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Abstract We study the central limit theorem of the k-th eigenvalue of a random matrix in the log-gas

ensemble with an external potential V = q2mx2m. More precisely, let Pn(dH) = Cne−nTrV (H)dH be

the distribution of n × n Hermitian random matrices, ρV (x)dx the equilibrium measure, where Cn is

a normalization constant, V (x) = q2mx2m with q2m =
Γ(m)Γ( 1

2 )

Γ( 2m+1
2 )

, and m ≥ 1. Let x1 ≤ · · · ≤ xn be the

eigenvalues of H. Let k := k(n) be such that k(n)
n

∈ [a, 1 − a] for n large enough, where a ∈ (0, 1
2
).

Define

G(s) :=

∫ s

−1

ρV (x)dx, − 1 ≤ s ≤ 1,

and set t := G−1(k/n). We prove that, as n → ∞,

xk − t
√

log n√
2π2nρV (t)

→ N(0, 1)

in distribution. Multi-dimensional central limit theorem is also proved. Our results can be viewed as

natural extensions of the bulk central limit theorems for GUE ensemble established by J. Gustavsson

in 2005.

Keywords Bulk case, central limit theorem, the Costin–Lebowitz–Soshnikov theorem, eigenvalues,

log-gas ensemble

MR(2010) Subject Classification 15B52, 60F05

1 Introduction and Formulation of Results

Let Hn be the space of n × n Hermitian matrices H = (Hij)1≤i,j≤n. The log-gas ensemble,
called also the unitary invariant ensemble or the general β-ensemble in the literature, is defined
by the probability distribution on Hn of the form:

Pn(dH) = Cne−nTrV (H)dH, (1.1)

where Cn is a normalization constant, V (x) is a real analytic on R with V (x)
log(x2+1) → ∞ as

|x| → ∞, and

dH =
∏

1≤i<j≤n

dReHijdImHij

n∏
i=1

dHii.
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The distribution (1.1) naturally induces the following distribution density function of the or-
dered real eigenvalues x1 ≤ · · · ≤ xn of H

Rn,n(x1, . . . , xn) =
1

Zn

∏
1≤i<j≤n

|xi − xj |2e−n
∑n

i=1 V (xi), (1.2)

with Zn a normalization constant. The probability density function Pn(x1, . . . , xn) of n un-
ordered real eigenvalues {xi}n

i=1 of H is given by

Pn(x1, . . . , xn) =
1
n!

Rn,n(x1, . . . , xn).

Following [1], we define k-point correlation functions Rn,k for 1 ≤ k ≤ n − 1 by

Rn,k(x1, . . . , xk) =
n!

(n − k)!

∫
· · ·

∫
︸ ︷︷ ︸

n−k

Pn(x1, . . . , xk, xk+1, . . . , xn)dxk+1 · · · dxn. (1.3)

By (5.40) and (8.7) in [1], a key property of Rn,k is that, for 1 ≤ k ≤ n,

Rn,k(x1, . . . , xk) = det(Kn(xi, xj))1≤i,j≤k. (1.4)

Here Kn(x, y) is the reproducing kernel with respect to the weighted measure e−nV (x)dx defined
by

Kj(x, y) =
j−1∑
i=0

hi(x; n)hi(y; n)e−n V (x)+V (y)
2 , j = 1, 2, . . . ,

where hi(x; n) is the i-th orthogonal polynomial with respect to e−nV (x)dx, namely,

hi(x; n) = γ
(n)
i xi + · · · , γ

(n)
i > 0,∫

R

hi(x; n)hj(x; n)e−nV (x)dx = δij , i, j = 0, 1, 2, . . . .

Due to the formula (1.4), the log-gas ensemble is a determinantal point field. This allows us
to apply the central limit theorems proved by Soshnikov in [10] and [11] to study the problem
addressed in this paper.

A typical example of the log-gas ensemble is the Gaussian Unitary Ensemble (GUE), where
V (x) = 2x2. In recent years, more general type of the log-gas models with external potentials
V has been extensively studied in the literature. In particular, the following cases have been
studied in [1–4, 7]

(I) Monomial weight

V (x) = q2mx2m, m ≥ 1, q2m =
Γ(m)Γ( 1

2 )
Γ( 2m+1

2 )
. (1.5)

(II) Freud-type weight (generalization of (I))

V = Vn(x) =
1
n

Q(cnx + dn), (1.6)

where Q(x) =
∑2m

k=0 qkxk, m ∈ N
+, cn = βn−αn

2 , dn = βn+αn

2 , and αn, βn are the n-th Mhasker–
Rakhmanov–Saff numbers (see [3] for more details).

(III) Uniform convex, i.e., there exists c > 0, such that

inf
R

V ′′ ≥ c > 0. (1.7)
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In the study of the asymptotic statistics of the eigenvalues, most of the interest has cen-
tered around two aspects: the global properties and the local properties. One famous global
phenomenon is associated with the equilibrium measure dμV , which is the unique minimizer of
the variational problem (see [1, 8])

inf
μ∈M1(R)

IV (μ),

where

IV (μ) =
∫∫

R2
log |s − t|−1dμ(s)dμ(t) +

∫
R

V (t)dμ(t)

and M1(R) = {μ :
∫

R
dμ = 1}.

In GUE case, μV is the celebrated Wigner law dμV (x) = 2
π

√
1 − x2χ(−1,1)(x)dx. In the case

when V satisfies (1.5), (1.6) or (1.7), it follows from [2–4] that, dμV is absolutely continues to
the Lebesgue measure with density ρV , which is supported on a single interval [b, a] and strictly
positive on (b, a).

Under the assumption V (x)
log(x2+1) → ∞ as |x| → ∞, Johanssson [8] proved that, for any

bounded and continues function φ : R
k → R, it holds that

lim
n→∞

1
n

∫
R

φ(x)Rn,1(x)dx =
∫

R

φ(t)dμV (t),

and

lim
n→∞

1
nk

∫
Rk

φ(x1, . . . , xk)Rn,k(x1, . . . , xk)dx1 · · · dxk =
∫

Rk

φ(t1, . . . , tk)dμV (t1) · · ·dμV (tk).

Let

dμn(x) =
1
n

n∑
i=1

δxi
.

Then μn weakly converges to μV as n → ∞.

The interest of this paper lies in the local fluctuation properties of the spectrum and we are
concerned with the asymptotic behavior of fluctuations around the k-th eigenvalue xk.

When k is fixed, Tracy and Widom [14] have shown that in the GUE case, after being
suitably centered and scaled, xk converges in distribution to the Tracy–Widom distribution,
which is a non-Gaussian distribution.

On the other hand, Gustavsson [6] considered another situation where k tends to infinity
as n → ∞ under some condition and showed that in the GUE case xk is normally distributed
in the limit, after being suitably centered and scaled. This work was later extended to other
ensembles by many authors, see e.g. [9] for GOE and GSE cases, [12] for the complex covariance
matrices and [13] for non-Gaussian Wigner matrices.

Inspired by the universality phenomena, it is natural and interesting to raise the question,
whether in the general log-gas ensemble xk converges in distribution to the Normal distribution,
if k tends to infinity under some condition? The purpose of this paper is to study this question
for V of type (I). The cases (II) and (III) will be studied in a forthcoming paper.

We now state the main results of this paper, which can be viewed as a natural generalization
of Theorems 1.1 and 1.3 in the bulk case in [6].
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Theorem 1.1 Let V (x) = q2mx2m with q2m = Γ(m)Γ( 1
2 )

Γ( 2m+1
2 )

, and m ≥ 1. For a ∈ (0, 1
2 ), set

G(s) =
∫ s

−1

ρV (x)dx, − 1 ≤ s ≤ 1,

where ρV (x)dx is the equilibrium measure and t = t(k, n) = G−1(k/n), k = k(n) ∈ [an, (1−a)n].
Denote xk the k-th ordered eigenvalue. Then

xk − t
√

log n√
2π2nρV (t)

→ N(0, 1)

in distribution as n → ∞.

Theorem 1.2 Under the same condition and notation as in Theorem 1.1, let {xki
}m

i=1 be the
eigenvalues such that 0 < ki−ki+1 ∼ nθi , 0 < θi ≤ 1, and ki ∈ [ain, (1−ai)n], where ai ∈ (0, 1

2 ).
Set si = si(ki, n) = G−1(ki

n ), and let

Xi =
xki

− si√
log n√

2π2nρV (si)

, i = 1, . . . , m.

Then

Pn(X1 ≤ ξ1, . . . , Xm ≤ ξm) → ΦΛ(ξ1, . . . , ξm)

as n → ∞, where ΦΛ is the distribution function of the m-dimensional Normal Distribution with
mean zero and correlation matrix Λ, Λi,i = 1 and Λi,j = 1 − maxi≤k<j≤m θk, 1 ≤ i < j ≤ m.

Remark 1.3 In the GUE case, Gustavsson [6] pointed out that xk and xm are asymptotically
independent if |k − m| ∼ n. Here, the same situation also holds for the log-gas ensemble with
V (x) = q2mx2m.

As a byproduct, we have the following result concerning the zeros of orthogonal polynomials,
which is analogous to Remark 4 in [6].

Theorem 1.4 Let V (x) = q2mx2m with q2m = Γ(m)Γ( 1
2 )

Γ( 2m+1
2 )

, and m ≥ 1. Let z1,n < · · · < zk,n

be the zeros of the n-th orthogonal polynomials hj(x; n) with respect to the weight e−nV (x). Let
ρV , xk, t, {xki

}m
i=1 and {si}m

i=1 be as in Theorems 1.1 and 1.2. Then as n → ∞,

xk − zk,n√
log n√

2π2nρV (t)

→ N(0, 1).

Set

Xi =
xki

− zki,n√
log n√

2π2nρV (si)

, i = 1, . . . , m.

Then as n → ∞,

Pn[X1 ≤ ξ1, . . . , Xm ≤ ξm] → ΦΛ(ξ1, . . . , ξm),

where ΦΛ and Λ are as in Theorem 1.2.

The rest of this paper is organized as follows: In Section 2, we set up some preliminaries. In
Section 3, we prove the crucial asymptotic estimate of the expectation and the variance, from
which we prove the main theorems. To avoid the technical complexity, we postpone some detail
proofs of the asymptotical estimates to Appendix.
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2 Preliminaries

Let V (x) = q2mx2m, q2m = Γ(m)Γ( 1
2 )

Γ( 2m+1
2 )

, m ≥ 1. It is well known that (cf. [4, (1.8)], [1, (6.151),

(1.157)])

dμV (x) = ρV (|x|)χ(−1,1)(x)dx, (2.1)

where

ρV (x) =
2m

π
x2m−1

∫ 1
x

1

u2m−1√
(u2 − 1)

du, (2.2)

=
mq2m

π

√
1 − x2h(x), x ∈ (0, 1), (2.3)

with h(x) = x2m−2 +
∑m−1

j=1 x2m−2−2jAj , and Aj =
∏j

k=1
2k−1
2k .

Set

F (x) =
∣∣∣∣
∫ 1

x

2m

π
y2m−1dy

∫ 1
y

1

u2m−1√|u2 − 1|du

∣∣∣∣.
Then, for x ∈ (−1, 1),

F (x) =
∫ 1

x

ρV (y)dy, (2.4)

and F (x) = 1 − G(x) with G defined as in Theorem 1.1.
Using the explicit expression of ρV (x), we can prove the following lemma. For the proof,

see Appendix.

Lemma 2.1 Let 0 < δ < 1. For x ∈ [−1 + δ, 1 − δ], it holds that
(i) |(F ′(x))−1| and |F ′′(x)| are bounded,
(ii) πF (x) + π

2mxρV (x) = arccosx.

From the relation (1.4), we may obtain the asymptotic behavior of Rn,k from the asymptotic
behavior of Kn(x, y). Thus, applying the asymptotic analysis of the orthogonal polynomials,
we have the following estimates of Kn(x, y). For the proof, see Appendix.

Throughout this paper, C is a constant which may change from one line to another and
f = O(g) means |f/g| is bounded.

Lemma 2.2 (i) Take any t ∈ (−1, 1) and define Γ1
1 = {(x, y) : t ≤ x ≤ t + 1−t

log n , t − 1+t
log n ≤

y ≤ t − 1
n}. Then, for (x, y) ∈ Γ1

1

Kn(x, y) =
sin[πn(F (y) − F (x))] + O( 1

log n )

π(x − y)
. (2.5)

(ii) For any δ > 0 sufficiently small and x, y ∈ [−1 + δ, 1 − δ], it holds that

K 2
n (x, y) = O

(
1

(x − y)2

)
. (2.6)

(iii) For any t ∈ (−1, 1) and (x, y) ∈ {(x, y) : t ≤ x ≤ t + 1
n , t − 1

n ≤ y ≤ t}, it holds that

Kn(x, y) = O(n).

We conclude this section with the estimates of hn(x; n). For the proofs, see Appendix.
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Lemma 2.3 There exists a δ0 > 0 such that for all 0 < δ ≤ δ0, the following statements hold :
(i) if −1 + δ < x < 1 − δ,

|hn(x; n)e−
n
2 V (x)| ≤ C;

(ii) if 1 − δ < x < 1,

|hn(x; n)e−
n
2 V (x)| ≤ C

[
1

(1 − x)
1
4

+ 1
]

;

(iii) if 1 < x < 1 + δ

|hn(x; n)e−
n
2 V (x)| ≤ C

[
1

(x − 1)
1
4

+ 1
]

;

(iv) if x > 1 + δ

|hn(x; n)e−
n
2 V (x)| ≤ Ce−nπF (x),

where C is a constant independent of n.

3 Proofs of Main Theorems

The proofs of Theorems 1.1 and 1.2 depend crucially on the following two lemmas concerning
the asymptotic analysis of the expectation and the variance.

Lemma 3.1 Fix ξ ∈ R, set

an =
√

log n√
2π2nρV (t)

and
In = [t + anξ,∞),

where t = t(k, n) = G−1( k
n ) with k as in Theorem 1.1. Denote by #In the number of eigenvalues

in In. Then it holds that

n − k − E(#In) =
√

log n√
2π2

ξ + O(1). (3.1)

Proof Since k
n ∈ [a, (1 − a)] ⊂ (0, 1) and G : [−1, 1] → [0, 1] is a strictly increasing function,

thus

sup
n

|t(k, n)| = sup
∣∣∣∣G−1

(
k

n

)∣∣∣∣ < 1.

Then it follows from Lemma 2.1 that

an = O
(√

log n

n

)
(3.2)

and for n large enough,

|t + anξ| < 1. (3.3)

From the definition of Rn,1(x) and (1.4), it follows that

E(#In) =
∫

In

Rn,1(x)dx =
∫ ∞

t+anξ

Kn(x, x)dx =
n

2
−

∫ t+anξ

0

Kn(x, x)dx, (3.4)

where in the last step we used
∫ ∞
∞ Kn(x, x)dx = n and Kn(−x,−x) = Kn(x, x).
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Moreover, from the formula (4.2) in [5], we have the asymptotic formula of Kn(x, x), for
x ∈ [−1 + δ, 1 − δ],

1
n

Kn(x, x) = ρV (x) +
1

4πn

(
1

x − 1
− 1

x + 1

)
cos

(
n

∫ 1

x

ρV (s)ds

)
+ O

(
1
n2

)
. (3.5)

Therefore, taking (3.5) into (3.4), since |( 1
x−1 + 1

x+1 ) cos(n
∫ 1

x
ρV (s)ds)| ≤ 2

δ for x ∈ [−1 +
δ, 1 − δ] and

∫ 0

−1
ρV (x)dx = 1

2 , taking Taylor expansion we have

E(#In) =
n

2
− n

∫ t+anξ

0

ρV (x)dx + O(1)

= n − n

∫ t

−1

ρV (x)dx − n

∫ t+anξ

t

ρV (x)dx + O(1)

= n − k − nρV (t)anξ + nO(a2
n) + O(1)

= n − k −
√

log n√
2π2

ξ + O
(

log n

n

)
+ O(1),

which concludes the proof of Lemma 3.1. �

Lemma 3.2 Let {tn}∞n=1 be a sequence such that supn |tn| < 1. Set In = [tn,∞), n = 1, 2, . . .

and denote by #In the number of eigenvalues in In. Then

Var(#In) =
1

2π2
log n + O(log log n). (3.6)

Proof Let us first notice that, since supn |tn| < 1, there exists a δ1 > 0 such that infn(1−tn) >

δ1 > 0, and infn(1 + tn) > δ1 > 0. We choose δ > 0 sufficiently small such that 0 < δ < δ1.
Then for sufficiently large n, tn, tn ± 1

n and tn ± 1−tn

log n all lie in [−1 + δ, 1− δ]. From now on, we
will assume that n is sufficiently large so that all the above statements hold.

By the definition of Rn,1 and Rn,2, using (1.4) and Kn(x, x) =
∫

R
K 2

n (x, y)dy, we have

Var(#In) = E[(#In)2] − [E(#In)]2

=
n∑

k=1

E[χIn
(xk)] +

∑
j �=k

E[χIn
(xk)χIn

(xj)] −
[ n∑

k=1

E(χIn
(xk))

]2

=
∫

R

χIn
(x)Rn,1(x)dx +

∫∫
R×R

χIn
(x)χIn

(y)Rn,2(x, y)dxdy −
( ∫

R

χIn
(x)Rn,1(x)

)2

=
∫

R

χIn
(x)Kn(x, x)dx −

∫∫
R×R

χIn
(x)χIn

(y)K 2
n (x, y)dxdy

=
∫∫

R×R

χIn
(x)χIc

n
(y)K 2

n (x, y)dxdy,

thus

Var(#In) =
∫ ∞

tn

∫ tn

−∞
K 2

n (x, y)dxdy.

Following [6], we divide the integration domain Ωn = {(x, y) : tn ≤ x < ∞,−∞ < y ≤ tn}
into two sets Γ ∪ (Ωn \ Γ) with Γ = {(x, y) : tn ≤ x ≤ 1 − δ,−1 + δ ≤ y ≤ tn}.

Using the asymptotic formulas of Kn(x, y) in Lemma 2.2, we will show that∫∫
Γ

K 2
n (x, y)dxdy =

∫∫
Γ1

1

K 2
n (x, y)dxdy + O(log log n)
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=
1

2π2
log n + O(log log n), (3.7)

where Γ1
1 is as in Lemma 2.2 (i).

Indeed, from Lemma 2.2 (ii) and (iii), direct calculations show that∫∫
Γ/Γ1

1

1
(x − y)2

dxdy = O(log log n).

For the remaining domain Γ1
1, using Lemma 2.2 (i), we have

∫∫
Γ1

1

K 2
n (x, y)dxdy =

∫∫
Γ1

1

sin2[πn(F (y) − F (x))] + O( 1
log n )

π2(x − y)2
dxdy

=
∫∫

Γ1
1

1 − cos[2πn(F (y) − F (x))]
2π2(x − y)2

dxdy + O(1)

=
1

2π2
log n −

∫∫
Γ1

1

cos[2πn(F (y) − F (x))]
2π2(x − y)2

dxdy + O(log log n). (3.8)

Since cos[2πn(F (y) − F (x))] =
d

dy {sin[2πn(F (y)−F (x))]}
2πnF ′(y) , using integration by parts for the

second term, we obtain ∫∫
Γ1

1

cos[2πn(F (y) − F (x))]
2π2(x − y)2

dxdy = I1 − I2,

where

I1 =
∫ tn+ 1−tn

log n

tn

sin[2πn(F (y) − F (x))]
4π3nF ′(y)(x − y)2

∣∣∣∣
y=tn− 1

n

y=tn− 1+tn
log n

dx,

I2 =
∫∫

Γ1
1

sin[2πn(F (y) − F (x))]
4π3n

∂

∂y

{
1

F ′(y)(x − y)2

}
dy.

From Lemma 2.1, |(F ′(x))−1| and |F ′′(x)| are bounded in Γ, it follows that

I1 ≤ C

n

∫ tn+ 1−tn
log n

tn

[
1

(x − tn + 1
n )2

+
1

(x − tn + tn+1
log n )2

]
dx = O(1), (3.9)

and ∣∣∣∣ ∂

∂y

{
1

F ′(y)(x − y)2

}∣∣∣∣ = |(−1)(F ′(y))−2F ′′(y)(x − y)−2 + 2(F ′(y))−1(x − y)−3|

≤ C

(
1

(x − y)2
+

1
(x − y)3

)

with C independent of n, which yields

I2 ≤ C

4π3n

∫∫
Γ1

1

(
1

(x − y)2
+

1
(x − y)3

)
dxdy = O(1). (3.10)

Consequently, taking (3.9) and (3.10) into (3.8) yields∫∫
Γ1

1

K 2
n (x, y)dxdy =

1
2π2

log n + O(log log n),

which completes the proof of (3.7).
We next show that ∫∫

Ωn/Γ

K 2
n (x, y)dxdy = O(1). (3.11)



Gaussian Fluctuations in Log-gas Ensemble, I 1495

Indeed, since infn(1 ± tn) > δ1 > 0 and δ1 − δ > 0, we have for (x, y) ∈ Ωn/Γ,

|x − y| ≥ min{δ1 − δ, 2 − 2δ, δ1 + δ} = δ1 − δ > 0.

Taking this into the Christoffel–Darboux identity (cf. [1]) yields

K 2
n (x, y) ≤ C

{[
hn(x; n)hn−1(y; n)e−n V (x)+V (y)

2
]2

+
[
hn(y; n)hn−1(x; n)e−n V (x)+V (y)

2
]2}

.

By Lemma 2.3, we may obtain (3.11). Indeed, we may divide Ωn/Γ into five subsets
⋃5

i=1 Ji,
where

J1 ={(x, y) : 1 − δ ≤ x ≤ 1 + δ,−1 + δ ≤ y ≤ tn},
J2 ={(x, y) : tn ≤ x ≤ 1 − δ,−1 − δ ≤ y ≤ −1 + δ},
J3 ={(x, y) : 1 − δ ≤ x ≤ 1 + δ,−1 − δ ≤ y ≤ −1 + δ},
J4 ={(x, y) : 1 + δ ≤ x < ∞,−∞ < y ≤ tn},
J5 ={(x, y) : tn ≤ x < 1 + δ,−∞ < y ≤ −1 − δ},

and denote Ĩi =
∫

Ji
K 2

n (x, y)dxdy, i = 1, . . . , 5.
Now, ∀(x, y) ∈ J1,

|hn(x; n)hn−1(y; n)e−n V (x)+V (y)
2 | ≤ C

[
1

|1 − x| 14 + 1
]

,

which yields

Ĩ1 =
∫

J1

K 2
n (x, y)dxdy = O(1). (3.12)

Similarly, computations show that

Ĩ2 + Ĩ3 = O(1). (3.13)

Next, ∀(x, y) ∈ J4

|hn(x; n)e−n V (x)
2 | ≤ Ce−nπF (x),

and

|hn(y; n)e−n V (y)
2 | ≤ C

[
e−nπF̃ (y)χ(−∞,−1−δ)(y) +

(
1

|1 + y| 14 + 1
)

χ[−1−δ,tn](y)
]
,

with F̃ (y) = F (−y) for y ∈ (−∞,−1 − δ).
Moreover, by the estimate in Appendix with c = 1 − (1 + δ)−2 > 0,

F (x) ≥ cm− 1
2

2mπ
x2m − cm− 1

2

2mπ
− 1√

cπ
log x, (3.14)

from which we get

Ĩ4 ≤ C

∫ ∞

1+δ

∫ −1−δ

−∞
e−2nπF (x)e−2nπF̃ (y)dxdy

+ C

∫ ∞

1+δ

∫ tn

−1−δ

[
1

|1 + y| 12 + 1
]

e−2nπF (x)dxdy

= o(1). (3.15)
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Similarly,

Ĩ5 = o(1). (3.16)

Consequently, from (3.12), (3.13), (3.15) and (3.16), we obtain (3.11) and finish the proof
of Lemma 3.2. �

Proof of Theorem 1.1 The proof follows directly from Lemmas 3.1 and 3.2. Indeed, take t,
an and ξ as in Lemma 3.1, for the k-th eigenvalue xk, it follows that

Pn

(
xk − t

an
≤ ξ

)
= Pn

(
#In − E(#In)√

Var(#In)
≤ n − k − E(#In)√

Var(#In)

)

= Pn

(
#In − E(#In)√

Var(#In)
≤ ξ + o(1)

)
,

which tends to the normal distribution by Costin–Lebowitz–Soshnikov theorem in [10] (see also
[6, Theorem 2.1]). �
Proof of Theorem 1.2 Thanks to the estimates (3.7) and (3.11), the proof follows similarly as
the arguments in [6] and Soshinikov’s central limit theorem in [11] (see also [6, Theorem 3.1]).
For simplicity of exposition, we omit the details here. �

We conclude this section with the proof of Theorem 1.4.

Proof of Theorem 1.4 By [3, Theorem 2.3], there exist constants k0 and C > 0 such that for
all k0 < k < n − k0,∣∣∣∣zk,n − F−1

(
1 − k

n
+

1
2n

+
1

2πn
arcsin

(
F−1

(
1 − k − 1

n

)))∣∣∣∣ ≤ C

[α(1 − α)]
4
3

1
n2

, (3.17)

where α = k
n , F (x) =

∫ 1

x
ρV (t)dt, x ∈ [−1, 1] and F−1 denotes its inverse function.

By definition, G−1(x) = F−1(1 − x), x ∈ [0, 1]. Moreover, for k ∈ [an, (1 − a)n], α = k
n ∈

[a, 1−a], by Lemma 2.1, [ρV (G−1(x))]−1 is bounded in [a−δ, 1−a+δ] with δ sufficiently small.
Hence, ∣∣∣∣F−1

(
1 − k

n
+

1
2n

+
1

2πn
arcsin

(
F−1

(
1 − k − 1

n

)))
− G−1

(
k

n

)∣∣∣∣
=

∣∣∣∣G−1

(
k

n
− 1

2n
− 1

2πn
arcsin

(
G−1

(
k − 1

n

)))
− G−1

(
k

n

)∣∣∣∣
= O

(
1
n

)
,

which, together with (3.17), yields that
∣∣∣∣zk,n − G−1

(
k

n

)∣∣∣∣ = O
(

1
n

)
.

Thus

xk − zk,n√
log n√

2π2nρV (t)

=
xk − G−1( k

n )
√

log n√
2π2nρV (t)

+
G−1( k

n ) − zk,n√
log n√

2π2nρV (t)

=
xk − G−1( k

n )
√

log n√
2π2nρV (t)

+ O
(

1√
log n

)
,

which concludes Theorem 1.4 by Theorems 1.1 and 1.2. �
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4 Appendix

Proof of Lemma 2.1 This lemma is obvious in the case m = 1, where ρV (x) = 2
π

√
1 − x2.

Moreover, since ρV (−x) = ρV (x), we need only to prove (i), (ii) for m ≥ 2 and x ∈ [0, 1 − δ].
(i) From (2.3), (2.4) and the fact that h(x) ≥ Am−1 > 0, it follows that

|(F ′(x))−1| ≤ π

mq2m

1
Am−1

1√
1 − (1 − δ)2

< ∞.

Moreover, since h(x) and h′(x) are positive continuous functions on [0, 1 − δ], they are
bounded from above by some positive constant C on [0, 1 − δ], thus

|F ′′(x)| = |ρ′V (x)|

=
∣∣∣∣mq2m

π

[
− x√

1 − x2
h(x) +

√
1 − x2h′(x)

]∣∣∣∣
≤ mq2m

π

[
C√

1 − (1 − δ)2
+ C

]
< ∞

and the first assertion (i) follows.
(ii) From (2.2), straightforward calculations show that

d

dx

[
πF +

π

2m
xρV − arccosx

]
= 0,

which concludes the proof of part (ii), due to the fact that πF + π
2mxρV − arccos x is zero at

x = 1. �
Proof of Lemma 2.3 The proof follows directly from the Plancherel–Rotach type asymptotics
in [7, Theorem 1.16], the relation (4.4) and the asymptotic estimates of the Airy functions (see,
e.g., [12, (2.60), (2.61), (3.6), (3.7)]). �

We next show the proof of Lemma 2.2. Before that, let us state the following lemma.

Lemma 4.1 Let δ ∈ (0, 1). Set αx = nπF (x) − 1
2 arcsin x and θx = arccos x. Then for all

x, y ∈ [−1 + δ, 1 − δ],

Kn(x, y) =
cos αx cos(αy − θy) − cos αy cos(αx − θx) + O( 1

n )

π(1 − x2)
1
4 (1 − y2)

1
4 (x − y)

. (4.1)

Proof First, using Christoffel–Darboux identity, we have

Kn(x, y) =
γ

(n)
n−1

γ
(n)
n

hn(x; n)hn−1(y; n) − hn(y; n)hn−1(x; n)
x − y

e−n V (x)+V (y)
2 . (4.2)

For the asymptotics of
γ
(n)
n−1

γ
(n)
n

, we recall [7, Theorem 1.5] that

γn−1

γn
=

1
2
n

1
2m + O

(
n

1
2m

n2

)
, (4.3)

where γn is defined as the leading coefficient of the n-th orthogonal polynomial hn(x) with
respect to the measure e−V (x)dx, namely,

hn(x) = γnxn + · · · , γn > 0,∫
hi(x)hj(x)e−V (x)dx = δij , i, j = 0, 1, 2, . . . .
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By definitions, it is straightforward to verify that

hi(x; n) = n
1

4m hi(n
1

2m x), (4.4)

γ
(n)
i = n

1
2m ( 1

2+i)γi, i = 0, 1, 2, . . . . (4.5)

Thus, it follows from (4.3) and (4.5) that

γ
(n)
n−1

γ
(n)
n

=
1
2

+ O
(

1
n2

)
. (4.6)

For the asymptotics of hn(x; n) and hn−1(x; n), we have by [7, Theorem 1.16, (ii)] (see
also [1]) and the relation (4.4) that

hn(x; n)e−
n
2 V (x) =

√
2
π

1
(1 − x2)

1
4

[
cos(αx) + O

(
1
n

)]
. (4.7)

Moreover, we claim that

hn−1(x; n)e−
n
2 V (x) =

√
2
π

1
(1 − x2)

1
4

[
cos(αx − θx) + O

(
1
n

)]
. (4.8)

Then, (4.1) follows from (4.2), (4.6), (4.7) and (4.8).
We are now left to prove (4.8). Indeed, notice that

hn−1(x; n)e−
n
2 V (x) =

(
n

n − 1

) 1
4m

hn−1(xn; n − 1)e−
n−1

2 V (xn), (4.9)

where xn = ( n
n−1 )

1
2m x = x + 1

2m
1

n−1x + O( 1
n2 ).

Then, using again [7, Theorem 1.16, (ii)], we have

hn−1(x; n)e−
n
2 V (x)

=

√
2
π

(
n

n − 1

) 1
4m 1

(1 − x2
n)

1
4

[
cos

(
(n − 1)πF (xn) − 1

2
arcsin(xn)

)
+ O

(
1
n

)]
. (4.10)

Moreover, since 1

(1−x2
n)

1
4

= 1

(1−x2)
1
4

+ O( 1
n ), arcsin xn = arcsin x + O( 1

n ), and

F (xn) =
∫ 1

xn

ρV (y)dy =
∫ 1

x+ 1
2m

1
n−1 x+O( 1

n2 )

ρV (y)dy

= F (x) − 1
2m(n − 1)

xρV (x) + O
(

1
n2

)
,

taking the above asymptotic expansions into (4.10) and using Lemma 2.1 yield (4.8) and com-
plete the proof of Lemma 4.1. �
Proof of Lemma 2.2 (i) follows from Lemma 4.1 using similar arguments as in [6] and (ii)
follows directly from Lemma 4.1. Thus we only need to prove (iii).

Indeed, from [2, Lemma 6.1], for t ∈ (−1, 1) and ξ, η in compact subsects of R, we have

1
nρV (t)

Kn

(
t +

η + O(1)
nρV (t)

, t +
ξ + O(1)
nρV (t)

)
=

sin π(ξ − η)
π(ξ − η)

+ O(1),

where the error term is uniformly in terms of t ∈ [−1, 1]. Applying this result to

x = t +
η

nρV (t)
, y = t − ξ

nρV (t)
,
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where

0 ≤ η = nρV (t)(x − t) ≤ nρV (t)
1
n

= ρV (t),

0 ≤ ξ = nρV (t)(t − y) ≤ nρV (t)
1
n

= ρV (t),

we derive that

Kn(x, y) = Kn

(
t +

η

nρV (t)
, t − ξ

nρV (t)

)

=
[
sin π(ξ + η)

π(ξ + η)
+ O(1)

]
nρV (t)

= O(n). �

Proof of (3.14) Since for x > 1 + δ, x2 − 1 > cx2 with c = 1 − (1 + δ)−2 > 0, we have

F (x) =
∫ x

1

2m

π
y2m−1dy

∫ 1

1
y

u2m−1

√
1 − u2

du

≥
∫ x

1

2m

π

y2m−1√
1 − y−2

dy

∫ 1

1
y

u2m−1du

=
∫ x

1

1
π

y2m√
y2 − 1

dy −
∫ x

1

1
π
√

y2 − 1
dy

≥
∫ x

1

1
π

(
√

y2 − 1)2m√
y2 − 1

dy −
∫ x

1

1√
cπy

dy

=
∫ x

1

1
π

(
√

y2 − 1)2m−1dy − 1√
cπ

log x

≥
∫ x

1

1
π

(
√

cy2)2m−1dy − 1√
cπ

log x

=
cm− 1

2

2mπ
x2m − cm− 1

2

2mπ
− 1√

cπ
log x,

which completes the proof. �
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