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Abstract This paper is concerned with the measure of noncompactness in the spaces of continuous

functions and semilinear functional differential equations with nonlocal conditions in Banach spaces.

The relationship between the Hausdorff measure of noncompactness of intersections and the modulus of

equicontinuity is studied for some subsets related to the semigroup of linear operators in Banach spaces.

The existence of mild solutions is obtained for a class of nonlocal semilinear functional differential

equations without the assumption of compactness or equicontinuity on the associated semigroups of

linear operators.
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1 Introduction

The concept of a measure of noncompactness was initiated by Kuratowski [21] and Darbo [12].
In recent decades measures of noncompactness play very important role in nonlinear analysis.
They are often applied to the theories of differential and integral equations as well as to the
operator theory and geometry of Banach spaces (cf. [1, 2, 5, 6]). For this reason, from 1970s
there have been a lot of papers concerning that concept and its applications (cf. [13–18, 20, 22,
26–30]).

In the theory of measures of noncompactness, the Hausdorff measure of noncompactness [5]
and the Kuratowski measure of noncompactness [21] play special role. Especially the Hausdorff
measure of noncompactness is frequently used in many branches of nonlinear analysis and its
applications. It is caused by the fact that it is defined in a natural way and has several useful
properties.

Let us notice that in applications to differential and integral equations in abstract spaces,
the measure of noncompactness in the space of continuous functions is very important. In this
case, the Hausdorff measure of noncompactness can be expressed by formulae involving the
Hausdorff measure of noncompactness of the intersections and the modulus of equi-continuity.
In general cases, they are independent. When studying differential and integral equations in
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abstract spaces, there is the case that some sets of continuous functions are related to the
semigroups of linear operators (cf. [13–18, 20, 22, 26–30]). If the associated semigroup is not
equicontinuous, it is difficult to discuss the modulus of equi-continuity of such sets. However,
in these cases, the Hausdorff measure of noncompactness of the intersections and the modulus
of equi-continuity may have some relations.

In this paper, we study such relations. As application, we study some existence results for a
class of semilinear functional differential equations with nonlocal conditions in Banach spaces.
Precisely, we discuss the model

d

dt
x(t) = Ax(t) + f(t, xt), t ∈ [0, b], (1.1)

x0 = φ + g(x) ∈ C([−q, 0]; X), (1.2)

where A is the infinitesimal generator of a strongly continuous semigroup {T (t) : t ≥ 0} of
linear operators defined on a Banach space X, x ∈ C([−q, b]; X), and xt : [−q, 0] → X defined
by xt(θ) = x(t + θ) for θ ∈ [−q, 0]; φ ∈ C([−q, 0]; X), f : [0, b] × C([−q, 0]; X) → X and
g : C([0, b]; X) → C([−q, 0]; X) are appropriate given functions; b, q > 0 are constants.

The theory of differential and functional differential equations with nonlocal conditions was
initiated by Byszewski and it has been extensively studied in the literature. We refer the
readers to [3, 4, 8–11, 13–16, 23, 24, 26–30] and references therein. In this paper, we obtain
the existence of mild solutions to (1.1)–(1.2), and the compactness of solution sets, without
the assumption of compactness or equicontinuity on the associated semigroups. These results
extend and improve the corresponding results in [4, 8–11, 23, 27].

2 Measure of Noncompactness

In this section we first recall the concept of the measure of noncompactness in Banach spaces and
some lemmas. Then we study some relations between the Hausdorff measure of noncompactness
of the intersections and the modulus of equi-continuity of some subsets in the space of continuous
functions.

Definition 2.1 Let E+ be a positive cone of an ordered Banach space (E,≤). A function
Φ on the collection of all bounded subsets of a Banach space X with values in E+ is called a
measure of noncompactness if Φ(coB) = Φ(B) for all bounded subset B ⊂ X, where coB stands
for the closed convex hull of B.

A measure of noncompactness Φ is said to be

(i) monotone if for all bounded subset B1, B2 of X, B1 ⊂ B2 implies Φ(B1) ≤ Φ(B2);

(ii) nonsingular if Φ({a} ∪B) = Φ(B) for every a ∈ X and every nonempty subset B ⊂ X;

(iii) regular if Φ(B) = 0 if and only if B is relatively compact in X.

One of the most important examples of measure of noncompactness is the Hausdorff’s
measure of noncompactness βY , which is defined by

βY (B) = inf{r > 0; B can be covered with a finite number of balls of radius equal to r}

for bounded set B in a Banach space Y .

The following properties of Hausdorff’s measure of noncompactness are well known.
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Lemma 2.2 ([5]) Let Y be a real Banach space and B, C ⊆ Y be bounded. The following
properties are satisfied :

(1) B is pre-compact if and only if βY (B) = 0;
(2) βY (B) = βY (B) = βY (convB), where B and convB mean the closure and convex hull

of B respectively ;
(3) βY (B) ≤ βY (C) when B ⊆ C;
(4) βY (B + C) ≤ βY (B) + βY (C), where B + C = {x + y; x ∈ B, y ∈ C};
(5) βY (B ∪ C) ≤ max{βY (B), βY (C)};
(6) βY (λB) = |λ|βY (B) for any λ ∈ R;
(7) If the map Q : D(Q) ⊆ Y → Z is Lipschitz continuous with constant k, then βZ(QB) ≤

kβY (B) for any bounded subset B ⊆ D(Q), where Z is a Banach space ;
(8) βY (B)=inf{dY (B, C); C ⊆ Y is precompact} = inf{dY (B, C); C ⊆ Y is finite valued},

where dY (B, C) means the nonsymmetric (or symmetric) Hausdorff distance between B and C

in Y .
(9) If {Wn}+∞

n=1 is a decreasing sequence of bounded closed nonempty subsets of Y and
limn→+∞ βY (Wn) = 0, then

⋂+∞
n=1 Wn is nonempty and compact in Y .

The map Q : W ⊆ Y → Y is said to be a βY -contraction if there exists a positive constant
k < 1 such that βY (Q(B)) ≤ kβY (B) for any bounded closed subset B ⊆ W , where Y is a
Banach space.

Lemma 2.3 ([5], Darbo–Sadovskii) If W ⊆ Y is bounded closed and convex, the continuous
map Q : W → W is a βY -contraction, then the map Q has at least one fixed point in W .

Lemma 2.4 ([19]) Let W ⊂ Y be bounded closed and convex and Q : W → W be a continuous
βY -contraction. If the fixed point set of Q is bounded, then the set of fixed points of Q is compact.

In this paper we denote by β the Hausdorff’s measure of noncompactness of X and by βc

the Hausdorff’s measure of noncompactness of C([a, b]; X). To discuss the existence we need
the following lemmas in this paper.

Lemma 2.5 ([5]) If W ⊆ C([a, b]; X) is bounded, then

β(W (t)) ≤ βc(W )

for all t ∈ [a, b], where W (t) = {u(t); u ∈ W} ⊆ X. Furthermore, if W is equicontinuous on
[a, b], then β(W (t)) is continuous on [a, b] and

βc(W ) = sup{β(W (t)), t ∈ [a, b]}.
Lemma 2.6 ([18, 19]) If {un}∞n=1 ⊂ L1(a, b; X) is uniformly integrable, then β({un(t)}∞n=1)
is measurable and

β

({∫ t

a

un(s)ds

}∞

n=1

)

≤ 2
∫ t

a

β({un(s)}∞n=1)ds. (2.1)

Lemma 2.7 ([5]) If W ⊆ C([a, b]; X) is bounded and equicontinuous, then β(W (s)) is con-
tinuous and

β

(∫ t

a

W (s)ds

)

≤
∫ t

a

β(W (s))ds (2.2)

for all t ∈ [a, b], where
∫ t

a
W (s)ds = {∫ t

a
x(s)ds : x ∈ W}.
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Now we consider another measure of noncompactness in the Banach space C([a, b]; X). For
a bounded subset B ∈ C([a, b]; X), we define

χ1(B) = sup
t∈[a,b]

β(B(t)),

then χ1 is well defined from the properties of Hausdorff’s measure of noncompactness. We also
define

χ2(B) = sup
t∈[a,b]

modC(B(t)),

where modC(B(t)) is the modulus of equicontinuity of the set of functions B at point t given
by the formula

modC(B(t)) = lim
δ→0

{
sup
x∈B

{sup{‖x(t1) − x(t2)‖ : t1, t2 ∈ (t − δ, t + δ)}}
}
.

Define

χ(B) = χ1(B) + χ2(B).

Then χ is a monotone and nonsingular measure of noncompactness in C([a, b]; X). Furthermore,
χ is also regular by the famous Ascole–Arzela’s theorem. Similar definitions with χ1, χ2 and χ

can be found in [5].
The following property of regular measure of noncompactness is useful for our results.

Lemma 2.8 Suppose that Φ is a regular measure of noncompactness in a Banach Y , and
{Bn} is a sequence of nonempty, closed and bounded subsets in Y satisfying Bn+1 ⊂ Bn for
n = 1, 2, . . .. If limn→∞ Φ(Bn) = 0, B =

⋂
n≥1 Bn 
= ∅ and B is a compact subset in Y .

In the rest of this paper X will represent a Banach space with norm ‖ · ‖. As usual,
C([a, b]; X) denotes the Banach space of all continuous X-valued functions defined on [a, b]
with norm ‖x‖[a,b] = sups∈[a,b] ‖x(s)‖ for x ∈ C([a, b]; X), and L([a, b]; X) denotes the Banach

space of all Bochner integrable functions defined on [a, b] with norm ‖x‖1 =
∫ b

a
‖x(t)‖dt.

Let A : D(A) ⊂ X → X be the infinitesimal generator of a strongly continuous semigroup
{T (t) : t ≥ 0} of linear operators on X. We always assume that ‖T (t)‖ ≤ M (M ≥ 1) for every
t ∈ [0, b].

For more details of the semigroup theory we refer the readers to [25].
Consider a uniformly integrable subset D ⊂ L([0, b]; X), i.e., there exists a real integrable

function η ∈ L([0, b]; R+) such that ‖x(t)‖ ≤ η(t) a.e. on [0, b] for all x ∈ D. Let W = {y :
[0, b] → X; y(t) = T (t)x0+

∫ t

0
T (t−s)x(s)ds, t ∈ [0, b], x ∈ D}, where {T (t) : t ≥ 0} is a strongly

continuous semigroup of linear operators on X and x0 ∈ X. Then W is a bounded subset in
C([0, b]; X).

Proposition 2.9 There exists a constant K > 0 such that χ2(W ) ≤ Kχ1(W ).

Proof Let χ1(W ) = λ. Then β(W (t)) ≤ λ for each t ∈ [0, b], where W (t) = {x(t) : x ∈ W}.
To prove the proposition, it is sufficient to prove that for every t0 ∈ [0, b], modC(W (t0)) ≤ Kλ.

Take ε > 0 arbitrary. First note that, since D is uniformly integrable on [0, b], there is
δ1 > 0 such that ∥

∥
∥
∥

∫ τ2

τ1

T (t − s)x(s)ds

∥
∥
∥
∥ < ε (2.3)
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for 0 < τ2 − τ1 < 2δ1, 0 ≤ s ≤ t ≤ b and every x ∈ D. For every y ∈ W , there is an x ∈ D such
that for all t ∈ [0, b],

y(t) = T (t)x0 +
∫ t

0

T (t − s)x(s)ds.

If 0 < t′ < t, then we have

y(t) = T (t − t′)T (t′)x0 + T (t − t′)
∫ t′

0

T (t′ − s)x(s)ds +
∫ t

t′
T (t − s)x(s)ds

= T (t − t′)y(t′) +
∫ t

t′
T (t − s)x(s)ds.

It follows that for t1, t2 ∈ (t0 − δ1, t0 + δ1) (we may assume that t0 − δ1 > 0),

y(t1) = T (t1 − t0 + δ1)y(t0 − δ1) +
∫ t1

t0−δ1

T (t1 − s)x(s)ds, (2.4)

y(t2) = T (t2 − t0 + δ1)y(t0 − δ1) +
∫ t2

t0−δ1

T (t2 − s)x(s)ds. (2.5)

Now, on the basis of the definition of Hausdorff’s measure of noncompactness and the fact
that β(W (t0 − δ1)) ≤ λ, we may find y1, y2, . . . , yk, such that

W (t0 − δ1) ⊂
k⋃

i=1

B(yi(t0 − δ1), 2λ),

and hence there is an i, 1 ≤ i ≤ k such that

‖y(t0 − δ1) − yi(t0 − δ1)‖ < 2λ. (2.6)

On the other hand, on account of the strong continuity of T (·), there is a δ > 0 (we may choose
δ < δ1) such that

‖T (τ )yi(t0 − δ1) − yi(t0 − δ1)‖ < ε (2.7)

for all τ ∈ (0, δ) and i = 1, 2, . . . , k. From (2.3)–(2.7), we obtain

‖y(t1) − y(t2)‖ ≤ ‖T (t1 − t0 + δ1)yi(t0 − δ1) − yi(t0 − δ1)‖
+2M‖y(t0 − δ1) − yi(t0 − δ1)‖
+‖T (t2 − t0 + δ1)yi(t0 − δ1) − yi(t0 − δ1)‖

+
∥
∥
∥
∥

∫ t1

t0−δ1

T (t1 − s)x(s)ds −
∫ t2

t0−δ1

T (t2 − s)x(s)ds

∥
∥
∥
∥

≤ 4Mλ + 4ε

for t1, t2 ∈ (t0 − δ, t0 + δ). Since ε > 0 is taken arbitrary, we get that

‖y(t1) − y(t2)‖ ≤ 4Mλ

for t1, t2 ∈ (t0 − δ, t0 + δ), which implies that

modC(W (t0)) ≤ 4Mλ

for every t0 ∈ [0, b]. Accordingly,

χ2(W ) ≤ 4Mλ = 4Mχ1(W ).
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3 Semilinear Nonlocal Functional Differential Equations

In this section, we discuss a class of semilinear nonlocal functional differential equations in
Banach spaces. Using the theory of measure of noncompactness, the results we get in the last
section (i.e., Proposition 2.9), and the famous Schauder fixed point theorem, we obtain the
existence of mild solution to (1.1)–(1.2), and the compactness of solution set. We will not
assume the compactness or equicontinuity on the associated semigroup.

In order to define the concept of mild solution for (1.1)–(1.2), by comparison with the
abstract Cauchy initial value problem

d

dt
x(t) = Ax(t) + f(t), x(0) = x ∈ X,

whose properties are well known [25], we associate (1.1)–(1.2) to the integral equation

x(t) = T (t)(φ(0) + g(x)(0)) +
∫ t

0

T (t − s)f(s, xs)ds, t ∈ [0, b]. (3.1)

Definition 3.1 A continuous function x : [−q, b] → X is said to be a mild solution to the
nonlocal problem (1.1)–(1.2) if x0 = φ + g(x) and (3.1) is satisfied.

Here we list the following hypotheses.
(Hf) (1) f : [0, b] × C([−q, 0]; X) → X satisfies the Carathéodory-type condition, i.e.,

f(·, v) : [0, b] → X is measurable for all v ∈ C([−q, 0]; X) and f(t, ·) : C([−q, 0]; X) → X is
continuous for a.e. t ∈ [0, b];

(2) There exists a function h : [0, b] × R
+ → R

+ such that h(·, s) ∈ L(0, b; R+) for every
s ≥ 0, h(t, ·) is continuous and increasing for a.e. t ∈ [0, b], and ‖f(t, v)‖ ≤ h(t, ‖v‖[−q,0]) for
a.e. t ∈ [0, b] and all v ∈ C([−q, 0]; X), and for each positive constant K, the following scalar
equation

m(t) = MK + M

∫ t

0

h(s, m(s))ds, t ∈ [0, b] (3.2)

has at least one solution;
(3) There exists η ∈ L(0, b; R+) such that

β(T (s)f(t, D)) ≤ η(t) sup
−q≤θ≤0

β(D(θ))) (3.3)

for a.e. t, s ∈ [0, b] and any bounded subset D ⊂ C([−q, 0]; X).
(Hg) (1) g : C([0, b]; X) → C([−q, 0]; X) is continuous and compact;
(2) There exists a constant N > 0 such that

‖g(x)‖[−q,0] ≤ N (3.4)

for all x ∈ C([0, b]; X).

Remark 3.2 If the semigroup {T (t) : t ≥ 0} or the function f is compact (see, e.g., [10, 23,
24, 27]), or f satisfies Lipschitz-type condition (see, e.g., [3, 8, 9], then (Hf)(3) is automatically
satisfied.

Now, we give an existence result under the above hypotheses. Some of the ideas are from [27].

Theorem 3.3 Assume the hypotheses (Hf) and (Hg) are satisfied. Then for each φ ∈
C([−q, 0]; X), the solution set of the problem (1.1)–(1.2) is a nonempty compact subset of the
space C([−q, b]; X).



146 Dong Q. X. and Li G.

Proof Let m : [−q, b] → R
+ be the function such that m(t) = M(‖φ‖[−q,0] +N) for t ∈ [−q, 0]

and the restriction of m on [0, b] be a solution of the scalar equation:

m(t) = M(‖φ‖[−q,0] + N) + M

∫ t

0

h(s, m(s))ds, t ∈ [0, b]. (3.5)

For each x ∈ C([−q, b]; X), the restriction of x on [0, b] x|[0,b] ∈ C([0, b]; X). For simplicity, we
write g(x|[0,b]) as g(x).

Define a map Γ : C([−q, b]; X) → C([−q, b]; X) by

Γx(t) =

⎧
⎨

⎩

φ(t) + g(x)(t), t ∈ [−q, 0],

T (t)(φ(0) + g(x)(0)) +
∫ t

0
T (t − s)f(s, xs)ds, t ∈ [0, b]

for all x ∈ C([−q, b] : X). It is easily seen that x ∈ C([−q, b]; X) is a mild solution of the
problem (1.1)–(1.2) if and only if x is a fixed point of Γ. We shall show that Γ has a fixed point
by Schauder’s fixed point theorem. To do this, we first see that Γ is continuous by the usual
technique involving (Hf), (Hg) and Lebesgue’s dominate convergence theorem.

We denote by W0 = {x ∈ C([−q, b]; X) : sup−q≤s≤t ‖x(s)‖ ≤ m(t), ∀t ∈ [−q, b]}. Then
W0 ⊂ C([−q, b]; X) is bounded and convex.

Define W1 = convΓW0, where conv means the closure of the convex hull in C([−q, b]; X).
Then it is easily seen that W1 ⊂ C([−q, b]; X) is closed and convex. Furthermore, for every
x ∈ C([−q, b]; X), we have

‖Γx(t)‖ ≤ ‖φ‖[−q,0] + N ≤ M(‖φ‖[−q,0] + N)

for t ∈ [−q, 0] and

‖Γx(t)‖ ≤ M(‖φ‖[−q,0] + N) + M

∫ t

0

h(s, m(s))ds

for t ∈ [0, b]. Hence
sup

−q≤s≤t
‖Γx(s)‖ ≤ m(t)

for t ∈ [−q, 0] and

sup
−q≤s≤t

‖Γx(s)‖ ≤ M(‖φ‖[−q,0] + N) + M sup
−q≤s≤t

∫ s

0

h(r, m(r))dr

≤ M(‖φ‖[−q,0] + N) + M

∫ t

0

h(s, m(s))ds

= m(t).

It then follows that W1 is bounded and W1 ⊂ W0 is equicontinuous on [−q, 0] by the compactness
of g involving Ascoli–Arzela’s theorem.

Define Wn+1 = convΓWn for n = 1, 2, . . .. From the above proof we have that {Wn}∞n=1 is a
decreasing sequence of equicontinuous on [−q, 0], bounded closed convex and nonempty subsets
in C([−q, b]; X).

Now, for every n ≥ 1 and t ∈ [−q, 0], β(Wn(t)) = 0 by the compactness of g. For t ∈ (0, b],
Wn(t) and ΓWn(t) are bounded subsets of X. Hence, for any ε > 0, there is a sequence
{xk}∞k=1 ⊂ Wn such that (see, e.g., [7, p. 125])

β(ΓWn(t)) ≤ 2β({Γxk(t)}∞k=1) + ε
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≤ 2β(T (t)g({xk(t)}∞k=1)

+2β

( ∫ t

0

T (t − s)f(s, {xks}∞k=1)ds

)

+ ε,

where xks = (xk)s. From the compactness of g, Lemmas 2.2–2.7 and (Hf)(3), we have

β(Wn+1(t)) = β(ΓWn(t))

≤ 2β(
∫ t

0

T (t − s)f(s, {xks}∞k=1)ds) + ε

≤ 2
∫ t

0

β(T (t − s)f(s, {xks}∞k=1))ds + ε

≤ 2
∫ t

0

η(s) sup
−q≤θ≤0

β({xk(θ + s)}∞k=1)ds + ε

≤ 2
∫ t

0

η(s) sup
−q≤τ≤s

β({xk(τ )}∞k=1)ds + ε

≤ 2
∫ t

0

η(s) sup
−q≤τ≤s

β(W (τ ))ds + ε.

Since ε > 0 is arbitrary, it follows from the above inequality that

β(Wn+1(t)) ≤ 2
∫ t

0

η(s) sup
−q≤τ≤s

β(W (τ ))ds (3.6)

for all t ∈ (0, b]. Define functions fn : [−q, b] → [0, +∞) by

fn(t) = sup
−q≤τ≤t

β(Wn(τ )).

Observing that β(Wn(t)) = 0 for t ∈ [−q, 0], we obtain from (3.6) that

fn+1(t) = sup
0≤τ≤t

β(Wn+1(t)) ≤ 2 sup
0≤τ≤t

∫ τ

0

η(s)fn(s)ds = 2
∫ t

0

η(s)fn(s)ds (3.7)

for all t ∈ [0, b].
Notice that χ1(Wn) = sup−q≤t≤b β(Wn(t)) = sup−q≤t≤b fn(t). Now we consider χ2(Wn).

According to Proposition 2.9, there is a constant K > 0 such that

χ2(Wn) ≤ Kχ1(Wn). (3.8)

Come back to consider fn. Since Wn is decreasing for n, we know that f(t) = limn→∞ fn(t)
exists for t ∈ [−q, b] (notice that fn(t) = 0 for all t ∈ [−q, 0] and n ≥ 1). Taking limit as n → ∞
in (3.7), we have

f(t) ≤ 2
∫ t

0

η(s)f(s)ds (3.9)

for t ∈ [0, b]. It follows that f(t) = 0 for all t ∈ [0, b], and therefore, for all t ∈ [−q, b]. This means
that limn→∞ χ1(Wn) = 0. Then the inequality (3.8) implies that limn→∞ χ2(Wn) = 0, and
hence limn→∞ χ(Wn) = 0. Using Lemma 2.8 we know that W =

⋂∞
n=1 Wn is a convex compact

and nonempty subset in C([−q, b]; X) and ΓW ⊂ W . According to the famous Schauder’s fixed
point theorem, there exists at least one fixed point x ∈ W of Γ, which is the mild solution of
(1.1)–(1.2). From the proof we can also see that all the fixed points of Γ are in W which is
compact in C([−q, b]; X). The continuity of the map Γ implies the closeness of the fixed point
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set. Hence we conclude that the solution set of problem (1.1)–(1.2) is compact in the space
C([−q, b]; X).

Since {T (t)} is a C0-semigroup, the condition (Hf)(3) can be replaced by
(Hf)(3′): There exists η̃ ∈ L(0, b; R+) such that

β(f(t, D)) ≤ η̃(t)
M

· sup
−q≤θ≤0

β(D(θ)) (3.10)

for a.e. t, s ∈ [0, b] and any bounded subset D ⊂ C([−q, 0]; X).
From Theorem 3.3, we can get the following obvious result:

Theorem 3.4 Assume the hypotheses (Hf)(1)(2)(3′) and (Hg) are satisfied. Then for each
φ ∈ C([−q, 0]; X), the solution set of the problem (1.1)–(1.2) is a nonempty compact subset of
the space C([−q, b]; X).

In some of the early related results in references and the two results above, it is supposed
that the map g is uniformly bounded. We indicate here that this condition can be released.
Indeed, the fact that g is compact implies that g is bounded on bounded subset. And the
hypothesis (Hf)(2) may be difficult to be verified sometimes. Here we give an existence result
under another growth condition of f when g is not uniformly bounded. Precisely, we replace
the hypothesis (Hf)(2) by

(Hf)(2′): There exists a function α ∈ L(0, b; R+) and an increasing function Ω : R
+ → R

+

such that
‖f(t, v)‖ ≤ α(t)Ω(‖v‖[−q,0])

for a.e. t ∈ [0, b] and all v ∈ C([−q, 0]; X).

Theorem 3.5 Suppose that the hypotheses (Hf)(1)(2′)(3) and (Hg)(1) are satisfied. If

lim sup
k→∞

M

k

(

γ(k) + Ω(k)
∫ b

0

α(s)ds

)

< 1, (3.11)

where γ(k) = sup{‖g(x)‖[−q,0] : ‖x‖[0,b] ≤ k}, then for each φ ∈ C([−q, 0]; X), the solution set
of the problem (1.1)–(1.2) is a nonempty compact subset of the space C([−q, b]; X).

Proof The inequality (3.11) implies that there exists a constant k > 0 such that

‖φ‖[−q,0] + γ(k) < k

and

M

(

‖φ‖[−q,0] + γ(k) + Ω(k)
∫ b

0

α(s)ds

)

< k.

As in the proof of Theorem 3.3, let W0 = {x ∈ C([−q, b]; X) : ‖x‖[−q,b] ≤ k} and W1 =
convΓW0. Then for any x ∈ W1, we have

‖x(t)‖ ≤ ‖φ‖[−q,0] + γ(k) < k

for t ∈ [−q, 0], and

‖x(t)‖ ≤ M(‖φ‖[−q,0] + γ(k)) + MΩ(k)
∫ b

0

α(s)ds < k

for t ∈ [0, b]. It follows that W1 ⊂ W0. So we can complete the proof similarly to Theorem 3.3.
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Remark 3.6 In some previous papers the authors assumed that the space X is a separable
Banach space and the semigroup T (t) is equicontinuous (see, e.g., [27, 28]). We mention here
that these assumptions are not necessary.
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