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Abstract In this paper, we study the existence and nonexistence of multiple positive solutions for

the following problem involving Hardy–Sobolev–Maz’ya term:

−Δu − λ
u

|y|2 =
|u|pt−1u

|y|t + μf(x), x ∈ Ω,

where Ω is a bounded domain in R
N (N ≥ 2), 0 ∈ Ω, x = (y, z) ∈ R

k ×R
N−k and pt = N+2−2t

N−2
(0 ≤ t ≤

2). For f(x) ∈ C1(Ω)\{0}, we show that there exists a constant μ∗ > 0 such that the problem possesses

at least two positive solutions if μ ∈ (0, μ∗) and at least one positive solution if μ = μ∗. Furthermore,

there are no positive solutions if μ ∈ (μ∗, +∞).

Keywords Hardy–Sobolev–Maz’ya inequality, Mountain Pass Lemma, positive solutions, subsolution

and supersolution
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1 Introduction and Main Results

Let pt = N+2−2t
N−2 , 0 ≤ t < 2 and Ω be a bounded domain containing the origin in R

N (N ≥ 2)
with smooth boundary. We are concerned with the existence of multiple positive solutions for
the following Hardy–Sobolev–Maz’ya equation:

⎧
⎪⎨

⎪⎩

−Δu− λ
u

|y|2 =
|u|pt−1u

|y|t + μf(x), u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)μ

where x = (y, z) ∈ R
k × R

N−k, 2 ≤ k < N , 0 ≤ λ < (k−2)2

4 when k > 2, λ = 0 when k = 2,
μ > 0 is a parameter and f(x) ∈ C1(Ω̄)\{0}. The main interest of this kind of problem, in
addition to the presence of the singular potential 1/|y|2 related to Hardy’s inequality, is the
following well-known Hardy–Sobolev–Maz’ya inequality (see [6])

( ∫

RN

|u|pt+1

|y|t dx

) 2
pt+1

≤ (Sλ
t )−1

∫

RN

(

|∇u|2 − μ
u2

|y|2
)

dx, ∀u ∈ C∞
0 (RN ), (1.1)
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where λ < (k−2
2 )2 and Sλ

t is the best constant. Owing to this inequality, it is easy to see that
(
∫

Ω
(|∇u|2 − λ u2

|y|2 )dx)
1
2 is equivalent to (

∫

Ω
|∇u|2dx) 1

2 in H1
0 (Ω).

From the mathematical point of view, the Hardy–Sobolev–Maz’ya term u
|y|2 and |u|pt−1u

|y|t
are critical: indeed they have the same homogeneity as the Laplacian and do not belong to the
Katos class, hence they can cause the non-compactness of the corresponding functional. We
also mention that the equation (1.1)μ was proposed as a model for describing the dynamics of
galaxies. Various equations similar to (1.1)μ have been proposed to model several phenomena
of interest in astrophysics. We recall here Eddington’s and Matukuma’s equations, which have
attracted much interest in recent years (see [2, 22–24]). In [5] various astrophysical models are
introduced and discussed, including some generalizations of Matukuma’s equation.

After the pioneer work of Brezis and Nirenberg [7], there are many results for the problem
(1.1)μ with λ = 0 and t = 0, which is called Brizis–Nirenberg type problem. See for example
[3, 11, 12, 26] and the references therein. Deng in [14] considered the problem (1.1)μ with
0 ≤ f(x) ∈ C(Ω) ∩ C1+α(Ω̄) and proved the existence of multiple positive solutions when
λ = 0, t = 0. With similar argument, Deng and Peng in [15] obtained multiple positive
solutions for (1.1)μ with Neumann boundary condition in the case λ = 0, t = 0. For more other
results, we refer the readers to [18–20] and the reference therein.

For the case t > 0, if k = N , there are a lot of results for the existence of positive and
sign-changing solutions for (1.1)μ, we refer the readers to [8–10, 21] and the references therein.
Chern and Lin in [13] studied the problem (1.1)μ with μ = 0 and 0 ∈ ∂Ω and obtained the least
energy solutions. If 2 ≤ k < N, μ = 0, Bhakta and Sandeep in [6] investigated the existence
and non-existence of nontrivial solutions for (1.1)μ . If Ω = R

N , λ = μ = 0, t = 1, the positive
extremals of (1.1)μ have been completely identified in [17]. And for more results, one can refer
to [25, 27] and the reference therein.

In this paper, we intend to use the arguments similar to [14–16] to prove the existence
of multiple positive solutions for (1.1)μ. We know that every nontrivial solution for (1.1)μ is
singular at {y = 0} if λ �= 0. So, unlike [14], we cannot apply directly the standard barrier
method to obtain the existence of the minimal solution for (1.1)μ. To overcome this obstacle,
we make a transformation of u by letting

v(x) = |y|−au(x) for x ∈ Ω, (1.2)

where a =
√

(k−2)2−4λ−(k−2)

2 .
A straightforward computation yields

∫

Ω

|∇u|2dx− λ

∫

Ω

u2

|y|2 dx =
∫

Ω

|y|2a|∇v|2dx.

Letting H1
0 (Ω, |y|2adx) be the completion of C∞

0 (Ω) with respect to the norm ‖v‖2
a :=

∫

Ω
|y|2a

·|∇v|2dx, then we can find

v ∈ H1
0 (Ω, |y|2adx) if and only if u ∈ H1

0 (Ω)

and from (1.1), we infer that
( ∫

RN

|y|a(pt+1)|v|pt+1

|y|t dx

) 2
pt+1

≤ (S2a,t)−1

∫

RN

|y|2a|∇v|2dx (1.3)
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for some constant S2a,t > 0.
Also by (1.2), we know that u is a positive solution of (1.1)μ if and only if v is a positive

solution of
⎧
⎪⎨

⎪⎩

−div(|y|2a∇v) =
|y|a(pt+1)|v|pt−1v

|y|t + μ|y|af(x), v > 0, x ∈ Ω,

v = 0, x ∈ ∂Ω.
(1.2)μ

Applying the same argument with [14–16], to get the existence of multiple positive solutions
for the problem (1.2)μ, we will first obtain a minimal positive solution to (1.2)μ by the standard
barrier method. Then using the minimal positive solution, we can transfer the problem (1.2)μ

to another equivalent problem and the second positive solution can be obtained by a variant of
Mountain Pass Lemma (see [1]).

Notice that, unlike [14], in this paper, f(x) is allowed to change sign, which makes the
problem more interesting since we know that, in this case, the maximum principle fails. So it
is obvious that to obtain positive solutions to (1.1)μ, we should impose suitable conditions on
f(x). In what follows, we assume that the following linear problem is solvable

⎧
⎨

⎩

−div(|y|2a∇φ) = |y|af(x), φ ≥ 0, x ∈ Ω,

φ = 0, x ∈ ∂Ω,
(1.4)

and assume that f(x) ∈ U defined as

U = {f(x) ∈ C1(Ω̄)\{0} : (1.4) has positive solutions}.
Finally, from [6], we find that if t = 2− N−2

N−k+
√

(k−2)2−4λ
, the following form of the extremal

function U(y, z) achieves the best constant Sλ
t in (1.1):

U(y, z) = c(λ,N, k)
|y|

√
(k−2)2−4μ−(k−2)

2

(
(1 + |y|)2 + |z|2)

1
pt−1

,

where c(λ,N, k) is a constant depending on μ,N, k. Then it follows from (1.2) that

V (y, z) = |y|−aU(y, z) = c(λ,N, k)
1

((1 + |y|)2 + |z|2) 1
pt−1

attains the best constant S2a,t in (1.3) if t = 2− N−2

N−k+
√

(k−2)2−4λ
and pt = 1+ 2

N−k+
√

(k−2)2−4λ
.

Moreover, to guarantee t > 0, throughout this paper, we set N ≥ 2k − 2 − 2
√

(k − 2)2 − 4μ.
Our main results of this paper as follows.

Theorem 1.1 For pt = 1 + 2

N−k+
√

(k−2)2−4λ
, there exists a constant μ∗ > 0 such that

(i) the problem (1.2)μ possesses a minimal positive solution vμ if μ ∈ (0, μ∗] and there are
no positive solutions for (1.2)μ if μ > μ∗.

(ii) vμ is increasing with respect to μ if μ ∈ (0, μ∗) for all x ∈ Ω.
(iii) vμ is bounded uniformly in H1

0 (Ω, |y|2adx).
(iv) vμ is bounded uniformly in Ω.

Theorem 1.2 If N ≥ max{k+1−√
(k − 2)2 − 4λ, 2k−2−2

√
(k − 2)2 − 4λ} and μ ∈ (0, μ∗),

then the problem (1.2)μ possesses at least two positive solutions vμ and Vμ satisfying vμ < Vμ.
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As we have mentioned, in the present paper, we encounter some new difficulties mainly
due to the singularity of solutions to (1.1)μ. To exclude the singularity, we need to estimate
the precise singularity of the solutions which helps us carry out an important transformation
(see (1.2)). Therefore, we can transform our problem (1.1)μ into a new problem with divergent
form. Moreover, in order to use the comparison theorem and obtain some needed estimates
which are essential to verify a compactness condition in finding the second positive solution,
we also need to prove that the solutions to the transformed problem are in L∞(Ω).

In this paper, H∗ denotes the dual space of H, Lp(Ω, |y|βdx) denotes the usual weighted
Lp space with the norm ‖u‖p,β,Ω = (

∫

Ω
|y|β |u|pdx) 1

p and we denote positive constants (possibly
different) by C.

Our paper is organized as follows. In Section 2, we discuss the existence and nonexistence of
the minimal solution for different μ > 0 by means of the standard barrier method. In Section 3,
we show the existence of the second positive solution for problem (1.2)μ by using the Mountain
Pass Lemma without (PS) condition.

2 The Existence of Minimal Solution

In order to obtain the positive minimal solution to (1.2)μ, we first establish the following strong
maximum principle, which is similar to Proposition 3.1 in [4], so we omit the proof here.

Lemma 2.1 Suppose that Ω ⊂ R
N , ∂Ω is continuous, 0 ∈ Ω. If v ∈ C1(Ω\{y = 0}), v ≥ 0

and v �≡ 0 satisfying
−div(|y|2a∇v) ≥ 0, x ∈ Ω,

then v > 0 in Ω.

Lemma 2.2 Suppose that v is a positive solution to (1.2)μ, then v is bounded in Ω.

Proof Recall that if v is a positive solution of (1.2)μ, then u = |y|av is a positive solution of
(1.1)μ. Define v̄ = v + 1, and for m > 0, let

vm =

⎧
⎨

⎩

v̄, if v < m,

1 +m, if v ≥ m.
(2.1)

Now for s > 1, take η(x) = v̄v
2(s−1)
m − 1. It is easy to see that η ∈ H1

0 (Ω, |y|2adx). Since v(x)
solves (1.2)μ, we have

∫

Ω

|y|2a∇v∇ηdx =
∫

Ω

|y|2a
(
v2(s−1)

m |∇v|2 + 2(s− 1)v2(s−1)
m |∇vm|2)dx

=
∫

Ω

|y|a(pt+1)|v|pt−1

|y|t vηdx+ μ

∫

Ω

|y|af(x)ηdx. (2.2)

Setting wm = vs−1
m v̄, together with (2.2), we can obtain

∫

Ω

|y|2a|∇wm|2dx =
∫

Ω

|y|2a|(vs−1
m ∇v + (s− 1)vs−1

m ∇vm)|2dx

≤ 2
( ∫

Ω

|y|2av2(s−1)
m |∇v|2dx+ (s− 1)2

∫

Ω

|y|2av2(s−1)
m |∇vm)|2dx

)

≤ Cs

∫

Ω

|y|a(pt+1)|v|pt−1

|y|t vηdx+ Csμ

∫

Ω

|y|af(x)ηdx. (2.3)
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From [28, Proposition 2.2], u ∈ Lp(Ω, |y|−tdx), ∀p < 2(k−t)

k−2−
√

(k−2)2−4λ
. So choosing

N − t

2 − t
< q <

(k − t)(N − 2)
(2 − t)(k − 2 − √

(k − 2)2 − 4λ)

such that
(pt − 1)q <

2(k − t)
k − 2 − √

(k − 2)2 − 4λ
and 2 <

2q
q − 1

< pt + 1,

we have, for any ε > 0,
∫

Ω

|y|a(pt+1)|v|pt−1

|y|t vηdx

≤
∫

Ω

|y|a(pt+1)||y|−au|pt−1w2
m

|y|t dx

≤ ‖u‖pt−1
pt+1,t,Ω‖|y|awm‖2

2q
q−1 ,t,Ω

≤ C
(‖|y|awm‖θ

r1,t,Ω‖|y|awm‖1−θ
r2,t,Ω

)2

≤ C

(

ε
(‖|y|awm‖θ

r1,t,Ω

)α1 + (α1ε)
−α2

α1
1
α2

(‖|y|awm‖1−θ
r2,t,Ω

)α2

)2

, (2.4)

where θ
r1

+ 1−θ
r2

= q−1
2q , 1

α1
+ 1

α2
= 1, r1 = pt + 1, r2 = 2, θ

r1
α1 = 1

pt+1 , 1−θ
r2
α2 = 1

2 , and which

implies that θ = N−t
q(2−t) , α1 = q(2−t)

N−t , α2 = q(2−t)
q(2−t)−(N−t) . Thus, one has

∫

Ω

|y|a(pt+1)|v|pt−1

|y|t vηdx

≤ Cε2
( ∫

Ω

|y|a(pt+1)|wm|pt+1

|y|t dx

) 2
pt+1

+ Cε−
2(N−t)

(2−t)q−(N−t)

∫

Ω

|y|2a|wm|2
|y|t dx

≤ Cε2
∫

Ω

|y|2a|∇wm|2dx+ Cε−
2(N−t)

(2−t)q−(N−t)

∫

Ω

|y|a(pt+1)|wm|2
|y|t dx. (2.5)

For f(x) ∈ C1(Ω̄)\{0}, proceeding as we prove (2.4) and (2.5), we can deduce

μ

∫

Ω

|y|af(x)ηdx ≤ C

∫

Ω

|y|aw2
mdx

≤ C

(∫

Ω

|y|−aqdx

) 1
q
( ∫

Ω

||y|awm| 2q
q−1 dx

) q−1
q

≤ C

(∫

Ω

||y|awm| 2q
q−1

|y|t |y|tdx
) q−1

q

≤ C

(∫

Ω

||y|awm| 2q
q−1

|y|t dx

) q−1
q

≤ Cε2
∫

Ω

|y|2a|∇wm|2dx+ Cε−
2(N−t)

(2−t)q−(N−t)

∫

Ω

|y|a(pt+1)|wm|2
|y|t dx, (2.6)

since −aq > −k and then
( ∫

Ω
|y|−aqdx

) 1
q < +∞.

Then it follows from (2.3), (2.5) and (2.6) that
∫

Ω

|y|2a|∇wm|2dx ≤ Csε2
∫

Ω

|y|2a|∇wm|2dx+ Csε−
2(N−t)

(2−t)q−(N−t)

∫

Ω

|y|a(pt+1)w2
m

|y|t dx. (2.7)
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Taking ε = 1√
2Cs

in (2.7), from (1.3), we infer that

( ∫

Ω

|y|a(pt+1)wpt+1
m

|y|t dx

) 2
pt+1

≤ Csα

∫

Ω

|y|a(pt+1)w2
m

|y|t dx, (2.8)

where α = (2−t)q
(2−t)q−(N−t) .

Using vm ≤ v̄ and setting γ = 2s and χ = N−t
N−2 , (2.8) becomes

( ∫

Ω

|y|a(pt+1)vγχ
m

|y|t dx

) 1
γχ

≤ (Csα)
1
γ

( ∫

Ω

|y|a(pt+1)v̄γ

|y|t dx

) 1
γ

.

Passing to the limit as m→ +∞, we get
( ∫

Ω

|y|a(pt+1)v̄γχ

|y|t dx

) 1
γχ

≤ (Csα)
1
γ

( ∫

Ω

|y|a(pt+1)v̄γ

|y|t dx

) 1
γ

. (2.9)

For i = 0, 1, . . ., define γ0 = 2 and γi = 2χi. Then χγi = γi+1 and hence from (2.9), with
γ = γi, we have

( ∫

Ω

|y|a(pt+1)v̄γi+1

|y|t dx

) 1
γi+1 ≤ C

1
γi

( ∫

Ω

|y|a(pt+1)v̄γi

|y|t dx

) 1
γi

,

which implies
( ∫

Ω

v̄γi+1dx

) 1
γi+1 ≤ C

( ∫

Ω

|y|a(pt+1)v̄γi+1

|y|t dx

) 1
γi+1 ≤ C

∑ 1
γi

( ∫

Ω

|y|a(pt+1)v̄γ0

|y|t dx

) 1
γ0

.

Letting i→ +∞, we get

sup
Ω
v̄ ≤ C

(∫

Ω

|y|a(pt+1)v̄2

|y|t dx

) 1
2

< +∞. �

Now we give the following lemma which can be proved by using the standard variational
method and then we omit its proof here.

Lemma 2.3 The first eigenvalue η1 of the following eigenvalue problem
⎧
⎪⎨

⎪⎩

−div(|y|2a∇ϕ) = η1
|y|a(pt+1)

|y|t ϕ, x ∈ Ω,

ϕ = 0, x ∈ ∂Ω
(2.10)

is positive and can be achieved by a function ϕ1(x) > 0.

Lemma 2.4 Let φ(x) be the nonnegative solution of (1.4), and v1(x) be the solution of the
problem ⎧

⎨

⎩

−div(|y|2a∇v1) = |y|a(pt+1)−t, x ∈ Ω,

v1 = 0, x ∈ ∂Ω.
(2.11)

Then ϕ1(x), φ(x) and v1(x) are bounded uniformly in Ω.

Proof Similar to the proof of Lemma 2.2, it is clear that ϕ1, φ(x) are bounded uniformly in Ω.
Then we just need to show that v1(x) is bounded in Ω. To see this, letting η(x) be mentioned
as in Lemma 2.2, we have

∫

Ω

|y|a(pt+1)−tηdx ≤ C

∫

Ω

|y|a(pt+1)w2
m

|y|t dx
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≤ C

( ∫

Ω

|y|a(pt−1)q

|y|t dx

) 1
q
( ∫

Ω

||y|awm| 2q
q−1

|y|t dx

) q−1
q

≤ C

( ∫

Ω

||y|awm| 2q
q−1

|y|t dx

) q−1
q

,

since a(pt − 1)q− t > a(pt − 1) (k−t)(N−2)

(2−t)(k−2−
√

(k−2)2−4λ)
− t = −k. Now proceeding as we done to

prove (2.6), we can check that v1(x) is bounded in Ω. �

Lemma 2.5 There exists a positive constant μ∗ > 0 such that the problem (1.2)μ has at least
one positive solution for μ ∈ (0, μ∗).

Proof Let φ(x) be the nonnegative solution of (1.4) and set V = μφ(x). Then we have

−div(|y|2a∇V ) − |y|a(pt+1)−t|V |pt−1V − μ|y|af(x) = −μpt |y|a(pt+1)−tφpt ≤ 0.

Hence, V is a subsolution of (1.2)μ for all μ > 0. We want to find a supersolution W0(x) of
(1.2)μ with W0(x) ≥ V in Ω. To this end, letting v1(x) be the solution of the problem (2.11),
then by the strong maximum principle, v1 > 0 in Ω. Setting V̄ = Mv1(x), we have

− div(|y|2a∇V̄ ) − |y|a(pt+1)−tV̄ pt − μ|y|af(x)

= M |y|a(pt+1)−t −Mpt |y|a(pt+1)−tvpt

1 − μ|y|af(x)

= |y|a(
M |y|apt−t −Mpt |y|apt−tvpt

1 − μf(x)
)
.

Choose M = M0 > 0 satisfying

M0 ≥Mpt

0 max
Ω̄

|v1|pt +Mpt

0 max
Ω̄

||y|t−aptf(x)|.

So if μ ≤Mpt

0 , we have

−div(|y|2a∇V̄0) − |y|a(pt+1)−tV̄0
pt − μ|y|af(x) ≥ 0,

where V̄0 = M0v1(x). Notice that φ(x) and v1(x) satisfy respectively

−div(|y|2a∇φ) = |y|af(x)

and
−div(|y|2a∇v1) = |y|a|y|apt−t.

Since apt − t < 0, there exists a constant c > 0 such that |y|apt−t > cf(x) and then by the
strong maximum principle, we have v1(x) ≥ cφ(x). Hence, we may choose μ0 small enough
such that μ0φ(x) ≤M0v1(x). By the iteration method, we can deduce that problem (1.2)μ has
a solution v(x) satisfying V ≤ v(x) ≤ V̄0 for all μ ≤ μ0. Moreover, v > 0 in Ω. In fact, letting
W (x) = v(x) − V (x) �≡ 0, then

⎧
⎪⎨

⎪⎩

−div(|y|2a∇W ) =
|y|a(pt+1)vpt

|y|t ≥ 0,

W |∂Ω = 0.

Hence, the strong maximum principle implies that v > V (x) ≥ 0 in Ω. Now, define

μ∗ = sup{μ0 > 0 : the problem (1.2)μ has at least one solution for each μ ∈ (0, μ0)}.
As a result, we complete the proof. �

The following lemma shows that μ∗ is bounded.
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Lemma 2.6 There exists a constant C > 0 such that (1.2)μ has no positive solutions if μ > C.

Proof Let η1, ϕ1 be mentioned as in Lemma 2.3. Assume that v is a positive solution of
(1.2)μ, then we have

μ

∫

Ω

|y|af(x)ϕ1dx =
∫

Ω

|y|a(pt+1)−t
(
η1v − vpt

)
ϕ1dx.

From pt > 1, we can choose C1 > 0 such that C1 ≥ η1v − vpt for all v > 0. Thus,

μ

∫

Ω

|y|af(x)ϕ1dx ≤ C1

∫

Ω

|y|a(pt+1)−tϕ1dx < +∞,

since a(pt + 1) − t > −k. So taking C = C1
∫

Ω |y|a(pt+1)−tϕ1dx
∫

Ω |y|af(x)ϕ1dx
< +∞, we obtain that μ < C.

This completes the proof. �

Lemma 2.7 Problem (1.2)μ has a positive solution for all μ ∈ (0,Λ) if it has a positive
solution when μ = Λ > 0.

Proof Let ṽ(x) be a positive solution of (1.2)μ for μ = Λ > 0. Set ṽ = Λw1. Then w1 satisfies
⎧
⎪⎨

⎪⎩

−div(|y|2a∇w1) = Λpt−1 |y|a(pt+1)wpt

1

|y|t + |y|af(x), x ∈ Ω,

w1|∂Ω = 0, w1 > 0 in Ω.

Hence, for any 0 < μ < Λ, w1 is a supersolution of the problem
⎧
⎪⎨

⎪⎩

−div(|y|2a∇w) = μpt−1 |y|a(pt+1)|w|pt−1w

|y|t + |y|af(x), x ∈ Ω,

w|∂Ω = 0, w > 0 in Ω.
(2.12)

On the other hand, the problem (1.4) has a nonnegative solution φ(x) satisfying
⎧
⎪⎨

⎪⎩

−div(|y|2a∇φ) = |y|af(x) ≤ μpt−1 |y|a(pt+1)φpt

|y|t + |y|af(x), x ∈ Ω,

φ|∂Ω = 0, φ ≥ 0 in Ω.

So we know that φ(x) is a subsolution of (2.12). By the comparison principle, we have

0 ≤ φ ≤ w1 for all x ∈ Ω.

Thus, there exists a positive solution wμ of (2.12) for all μ ∈ (0,Λ). Then v = μwμ is a positive
solution of the problem (1.2)μ for all μ ∈ (0,Λ). �

Theorem 2.8 There exists a positive constant μ∗ < +∞ such that (1.2)μ has at least one
positive solution if μ ∈ (0, μ∗) and (1.2)μ has no positive solutions if μ > μ∗.

Proof Lemma 2.5 implies that there exists a positive constant μ∗ such that the problem (1.2)μ

has at least one positive solution for μ ∈ (0, μ∗). Let

μ∗ = sup{μ > 0 : (1.2)μ has a positive solution}.
It follows from Lemmas 2.6 and 2.7 that 0 < μ∗ < +∞ and for all μ ∈ (0, μ∗), (1.2)μ has at
least one positive solution. Moreover, the definition of μ∗ implies that (1.2)μ has no solution
when μ > μ∗. �
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Proposition 2.9 Assume that φ(x) is the nonnegative solution of (1.4), then the problem
(1.2)μ has at least one minimal positive solution vμ for μ ∈ (0, μ∗) satisfying

(i) vμ > μφ(x) for all x ∈ Ω,
(ii) vμ is increasing with respect to μ for all x ∈ Ω.

Proof Set vμ(x) = μwμ(x). Then wμ satisfies
⎧
⎪⎨

⎪⎩

−div(|y|2a∇wμ) = μpt−1
|y|a(pt+1)wpt

μ

|y|t + |y|af(x), x ∈ Ω,

wμ|∂Ω = 0, wμ ≥ 0 in Ω.

Setting Φ = wμ − φ, we have
⎧
⎪⎨

⎪⎩

−div(|y|2a∇Φ) = μpt−1
|y|a(pt+1)wpt

μ

|y|t ≥ 0, x ∈ Ω,

Φ|∂Ω = 0.

Then by the strong maximum principle, Φ = wμ − φ > 0 in Ω.
Notice that μφ is a subsolution of (1.2)μ, and all nonnegative supersolution of (1.2)μ must

be larger than or equal to μφ. Hence, we can find a minimal solution of (1.2)μ by a monotone
iteration starting with μφ.

To prove the second statement, we first let μ1, μ2 ∈ (0, μ∗) with μ1 < μ2 and the corre-
sponding minimal solutions of (1.2)μ are vμ1 and vμ1 . Set vμ1 = μ1wμ1 and vμ2 = μ2wμ2 .
Then wμ2 must be a supersolution and φ(x) be a subsolution of (2.12) when μ = μ1. By the
monotone iteration again, we have φ ≤ wμ1 ≤ wμ2 , that is, vμ1 < vμ2 . �

Let vμ be the minimal positive solution of (1.2)μ given by Proposition 2.9. Now consider
the following eigenvalue problem

⎧
⎪⎨

⎪⎩

−div(|y|2a∇Ψ) = d
pt|y|a(pt+1)vpt−1

μ

|y|t Ψ, in Ω,

Ψ∂Ω = 0.
(2.13)

Then we have

Lemma 2.10 The first eigenvalue

d := inf
{∫

Ω

|y|2a|∇Ψ|2 : Ψ ∈ H1
0 (Ω, |y|2adx),

∫

Ω

pt|y|a(pt+1)−tvpt−1
μ Ψ2 = 1

}

(2.14)

of (2.13) can be obtained by a function Ψ1 > 0 if μ ∈ (0, μ∗). Moreover, d > 1.

Proof We can prove that the minimal problem (2.14) can be achieved by a function Ψ1 if
μ ∈ (0, μ∗) by standard variational argument. So we only need to show that d > 1. Suppose
that μ∗ > μ̄ > μ > 0, vμ̄, vμ are the minimal positive solution of (1.2)μ̄, (1.2)μ respectively.
Then we have vμ̄ > vμ > 0 and

− div(|y|2a∇(vμ̄ − vμ)) − (μ̄− μ)|y|af(x)

=
|y|a(pt+1)vpt

μ̄

|y|t − |y|a(pt+1)vpt
μ

|y|t

=
|y|a(pt+1)

|y|t
(

ptv
pt−1
μ (vμ̄ − vμ) +

1
2
pt(pt − 1)[vμ + θ(vμ̄ − vμ)]pt−2(vμ̄ − vμ)2

)
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>
|y|a(pt+1)

|y|t ptv
pt−1
μ (vμ̄ − vμ),

where 0 < θ < 1. Note that from (1.4),
∫

Ω

|y|af(x)Ψ1dx =
∫

Ω

−div(|y|2a∇φ)Ψ1dx =
∫

Ω

−div(|y|2a∇Ψ1)φdx

=
∫

Ω

d
pt|y|a(pt+1)vpt−1

μ

|y|t Ψ1φdx ≥ 0,

which implies
∫

Ω

(−div|y|2a∇Ψ1)(vμ̄ − vμ)dx >
∫

Ω

pt|y|a(pt+1)

|y|t vpt−1
μ (vμ̄ − vμ)Ψ1dx.

Hence,
∫

Ω

d
pt|y|a(pt+1)vpt−1

μ

|y|t (vμ̄ − vμ)Ψ1dx >

∫

Ω

pt|y|a(pt+1)

|y|t vpt−1
μ (vμ̄ − vμ)Ψ1dx,

which implies d > 1. �

Lemma 2.11 (1.2)μ∗ possesses a minimal positive solution.

Proof For any μ ∈ (0, μ∗), suppose that vμ is the minimal positive solution of (1.2)μ. Since
∫

Ω

|y|2a|∇vμ|2dx =
∫

Ω

|y|a(pt+1)vpt+1
μ

|y|t dx+ μ

∫

Ω

|y|af(x)vμdx. (2.15)

It follows from Lemma 2.10 that
∫

Ω

|y|a(pt+1)vpt+1
μ

|y|t dx+ μ

∫

Ω

|y|af(x)vμdx =
∫

Ω

|y|2a|∇vμ|2dx

≥ pt

∫

Ω

|y|a(pt+1)vpt+1
μ

|y|t dx.

Thus, we have

(pt − 1)
∫

Ω

|y|a(pt+1)vpt+1
μ

|y|t dx

≤ μ

∫

Ω

|y|af(x)vμdx

≤ μ∗
(

δ

∫

Ω

∣
∣
∣|y|

a(pt+1)−t
pt+1 vμ

∣
∣
∣
pt+1

dx+ Cδ

∫

Ω

∣
∣
∣|y| t

pt+1 f
∣
∣
∣

pt+1
pt

dx

)

≤ C1μ
∗δ

∫

Ω

|y|a(pt+1)vpt+1
μ

|y|t dx+ C2Cδμ
∗dx, (2.16)

where δ is a small positive constant satisfying pt − 1−C1μ
∗δ > 0 and Cδ is a positive constant

only dependent on δ. So there exists a positive constant C3 independent of μ such that
∫

Ω

|y|a(pt+1)vpt+1
μ

|y|t dx ≤ C3.

So (2.15) and (2.16) yield ∫

Ω

|y|2a|∇vμ|2dx ≤ C (2.17)

for some positive constant C independent of μ.
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Now, we will prove the existence of the minimal positive solution of (1.2)μ∗ . Suppose that
{μj}j≥1 is an increasing sequence in (0, μ∗) with limj→+∞ μj = μ∗ and the corresponding
sequence of solutions is {vμj

}j≥1 ⊂ H1
0 (Ω, |y|2adx). From (2.17), we can choose a subsequence

still denoted by {vμj
} such that

vμj
⇀ v̄, in H1

0 (Ω, |y|2adx),

vμj
⇀ v̄, in Lpt+1(Ω, |y|a(pt+1)−tdx)

and
vpt

μj
⇀ v̄pt , in (L

pt+1
pt (Ω, |y|a(pt+1)−tdx))∗,

as j → +∞. Thus, for any ϕ̄ ∈ C∞
0 (Ω),

0 =
∫

Ω

|y|2a∇vμj
∇ϕ̄−

∫

Ω

|y|a(pt+1)vpt
μj

|y|t ϕ̄− μj

∫

Ω

|y|af(x)ϕ̄

→
∫

Ω

|y|2a∇v̄∇ϕ̄−
∫

Ω

|y|a(pt+1)v̄pt

|y|t ϕ̄− μ∗
∫

Ω

|y|af(x)ϕ̄,

as j → +∞. Hence, v̄ is a solution of (1.2)μ∗ . Note that μφ is always a subsolution of (1.2)μ∗ .
Using the methods of monotone iteration and strong maximum principle, we conclude that
there exists a minimal positive solution vμ∗ of (1.2)μ∗ . �

3 Existence of the Second Solution

Let vμ be the minimal positive solution of (1.2)μ for μ ∈ (0, μ∗]. To find the second positive
solution of (1.2)μ, we study the following problem

⎧
⎪⎨

⎪⎩

−div(|y|2a∇w) =
(w + vμ)pt − vpt

μ

|y|t−a(pt+1)
, w > 0, x ∈ Ω,

w = 0, x ∈ ∂Ω.
(3.1)μ

Obviously, we can get another positive solution Vμ = w + vμ for the problem (1.2)μ if (3.1)μ

has a positive solution w. Now we prove that (3.1)μ has a positive solution for μ ∈ (0, μ∗) by
using a variant of the Mountain Pass Lemma. To this end, set

h(x,w) =
(w + vμ)pt − wpt − vpt

μ

|y|t−a(pt+1)

and

α(x) =
ptv

pt−1
μ

|y|t−a(pt+1)
.

The values of h(x,w) for w < 0 are irrelevant and we may define

h(x,w) = α(x)w for w < 0, x ∈ Ω.

We will prove that
⎧
⎪⎨

⎪⎩

−div(|y|2a∇w) = h(x,w) +
wpt

|y|t−a(pt+1)
, w > 0, x ∈ Ω,

w = 0, x ∈ ∂Ω
(3.2)μ

possesses a positive solution.
We first give a compact embedding result whose proof is standard and hence omitted.
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Lemma 3.1 The embedding

H1
0 (Ω, |y|2adx) ↪→ Lq(Ω, |y|a(pt+1)−tdx)

is compact if 0 < q < pt + 1.

Define the energy functional corresponding to (3.2)μ by

J(w) =
1
2

∫

Ω

|y|2a|∇w|2dx− 1
pt + 1

∫

Ω

|y|a(pt+1)

|y|t (w+)pt+1dx−
∫

Ω

H(x,w)dx,

where H(x,w) =
∫ w

0
h(x, s)ds. By Lemma 3.1, this functional is well defined in H1

0 (Ω, |y|2adx)
and J ∈ C1(H1

0 (Ω, |y|2adx), R). Hence, if w ∈ H1
0 (Ω, |y|2adx) is a critical point of J(w), then

∫

Ω

|y|2a|∇w−|2dx−
∫

Ω

α(x)(w−)2dx = 〈J ′(w), w−〉 = 0,

which combined with Lemma 2.10 implies that w− = 0 and hence the strong maximum principle
yields that w is a positive solution of (3.1)μ. Thus in order to obtain a positive solution of (3.1)μ,
it suffices to find a nonzero critical point of J(w).

Set
c∗ = inf

γ∈Γ
max

t∈(0,1)
J(γ(t)),

where Γ = {γ ∈ C([0, 1], H1
0 (Ω, |y|2adx)), γ(0) = 0, J(γ(1)) < 0}. It is clear that there exists a

constant t0 large enough such that J(t0w) < 0 for any w ∈ H1
0 (Ω, |y|2adx) and w+ �≡ 0. We

claim that c∗ is larger than zero. In fact,

J(w) =
∫

Ω

(
1
2
|y|2a|∇w|2 − 1

pt + 1
|y|a(pt+1)−t(w+)pt+1 −H(x,w)

)

dx

=
1
2

∫

Ω

(|y|2a|∇w|2 − α(x)w2)dx− 1
pt + 1

∫

Ω

|y|a(pt+1)

|y|t (w+)pt+1dx

−
∫

Ω

(

H(x,w) − 1
2
α(x)w2

)

dx.

By Lemma 2.10,
∫

Ω

(|y|2a|∇w|2 − α(x)w2) ≥
(

1 − 1
d

) ∫

Ω

|y|2a|∇w|2 ≥ β1‖w‖2
a (3.1)

for some positive constant β1. Note that

lim
w→∞

h(x,w)
|y|a(pt+1)−twpt

= 0, uniformly for x ∈ Ω (3.2)

and
lim
w→0

h(x,w)
α(x)w

= 1, uniformly for x ∈ Ω. (3.3)

Then for any ε > 0, we have
∫

Ω

(

H(x,w) − 1
2
α(x)w2

)

dx ≤ ε

2

∫

Ω

α(x)w2dx+
(Cε + 1)
pt + 1

∫

Ω

|y|a(pt+1)

|y|t |w|pt+1dx,

which implies

J(w) ≥ 1
2
β1‖w‖2

a − 1
pt + 1

∫

Ω

|y|a(pt+1)

|y|t (w+)pt+1dx− Cε

2

∫

Ω

|y|a(pt+1)

|y|t w2dx
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− Cε

pt + 1

∫

Ω

|y|a(pt+1)

|y|t |w|pt+1dx

≥ 1
2
β1‖w‖2

a − Cε

2
‖w‖2

a − Cε

pt + 1
‖w‖pt+1

a .

Setting ε = β1
2C , we have

J(w) ≥ 1
4
β1‖w‖2

a − C‖w‖pt+1
a .

So we can choose ρ > 0 small such that

J(w)
∣
∣
∂Bρ(0)

≥ c > 0.

Therefore, c∗ > 0 holds.
The following lemma shows that J satisfies the Palais–Smale condition (PS)c at level c

provided that c is in a suitable range.

Lemma 3.2 Suppose that μ ∈ (0, μ∗), c∗ < ( 1
2 − 1

pt+1 )(S2a,t)
pt+1
pt−1 . Then (3.1)μ possesses a

positive solution.

Proof Using the Mountain Pass Lemma without (PS) condition (see [1]), there exists a
sequence of {wn}n≥1 ⊂ H1

0 (Ω, |y|2adx) with J(wn) → c∗ in H1
0 (Ω, |y|2adx) and J ′(wn) →

0 in (H1
0 (Ω, |y|2adx))∗. Then we deduce

1
2

∫

Ω

|y|2a|∇wn|2dx− 1
pt + 1

∫

Ω

|y|a(pt+1)

|y|t (w+
n )pt+1dx−

∫

Ω

H(x,wn)dx = c∗ + o(1) (3.4)

and
∫

Ω

|y|2a|∇wn|2dx =
∫

Ω

|y|a(pt+1)

|y|t (w+
n )pt+1dx+

∫

Ω

h(x,wn)wndx+ o(1)‖wn‖a. (3.5)

So we have
(

1
2
− 1
pt + 1

) ∫

Ω

|y|a(pt+1)

|y|t (w+
n )pt+1dx

≤
∫

Ω

(

H(x,wn) − 1
2
h(x,wn)wn

)

dx+ c∗ + o(1)(1 + ‖wn‖a).

Now we shall prove that {wn} is bounded. It follows from (3.2) that for any ε > 0, there
exists a constant Cε > 0 such that

|h(x,w)w| ≤ ε|y|a(pt+1)−twpt+1 + Cε|y|a(pt+1)−t

for all x ∈ Ω and w ≥ 0. Then we have
∣
∣
∣
∣

∫

Ω

h(x,wn)wndx

∣
∣
∣
∣ ≤ ε

∫

Ω

|y|a(pt+1)

|y|t wpt+1
n dx+ Cε

∫

Ω

|y|a(pt+1)−tdx

≤ ε

∫

Ω

|y|a(pt+1)

|y|t wpt+1
n dx+ Cε

and ∣
∣
∣
∣

∫

Ω

H(x,wn)dx
∣
∣
∣
∣ ≤ ε

∫

Ω

|y|a(pt+1)

|y|t wpt+1
n dx+ Cε.

Taking ε suitably, we can deduce
∫

Ω

|y|a(pt+1)

|y|t (w+
n )pt+1dx ≤ C + o(1)‖wn‖a.
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Combining the above estimates together, we see that {wn} is bounded in H1
0 (Ω, |y|2adx). Up

to a subsequence, we may assume that as n→ +∞,

wn ⇀ w, in H1
0 (Ω, |y|2adx),

wn → w, in L2(Ω, |y|a(pt+1)−tdx),

wn → w, a.e. Ω,

(w+
n )pt ⇀ (w+)pt , in (L

pt+1
pt (Ω, |y|a(pt+1)−tdx))∗

and
h(x,wn) ⇀ h(x,w), in (Lpt+1(Ω, |y|a(pt+1)−tdx))∗.

Therefore, we know that w solves

−div(|y|2a∇w) =
(w+)pt

|y|t−a(pt+1)
+ h(x,w).

If w �≡ 0, our result holds true. So now it suffices to prove that w �≡ 0. Suppose that w ≡ 0.
Using (3.2) and (3.3), for any ε > 0, there exists a constant Cε > 0 such that

∣
∣
∣
∣

∫

Ω

h(x,wn)wndx

∣
∣
∣
∣ ≤ ε

∫

Ω

|y|a(pt+1)

|y|t wpt+1
n dx+ Cε

∫

Ω

α(x)w2
ndx

≤ ε

∫

Ω

|y|a(pt+1)

|y|t wpt+1
n dx+ Cε

∫

Ω

|y|a(pt+1)

|y|t w2
ndx

and ∣
∣
∣
∣

∫

Ω

H(x,wn)dx
∣
∣
∣
∣ ≤ ε

∫

Ω

|y|a(pt+1)

|y|t wpt+1
n dx+ Cε

∫

Ω

|y|a(pt+1)

|y|t w2
ndx.

Then using Lemma 3.1, we see that as n→ +∞,
∫

Ω

h(x,wn)wndx→ 0 (3.6)

and ∫

Ω

H(x,wn)dx→ 0. (3.7)

By extracting a subsequence of {wn}, we may assume that
∫

Ω

|y|2a|∇wn|2dx→ l

for some constant l ≥ 0. Combining (3.5) and (3.6), we deduce
∫

Ω

|y|a(pt+1)

|y|t (wn)pt+1dx→ l.

Hence, by (3.4),

c∗ =
(

1
2
− 1
pt + 1

)

l ≥
(

1
2
− 1
pt + 1

)

(S2a,t)
pt+1
pt−1 ,

which yields a contradiction to c∗ < ( 1
2 − 1

pt+1 )(S2a,t)
pt+1
pt−1 . �

Set
c∗ = inf

w∈H1
0 (Ω,|y|2adx)

{
sup
s>0

J(sw);w ≥ 0, w �≡ 0
}
.
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Then c∗ ≤ c∗. So, next we will verify that there exists a function w ≥ 0 such that

c∗ ≤ sup
s>0

J(sw) <
(

1
2
− 1
pt + 1

)

(S2a,t)
pt+1
pt−1 . (3.8)

Set

Vε(x) := ε
2−N−2a

2 V

(
x

ε

)

,

where V (x) is given in the introduction. Then Vε(x) also achieves S2a,t with
∫

RN

|y|2a|∇Vε|2dx =
∫

RN

|y|a(pt+1)

|y|t V pt+1
ε dx = (S2a,t)

pt+1
pt−1 := K1.

For θ > 0 and θ < maxx∈Ω vμ(x), suppose that A := {x ∈ Ω : vμ > θ} �= ∅. Choosing ρ > 0
small enough such that B2ρ(0) ⊂ A ⊆ Ω ⊂ BR(0). Let vε(x) := ψ(x)Vε(x), where ψ ∈ C∞

0 (Ω)
is a cut-off function satisfying ψ = 1 on Bρ(0) and ψ = 0 on Ω\B2ρ(0). Then we have the
following estimates.

Lemma 3.3 If N ≥ k + 1 − √
(k − 2)2 − 4λ := β and ε is sufficiently small, then

K1(ε) :=
∫

Ω

|y|a(pt+1)|vε|pt+1

|y|t dx = K1 +O(εN−k+
√

(k−2)2−4λ+1) (3.9)

and
K2(ε) :=

∫

Ω

|y|2a|∇vε|2dx = K1 +O(εN−k+
√

(k−2)2−4λ). (3.10)

Moreover,

K3(ε) :=
∫

Ω

|y|a(pt+1)|vε|2
|y|t dx ≤

{
Cε, N > β,

Cε| ln ε|, N = β.
(3.11)

Proof Note that
∫

Ω

|y|a(pt+1)|vε|pt+1

|y|t dx =
∫

RN

|y|a(pt+1)|Vε|pt+1

|y|t dx−
∫

RN\Bρ(0)

|y|a(pt+1)|Vε|pt+1

|y|t dx

+
∫

Ω\Bρ(0)

|y|a(pt+1)|Vε|pt+1

|y|t ψpt+1dx.

By direct computation, we can obtain
∫

RN\Bρ(0)

|y|a(pt+1)−tV pt+1
ε dx

=
∫

RN\B ρ
ε
(0)

|ζy|a(pt+1)−t|V (ζ)|pt+1dζ

≤ C

∫

RN\B ρ
ε
(0)

|ζy|a(pt+1)−t

[(1 + |ζy|)2 + |ζz|2]
pt+1
pt−1

dζ

≤ C

∫ +∞

ρ
ε

∫ +∞

ρ
ε

ra(pt+1)−t+k−1sN−k−1

[(1 + r)2 + s2]
pt+1
pt−1

dsdr

≤ C

∫ +∞

ρ
ε

ra(pt+1)−t+k−1

(1 + r)
2(pt+1)

pt−1 −N+k
dr

∫ +∞

0

tN−k−1

(1 + t2)
pt+1
pt−1

dt

≤ C

∫ +∞

ρ
ε

1

rN−k+
√

(k−2)2−4λ+2
dr

∫ +∞

0

tN−k−1

(1 + t2)
pt+1
pt−1

dt
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≤ CεN−k+
√

(k−2)2−4λ+1,

where x = (y, z) = εζ = ε(ζy, ζz). Similarly, we have
∫

Ω\Bρ(0)

|y|a(pt+1)|Vε|pt+1

|y|t ψpt+1dx ≤ CεN−k+
√

(k−2)2−4λ+1.

Hence, (3.9) holds.
Observe that Vε satisfies

−div(|y|2a∇Vε) = |y|a(pt+1)−tV pt
ε , x ∈ R

N . (3.12)

Multiplying (3.12) by ψ2Vε, we have
∫

Ω

2|y|2a∇ψVεψ∇Vεdx =
∫

Ω

|y|a(pt+1)−tV pt+1
ε ψ2dx−

∫

Ω

|y|2aψ2|∇Vε|2dx

and then ∫

Ω

|y|2a|∇vε|2dx =
∫

Ω

|y|2a|∇ψ|2V 2
ε dx+

∫

Ω

|y|a(pt+1)−tψ2V pt+1
ε dx. (3.13)

Similar to the proof of (3.9), we deduce
∫

Ω

|y|a(pt+1)|vε|pt+1

|y|t ψ2dx =
∫

Ω

|y|a(pt+1)|Vε|pt+1

|y|t dx+O(εN−k+
√

(k−2)2−4λ+1)

and ∫

Ω

|y|2a|∇ψ|2V 2
ε dx = O(εN−k+

√
(k−2)2−4λ).

Thus, from (3.13), (3.10) holds.
Now, it remains to prove (3.11). Applying the same argument with (3.9), we have
∫

Ω

|y|a(pt+1)|vε|2
|y|t dx ≤ C

∫

B2ρ(0)

|y|a(pt+1)−t

∣
∣
∣
∣ε

2−N−2a
2 V

(
x

ε

)∣
∣
∣
∣

2

dx

≤ Cε2−2a+a(pt+1)−t

∫ 2ρ
ε

0

ra(pt+1)−t+k−1

(1 + r)
4

pt−1−N+k
dr

∫ +∞

0

tN−k−1

(1 + t2)
2

pt−1
dt

≤ Cε

∫ 2ρ
ε

0

1

(1 + r)N−k+
√

(k−2)2−4λ
dr

≤
{

Cε, N > β,

Cε| ln ε|, N = β,

where β = k + 1 − √
(k − 2)2 − 4λ. �

Lemma 3.4 There exists a constant sε such that

sup
s>0

J(svε) = J(sεvε). (3.14)

Moreover, 0 < C1 < sε < C2 < +∞ for some constants C1 and C2 independent of ε.

Proof Denote

Φ(s) := J(svε) =
s2

2

∫

Ω

|y|2a|∇vε|2dx− spt+1

pt + 1

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx−

∫

Ω

H(x, svε)dx.
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It follows from (3.1) that

Φ′(s) = s

∫

Ω

|y|2a|∇vε|2dx− spt

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx−

∫

Ω

h(x, svε)vεdx

= s

∫

Ω

(|y|2a|∇vε|2 − α(x)v2
ε

)
dx

−
∫

Ω

[(svε + vμ)pt − vpt
μ − ptv

pt−1
μ svε]vε

|y|t−a(pt+1)
dx

≥ β1s‖vε‖2
a −

∫

Ω

(
δsv2

ε + Cδs
ptvpt+1

ε

)

|y|t−a(pt+1)
dx

≥ β1s‖vε‖2
a − δsC‖vε‖2

a − Cδs
pt

∫

Ω

vpt+1
ε

|y|t−a(pt+1)
dx

for any δ > 0. Take δ be small enough such that 0 < δ < β1
2C . Then from Lemma 3.3, we have

Φ′(s) ≥ β1

2
sK1 − Cδs

ptK1 + o(ε) > 0

for s > 0 and ε > 0 small.
On the other hand,

Φ′(s) = s

∫

Ω

|y|2a|∇vε|2dx− spt

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx

−
∫

Ω

[(svε + vμ)pt − vpt
μ − sptvpt

ε ]vε

|y|t−a(pt+1)
dx

≤ s

∫

Ω

|y|2a|∇vε|2dx− spt

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx

→ −∞, as s→ +∞.

Thus Φ′(s) < 0 for s large enough. Since Φ(0) = 0, there exists a constant sε > 0 such that
Φ′(sε) = 0 and sε > 0 satisfies (3.14).

Now we shall prove that there exist some positive constants C1 < C2 such that C1 < sε < C2

for all ε > 0.
In fact, since Φ′(sε) = 0 and sε > 0, we have

∫

Ω

|y|2a|∇vε|2dx− spt−1
ε

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx

− 1
sε

∫

Ω

[(sεvε + vμ)pt − vpt
μ − spt

ε v
pt
ε ]vε

|y|t−a(pt+1)
dx = 0. (3.15)

Since (svε + vμ)pt − vpt
μ − sptvpt

ε ≥ 0 for all x ∈ Ω, we obtain
∫

Ω

|y|2a|∇vε|2dx ≥ spt−1
ε

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx.

It follows from (3.9) and (3.10) that

spt−1
ε ≤

∫

Ω
|y|2a|∇vε|2dx

∫

Ω
|y|a(pt+1)−tvpt+1

ε dx

=
K1 +O(εN−k+

√
(k−2)2−4λ)

K1 +O(εN−k+
√

(k−2)2−4λ+1)
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≤ 1 +O(εN−k+
√

(k−2)2−4λ)

≤ 1 + o(ε)

for all N ≥ β.
On the other hand, using (3.2) and (3.3), there exists a constant Cδ > 0 such that

h(x,w) ≤ δ|y|a(pt+1)−twpt + Cδ|y|a(pt+1)−tw

for any δ > 0. Then from (3.15), we find
∫

Ω

|y|2a|∇vε|2dx− spt−1
ε

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx

≤ 1
sε

∫

Ω

(
δ|y|a(pt+1)−tspt

ε v
pt
ε dx+ Cδ|y|a(pt+1)−tsεvε

)
vεdx

≤ δspt−1
ε

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx+ Cδ

∫

Ω

|y|a(pt+1)−tv2
εdx

≤ δ(1 + o(ε))(K1 + o(ε)) +O(ε| ln ε|)
≤ δK1 +O(ε| ln ε|).

Thus,

spt−1
ε ≥

∫

Ω
|y|2a|∇vε|2dx

∫

Ω
|y|a(pt+1)−tvpt+1

ε dx
− δK1 +O(ε| ln ε|)

∫

Ω
|y|a(pt+1)−tvpt+1

ε dx
= 1 − δ +O(ε| ln ε|).

Taking δ = 1/2, we conclude the existence of positive constants C1 < C2 independent of ε such
that C1 < sε < C2 for all ε > 0 small. �

In order to prove our main results, we introduce the following result.

Lemma 3.5 ([14, Lemma 3.5]) If p > 1, then there exist a small constant ε and a large B > 0
independent of x such that

(w + vμ)p − vp
μ − wp ≥ wε for all w ≥ B, x ∈ A. (3.16)

Since
(w + vμ)p − vp

μ − wp ≥ 0 (3.17)

for any w ≥ 0 and x ∈ Ω, p > 1. Then applying (3.16) and (3.17), we have for any x ∈ A,

g(x,w) = (w + vμ)p − vp
μ − wp ≥ BεχI(w) ≥ 0,

where χI(s) denotes a characteristic function of I = (B,+∞). Thus,

G(x,w) =
∫ w

0

g(x, s)ds ≥ β0 > 0 (3.18)

for some constant β0 > 0 if w ≥ B1 > B and x ∈ A.
Now we come to prove our main result.

Proof of Theorem 1.2 It follows from Lemma 3.2 that, to prove Theorem 1.2, we only need
to show that (3.8) holds. Using Lemmas 3.3 and 3.4, we find

sup
s≥0

J(svε) =
s2ε
2

∫

Ω

|y|2a|∇vε|2dx− spt+1
ε

pt + 1

∫

Ω

|y|a(pt+1)−tvpt+1
ε dx−

∫

Ω

H(x, sεvε)dx

=
s2ε
2

(
K1 +O(εN−k+

√
(k−2)2−4λ)

)



Existence of Multiple Positive Solutions 911

− spt+1
ε

pt + 1
(
K1 +O(εN−k+

√
(k−2)2−4λ+1)

) −
∫

Ω

H(x, sεvε)dx

≤
(
s2ε
2

− spt+1
ε

pt + 1

)

K1 +O(εN−k+
√

(k−2)2−4λ) −
∫

Ω

H(x, sεvε)dx

≤
(

1
2
− 1
pt + 1

)

K1 +O(εN−k+
√

(k−2)2−4λ) −
∫

Ω

H(x, sεvε)dx.

So if we can prove

lim
ε→0+

∫

Ω
H(x, sεvε)

εN−k+
√

(k−2)2−4λ
= +∞,

we have done. In fact, setting ḡ(x,w) = (w+vμ)pt −vpt
μ −wpt , then H(x,w) = |y|a(pt+1)−tḠ(x,

w), where Ḡ(x,w) =
∫ w

0
g(x, s)ds. So we have

∫

Ω

H(x, sεvε)dx =
∫

Ω

|y|a(pt+1)−tḠ(x, sεvε)dx

=
∫

B2ρ(0)

|y|a(pt+1)−tḠ

(

x, sεε
2−N−2a

2 ψV

(
x

ε

))

dx

≥
∫

B ρ
ε
(0)

|εζy|a(pt+1)−tḠ(εζ, C1ε
2−N−2a

2 V (ζ))εNdζ

≥
∫

B ρ
ε
(0)

|εζy|a(pt+1)−tḠ

(

εζ, C1ε
2−N−2a

2
1

[(1 + |ζy|)2 + |ζz|2]
1

pt−1

)

εNdζ,

where x = εζ, and ζ = (ζy, ζz).
Set

F :=
{

ζ ∈ B ρ
ε
(0) : C1ε

2−N−2a
2

1

[(1 + |ζy|)2 + |ζz|2]
1

pt−1
> B1

}

.

Note that |ζ| ≤ Cε
(2−N−2a)

4 (pt−1) if ζ ∈ F .
So from (3.18), we deduce

∫

Ω

H(x, sεvε)dx ≥ β0ε
a(pt+1)−t+N

∫

F

|ζy|a(pt+1)−tdζ

≥ CεN−k+
√

(k−2)2−4λ+1

∫ Cε
(2−N−2a)

4 (pt−1)

0

ra(pt+1)−t+N−1dr

= Cε
N−k+

√
(k−2)2−4λ+1

2 .

As a result,

lim
ε→0+

∫

Ω

H(x, sεvε)

εN−k+
√

(k−2)2−4λ
≥ lim

ε→0+

Cε
N−k+

√
(k−2)2−4λ+1

2

εN−k+
√

(k−2)2−4λ
= +∞,

since N − k +
√

(k − 2)2 − 4λ > 1.
Therefore, we complete the proof.
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1816–1849 (2010)

[21] Jannelli, E.: The role played by space dimension in elliptic critical problems. J. Differential Equations,

156, 407–426 (1999)

[22] Li, Y.: On the positive solutions of the Matukuma equation. Duke Math. J., 70, 575–589 (1993)

[23] Li, Y., Ni, W. M.: On conformal scalar curvature equations in R
N . Duke Math. J., 57, 895–924 (1988)

[24] Li, Y., Ni, W. M.: On the existence and symmetry properties of finite total mass solutions of the Matukuma

equation, the Eddington equation and their generalization. Arch. Ration. Mech. Anal., 108, 175–194 (1989)

[25] Musina, R.: Ground state solutions of a critical problem involving cylindrical weights. Nonlinear Anal.,

68, 3972–3986 (2008)

[26] Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinear-

ities. Math. Z., 187, 511–517 (1984)

[27] Tertikas, A., Tintarev, K.: On existence of minimizers for the Hardy–Sobolev–Maz’ya inequality. Ann.

Mat. Pura Appl., 186, 645–662 (2007)

[28] Wang, C., Wang, J.: Infinitely many solutions for Hardy–Sobolev–Maz’ya equation involving critical

growth. Commun. Contemp. Math., 14(6), 1250044, 38pp (2012)


