensional distribution D2 and an m-dimensional distribution D3 such that

⎧
⎪⎪⎨

⎪⎪⎩

KTT = λ1T, KTX = λ2X, KTY = λ3Y, KXY = 0,

ST = μ1T, SX = μ2X, SY = μ3Y,

λ1 �= 2λ2, λ1 �= 2λ3, λ2λ3 �= 0, ∀ X ∈ D2, Y ∈ D3.

(1.1)

Then Mn+m+1 is affine congruent to the hypersurface immersions (1)–(3) of Theorem 1.1 if
λ2 = λ3. Otherwise, Mn+m+1 is affine congruent to one of the following immersions:

(1) the generalized Calabi composition of two proper affine hyperspheres φ1 and φ2, defined
by F (t, p1, p2) = (γ1(t)φ1(p1), γ2(t)φ2(p2)), where φ1 : R

n → R
n+1 and φ2 : R

m → R
m+1 are

both proper affine hypersphere centered at the origin with affine mean curvature ε1 and ε2, for
γ1, γ2 such that γ′1γ2 − γ1γ

′
2 �= 0, and

ε2γ
′
1γ2(γ′1γ

′′
2 − γ′′1 γ

′
2) < 0, ε1γ1γ

′
2(γ

′
1γ

′′
2 − γ′′1 γ

′
2) > 0;

(2) the generalized Calabi composition of two improper affine hyperspheres normalized by
two functions F1(x1, . . . , xn) and F2(y1, . . . , ym), constructed by

F (t, x1, . . . , xn, y1, . . . , ym) = (x1, . . . , xn, F1(x1, . . . , xn) + γ1(t),

y1, . . . , ym, F2(y1, . . . , ym) + γ2(t))

for γ1, γ2 such that sgn (γ′1γ
′′
2 − γ′′1 γ

′
2) = sgn γ′1 = −sgn γ′2 �= 0;

(3) the generalized Calabi composition of a proper and an improper affine hyperspheres,
denoted the former by φ and its affine mean curvature by ε and the latter by a normalized
function F1(x1, . . . , xn), constructed by

F (t, x1, . . . , xn, p) =(x1, . . . , xn, F1(x1, . . . , xn) + γ1(t), γ2(t)φ(p))

for γ1, γ2 such that sgn (γ′1γ′′2 − γ′′1 γ
′
2) = sgn (−εγ′1γ2) = −sgn γ′2 �= 0.

Remark 1.5 The assumptions that λ1 �= 2λ2, λ1 �= 2λ3 in Theorem 1.4 are necessary. In
fact, non-composition examples indeed appear in [9], i.e., the standard immersions of SL(m,R)/
SO(m), SL(m,C)/SU(m), SU∗(2m

)
/Sp(m) and E6(−26)/F4, satisfy the above properties for

K and S with λ1 = 2λ2 or λ1 = 2λ3.

Remark 1.6 Straightforward computation shows that the immersions constructed in The-
orem 1.4 satisfy conditions (1.1). Moreover, they all satisfy ∇̂TT = 0. For instance, let
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M1 and M2 be proper affine hyperspheres in An+1 and Am+1 respectively given by the vec-
tor valued functions f1 and f2; and a plane curve γ parametrised such that |γγ′| = 1, i.e.,
γ′′ = κγ. Then, we can write their composition as g(t, x, y) = (γ1f1, γ2f2). Straightforwardly,
gtt = κg, gtxi

‖gxi
and gtyj

‖gyj
. Moreover, the affine normal is given by ξ = ηg + αgt, where

ηn+m+3 = |γ−n
1 γ−m

2 κγ′m1 γ′n2 | and α = −η′/κ. Then, gtt = κg = κ/η(ξ−αgt) = κ/η(ξ+ η′/κgt)
and, further η′/ηgt is the tangential part of gtt. If we denote by T the unit vector field parallel
to gt = ∂t, it follows that the right-hand side of the equality ∇̂∂t∂t = η′/η∂t − K(∂t, ∂t) is
parallel to T , and therefore, so is the left-hand side. However, this is possible only if ∇̂TT = 0.

Also we finally remark that the condition λ2λ3 �= 0 is necessary. This is illustrated by the
following two examples.

Example 1.7 Let M be a hypersurface of R
6 given by

f(t, x0, x1, y0, y1) = c1e2t√x0/(1 + e8t2
6
5 )

1
4 (
√

2(g(t) + 2
2
5 (y2

0 + y2
1))e1

+ 2
1
5 (y0e2 + y1e3) +

√
2e4) + x1e5 + (x0 + x2

1/2)e6,

where {e1, . . . , e6} is the standard basis of R
6, x0 > 0 and g(t) = 2

8
5

∫
e−2t/(1 + e8t2

6
5 )

1
2 dt

and c1 = 2
14
25 . A straightforward computation shows that M is an improper affine hypersphere

with affine normal being e6. Moreover, if we denote λ3 = 2
119
50 (e−

4
5 + 2

6
5 e

4
5 )x−

1
2

0 and k =

2
59
50 etx

1
2
0 (1 + 2

6
5 e8t)−

1
4 , the vector fields

T = λ3
∂

∂t
, X0 = 2

11
50x

1
2
0

∂

∂x0
, X1 = 2−

7
25

∂

∂x1
, Y0 = k−1 ∂

∂y0
, Y1 = k−1 ∂

∂y1

form an orthonormal basis with respect to the second fundamental form and the nonzero com-
ponents of the difference tensor K in this basis are

KTT = −2λ3T, KTYi = λ3Yi, i = 0, 1.

However, ∇̂TT = −2−
39
50x

− 1
2

0 X0 �= 0, and therefore M is not a composition of two affine
hyperspheres.

Example 1.8 Let, now, M be a hypersurface of R
7 given by

f(t, x0, x1, x2, y1, y2)

=
ρ

16
(16e2 − c1

√
t(4e3 + 2(y1 + y2)e4 + (y2

1 + 2y1y2 − y2
2)e5))

+
ρ

2
(2t2 + 3x2

0 + x3
1 + 3x2(x2

1 − x1x2 + x2
2) + 2

√
t(y3

1 + 3y2(y2
1 − y1y2 + y2

2)))e1

+
ρ

4
((x2

1 + 2x1x2 − x2
2)e6 + 2(x1 + x2)e7),

where {e1, . . . , e7} is the standard basis of the space R
7, ρ = 4

4c2−c1
√

t+4x0
with c1 = 243−

1
3

and c2 constant such that ρ > 0 and x2, y2, t > 0. If we denote λ3 = 1
4tρ , ν =

√
2x2ρ and

σ = 2 4
√
t
√
y2ρ, the vector fields

T =
1
ρ

∂

∂t
, X0 =

1
ρ

∂

∂x0
, X1 =

1
ν

∂

∂x1
, X2 =

1
ν

∂

∂x2
, Y1 =

1
σ

∂

∂y1
, Y2 =

1
σ

∂

∂y2

form an orthonormal basis with respect to the second fundamental form. Taking τ = c1
8ρ t

− 3
2 , a

straightforward computation shows that

ST = −
(

1 +
τ (τ − 16λ2

3)
16λ2

3

)

T, SXi = −
(

1 +
τ2

16λ2
3

)

Xi, i = 0, 1, 2
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and

SYi = −
(

1 +
τ (8λ2

3 + τ )
16λ2

3

)

Yi, i = 1, 2.

Also, the nonzero components of the difference tensor K in this basis are KTT = −2λ3T,

KTYi = λ3Yi, i = 1, 2. However, ∇̂TT = X0 �= 0, and therefore M is not a composition of two
affine hyperspheres.

This paper is organized as follows. In Section 2, we introduce the theory of local affine
hypersurfaces. In Section 3, we study the basic properties of the difference tensor and the affine
shape operator. The proof of Theorem 1.4 are given in Section 4 for case ∇̂TT = 0 and in
Section 5 for case ∇̂TT �= 0, respectively.

2 Preliminaries

We briefly recall the theory of local equiaffine hypersurfaces in [13, 15]. Let R
n+1 be the standard

(n + 1)-dimensional real affine space, i.e., R
n+1 endowed with the standard flat connection D

and its parallel volume form w, given by the determinant. Let F : M ↪→ R
n+1 be an oriented

hypersurface, and ξ be any transversal vector field on M , i.e., TpR
n+1 = TpM⊕span{ξp},

∀ p ∈M . For any tangent vector fields X,Y,X1, . . . , Xn, we write

DXF∗(Y ) = F∗(∇XY ) + h(X,Y )ξ, (2.1)

θ(X1, . . . , Xn) = w(F∗(X1), . . . , F∗(Xn), ξ), (2.2)

thus defining a torsion-free affine connection ∇, a symmetric bilinear form h, and a volume
element θ on M . M is said to be non-degenerate if h is non-degenerate (this condition is
independent of the choice of the transversal vector field). If M is non-degenerate, up to sign
there exists a unique choice of transversal vector field such that ∇θ = 0 and θ = wh, where wh

is the metric volume element induced by h. This special transversal vector field ξ, called the
affine normal, induces the affine connection ∇ and a pseudo-Riemannian metric h on M . We
call h the affine metric, or Berwald–Blaschke metric and C := ∇h the cubic form.

The condition ∇θ = 0 shows that DXξ is tangent to M for all X. Hence we can define a
(1, 1)-type tensor S on M , called affine shape operator, by

DXξ = −F∗(SX), (2.3)

and the affine mean curvature by H = 1
n trS. Here S has the property of self-adjoint relative to

h. The hypersurface M is called an affine hypersphere if S = H id, then one easily proves that
H = const if n ≥ 2. M is called a proper affine hypersphere if H �= 0 and an improper affine
hypersphere if H = 0. For a proper affine hypersphere the affine normal satisfies ξ = −H(F−c),
where c is a fixed point in R

n+1, called the center of F (M), for simplicity, we choose c as the
origin of R

n+1. For an improper affine hypersphere, the affine normal ξ is constant.
The classical Pick–Berwald theorem states that the affine connection coincides with the

Levi–Civita connection ∇̂ of affine metric h if and only if the hypersurface is a hyperquadric.
For that reason, the difference tensor K(X,Y ) := ∇XY − ∇̂XY , related to the cubic form by

C(X,Y, Z) = −2h(K(X,Y ), Z),

plays a fundamental role in affine differential geometry. Recall that the curvature tensor R̂ of
the affine metric, affine shape operator S and the difference tensor K are related by the Gauss
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and Codazzi equations:

R̂(X,Y )Z =
1
2
[
h(Y, Z)SX − h(X,Z)SY + h(SY,Z)X − h(SX,Z)Y

] − [KX ,KY ]Z, (2.4)

(∇̂XK)(Y, Z) − (∇̂YK)(X,Z)

=
1
2
[
h(Y, Z)SX − h(X,Z)SY − h(SY,Z)X + h(SX,Z)Y

]
, (2.5)

(∇̂XS)Y − (∇̂Y S)X = K(SX, Y ) −K(SY,X). (2.6)

From the Gauss equation (2.4), we obtain

χ = H + J, (2.7)

where J = 1
n(n−1)h(K,K) is the Pick invariant and χ is the normalized scalar curvature of h.

Moreover, h and K satisfy the apolarity condition

trh(X �→ KZX) = 0, (2.8)

or equivalently trKZ = 0 for all Z.
Finally, for later use we recall some notions of distributions. Let (M,h) be a Riemannian

manifold and ∇̂ its Levi–Civita connection. Then a subbundle E ⊂ TM is called autoparallel
if ∇̂XY ∈ E holds for all X,Y ∈ E, whereas a subbundle E is called totally umbilical if there
exists a vector field H ∈ E⊥ such that h(∇̂XY, Z) = h(X,Y )h(H,Z) for all X,Y ∈ E and
Z ∈ E⊥, here we call H the mean curvature vector of E. If, moreover, h(∇̂XH,Z) = 0 holds,
we say that E is spherical. We recall the following decomposition theorem of Riemannian
manifold.

Theorem 2.1 ([14, Theorem 4]) Let M be a Riemannian manifold, and let TM =
⊕k

i=0Ei

be an orthogonal decomposition into nontrivial vector subbundles such that Ei is spherical and
E⊥

i is autoparallel for i = 1, . . . , k. Then
(a) For every point p̃ ∈M , there is an isometry ψ of a warped product M0×ρ1M1×· · ·×ρk

Mk

onto a neighbourhood of p̃ in M such that

ρ1(p̃0) = · · · = ρk(p̃0) = 1, (2.9)

where p̃0 is the component of ψ−1(p̃) in M0, and such that

ψ
({p0} × · · · × {pi−1} ×Mi × {pi+1} × · · · × {pk}

)
is an integral

manifold of Ei for i = 0, . . . , k and all p0 ∈M0, . . . , pk ∈Mk.
(2.10)

(b) If M is simply connected and complete, then for every point p̃ ∈ M there exists an
isometry ψ of a warped product M0×ρ1 M1 ×· · ·×ρk

Mk onto all of M with the properties (2.9)
and (2.10).

3 Basic Relations

From now on, we assume that F : M → R
n+m+2 (n ≥ 2,m ≥ 2) is a locally strongly convex

(n+m+ 1)-dimensional affine hypersurface such that its tangent bundle is an orthogonal sum
of three distributions with respect to the affine metric h, i.e., TM = D1 ⊕ D2 ⊕ D3, where
D1 is spanned by a unit vector field T , dimD2 = n and dimD3 = m such that for arbitrary
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X ∈ D2, Y ∈ D3,
⎧
⎨

⎩

KTT = λ1T, KTX = λ2X, KTY = λ3Y, KXY = 0,

ST = μ1T, SX = μ2X, SY = μ3Y.

The apolarity condition trKT = 0 shows that

λ1 + nλ2 +mλ3 = 0. (3.1)

There exists a pair of unit vector fields X0 ∈ D2, Y0 ∈ D3 such that

∇̂TT = aX0 + bY0.

We assume that D2 (resp. D3) is spanned by orthonormal vector fields {X0, X1, . . . , Xn−1}
(resp. {Y0, Y1, . . . , Ym−1}). The apolarity condition shows that

∑

i

K(Xi, Xi) = −
∑

j

K(Yj , Yj) −K(T, T ).

Together with K(Xi, Yj) = 0 and

h

(
∑

i

K(Xi, Xi), T
)

= nλ2, h

(
∑

j

K(Yj , Yj), T
)

= mλ3,

we see that
∑

i

K(Xi, Xi) = nλ2T,
∑

j

K(Yj , Yj) = mλ3T. (3.2)

In the following, we also assume X ∈ D2 and Y ∈ D3 are unit vector fields.
Using (2.6) on vector fields T and X, we have

T (μ2)X + μ2∇̂TX + μ2KTX − S(∇̂TX)

= X(μ1)T + μ1∇̂XT + μ1KTX − S(∇̂XT ). (3.3)

Then, since h(KTX,T ) = 0, multiplying (3.3) with T w.r.t. h yields

X(μ1) = a(μ1 − μ2)h(X0, X). (3.4)

Similarly, multiplying (3.3) with Y and arbitrary X ′ ∈ D2 respectively, we obtain

(μ2 − μ3)h(∇̂TX,Y ) = (μ1 − μ3)h(∇̂XT, Y ),
(
T (μ2) + λ2(μ2 − μ1)

)
h(X,X ′) = (μ1 − μ2)h(∇̂XT,X

′).
(3.5)

Using (2.6) for Y and X, we have

Y (μ2)X + μ2(∇̂Y X) − S(∇̂YX) = X(μ3)Y + μ3(∇̂XY ) − S(∇̂XY ).

Then, multiplying it with arbitrary X ′ ∈ D2 yields

Y (μ2)h(X,X ′) = (μ3 − μ2)h(∇̂XY,X
′).

If we now put X = X ′ = Xi and we sum the previous equation, as well as the second
equation in (3.5), we deduce that

Y (μ2) =
μ3 − μ2

n

∑

i

h(∇̂Xi
Y,Xi),

T (μ2) + λ2(μ2 − μ1) =
μ1 − μ2

n

∑

i

h(∇̂Xi
T,Xi).

(3.6)
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Exchanging the role of X and Y , for arbitrary Y ′ ∈ D3 we can repeat the previous compu-
tations in order to get that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y (μ1) = b(μ1 − μ3)h(Y0, Y ),

(μ3 − μ2)h(∇̂TY,X) = (μ1 − μ2)h(∇̂Y T,X),

X(μ3) =
μ2 − μ3

m

∑

j

h(∇̂Yj
X,Yj),

T (μ3) + λ3(μ3 − μ1) =
μ1 − μ3

m

∑

j

h(∇̂Yj
T, Yj).

(3.7)

Remark 3.1 For n ≥ 2, Xi and Xj (i �= j) in (2.6), we have

Xi(μ2)Xj + μ2(∇̂Xi
Xj) − S(∇̂Xi

Xj) = Xj(μ2)Xi + μ2(∇̂Xj
Xi) − S(∇̂Xj

Xi).

Multiplying this with Xj yields Xi(μ2) = 0, and thus X(μ2) = 0. Similarly, for m ≥ 2 we have
Y (μ3) = 0.

Taking Y = Z = T in (2.5), we have

(∇̂XK)(T, T ) − (∇̂TK)(X,T ) =
1
2
(μ2 − μ1)X,

and calculating the left-hand side gives
1
2
(μ2 − μ1)X = X(λ1)T + λ1∇̂XT − T (λ2)X − λ2∇̂TX

− 2K(∇̂XT, T ) +K(∇̂TX,T ) + aK(X,X0). (3.8)

Multiplying (3.8) with T , Y and arbitrary X ′ ∈ D2 respectively, we see that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X(λ1) = a(λ1 − 2λ2)h(X0, X),

(λ1 − 2λ3)h(∇̂XT, Y ) + (λ3 − λ2)h(∇̂TX,Y ) = 0,

(λ1 − 2λ2)h(∇̂XT,X
′) + ah(K(X,X0), X ′) =

(

T (λ2) +
1
2
(μ2 − μ1)

)

h(X,X ′).

(3.9)

Similarly, by (2.5) we have

(∇̂XK)(T, Y ) − (∇̂TK)(X,Y ) = 0,

and calculating the left-hand side gives

X(λ3)Y + λ3∇̂XY +K(∇̂TX,Y ) +K(X, ∇̂TY ) = K(∇̂XT, Y ) +K(T, ∇̂XY ), (3.10)

and multiplying (3.10) with arbitrary X ′ ∈ D2 and Y ′ ∈ D3 respectively, we get

h(K(X,X ′), ∇̂TY ) = (λ2 − λ3)h(∇̂XY,X
′),

X(λ3)h(Y, Y ′) = h(K(Y, Y ′), ∇̂XT − ∇̂TX).
(3.11)

Summing this and the last formula in (3.9) for X = X ′ = Xi, Y = Y ′ = Yj respectively, we
see that

bλ2h(Y0, Y ) =
λ3 − λ2

n

∑

i

h(∇̂Xi
Y,Xi),

X(λ3) = aλ3h(X0, X),

T (λ2) +
1
2
(μ2 − μ1) =

λ1 − 2λ2

n

∑

i

h(∇̂Xi
T,Xi).

(3.12)
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As before, exchanging the role of X and Y , we can repeat the computations of (3.9), (3.11)
and (3.12) in order to get that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y (λ1) = b(λ1 − 2λ3)h(Y0, Y ),

(λ1 − 2λ2)h(∇̂Y T,X) + (λ2 − λ3)h(∇̂TY,X) = 0,

(λ1 − 2λ3)h(∇̂Y T, Y
′) + bh(K(Y, Y0), Y ′) =

(

T (λ3) +
1
2
(μ3 − μ1)

)

h(Y, Y ′),

(λ3 − λ2)h(∇̂Y X,Y
′) = h(K(Y, Y ′), ∇̂TX),

Y (λ2)h(X,X ′) = h(K(X,X ′), ∇̂Y T − ∇̂TY ),

aλ3h(X0, X) =
λ2 − λ3

m

∑

j

h(∇̂Yj
X,Yj),

Y (λ2) = bλ2h(Y0, Y ),

T (λ3) +
1
2
(μ3 − μ1) =

λ1 − 2λ3

m

∑

j

h(∇̂Yj
T, Yj).

(3.13)

By (2.5) we calculate both the left-hand sides of

h((∇̂XK)(Y, T ), X) − h((∇̂YK)(X,T ), X) = 0,

h((∇̂X′K)(X,T ), X ′) − h((∇̂XK)(X ′, T ), X ′) = 0,

where X, X ′ ∈ D2 are unitary and orthogonal, we obtain respectively that

(λ3 − λ2)h(∇̂XY,X) + h(K(X,X), ∇̂Y T ) = Y (λ2),

h(K(X ′, X ′), ∇̂XT ) − h(K(X,X ′), ∇̂X′T ) = X(λ2).

Summing the first formula for X = Xi and the second for X ′ = Xi (i ≥ 1) and X = X0,
respectively, we see that

Y (λ2) =
λ3 − λ2

n

∑

i

h(∇̂Xi
Y,Xi),

∑

i

h(K(X0, Xi), ∇̂Xi
T ) + (n− 1)X0(λ2) = 0.

(3.14)

Similarly, we have

X(λ3) =
λ2 − λ3

m

∑

j

h(∇̂Yj
X,Yj),

∑

j

h(K(Y0, Yj), ∇̂Yj
T ) + (m− 1)Y0(λ3) = 0.

(3.15)

Now we can prove the following lemma:

Lemma 3.2 For arbitrary X ∈ D2, it holds that

(1) X(λ1) = a(λ1 − 2λ2)h(X0, X), X(λ3) = aλ3h(X0, X), X(λ2) = n+2
n aλ2h(X0, X);

(2) X(μ1) = a(μ1 − μ2)h(X0, X), (λ3 − λ2)X(μ3) = a(μ3 − μ2)λ3h(X0, X), X(μ2) = 0;

(3) (μ1 − μ2)T (λ2) + (2λ2 − λ1)T (μ2) = 1
2 (μ1 − μ2)2 + (2λ2 − λ1)λ2(μ1 − μ2), aλ2(λ1 −

2λ2)(μ1 − μ2) = 0, a(μ1 − μ2)
∑

i,j h(K(X0, Xi), Xj)2 = 0;

(4) a[− (n+2)(n−1)
n λ2(λ1 − 2λ2) +

∑
i,j h(K(X0, Xi), Xj)2] = 0.
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Proof The first two conclusions in (1) follow immediately from the first equation of (3.9) and
the second of (3.12). From (3.1), we deduce that

X(λ1) + nX(λ2) +mX(λ3) = 0.

So using (3.1) oncemore shows X(λ2) = n+2
n aλ2h(X0, X).

The conclusions in (2) separately follow from (3.4), the third equation of (3.7) combined
with the sixth equation of (3.13), and Remark 3.1.

The first conclusion in (3) follows from the second equation of (3.6) and the third of (3.12).
In order to obtain the remaining conclusions, we introduce

VX := (λ1 − 2λ2)∇̂XT + aK(X0, X) − T (λ2)X − 1
2
(μ2 − μ1)X.

By the third equation of (3.9), we have h(VX , X
′) = 0 for arbitrary X ′ ∈ D2. Moreover, we see

that
h(VX , T ) = aλ2h(X0, X), h(VX , Y ) = (λ1 − 2λ2)h(∇̂XT, Y ).

Hence we can write VX = aλ2h(X0, X)T + (λ1 − 2λ2)
∑

j h(∇̂XT, Yj)Yj . Multiplying this with
K(X0, X) yields h(VX ,K(X0, X)) = aλ2

2h(X0, X)2. Summing this equation for X = Xi, we
obtain that

(λ1 − 2λ2)
∑

i

h(∇̂Xi
T,KX0Xi) + a

∑

i

h(KX0Xi,KX0Xi) = aλ2
2.

Substituting KX0Xi = λ2h(X0, Xi)T +
∑

j h(KX0Xi, Xj)Xj into the previous equation, we get

(λ1 − 2λ2)
∑

i

h(∇̂Xi
T,K(X0, Xi)) + a

∑

i,j

h(K(X0, Xi), Xj)2 = 0. (3.16)

It follows from the second equation of (3.14) and the conclusion (1) that

a

[

− (n+ 2)(n− 1)
n

λ2(λ1 − 2λ2) +
∑

i,j

h(K(X0, Xi), Xj)2
]

= 0. (3.17)

On the other hand, we write KX0Xi :=
∑

j α
j
iXj + λ2h(X0, Xi)T . We also remark that ∇̂Xi

T

is orthogonal to T . Therefore substituting the D2 component of K(X0, Xi) for X ′ in the second
equation of (3.5) corresponds with replacing X ′ in that equation with K(X0, Xi), we find that

(μ1 − μ2)
∑

i

h(∇̂Xi
T,K(X0, Xi)) = (μ1 − μ2)

∑

i,j

αj
ih(∇̂Xi

T,Xj)

=
(
T (μ2) + λ2(μ2 − μ1)

)∑

i,j

αj
ih(Xi, Xj)

=
(
T (μ2) + λ2(μ2 − μ1)

)∑

i

h(X0,K(Xi, Xi))

= 0.

It follows from (3.16) that

a(μ1 − μ2)
∑

i,j

h(K(X0, Xi), Xj)2 = 0.

Combining this with (3.17) we get aλ2(λ1 − 2λ2)(μ1 − μ2) = 0. The last two conclusions in (3)
now follow.

Finally, the conclusion (4) follows from (3.17).
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Similar to Lemma 3.2, we have the following

Lemma 3.3 For arbitrary Y ∈ D3, there hold
(1) Y (λ1) = b(λ1 − 2λ3)h(Y0, Y ), Y (λ2) = bλ2h(Y0, Y ), Y (λ3) = m+2

m bλ3h(Y0, Y );
(2) Y (μ1) = b(μ1 − μ3)h(Y0, Y ), (λ2 − λ3)Y (μ2) = b(μ2 − μ3)λ2h(Y0, Y ), Y (μ3) = 0;
(3) (μ1 − μ3)T (λ3) + (2λ3 − λ1)T (μ3) = 1

2 (μ1 − μ3)2 + (2λ3 − λ1)λ3(μ1 − μ3), bλ3(λ1 −
2λ3)(μ1 − μ3) = 0, b(μ1 − μ3)

∑
j,� h(K(Y0, Yj), Y�)2 = 0;

(4) b[− (m+2)(m−1)
m λ3(λ1 − 2λ3) +

∑
i,j h(K(Y0, Yi), Yj)2] = 0.

By the first equation of (3.5), the second equations of (3.9), (3.7) and (3.13), respectively,
we easily obtain the following

Lemma 3.4 For arbitrary vector fields X ∈ D2 and Y ∈ D3, we have

(μ2 − μ3)h(∇̂TX,Y ) = (μ1 − μ3)h(∇̂XT, Y ) = (μ1 − μ2)h(∇̂Y T,X),

(λ2 − λ3)h(∇̂TX,Y ) = (λ1 − 2λ3)h(∇̂XT, Y ) = (λ1 − 2λ2)h(∇̂Y T,X).

From now on, we assume that λ1 �= 2λ2 and λ1 �= 2λ3, and we will further always denote

α :=
T (λ2) + 1

2 (μ2 − μ1)
2λ2 − λ1

, β :=
T (λ3) + 1

2 (μ3 − μ1)
2λ3 − λ1

.

Then, both the last equations in (3.12) and (3.13) can be written respectively as
∑

i

h(∇̂Xi
T,Xi) = −nα,

∑

j

h(∇̂Yj
T, Yj) = −mβ. (3.18)

Hence, we obtain

Lemma 3.5 We have
αλ3 − βλ2 =

1
2
(μ3 − μ2).

Proof By (2.5), we have

h((∇̂Yj
K)(Xi, Xi) − (∇̂Xi

K)(Yj , Xi), Yj) =
1
2
(μ3 − μ2),

which could reduce to

h(∇̂Yj
K(Xi, Xi) +K(Yj , ∇̂Xi

Xi), Yj) =
1
2
(μ3 − μ2).

Summarizing above over orthonormal basis of D2 and D3, we obtain
nm

2
(μ3 − μ2) = nλ2

∑

j

h(∇̂Yj
T, Yj) −mλ3

∑

i

h(∇̂Xi
T,Xi)

= −mnβλ2 +mnαλ3,

where we used (3.2) and (3.18). Our conclusion follows. �
Note that, if λ2 = λ3 = 0, the apolarity condition gives λ1 = 0, a contradiction to λ1 �= 2λ2.

On the other hand, if λ2 = λ3 �= 0, by Lemma 3.5 we obtain

2(α− β)λ2 =
(μ2 − μ3)λ2

2λ2 − λ1
= μ3 − μ2.

Moreover, if μ2 �= μ3, then we get λ1 = 3λ2, by apolarity condition we get λ2 = λ3 = 0, a
contradiction. Hence, in this case we have μ2 = μ3, which reduces to the case of Theorem 1.1.

Therefore, from now on, regardless on the case, we may assume that λ2 �= λ3.
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We now look at the three systems of equations in Lemma 3.4 more carefully.
If there exist some X ∈ D2, Y ∈ D3 such that, for instance, h(∇̂XT, Y ) �= 0 at some point,

and therefore in some neighborhood, then Lemma 3.4 implies

(μ1 − μ3)(λ2 − λ3) − (μ3 − μ2)(2λ3 − λ1) = 0,

(μ1 − μ3)(2λ2 − λ1) − (μ1 − μ2)(2λ3 − λ1) = 0,
(3.19)

and it follows that (μ1 − μ3)(λ2 − λ3) = 0, so we have μ1 = μ3. It then follows from the first
equation of (3.19) that μ2 = μ3, and the hypersurface is in fact an affine hypersphere.

Similar conclusion follows from h(∇̂TX,Y ) �= 0 or h(∇̂Y T,X) �= 0.
We conclude that two situations can occur, i.e., either we are dealing with an affine hyper-

sphere, or for all X ∈ D2, Y ∈ D3 we have

h(∇̂TX,Y ) = h(∇̂XT, Y ) = h(∇̂Y T,X) = 0. (3.20)

4 Affine Hypersurfaces with ∇̂T T = 0

In this section we assume that ∇̂TT = 0, i.e., a = b = 0. Recall that λ2 �= λ3 and λ2λ3 �= 0.
By Lemmas 3.2 and 3.3, we have X(λi) = Y (λi) = 0, X(μi) = Y (μi) = 0, i = 1, 2, 3.

Lemma 4.1 For X,X ′ ∈ D2 and for Y, Y ′ ∈ D3, we have

h(∇̂XX
′, Y ) = 0, h(∇̂Y Y

′, X) = 0. (4.1)

Proof Assume first that M is not an affine hypersphere. Therefore, for all X ∈ D2, Y ∈ D3,
we have h(∇̂TX,Y ) = 0, then the first equation of (3.11) together with the fourth equation of
(3.13) implies that (4.1) holds.

Therefore, we may assume that M is an affine hypersphere, i.e., μ1 = μ2 = μ3.
For any fixed X,X ′ ∈ D2, we can put K(X,X ′) = λ2h(X,X ′)T + X̂ where X̂ ∈ D2. Then

the fifth equation of (3.13) yields h(X̂, ∇̂Y T − ∇̂TY ) = 0. Along with Lemma 3.4, we obtain a
system for h(X̂, ∇̂Y T ) and h(X̂, ∇̂TY ) with determinant λ1 − λ2 − λ3.

If λ1 − λ2 − λ3 �= 0, we get h(K(X,X ′), ∇̂TY ) = 0, and putting this into the first equation
of (3.11), we get (4.1).

So we are left with the case that λ1 − λ2 − λ3 = 0. From the apolarity condition, it follows
now that λ2 = −m+1

n+1 λ3, λ1 = n−m
n+1 λ3. The second equation of Lemma 3.4 implies that

h(∇̂XT, Y ) = h(∇̂TX,Y ) = h(∇̂YX,T ).

Furthermore, Lemma 3.5 gives T (λ3) = 0 and so λ3 is a nonzero constant. Moreover the third
equations of both (3.9) and (3.13) are simplified to be h(∇̂XT,X

′) = h(∇̂Y T, Y
′) = 0. The

Gauss equation gives R̂(X,T )T = (μ1 − λ1λ2 + λ2
2)X, and on the other hand

∇̂X∇̂TT = 0, ∇̂T ∇̂XT =
∑

j

T (h(∇̂XT, Yj))Yj +
∑

j

h(∇̂XT, Yj)∇̂TYj ,

∇̂XT − ∇̂TX = −
∑

i

h(∇̂TX,Xi)Xi, ∇̂[X,T ]T = −
∑

i

h(∇̂TX,Xi)∇̂Xi
T.

Then,

(μ1 − λ1λ2 + λ2
2)h(X,X ′) = R̂(X,T, T,X ′)
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= −
∑

j

h(∇̂XT, Yj)h(∇̂TYj , X
′) +

∑

i

h(∇̂TX,Xi)h(∇̂Xi
T,X ′)

=
∑

j

h(∇̂XT, Yj)h(∇̂X′T, Yj) = h(∇̂XT, ∇̂X′T ).

Therefore, |∇̂XT |2 = p2 = μ1+ m+1
n+1 λ

2
3 = const for all unitX. Since for p = 0 we have ∇̂XT = 0,

thus h(∇̂XT, Y ) = h(∇̂TX,Y ) = 0. Similar to the case of non affine hypersphere, the lemma
holds. Next we assume p �= 0. Note that ∇̂XT ∈ D3. For an orthonormal basis Xi of D2 we
get that the vector fields Yi = ∇̂Xi

T/p ∈ D3 are mutually orthogonal and have unit length. So
n ≤ m. Similarly changing the role of both distributions we have ∇̂Yi

T = −pXi, so it follows
m = n and therefore, we deduce that λ1 = 0, λ2 = −λ3 and p2 = μ1 + λ2

3.

We now take corresponding basis for both distributions, i.e., for an orthonormal basis Xi

of D2, we take Yi = ∇̂Xi
T/p ∈ D3. It then follows that ∇̂Yi

T = −pXi. We then get that

0 = R̂(Xk, T, T, Yl)

= −
∑

j

h(∇̂Xk
T, Yj)h(∇̂TYj , Yl) +

∑

i

h(∇̂TXk, Xi)ph(Yl, Yi)

= p[h(∇̂TXk, Xl) − h(∇̂TYk, Yl)],

and from the fourth equation of (3.13), we have

h(∇̂Yj
Xi, Yk) =

p

2λ3
h(K(Yj , Yk), Yi), h(∇̂Xj

Yi, Xk) =
p

2λ3
h(K(Xj, Xk), Xi).

From above we see that

0 = R̂(Xi, Yj , T,Xl)

= h(∇̂Xi
(−pXj), Xl) − h(∇̂Yj

(pYi), Xl) − h(∇̂[Xi,Yj ]T,Xl)

= −p(h(∇̂Xi
Xj , Xl) + h(∇̂Yj

Yi, Xl)) + ph(∇̂Xi
Yj − ∇̂Yj

Xi, Yl)

= p(−h(∇̂Xi
Xj , Xl) − h(∇̂Yj

Yi, Xl) + h(∇̂Xi
Yj , Yl) − h(∇̂Yj

Xi, Yl))

= p(h(∇̂Xi
Yj , Yl) − h(∇̂Xi

Xj , Xl)),

and by exchanging X and Y we get h(∇̂VXj , Xl) = h(∇̂V Yj , Yl) for any V .

We can resume the previous results by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇̂TT = 0, ∇̂Xi
T = pYi, ∇̂Yi

T = −pXi,

∇̂TXi =
∑

j h(∇̂TXi, Xj)Xj + pYi,

∇̂Xj
Xi =

∑

k

h(∇̂Xj
Xi, Xk)Xk − p

2λ3

∑

k

h(K(Xi, Xj), Xk)Yk,

∇̂Yj
Xi = pδijT +

∑

k

h(∇̂Yj
Xi, Xk)Xk +

p

2λ3

∑

k

h(K(Yk, Yj), Yi)Yk,

∇̂TYi = −pXi +
∑

j h(∇̂TYi, Yj)Yj ,

∇̂Xj
Yi = −pδijT +

p

2λ3

∑

k

h(K(Xj, Xi), Xk)Xk +
∑

k

h(∇̂Xj
Yi, Yk)Yk,

∇̂Yj
Yi = − p

2λ3

∑

k

h(K(Yj , Yi), Yk)Xk +
∑

k

h(∇̂Yj
Yi, Yk)Yk.

(4.2)
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Straightforwardly, by Gauss equations we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̂(X,T )T = p2X, R̂(Y, T )T = p2Y,

R̂(X,Yi)Yj = p2Xδij , R̂(Xi, Y )Xj = −p2Y δij ,

R̂(Xi, T )Xj = R̂(Yi, T )Yj = −δijp2T,

R̂(Xi, Xj)T = R̂(X,T )Y = R̂(Y, T )X = 0,

R̂(Xi, Xj)Y = R̂(Yi, Yj)X = R̂(Xi, Yj)T = 0.

(4.3)

We now define a homomorphism τ : D1 ⊕D2 ⊕D3 → D1 ⊕D2 ⊕D3 given by V �→ ∇̂V T/p.
Then from (4.2) we obtain

∇̂Xj
τ (Xi) = −pδijT + τ (∇̂Xj

Xi), ∇̂Xj
τ (Yi) = τ (∇̂Xj

Yi).

Then

∇̂Xi
(∇̂Xj

τ (Yk))

= ∇̂Xi
τ (∇̂Xj

Yk)

= ∇̂Xi

(
∑

l

h(∇̂Xj
Yk, Xl)τ (Xl) +

∑

l

h(∇̂Xj
Yk, Yl)τ (Yl)

)

=
∑

l

Xi(h(∇̂Xj
Yk, Xl))τ (Xl) +

∑

l

h(∇̂Xj
Yk, Xl)(−pδilT + τ (∇̂Xi

Xl))

+
∑

l

Xi(h(∇̂Xj
Yk, Yl))τ (Yl) +

∑

l

h(∇̂Xj
Yk, Yl)τ (∇̂Xi

Yl)

= τ

[

∇̂Xi

(
∑

l

h(∇̂Xj
Yk, Xl)Xl +

∑

l

h(∇̂Xj
Yk, Yl)Yl

)]

− ph(∇̂Xj
Yk, Xi)T

= τ (∇̂Xi
(∇̂Xj

Yk + pδjkT )) − ph(∇̂Xj
Yk, Xi)T

= τ (∇̂Xi
(∇̂Xj

Yk)) − p2δjkXi − ph(∇̂Xj
Yk, Xi)T.

It follows that

R̂(Xi, Xj)Xk

= −R̂(Xi, Xj)τ (Yk)

= ph(∇̂Xj
Yk, Xi)T − τ (∇̂Xi

(∇̂Xj
Yk)) + p2δjkXi

− ph(∇̂Xi
Yk, Xj)T + τ (∇̂Xj

(∇̂Xi
Yk)) − p2δikXj + ∇̂[Xi,Xj ]τ (Yk)

= −τ(R̂(Xi, Xj)Yk

)
+ p2(δjkXi − δikXj)

= p2
∑

l

(δjkδil − δikδjl)Xl.

Similarly, we have R̂(Yi, Yj)Yk = p2
∑

l(δjkδil − δikδjl)Yl. These together with (4.3) show that
this affine hypersphere is of constant sectional curvature p2. We refer the reader to [16] where
such hyperspheres have been classified and it was shown that they are either flat (p2 = 0), or
the hyperquadrics (K = 0, and thus λ3 = 0). However, we have excluded both possibilities
which ends the proof of Lemma 4.1.



The Generalized Calabi Composition 1545

Also, by the last equation in (3.9) and the third equation in (3.13), we obtain respectively
that

h(∇̂XT,X
′) = −αh(X,X ′), h(∇̂Y T, Y

′) = −βh(Y, Y ′). (4.4)

Lemma 4.2 There holds

− αβ =
1
2
(μ2 + μ3) − λ2λ3,

h(X, ∇̂TY ) = h(X, ∇̂Y T ) = h(Y, ∇̂XT ) = 0, ∀X ∈ D2, Y ∈ D3.

Proof For arbitrary unit vectors X and Y , we have the Gauss equation

R̂(X,Y, Y,X) =
1
2
(μ2 + μ3) − h(KXKY Y,X) + h(KY KXY,X)

=
1
2
(μ2 + μ3) − h(K(X,X),K(Y, Y ))

=
1
2
(μ2 + μ3) − λ2λ3.

On the other hand, by using (4.1), (4.4) and Lemma 3.4, we obtain

h(∇̂X∇̂Y Y,X) = h

(

∇̂X

(

βT +
∑

j

h(∇̂Y Y, Yj)Yj

)

, X

)

= βh(∇̂XT,X) = −αβ,

h(∇̂Y ∇̂XY,X) = h(∇̂XY, T )h(∇̂Y T,X) + h

(

∇̂Y

(
∑

j

h(∇̂XY, Yj)Yj

)

, X

)

= − (λ3 − λ2)2

(2λ2 − λ1)(2λ3 − λ1)
h(X, ∇̂TY )2,

h(∇̂∇̂XY −∇̂Y XY,X) = h(∇̂XY − ∇̂Y X,T )h(∇̂TY,X) + h(∇̂∑
aiXi+

∑
bjYj

Y,X)

= (λ3 − λ2)h(X, ∇̂TY )2
(

1
2λ3 − λ1

+
1

λ1 − 2λ2

)

,

where ai = h(∇̂XY − ∇̂Y X,Xi), bj = h(∇̂XY − ∇̂Y X,Yj). Thus we get

R̂(X,Y, Y,X) = −αβ + 3
(λ3 − λ2)2

(2λ2 − λ1)(2λ3 − λ1)
h(X, ∇̂TY )2.

However, since n ≥ 2, we can choose X ∈ D2 being orthogonal to the projection of ∇̂TY on D2

so that h(∇̂TY,X) = 0, and therefore we obtain the first assertion. From Lemma 3.4, the fact
λ2 �= λ3 and the first assertion we have the second assertion.

Now, it follows from (4.4) and Lemma 4.2 that

∇̂XT = −αX, ∇̂Y T = −βY. (4.5)

Together with previous lemmas we see that D1,D2 and D3 are integrable, and both D1 ⊕ D3

and D1 ⊕ D2 are autoparallel. Moreover, taking H2 = αT (resp. H3 = βT ), one can show
that D2 (resp. D3) is spherical with the mean curvature vector H2 (resp. H3). Therefore, by
Theorem 2.1 we conclude that M is locally a warped product R ×ρ2 M2 ×ρ3 M3, where R, M2

and M3 are, respectively, the leaf of the distributions D1,D2 and D3. The warping functions
ρ2 and ρ3 are determined by

H2 = −T (ln ρ2)T, H3 = −T (ln ρ3)T.
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Now we assume that ∂
∂t = T and the warping functions satisfy the initial condition ρ2(0) =

ρ3(0) = 1. Therefore, we get ρ2(t) = e−
∫ t
0 α(τ)dτ , ρ3(t) = e−

∫ t
0 β(τ)dτ .

From now on, if not stated otherwise, we take the local coordinates {t, x1, . . . , xn, y1, . . . , ym}
on M such that ∂

∂t = T , span{ ∂
∂x1

, . . . , ∂
∂xn

} = D2 and span{ ∂
∂y1

, . . . , ∂
∂ym

} = D3.

Lemma 4.3 The following relations hold :

X(α) = Y (α) = X(β) = Y (β) = 0, ∀X ∈ D2, Y ∈ D3,

T (μ2) = (α− λ2)(μ2 − μ1), T (μ3) = (β − λ3)(μ3 − μ1),

T (α) = α2 +
1
2
(μ2 + μ1) − λ1λ2 + λ2

2, T (β) = β2 +
1
2
(μ3 + μ1) − λ1λ3 + λ2

3.

Proof Lemma 4.2 and the relation (4.1) imply that

∇̂XY =
∑

j

bjYj , ∇̂Y X =
∑

aiXi. (4.6)

From (4.1) and (4.4), it follows that ∇̂XX
′ − ∇̂X′X =

∑
i αiXi, which simplifies the Gauss

equation as

0 = R̂(X,X ′)T = ∇̂X(−αX ′) − ∇̂X′(−αX) −
∑

i

αi∇̂Xi
T

= −X(α)X ′ +X ′(α)X,

so we have X(α) = 0. Similarly, we get Y (β) = 0.
Analogously, using (4.6), from

0 = R̂(X,Y )T = −∇̂X(βY ) + ∇̂Y (αX) −
∑

j

bj∇̂Yj
T +

∑

i

ai∇̂Xi
T

= −X(β)(Y ) + Y (α)X,

we get X(β) = Y (α) = 0.
Expressions for T (μ2) and T (μ3) directly follow from (3.5) and the last equation of (3.7).
From the Gauss equation, we see that h(R̂(X,T )T,X) = 1

2 (μ1 + μ2) − λ1λ2 + λ2
2 for unit

vector field X ∈ D2. On the other hand, by Lemma 3.4 and (4.5) we see that ∇̂TX ∈ D2. Thus

h(R̂(X,T )T,X) = h(−∇̂T ∇̂XT − ∇̂∇̂XT−∇̂T XT,X),

= h(∇̂T (αX) + α∇̂XT − α∇̂TX,X)

= T (α) − α2.

Then the assertion for T (α) follows. Similarly we have the expression of T (β).
Now, in view of the symmetry between D2 and D3 it is sufficient to discuss the following

three subcases:
Case I-(1) μ2

2 + (α− λ2)2 �= 0, μ2
3 + (β − λ3)2 �= 0.

Case I-(1)-(i) μ3(λ2 − α) − μ2(λ3 − β) �= 0.
Case I-(1)-(ii) μ3(λ2 − α) − μ2(λ3 − β) = 0.

Case I-(2) μ2 = 0, α = λ2, μ3 = 0, β = λ3.
Case I-(3) μ2 = 0, α = λ2, μ2

3 + (β − λ3)2 �= 0.
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Case I-(3)-(i) μ3 = 0, β �= λ3.
Case I-(3)-(ii) μ3 �= 0.

Case I-(1) Let β1(t) and β2(t) be functions such that

β′
1 = −β2, β′

2 = 1 + β1μ1 − β2λ1.

We denote δ1 = 1 + μ2β1 + β2(α− λ2) and δ2 = 1 + μ3β1 + β2(β − λ3). As μ2
2 + (α− λ2)2 �= 0,

μ2
3 + (β − λ3)2 �= 0 holds, straightforward computation shows that by choosing the initial

conditions for β1 and β2 appropriately we may assume that δ1 = δ2 = 0. Then, straight
computation shows

DX(β1ξ + β2T ) = X, ∀X ∈ D2,

DY (β1ξ + β2T ) = Y, ∀Y ∈ D3,

DT (β1ξ + β2T ) = T.

It follows that, up to translation we can write the immersion

F : Mn+m+1 → R
n+m+2

as
F = β1ξ + β2T.

We now define a vector field by

g1 = M((λ2 − α)ξ + μ2T ), (4.7)

where M(t) is a nonzero solution of the equation M ′ +M(α− λ2 + λ1) = 0.
Then direct computations give that

DT g1 = (M ′ +M(α− λ2 + λ1))((λ2 − α)ξ + μ2T ) = 0,

DXg1 = M(−μ2(λ2 − α)X + μ2(∇̂XT +K(X,T ))) = 0,

DY g1 = M(−μ3(λ2 − α) + μ2(λ3 − β))Y,

DY ′DY g1 = M(−μ3(λ2 − α) + μ2(λ3 − β))

· [∇̂⊥
Y ′Y +K⊥(Y, Y ′) + h(Y, Y ′)(ξ + (β + λ3)T )],

(4.8)

where ∇̂⊥
Y ′Y and K⊥(Y, Y ′) are projections of ∇̂Y ′Y and K(Y, Y ′) on D3 (their projections on

D2 vanish). From Lemmas 3.5 and 4.2, we have

μ2 = (λ2 − α)(λ3 + β), μ3 = (λ2 + α)(λ3 − β). (4.9)

Then we see that

μ3(λ2 − α) − μ2(λ3 − β) = (λ2 − α)(λ3 − β)(λ2 − λ3 + α− β). (4.10)

Case I-(1)-(i) In this case, we can see from (4.8) and (4.9) that

DY ′DY g1 ∈ D3 + span(g1).

Since
∑
K⊥(Yj , Yj) is a projection of

∑
K(Yj , Yj) = −∑

K(Xi, Xi) − K(T, T ) on D3, K⊥

satisfies apolarity condition and g1 defines a proper affine hypersphere.
Similarly as before, the vector field

g2 = N((λ3 − β)ξ + μ3T ), (4.11)
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where N(t) is a nonzero function satisfies N ′ = −N(β − λ3 + λ1), defines a proper affine
hypersphere. From (4.7) and (4.11), we can express ξ and T to obtain

F = γ1(t)g1 + γ2(t)g2,

where

γ1(t) =
β′

1 + β1(λ2 + α)
M(λ2 − α)(λ2 − λ3 + α− β)

, γ2(t) =
β′

1 + β1(λ3 + β)
N(λ3 − β)(λ3 − λ2 + β − α)

.

We have obtained (1) of Theorem 1.4.
Case I-(1)-(ii) In this case by (4.10), we have

(λ2 − α)(λ3 − β)(λ2 − λ3 + α− β) = 0.

Since λ2 = α implies μ2 = 0, it follows from μ2
2 + (λ2 − α)2 �= 0 that λ2 �= α. Similarly λ3 �= β.

So we have

λ2 − λ3 + α− β = 0.

Then also DY g1 = 0, so g1 = M(λ2 − α)(ξ + (β + λ3)T ) is a constant vector field. We can put
ξ = 1

β1
(F − β2T ) and further

F =
β1

M(λ2 − α)
g1 + (β2 − β1(β + λ3))DTF,

and by integrating we obtain
F = γ1(t)g3 + γ2(t)g1,

where g3 does not depend on t and γ2 = β1
M(λ2−α) + (β2 − β1(β + λ3))γ′2. Furthermore,

X = DXF = γ1(t)DXg3, Y = DY F = γ1(t)DY g3.

Then ∂
∂xi

g3 ∈ D2, and since ∇̂Y X ∈ D2 it follows that ∂
∂yj

∂
∂xi

g3 ∈ D2. Similarly, ∂
∂xi

∂
∂yj

g3 ∈ D3

and therefore ∂
∂yj

∂
∂xi

g3 = 0. Hence,

g3 = C2(x1, . . . , xn) + C3(y1, . . . , ym).

Furthermore,

DXC2 = DXg3 =
1

γ1(t)
X,

DX′DXC2 =
1

γ1(t)
(∇̂⊥

X′X +K⊥(X,X ′) + h(X,X ′)((α+ λ2)T + ξ))

=
1

γ1(t)

(

∇̂⊥
X′X +K⊥(X,X ′) + h(X,X ′)

g1
M(λ2 − α)

)

,

so C2 is an improper affine hypersphere whose affine normal is parallel to g1.
Similarly, C3 is an improper affine hypersphere whose affine normal is parallel to g1. Sum-

ming above, we see

F (t, x1, . . . , xn) = γ1(t)
(
C2(x1, . . . , xn) + C3(y1, . . . , ym)

)
+ γ2(t)g1,

where C2 +C3 is also an improper affine hypersphere whose affine normal is parallel to g1. This
is the hypersurface immersion (2) of Theorem 1.1.
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Case I-(2) Now, we have μ2 = μ3 = 0, α = λ2, β = λ3. Let β1(t) be a nonzero function
satisfying

β′
1 = −2λ2β1.

Since μ2β1 + 2λ2β1(α− λ2) = μ3β1 + 2λ2β1(β − λ3) = 0, direct computation shows

DX(β1ξ + 2β1λ2T ) = DY (β1ξ + 2β1λ2T ) = DT (β1ξ + 2β1λ2T ) = 0,

so the vector field C := β1(ξ + 2λ2T ) is constant. Then

DTT = λ1T + ξ =
1
β1
C + (λ1 − 2λ2)T.

By integration, we show that the immersion F : M → R
n+m+2 satisfies

F = γ0(t)C0 + γ1(t)C1 + γ2(t)C, (4.12)

where C0, C1 do not depend on t and

γ′′2 = γ′2(λ1 − 2λ2) +
1
β1

(4.13)

and γ0 and γ1 are independent solutions of

γ′′ = γ′(λ1 − 2λ2). (4.14)

We can take γ0 = 1 and therefore γ1 �= const. Then

X = DXF = DXC0 + γ1(t)DXC1

and, as before, ∂
∂xi

∂
∂yj

F ∈ D2 ∩ D3 and vanishes. That implies that ∂
∂yj

C0 and ∂
∂yj

C1 depend
only on y1, . . . , ym.

Similarly, ∂
∂xi

C0 and ∂
∂xi

C1 depend only on x1, . . . , xn. Therefore, we can write

F = A0(x1, . . . , xn) +B0(y1, . . . , ym)

+ γ1(t)(A1(x1, . . . , xn) +B1(y1, . . . , ym)) + γ2(t)C.
(4.15)

Furthermore,

0 = (λ2 − α)X = DXT = DX(γ′1(A1 +B1) + γ′2C) = γ′1DXA1.

As γ1 �=const, we get DXA1 = 0 for all X ∈ D2. Therefore, A1 and similarly B1 are constant
vector fields. From

DX′DXA0 = DX′DXF = ∇̂⊥
X′X +K⊥(X,X ′) + h(X,X ′)

C

β1
,

we see that DX′DXA0 ∈ D2 + span{C} and A0 is an improper affine hypersphere whose affine
normal is parallel to C.

Similarly, B0 is also an improper affine hypersphere. We have obtained (2) of Theorem 1.4.
Case I-(3) Now we have μ2 = 0, α = λ2, μ2

3 + (β − λ3)2 �= 0. From (4.9), we see

μ3 = 2λ2(λ3 − β), (4.16)

which implies that if μ3 = 0, then λ3 − β = 0. It follows that Case I-(3)-(i) cannot occur.
We now assume Case I-(3)-(ii). Let β1 be a nontrivial solution of the equation

β′
1 = −2λ2β1. (4.17)
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Similarly as before, we can check that the vector field C = β1(ξ+2λ2T ) satisfiesDTC = DXC =
DY C = 0, ∀X ∈ D2, Y ∈ D3, and thus is constant. Similarly, F is given by (4.12), where γ0 = 1
and γ1 and γ2 satisfy (4.14) and (4.13), respectively. Also, for the same reasons as before the
position vector field F is of the form (4.15). It follows from γ′1DXA1 = DXT = (λ2 −α)X = 0
that A1 is constant. Moreover, combining γ′1(t)DY B1 = DY T = (λ3 − β)Y with

Y = DY F = DY B0 + γ1(t)DY B1,

we have

DY B0 =
(

γ′1
λ3 − β

− γ1

)

DY B1.

By (4.16) a direct computation shows that γ′
1

λ3−β − γ1 = c is a constant. Then

DX′DXA0 = DX′DXF = ∇̂⊥
X′X +K⊥(X ′, X) + h(X ′, X)

C

β1
,

so A0 is an improper affine hypersphere whose affine normal is parallel to C.
On the other hand, we have

(c+ γ1(t))DY ′DY B1 = DY ′DY F = ∇̂⊥
Y ′Y +K⊥(Y ′, Y ) + h(Y ′, Y )((λ3 + β)T + ξ). (4.18)

Set κ = 1
γ′
1(λ3+β−2λ2)

. It follows that κ′ + κ(λ3 + β) = 0, moreover

DX(κ((λ3 + β)T + ξ)) = 0 = DXB1,

DY (κ((λ3 + β)T + ξ)) =
λ3 − β

γ′1
Y = DY B1,

DT (κ((λ3 + β)T + ξ)) = 0 = DTB1,

so up to translation we can put B1 = κ((λ3 + β)T + ξ). Then from (4.18) it follows that B1 is
a proper affine hypersphere. We have obtained (3) of Theorem 1.4.

We have completed the proof of Theorem 1.4 for case ∇̂TT = 0.

5 Affine Hypersurfaces with ∇̂T T �= 0

In this section, we assume ∇̂TT �= 0, and we prove that this case cannot occur. Recall that
λ2 �= λ3 and λ2λ3 �= 0. We claim that λ1 �= λ2 +λ3. Otherwise, if λ1 = λ2 +λ3, taking account
also λ1 + nλ2 +mλ3 = 0 we obtain λ2 = −m+1

n+1 λ3. On the other hand, by Lemma 3.2 (1) we
have X0(λ3) = aλ3 and X0(λ2) = n+2

n aλ2, respectively, which is impossible.
From Lemma 3.2 (3) and Lemma 3.3 (3), we have

a(μ1 − μ2)
∑

i,j

h(K(X0, Xi), Xj)2 = 0,

b(μ1 − μ3)
∑

j,�

h(K(Y0, Yj), Y�)2 = 0.
(5.1)

If
∑

i,j h(K(X0, Xi), Xj)2 = 0, it follows that K(X0, Xi) = λ2h(X0, Xi)T . Then from the
second equation of (3.14), we get X0(λ2) = 0, and from Lemma 3.2 (1) it follows aλ2 = 0.

Similarly,
∑

j,� h(K(Y0, Yj), Y�)2 = 0 implies that bλ3 = 0.
As ∇̂TT = aX0 + bY0 �= 0, so we may, from now on take a �= 0. Therefore, as λ2λ3 �= 0 and

thus
∑

i,j h(K(X0, Xi), Xj)2 �= 0, by (5.1) it is sufficient to consider the following two subcases:
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Case II-(1) μ1 = μ2 �= μ3, b = 0; Case II-(2) μ1 = μ2 = μ3.
Case II-(1) Assume μ1 = μ2 �= μ3 and b = 0. By Lemmas 3.4 and 3.5, we have

h(∇̂TX,Y ) = h(∇̂XT, Y ) = h(∇̂Y T,X) = 0,

βλ2 − αλ3 =
1
2
(μ1 − μ3).

(5.2)

Also, the first equation of Lemma 3.3 (3) and the definition of β show

T (μ3) = (μ1 − μ3)(λ3 − β). (5.3)

Then the first equation of (3.11) and fourth equation of (3.13) imply that

h(∇̂XY,X
′) = 0, h(∇̂Y X,Y

′) =
aλ3

λ2 − λ3
h(X,X0)h(Y, Y ′). (5.4)

Also, the third equation (3.9) yields

h(∇̂XX1, T ) = − 1
λ1 − 2λ2

(T (λ2)h(X,X1) − ah(K(X,X1), X0)). (5.5)

Together with (5.4) and the third equation of (3.13), for unit vector field Y ∈ D3 we also get

∇̂TY =
m−1∑

j=0

h(∇̂TY, Yj)Yj , ∇̂Y T = −βY,

∇̂Y Y = βT − aλ3

λ2 − λ3
X0 +

∑

j

h(∇̂Y Y, Yj)Yj ,

∇̂Y X0 =
aλ3

λ2 − λ3
Y +

∑

i

h(∇̂Y X0, Xi)Xi, ∇̂XY =
∑

j

h(∇̂XY, Yj)Yj .

For unit vector field Y ∈ D3, the Codazzi equation

h((∇̂XK)(Y, Y ) − (∇̂Y K)(X,Y ), X ′) =
1
2
(μ1 − μ3)h(X,X ′)

gives further

1
2
(μ1 − μ3)h(X,X ′) = h(∇̂XK(Y, Y ), X ′) + h(K(X, ∇̂Y Y ), X ′)

= −h(K(Y, Y ), ∇̂XX
′) + h(K(X,X ′), ∇̂Y Y )

=
λ3

λ1 − 2λ2
(T (λ2)h(X,X ′) − ah(K(X,X0), X ′))

− λ2

λ1 − 2λ3

(

T (λ3) +
1
2
(μ3 − μ1)

)

h(X,X ′) +
aλ3

λ3 − λ2
h(K(X,X0), X ′).

From this, we directly have

fh(X,X ′) + gh(K(X,X ′), X0) = 0, (5.6)

where

f =
λ3T (λ2)
λ1 − 2λ2

− λ2T (λ3)
λ1 − 2λ3

−
(

λ2

λ1 − 2λ3
− 1

)
μ3 − μ1

2
,

g =
aλ3

(λ3 − λ2)(λ1 − 2λ2)
(λ1 − λ2 − λ3).



1552 Antić M., et al.

Taking X = X ′ = Xi in (5.6) and summing over the orthonormal basis of D2, we have nf +
gh(nλ2T,X0) = 0 and therefore we get f = 0.

Since
∑

i,j h(K(X0, Xi), Xj)2 �= 0, we see that h(K(X,X ′), X0) is not zero for some X,X ′.
We then get by (5.6) that g = 0 and hence we have λ3(λ1−λ2−λ3) = 0. This is a contradiction.
We conclude that Case II-(1) cannot occur.
Case II-(2) In this case, the hypersurface is an affine hypersphere. Then the Codazzi equation

h((∇̂YK)(X,X ′), Y ′) = h((∇̂XK)(Y,X ′), Y ′)

straightforwardly implies that

h(K(X,X ′), ∇̂Y Y
′) = h(K(Y, Y ′), ∇̂XX

′). (5.7)

Furthermore,

h(K(X,X ′), ∇̂Y Y
′) =h(∇̂Y Y

′, T )h(K(X,X ′), T ) +
∑

i

h(∇̂Y Y
′, Xi)h(K(X,X ′), Xi).

The fourth equation of (3.13) yields

h(∇̂Y Y
′, Xi) =

1
λ2 − λ3

h(K(Y, Y ′), ∇̂TXi)

=
1

λ2 − λ3
(h(∇̂TXi, T )h(K(Y, Y ′), T ) +

∑

j

h(∇̂TXi, Yj)h(K(Y, Y ′), Yj)),

and, along with the third equation of (3.13), we obtain

h(K(X,X ′), ∇̂Y Y
′)

= − λ2

λ1 − 2λ3
h(X,X ′)h(Y, Y ′)T (λ3) +

bλ2

λ1 − 2λ3
h(X,X ′)h(K(Y, Y0), Y ′)

− aλ3

λ2 − λ3
h(Y, Y ′)h(K(X,X ′), X0)

+
1

λ2 − λ3

∑

i,j

h(K(X,X ′), Xi)h(K(Y, Y ′), Yj)h(∇̂TXi, Yj). (5.8)

Similarly, we obtain

h(K(Y, Y ′), ∇̂XX
′)

= − λ3

λ1 − 2λ2
h(Y, Y ′)h(X,X ′)T (λ2) +

aλ3

λ1 − 2λ2
h(Y, Y ′)h(K(X,X0), X ′)

− bλ2

λ3 − λ2
h(X,X ′)h(K(Y, Y ′), Y0)

+
1

λ3 − λ2

∑

i,j

h(K(Y, Y ′), Yj)h(K(X,X ′), Xi)h(∇̂TYj , Xi). (5.9)

Putting (5.8) and (5.9) into (5.7), we get

h(X,X ′)h(Y, Y ′)
(
T (λ2)λ3

λ1 − 2λ2
− T (λ3)λ2

λ1 − 2λ3

)

= (λ1 − λ2 − λ3)
(
aλ3h(Y, Y ′)h(K(X,X ′), X0)

(λ2 − λ3)(λ1 − 2λ2)
− bλ2h(X,X ′)h(K(Y, Y ′), Y0)

(λ3 − λ2)(λ1 − 2λ3)

)

.
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In particular, if we take respectively, X ′⊥X and X = X ′ = Xi for various i we get

aλ3h(Y, Y ′)h(K(X,X ′), X0)
λ1 − λ2 − λ3

(λ2 − λ3)(λ1 − 2λ2)
= 0,

aλ3h(K(Xi, Xi), X0) = aλ3h(K(Xj, Xj), X0).

(5.10)

Summarizing the second equation of (5.10) over an orthonormal basis, we get nh(K(X,X), X0)
= 0, which along with the first equation of (5.10) implies that h(K(X,X ′), X0) = 0 and
similarly h(K(Y, Y ′), Y0) = 0.

Now, a straightforward computation from the Codazzi equation

h((∇̂TK)(X0, X0), X0) − h((∇̂X0K)(T,X0), X0) = 0

shows that

0 = Th(K(X0, X0), X0) + h(K(X0, X0), ∇̂X0T ) − h(K(X0, X0), ∇̂TX0)

−X0(λ2)h(X0, X0) − 2h(K(X0, X0), ∇̂TX0)

= −X0(λ2) − 3h(K(X0, X0), ∇̂TX0)

= −X0(λ2) − 3h(K(X0, X0), T )h(∇̂TX0, T ).

Thus X0(λ2) = 3λ2a. By Lemma 3.2 (1), we have X0(λ2) = n+2
n λ2a. These give a contradiction

λ2 = 0, and this case is impossible.
Combining the conclusions in Sections 4 and 5, we complete the proof of Theorem 1.4.
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