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1 Introduction

In this paper we are concerned with the following problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

utt − μΔu − (μ + λ)∇(divu) +
∫ t

0

g(t − s)Δu(s)ds + β∇θ = 0, in Ω × (0,∞),

bθt − kΔθ + βdivut = 0, in Ω × (0,∞),

u(x, t) = θ(x, t) = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω,

(1.1)

a memory-type thermoelastic system associated with homogeneous Dirichlet boundary condi-
tions and initial data in suitable function spaces. Here Ω is a bounded domain of R

n (n ≥ 2)
with a smooth boundary ∂Ω, u = u(x, t) ∈ R

n is the displacement vector, θ = θ(x, t) is the
difference temperature, and the relaxation function g is a positive nonincreasing function. The
coefficients b, k, β, μ, λ are positive constants, where μ, λ are Lame moduli. In this work, we
study the decay properties of the solutions of (1.1) for functions g of general-type decay.

Over the past few decades, there has been a lot of work on local existence, global existence,
well-posedeness, and asymptotic behavior of solutions to some initial-boundary value problems
in both one-dimensional and multi-dimensional thermoelasticity. In the absence of the viscoelas-
tic term, it is well known (see [3, 5, 11]) that the one-dimensional linear thermoelastic system
associated with various types of boundary conditions decays to zero exponentially. Irmscher and
Racke [6] obtained explicit sharp exponential decay rates for solutions of the system of classical
thermoelasticity in one dimension. They also considered the model of thermoelasticity with
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second sound and compared the results of both models with respect to the asymptotic behavior
of solutions. Also, Rivera and Qin [14, 19] established the global existence, uniqueness and ex-
ponential stability of solutions to equations of one-dimensional nonlinear thermoelasticity with
thermal memory subject to Dirichlet–Dirichlet or Dirichlet–Neumann boundary conditions.

In the multi-dimensional case the situation is much different. It was shown that the dissi-
pation given by heat conduction is not strong enough to produce uniform rate of decay to the
solution as in the one-dimensional case. We have the pioneering work of Dafermos [4], in which
he proved an asymptotic stability result; but no rate of decay has been given. The uniform
rate of decay for the solution in two or three dimensional space was obtained by Jiang et al. [8]
in special situation like radial symmetry. Lebeau and Zuazua [9] proved that the decay rate
is never uniform when the domain is convex. Thus, in order to solve this problem, additional
damping mechanisms are necessary. In this aspect, Pereira and Menzala [18] introduced a lin-
ear internal damping effective in the whole domain, and established the uniform decay rate. A
similar result was obtained by Liu [10] for a linear boundary velocity feedback acting on the
elastic component of the system, and by Liu and Zuazua [12] for a nonlinear boundary feedback.
Oliveira and Charao [17] improved the result in [18] by including a weak localized dissipative
term effective only in a neighborhood of part of the boundary and proved an exponential decay
result when the damping term is linear and a polynomial decay result for a nonlinear damping
term. Recently, Mustafa [16] treated weak frictional damping of more general type and estab-
lished an explicit decay result. For more literature on the subject, we refer the reader to books
by Jiang and Racke [7] and Zheng [20].

Regarding viscoelastic damping, we mention the work of Rivera and Racke [15] who con-
sidered magneto-thermoelastic model with a boundary condition of memory type. If g is the
relaxation function and k is the resolvent kernel of −g′

g(0) , they showed that the energy of the
solution decays exponentially (polynomially) when k and (−k′) decay exponentially (polyno-
mially). In [13], Messaoudi and Al-Shehri considered a wider class of kernels k that are not
necessarily decaying exponentially or polynomially and proved a more general energy decay
result. In this context, we refer to the work [1] by Alabau-Boussouira and Cannarsa in which
the authors considered the following viscoelastic problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt − Δu +
∫ t

0

g(t − s)Δu(s)ds = 0, in Ω × (0,∞),

u = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where g is a positive function satisfying

g′(t) ≤ −χ (g(t)) , (1.2)

where χ is a nonnegative function, with χ(0) = χ′(0) = 0, and χ is strictly increasing and
strictly convex on (0, k0], for some k0 > 0. They also required that

∫ k0

0

dx

χ(x)
= +∞,

∫ k0

0

xdx

χ(x)
< 1, lim inf

s→0+

χ(s)
s

χ′(s)
>

1
2
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and proved an energy decay result. In addition to these assumptions, if

lim sup
s→0+

χ(s)/s

χ′(s)
< 1 and g′(t) = −χ (g(t)) (1.3)

then, in this case, an explicit rate of decay is given.
Our aim in this work is to investigate (1.1) for relaxation functions satisfying (1.2) and obtain

a general relation between the decay rate of the energy and that of the relaxation function g

without imposing restrictive assumptions on the behavior of g at infinity. We provide an explicit
energy decay formula that allows a larger class of functions g than that of [1] and the usual
exponential and polynomial decay rates are only special cases of our result. The proof is based
on the multiplier method and makes use of some properties of convex functions including the use
of the general Young’s inequality and Jensen’s inequality. The paper is organized as follows. In
Section 2, we present some notation and material needed for our work. Some technical lemmas
and the proof of our main result are given in Section 3.

2 Preliminaries

We use the standard Lebesgue and Sobolev spaces with their usual scalar products and norms.
Throughout this paper, c is used to denote a generic positive constant. We also consider the
following assumption:

(A) g : R+ → IR+ is a C1 function satisfying

g(0) > 0, μ −
∫ +∞

0

g(s)ds = l > 0 (2.1)

and there exists a positive function H ∈ C1(R+) and H is linear or strictly increasing and
strictly convex C2 function on (0, r], r < 1, with H(0) = H ′(0) = 0, such that

g′(t) ≤ −H(g(t)), ∀t > 0.

For completeness we state, without proof, the following existence and regularity result.

Proposition 2.1 Let (u0, u1, θ0) ∈ H1
0 (Ω)n × L2(Ω)n × L2(Ω) be given. Assume that (A) is

satisfied. Then the problem (1.1) has a unique global (weak) solution

u ∈ C(R+; H1
0 (Ω)n) ∩ C1(R+; L2(Ω)n),

θ ∈ C(R+; L2(Ω)).

Moreover, if

(u0, u1, θ0) ∈ (H2(Ω)n ∩ H1
0 (Ω)n) × H1

0 (Ω)n × (H2(Ω) ∩ H1
0 (Ω)),

then the solution satisfies

u ∈ C(R+; H2(Ω)n ∩ H1
0 (Ω)n) ∩ C1(R+; H1

0 (Ω)n) ∩ C2(R+; L2(Ω)n),

θ ∈ C(R+; H2(Ω) ∩ H1
0 (Ω)) ∩ C1(R+; L2(Ω)).

Remark 2.2 This result can be proved using standard arguments such as the Galerkin
method.
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Now, we introduce the energy functional

E(t) :=
1
2

∫

Ω

(

|ut|2 +
(

μ −
∫ t

0

g(s)ds

)

|∇u|2 + (μ + λ)(divu)2 + bθ2

)

dx +
1
2
(g ◦ ∇u)(t),

where |∇u|2 =
∑n

i=1 |∇ui|2 and

(g ◦ v)(t) =
∫

Ω

∫ t

0

g(t − s) |v(t) − v(s)|2 dsdx.

By multiplying the first equation in (1.1) by ut and the second equation by θ, adding the
resulting equations, and integrating over Ω, we obtain

E′(t) = −k

∫

Ω

|∇θ|2 dx +
1
2
(g′ ◦ ∇u) − 1

2
g(t)

∫

Ω

|∇u|2 dx. (2.2)

Then, the hypothesis (A) implies that the energy is a nonincreasing function of t.

Our main stability result is the following

Theorem 2.3 Assume that (A) holds. Then there exist positive constants k1, k2, k3 and ε0

such that the solution of (1.1) satisfies

E(t) ≤ k3H
−1
1 (k1t + k2), ∀t ≥ 0, (2.3)

where

H1(t) =
∫ 1

t

1
sH ′

0(ε0s)
ds and H0(t) = H(D(t))

provided that D is a positive C1 function, with D(0) = 0, for which H0 is strictly increasing
and strictly convex C2 function on (0, r] and

∫ +∞

0

g(s)
H−1

0 (−g′(s))
ds < +∞. (2.4)

Moreover, if
∫ 1

0
H1(t)dt < +∞ for some choice of D, then we have the improved estimate

E(t) ≤ k3G
−1(k1t + k2), where G(t) =

∫ 1

t

1
sH ′(ε0s)

ds. (2.5)

In particular, this last estimate is valid for the special case H(t) = ctp where 1 ≤ p < 3
2 .

Remark 2.4 1) Using the properties of H, one can show that the function H1 is strictly
decreasing and convex on (0, 1], with limt→0H1(t) = +∞. Therefore, Theorem 2.2 ensures

lim
t→+∞E(t) = 0.

2) Our result is obtained under very general hypotheses on the relaxation function g that
allow to deal with a much larger class of functions g that guarantee the uniform stability of (1.1)
with an explicit formula for the decay rates of the energy.

3) The usual exponential and polynomial decay rate estimates, already proved for g satisfy-
ing (2.1) and g′ ≤ −kgp, 1 ≤ p < 3

2 , are special cases of our result. We will provide a “simpler”
proof for these special cases.

4) Our result allows relaxation functions which are not necessarily of exponential or poly-
nomial decay. For instance, if

g(t) = a exp(−tq)
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for 0 < q < 1 and a is chosen so that g satisfies (2.1), then g′(t) = −H(g(t)) where for
t ∈ (0, r], r < a,

H(t) =
qt

[ln(a
t )]

1
q −1

,

which satisfies the hypothesis (A). Also, by taking D(t) = tα, (2.4) is satisfied for any α > 1.

Therefore, we can use Theorem 2.2 and do some calculations (see Appendix) to deduce that
the energy decays at the same rate of g, that is,

E(t) ≤ c exp(−ωtq).

One can show that this example does not satisfy (1.6), and so no explicit rate of decay for this
case is given in [1].

5) The well-known Jensen’s inequality will be of essential use in establishing our main result.
If F is a convex function on [a, b], f : Ω → [a, b] and h are integrable functions on Ω, h(x) ≥ 0,

and
∫

Ω
h(x)dx = k > 0, then Jensen’s inequality states that

F

[
1
k

∫

Ω

f(x)h(x)dx

]

≤ 1
k

∫

Ω

F [f(x)]h(x)dx.

6) By (A), we easily deduce that limt→+∞g(t) = 0. This implies that limt→+∞(−g′(t))
cannot be equal to a positive number, and so it is natural to assume that limt→+∞(−g′(t)) = 0.

Hence, there is t1 > 0 large enough such that g(t1) > 0 and

max{g(t),−g′(t)} < min{r, H(r), H0(r)}, ∀t ≥ t1. (2.6)

As g is nonincreasing, g(0) > 0 and g(t1) > 0, then g(t) > 0 for any t ∈ [0, t1] and

0 < g(t1) ≤ g(t) ≤ g(0), ∀t ∈ [0, t1].

Therefore, since H is a positive continuous function, then

a ≤ H(g(t)) ≤ b, ∀t ∈ [0, t1]

for some positive constants a and b. Consequently, for all t ∈ [0, t1],

g′(t) ≤ −H(g(t)) ≤ −a = − a

g(0)
g(0) ≤ − a

g(0)
g(t),

which gives, for some positive constant d,

g′(t) ≤ −dg(t), ∀t ∈ [0, t1]. (2.7)

3 Proof of Main Result

In this section we prove Theorem 2.2. For this purpose, we establish several lemmas.

Lemma 3.1 Under the assumption (A), the functional

K1(t) :=
∫

Ω

u · utdx

satisfies, along the solution of (1.1), the estimate

K ′
1(t) ≤ − l

2

∫

Ω

|∇u|2 dx−(μ+λ)
∫

Ω

(divu)2dx+
∫

Ω

|ut|2 dx+c

∫

Ω

|∇θ|2 dx+c(g◦∇u)(t). (3.1)
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Proof Direct computations, using (1.1) and (2.1), yield

K ′
1(t) =

∫

Ω

(|ut|2 + μu · Δu + (μ + λ)u · ∇(divu) − βu · ∇θ)dx

−
∫

Ω

∫ t

0

g(t − s)u(t) · Δu(s)dsdx

≤
∫

Ω

(|ut|2 − l|∇u|2 − (μ + λ)(divu)2 − βu · ∇θ)dx

−
∫

Ω

∫ t

0

g(t − s)∇u(t) · (∇u(s) −∇u(t))dsdx.

By Young’s and Poincaré’s inequalities, we obtain

K ′
1(t) ≤

∫

Ω

(|ut|2 − l |∇u|2 − (μ + λ)(divu)2)dx + δ

∫

Ω

|u|2 dx +
β2

4δ

∫

Ω

|∇θ|2 dx

+δ

(∫ t

0

g(s)ds

) ∫

Ω

|∇u|2 dx +
1
4δ

∫

Ω

∫ t

0

g(t − s) |∇u(s) −∇u(t)|2 dsdx

≤
∫

Ω

(|ut|2 − l |∇u|2 − (μ + λ)(divu)2)dx + δc

∫

Ω

|∇u|2 dx +
β2

4δ

∫

Ω

|∇θ|2 dx

+δμ

∫

Ω

|∇u|2 dx +
1
4δ

(g ◦ ∇u)(t),

which by choosing δ small enough, gives (3.1). �

Lemma 3.2 Under the assumption (A), the functional

K2(t) := −
∫

Ω

ut(t) ·
∫ t

0

g(t − s)(u(t) − u(s))dsdx

satisfies for any 0 < δ < 1, along the solution of (1.1), the estimate

K ′
2(t) ≤ −

( ∫ t

0

g(s)ds − δ

) ∫

Ω

|ut|2 dx + δ

∫

Ω

|∇u|2 dx

+
c

δ
(g ◦ ∇u)(t) − c

δ
(g′ ◦ ∇u)(t) + c

∫

Ω

|∇θ|2 dx. (3.2)

Proof By exploiting the equation (1.1) and integrating by parts, we have

K ′
2(t) = μ

∫

Ω

∫ t

0

g(t − s)∇u(t) · (∇u(t) −∇u(s))dsdx

+ (μ + λ)
∫

Ω

∫ t

0

g(t − s)(div[u(t)])(div[u(t) − u(s)])dsdx

+ β

∫

Ω

∫ t

0

g(t − s)∇θ(t) · (u(t) − u(s))dsdx

−
∫

Ω

(∫ t

0

g(t − s)∇u(s)ds

)

·
(∫ t

0

g(t − s)(∇u(t) −∇u(s))ds

)

dx

−
∫

Ω

∫ t

0

g′(t − s)ut(t) · (u(t) − u(s))dsdx −
(∫ t

0

g(s)ds

)∫

Ω

|ut|2 dx. (3.3)

Using Cauchy–Schwarz and Young’s inequalities, we obtain

μ

∫

Ω

∫ t

0

g(t − s)∇u(t) · (∇u(t) −∇u(s))dsdx
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−
∫

Ω

(∫ t

0

g(t − s)∇u(s)ds

)

·
(∫ t

0

g(t − s)(∇u(t) −∇u(s))ds

)

dx

=
(

μ −
∫ t

0

g(s)ds

)∫

Ω

∫ t

0

g(t − s)∇u(t) · (∇u(t) −∇u(s))dsdx

+
∫

Ω

∣
∣
∣
∣

∫ t

0

g(t − s)(∇u(t) −∇u(s))ds

∣
∣
∣
∣

2

dx

≤ δ

2

∫

Ω

|∇u|2 dx +
c

δ
(g ◦ ∇u)(t). (3.4)

Also, the use of Young’s and Poincaré’s inequalities gives

(μ + λ)
∫

Ω

∫ t

0

g(t − s)(div[u(t)])(div[u(t) − u(s)])dsdx

+ β

∫

Ω

∫ t

0

g(t − s)∇θ(t) · (u(t) − u(s))dsdx −
∫

Ω

∫ t

0

g′(t − s)ut(t) · (u(t) − u(s))dsdx

≤ δ

2

∫

Ω

|∇u|2 dx + δ

∫

Ω

|ut|2 dx +
c

δ
(g ◦ ∇u)(t) − c

δ
(g′ ◦ ∇u)(t) + c

∫

Ω

|∇θ|2 dx. (3.5)

Combining (3.3)–(3.5), (3.2) is established. �

Proof of Theorem 2.3 For N1, N2 > 1, define

L(t) := N1E(t) + K1(t) + N2K2(t)

and let g1 =
∫ t1
0

g(s)ds > 0, where t1 was introduced in (2.6). By combining (2.2), (3.1), (3.2)
and taking δ = l

4N2
, we obtain, for all t ≥ t1,

L′(t) ≤ − l

4

∫

Ω

|∇u|2 dx −
(

N2g1 − l

4
− 1

) ∫

Ω

|ut|2 dx − (μ + λ)
∫

Ω

(divu)2dx

− (kN1 − c − cN2)
∫

Ω

|∇θ|2 dx +
(

4c

l
N2

2 + c

)

(g ◦ ∇u)(t)

+
(

1
2
N1 − 4c

l
N2

2

)

(g′ ◦ ∇u)(t). (3.6)

At this point, we choose N2 large enough so that

γ1 := N2g1 − l

4
− 1 > 0.

Then N1 is large enough so that

γ2 := kN1 − c − cN2 > 0

and
1
2
N1 − 4c

l
N2

2 > 0.

So, we arrive at

L′(t) ≤ −
∫

Ω

[
l

4
|∇u|2 dx + γ1 |ut|2 + (μ + λ)(divu)2 + γ2 |∇θ|2

]

dx + c(g ◦ ∇u)(t),

which, using Poincaré’s inequality, yields

L′(t) ≤ −mE(t) + c(g ◦ ∇u)(t), ∀t ≥ t1. (3.7)
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On the other hand, we find that

|L(t) − N1E(t)| ≤ |K1(t)| + N2 |K2(t)|

≤
∫

Ω

|u · ut| dx + N2

∫

Ω

∣
∣
∣
∣ut(t) ·

∫ t

0

g(t − s)(u(t) − u(s))ds

∣
∣
∣
∣dx

≤ 1
2

∫

Ω

|u|2 dx +
1 + N2

2

∫

Ω

|ut|2 dx +
N2

2

∫

Ω

∣
∣
∣
∣

∫ t

0

g(t − s)(u(t) − u(s))ds

∣
∣
∣
∣

2

dx

≤ c

[ ∫

Ω

|∇u|2 dx +
∫

Ω

|ut|2 dx + (g ◦ ∇u)(t)
]

≤ cE(t).

Therefore, we can choose N1 even larger (if needed) so that

L(t) ∼ E(t). (3.8)

Now, we use (2.2) and (2.7) to conclude that, for any t ≥ t1,
∫ t1

0

g(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds ≤ −1
d

∫ t1

0

g′(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

≤ −cE′(t). (3.9)

Next, we take F (t) = L(t) + cE(t), which is clearly equivalent to E(t), and use (3.7) and (3.9),
to get, for all t ≥ t1,

F ′(t) ≤ −mE(t) + c

∫ t

t1

g(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds. (3.10)

(I) H(t) = ctp and 1 ≤ p < 3
2 .

Case 1 p = 1: Estimate (3.10) yields

F ′(t) ≤ −mE(t) + c(g′ ◦ ∇u)(t) ≤ −mE(t) − cE′(t), ∀t ≥ t1,

which gives
(F + cE)′ (t) ≤ −mE(t), ∀t ≥ t1.

Hence, using the fact that F + cE ∼ E, we easily obtain

E(t) ≤ c′e−ct = c′G−1(t).

Case 2 1 < p < 3
2 : One can easily show that

∫ +∞
0

g1−δ0(s)ds < +∞ for any δ0 < 2 − p.

Using this fact and (2.2) and choosing t1 even larger if needed, we deduce that, for all t ≥ t1,

η(t) :=
∫ t

t1

g1−δ0(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

≤ 2
∫ t

t1

g1−δ0(s)
∫ 1

0

(|∇u(t)|2 + |∇u(t − s)|2)dxds

≤ cE(0)
∫ t

t1

g1−δ0(s)ds < 1. (3.11)

Then, Jensen’s inequality, (2.2), the hypothesis (A), and (3.11) lead to
∫ t

t1

g(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds
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=
∫ t

t1

gδ0(s)g1−δ0(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

=
∫ t

t1

g(p−1+δ0)(
δ0

p−1+δ0
)(s)g1−δ0(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

≤ η(t)
[

1
η(t)

∫ t

t1

g(s)(p−1+δ0)g1−δ0(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

] δ0
p−1+δ0

≤
[∫ t

t1

g(s)p

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

] δ0
p−1+δ0

≤ c

[ ∫ t

t1

−g′(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

] δ0
p−1+δ0

≤ c [−E′(t)]
δ0

p−1+δ0 .

Then, particularly for δ0 = 1
2 , we find that (3.10) becomes

F ′(t) ≤ −mE(t) + c [−E′(t)]
1

2p−1 .

Now, we multiply by Eα(t), with α = 2p − 2, to get, using (3.1),

(FEα)′(t) ≤ F ′(t)Eα(t) ≤ −mE1+α(t) + cEα(t) [−E′(t)]
1

1+α .

Then, Young’s inequality, with q = 1 + α and q′ = 1+α
α , gives

(FEα)′(t) ≤ −mE1+α(t) + εE1+α(t) + Cε(−E′(t)).

Consequently, picking ε < m, we obtain

F ′
0(t) ≤ −m′E1+α(t),

where F0 = FEα + CεE ∼ E. Hence, we have, for some a0 > 0,

F ′
0(t) ≤ −a0F

1+α
0 (t)

from which we easily deduce that

E(t) ≤ a

(a′t + a′′)
1

2p−2
. (3.12)

By recalling that p < 3
2 and using (3.12), we find that

∫ +∞
0

E(s)ds < +∞. Hence, by noting
that ∫ t

0

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds ≤ c

∫ t

0

E(s)ds,

(3.10) gives

F ′(t) ≤ −mE(t) + c(gp· 1p ◦ ∇u)(t) ≤ −mE(t) + c [(gp ◦ ∇u)(t)]
1
p

≤ −mE(t) + c [(−g′ ◦ ∇u)(t)]
1
p ≤ −mE(t) + c [−E′(t)]

1
p .

Therefore, repeating the above steps, with α = p − 1, we arrive at

E(t) ≤ a

(a′t + a′′)
1

p−1
= cG−1(c′t + c′′).
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(II) The general case. We define I(t) by

I(t) :=
∫ t

t1

g(s)
H−1

0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds,

where H0 is such that (2.4) is satisfied. As in (3.11), we find that I(t) satisfies, for all t ≥ t1,

I(t) < 1. (3.13)

We also assume, without loss of generality that I(t) ≥ β > 0, for all t ≥ t1; otherwise (3.10)
yields an exponential decay. In addition, we define ξ(t) by

ξ(t) := −
∫ t

t1

g′(s)
g(s)

H−1
0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

and infer from (A) and the properties of H0 and D that

g(s)
H−1

0 (−g′(s))
≤ g(s)

H−1
0 (H(g(s)))

=
g(s)

D−1(g(s))
≤ k0

for some positive constant k0. Then, using (2.2) and choosing t1 even larger (if needed), one
can easily see that ξ(t) satisfies, for all t ≥ t1,

ξ(t) ≤ −k0

∫ t

t1

g′(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

≤ −cE(0)
∫ t

t1

g′(s) ≤ cg(t1)E(0)

< min{r, H(r), H0(r)}. (3.14)

Since H0 is strictly convex on (0, r] and H0(0) = 0, then

H0(θx) ≤ θH0(x)

provided 0 ≤ θ ≤ 1 and x ∈ (0, r]. The use of this fact, the hypothesis (A), (2.6), (3.13), (3.14),
and Jensen’s inequality leads to

ξ(t) =
1

I(t)

∫ t

t1

I(t)H0[H−1
0 (−g′(s))]

g(s)
H−1

0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

≥ 1
I(t)

∫ t

t1

H0[I(t)H−1
0 (−g′(s))]

g(s)
H−1

0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

≥ H0

(
1

I(t)

∫ t

t1

I(t)H−1
0 (−g′(s))

g(s)
H−1

0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

)

= H0

(∫ t

t1

g(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

)

.

This implies that
∫ t

t1

g(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds ≤ H−1
0 (ξ(t)),

and (3.10) becomes

F ′(t) ≤ −mE(t) + cH−1
0 (ξ(t)), ∀t ≥ t1. (3.15)
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Now, for ε0 < r and c0 > 0, using (3.15), and the fact that E′ ≤ 0, H ′
0 > 0, H ′′

0 > 0 on (0, r],
we find that the functional F1, defined by

F1(t) := H ′
0

(

ε0
E(t)
E(0)

)

F (t) + c0E(t)

satisfies, for some α1, α2 > 0,

α1F1(t) ≤ E(t) ≤ α2F1(t) (3.16)

and

F ′
1(t) = ε0

E′(t)
E(0)

H ′′
0

(

ε0
E(t)
E(0)

)

F (t) + H ′
0

(

ε0
E(t)
E(0)

)

F ′(t) + c0E
′(t)

≤ −mE(t)H ′
0

(

ε0
E(t)
E(0)

)

+ cH ′
0

(

ε0
E(t)
E(0)

)

H−1
0 (ξ(t)) + c0E

′(t). (3.17)

Let H∗
0 be the convex conjugate of H0 in the sense of Young (see [2, pp. 61–64]). Then

H∗
0 (s) = s(H ′

0)
−1(s) − H0[(H ′

0)
−1(s)], if s ∈ (0, H ′

0(r)] (3.18)

and H∗
0 satisfies the following Young’s inequality

AB ≤ H∗
0 (A) + H0(B), if A ∈ (0, H ′

0(r)], B ∈ (0, r]. (3.19)

With A = H ′
0

(
ε0

E(t)
E(0)

)
and B = H−1

0 (ξ(t)), using (2.2), (3.14) and (3.17)–(3.19), we arrive at

F ′
1(t) ≤ −mE(t)H ′

0

(

ε0
E(t)
E(0)

)

+ cH∗
1

(

H ′
0

(

ε0
E(t)
E(0)

))

+ cξ(t) + c0E
′(t)

≤ −mE(t)H ′
0

(

ε0
E(t)
E(0)

)

+ cε0
E(t)
E(0)

H ′
0

(

ε0
E(t)
E(0)

)

− cE′(t) + c0E
′(t).

Consequently, with a suitable choice of ε0 and c0, we obtain, for all t ≥ t1,

F ′
1(t) ≤ −k

(
E(t)
E(0)

)

H ′
0

(

ε0
E(t)
E(0)

)

= −kH2

(
E(t)
E(0)

)

, (3.20)

where H2(t) = tH ′
0(ε0t).

Since H ′
2(t) = H ′

0(ε0t) + ε0tH
′′
0 (ε0t), then using the strict convexity of H0 on (0, r], we find

that H ′
2(t), H2(t) > 0 on (0, 1]. Thus, with

R(t) = ε
α1F1(t)
E(0)

, 0 < ε < 1,

taking in account (3.16) and (3.20), we have

R(t) ∼ E(t) (3.21)

and for some k0 > 0,

R′(t) ≤ −εk0H2(R(t)), ∀t ≥ t1.

Then, a simple integration and a suitable choice of ε yield, for some k1, k2 > 0,

R(t) ≤ H−1
1 (k1t + k2), ∀t ≥ t1, (3.22)

where H1(t) =
∫ 1

t
1

H2(s)
ds.
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Here, we have used, based on the properties of H2, the fact that H1 is strictly decreasing
function on (0, 1] and limt→0H1(t) = +∞. A combination of (3.21) and (3.22), the estimate (2.3)
is established.

Moreover, if
∫ 1

0
H1(t)dt < +∞, then
∫ t

0

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds ≤ c

∫ t

0

E(s)ds < +∞.

Therefore, we can repeat the same procedures with

I(t) :=
∫ t

t1

∫

Ω

|∇u(t) −∇u(t − s)|2 dxds

and

ξ(t) := −
∫ t

t1

g′(s)
∫

Ω

|∇u(t) −∇u(t − s)|2 dxds,

to establish (2.5).

4 Appendix

Let 0 < q < 1 and consider the relaxation function

g(t) = a exp(−tq),

where 0 < a < 1 is chosen so that g satisfies (2.1). Here, we show how to apply Theorem 2.2 to
this specific type of relaxation functions. First, one can show that g′(t) = −H(g(t)) where

H(t) =
qt

[ln(a
t )]

1
q −1

.

Since

H ′(t) =
(1 − q) + q ln

(
a
t

)

[
ln

(
a
t

)] 1
q

and H ′′(t) =
(1 − q)

[
ln

(
a
t

)
+ 1

q

]

[
ln

(
a
t

)] 1
q +1

,

then the function H satisfies the hypothesis (A) on the interval (0, r] for any 0 < r < a. Also,
by taking D(t) = tα, (2.4) is satisfied for any α > 1. Therefore, an explicit rate of decay can be
obtained by Theorem 2.2. The function H0(t) = H(tα) has derivative

H ′
0(t) =

qαtα−1
[
1
q − 1 + ln

(
a
tα

) ]

[
ln

(
a
tα

)] 1
q

.

Therefore,

H1(t) =
∫ 1

t

[
ln

(
a

(ε0s)α

)] 1
q

qαεα−1
0 sα

[
1
q − 1 + ln

(
a

(ε0s)α

)]ds take u = ln
( a

(ε0s)α

)

=
1

qα2a1− 1
α

ln[a(ε0t)−α]∫

ln[aε0−α]

u
1
q e(1− 1

α )u

1
q − 1 + u

du.

Using the fact that ( 1
q − 1 + u) > ( 1

q − 1) and the function f(u) = u
1
q is increasing on (0, +∞)

and taking ε0 < a, we have

H1(t) ≤ [−α ln kt]
1
q

α2a1− 1
α (1 − q)

−α ln kt∫

−α ln k

e(1− 1
α )udu

(
k =

ε0

a
1
α

)
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=
[−α ln kt]

1
q

[
t1−α − 1

]

α(1 − q)(α − 1)ε0
α−1

= b [− ln kt]
1
q [t1−α − 1],

where b = α
1
q
−1

(1−q)(α−1)εα −1
0

. Next, we find that

∫ 1

0

H1(t)dt ≤
∫ 1

0

b [− ln kt]
1
q

[
t1−α − 1

]
dt (take v = − ln kt)

=
b

k

∫ +∞

− ln k

v
1
q
[
kα−1e(α−2)v − e−v

]
dv.

Then, it is easily seen that
∫ 1

0
H1(t)dt < +∞ if (α − 2) < 0, and so we choose 1 < α < 2.

Therefore, we can use (2.5) to deduce

E(t) ≤ k3G
−1(k1t + k2),

where

G(t) =
∫ 1

t

1
sH ′(ε0s)

ds =
∫ 1

t

[
ln a

ε0s

] 1
q

s
[
1 − q + q ln a

ε0s

]ds

=
∫ ln a

ε0t

ln a
ε0

u
1
q

1 − q + qu
du =

1
q

∫ ln a
ε0t

ln a
ε0

u
1
q −1

[
u

1−q
q + u

]

du

≤ 1
q

∫ ln a
ε0t

ln a
ε0

u
1
q −1du =

[

ln
a

ε0t

] 1
q

−
[

ln
a

ε0

] 1
q

≤
[

ln
a

ε0t

] 1
q

.

Hence, G−1(t) ≤ a
ε0

exp(−tq) and the enegy decays at the same rate of g, that is,

E(t) ≤ c exp(−ωtq).
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