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Abstract We study space-like self-shrinkers of dimension n in pseudo-Euclidean space R
m+n
m with

index m. We derive drift Laplacian of the basic geometric quantities and obtain their volume estimates

in pseudo-distance function. Finally, we prove rigidity results under minor growth conditions in terms

of the mean curvature or the image of Gauss maps.
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1 Introduction

Let R
m+n
m be an (m+n)-dimensional pseudo-Euclidean space with the index m. The indefinite

flat metric on R
m+n
m is defined by ds2 =

∑n
i=1(dxi)2−∑m+n

α=n+1(dxα)2. In what follows we agree
with the following range of indices

A, B, C, . . . = 1, . . . , m + n; i, j, k, . . . = 1, . . . , n;

s, t = 1, . . . , m; α, β, . . . = n + 1, . . . , m + n.

Let F : M → R
m+n
m be a space-like n-dimensional submanifold in R

m+n
m with the sec-

ond fundamental form B defined by BXY
def.= (∇̄XY )N for X, Y ∈ Γ(TM). We denote (· · · )T

and (· · · )N for the orthogonal projections into the tangent bundle TM and the normal bun-
dle NM , respectively. For ν ∈ Γ(NM) we define the shape operator Aν : TM → TM by
Aν(V ) = −(∇̄V ν)T . Taking the trace of B gives the mean curvature vector H of M in R

m+n
m

and H
def.= trace(B) = Beiei

, where {ei} is a local orthonormal frame field of M. Here and in
the sequel we use the summation convention. The mean curvature vector is time-like, and a
cross-section of the normal bundle.

We now consider a one-parameter family Ft = F (·, t) of immersions Ft : M → R
m+n
m with
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the corresponding images Mt = Ft(M) such that

d

d t
F (x, t) = H(x, t), x ∈ M,

F (x, 0) = F (x)
(1.1)

are satisfied, where H(x, t) is the mean curvature vector of Mt at F (x, t). There are many inter-
esting results on mean curvature flow on space-like hypersurfaces in certain Lorentzian manifolds
[10–13]. For higher codimension we refer to the previous work of the second author [19].

A special but important class of solutions to (1.1) are self-similar shrinking solutions, whose
profiles, space-like self-shrinkers, satisfy a system of quasi-linear elliptic PDE of the second
order

H = −XN

2
. (1.2)

Besides the Lagrangian space-like self-shrinkers [2, 9, 14], there is an interesting paper
on curves in the Minkowski plane [15]. The present paper is devoted to general situation on
space-like self-shrinker.

For a space-like n-submanifold M in R
m+n
m , we have the Gauss map γ : M → Gm

n,m. The
target manifold is a pseudo-Grassmann manifold, dual space of the Grassmann manifold Gn,m.
In the next section, we will describe its geometric properties, which will be used in the paper.

Choose a Lorentzian frame field {ei, eα} in R
m+n
m with space-like {ei} ∈ TM and time-like

{eα} ∈ NM along the space-like submanifold F : M → R
m+n
m . Define coordinate functions

xi = 〈F, ei〉, yα = −〈F, eα〉.
We then have

|F |2 = X2 − Y 2,

where X =
√∑n

i=1(xi)2, Y =
√∑m+n

α=n+1(yα)2. We call |F |2 the pseudo-distance function from
the origin 0 ∈ M .

We always put the origin on M in the paper. We see that |F |2 is invariant under the
Lorentzian action up to the choice of the origin in R

m+n
m . Set z = |F |2. It has been proved

that z is proper provided M is closed with the Euclidean topology (see [4] for m = 1 and [16]
for any codimension m).

Following Colding et al. [6], we can also introduce the drift Laplacian,

L = Δ − 1
2
〈F,∇(·)〉 = e

z
4 div(e−

z
4∇(·)). (1.3)

It can be showed that L is self-adjoint with respect to the weighted volume element e−
z
4 dμ,

where dμ is the volume element of M with respect to the induced metric from the ambient
space R

m+n
m . In the present paper we carry out integrations with respect to this measure. We

denote ρ = e−
z
4 and the volume form dμ might be omitted in the integrations for notational

simplicity.
For a space-like submanifold in R

m+n
m , there are several geometric quantities, the squared

norm of the second fundamental form |B|2, the squared norm of the mean curvature |H|2 and
the w-function, which is related to the image of the Gauss map. In Section 3, we will calculate
drift Laplacian L of those quantities, see Proposition 3.1.
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Corresponding to the weighted measure and drift Laplacian there is so-called the Baker–
Emery Ricci tensor. It is noted that in [3] Ricf ≥ z

4 with f = z
4 . Using the comparison

technique, the weighted volume of the geodesic ball can be estimated from above in terms of
the distance function [18].

For a space-like n-submanifold M in R
m+n
m , there are several global conditions: closed one

with Euclidean topology; entire graph; complete with induced Riemannian metric. A complete
space-like one has to be entire graph, but the converse claim is not always the case. Closed one
with Euclidean topology is complete under the parallel mean curvature assumption (see [4] for
codimension one and [16] for higher codimension).

In our case of closed one with Euclidean topology, the pseudo-distance function z is always
proper. It is natural to consider the volume growth in z. For the proper self-shrinkers in
Euclidean space Ding–Xin [8] gave the volume estimates. It has been generalized in [5] for
more general situation. But, the present case does not satisfy the conditions in Theorem 1.1
in [5]. However, the idea in [8] is still applicable for space-like self-shrinkers. In Section 4,
we will give volume estimates for space-like self-shrinkers, in a similar manner as in [8], see
Theorem 4.3.

Finally, using integral method we can obtain rigidity results as follows.

Theorem 1.1 Let M be a space-like self-shrinker of dimension n in R
n+m
m , which is closed

with respect to the Euclidean topology. If there is a constant α < 1
8 , such that |H|2 ≤ eαz, then

M is an affine n-plane.

Theorem 1.2 Let M be a complete space-like self-shrinker of dimension n in R
n+m
m . If there

is a constant α < 1
2 , such that ln w ≤ eαd2(p,x) for certain p ∈ M , where d(p, ·) is the distance

function from p, then M is affine n-plane.

Remark 1.3 In the special situation, for the Lagrangian space-like self-shrinkers, the rigidity
results hold without the growth condition (see [9]). Let R

2n
n be Euclidean space with null

coordinates (x, y) = (x1, . . . , xn; y1, . . . , yn), which means that the indefinite metric is defined
by ds2 =

∑
i dxidyi. If M = {(x, Du(x))

∣
∣ x ∈ R

n} is a space-like submanifold in R
2n
n , then u

is convex and the induced metric on M is given by ds2 =
∑

i,j uijdxidxj . M is a space-like
Lagrangian submanifold in R

2n
n . It is worthy to point out that the potential function u is proper

if M is an entire gradient graph, as the following consideration. On R
n set ρ′ = |x| =

√∑
x2

i .
At any direction θ ∈ Sn−1,

ui = uρ′
∂ρ′

∂xi
=

xi

ρ′
uρ′

and the pseudo-distance
z = xiui = ρ′uρ′ ,

which is positive when the origin is on M , since it is space-like. It implies that u is increasing
in ρ′. Moreover,

zρ′ = uρ′ + ρ′uρ′ρ′ > 0,

which means that z is also increasing in ρ′. Hence,

u(ρ′) − u(ε) =
∫ ρ′

ε

uρ′dρ′ =
∫ ρ′

ε

z

ρ′
dρ′ ≥ z(ε)

∫ ρ′

ε

1
ρ′

dρ′ ≥ z(ε)
∫ ρ′

ε

1
ρ′

dρ′ → ∞
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as ρ′ → ∞.

Remark 1.4 Rigidity problem for space-like extremal submanifolds was raised by Calabi [1],
and solved by Cheng–Yau [4] for codimension 1. Later, Jost–Xin generalized the results to
higher codimension [16]. The rigidity problem for space-like submanifolds with parallel mean
curvature was studied in [20, 22] and [16] (see also in Chap. 8 of [21]).

2 Geometry of Gm
n,m

In R
n+m
m all space-like n-subspaces form the pseudo-Grassmannian Gm

n,m. It is a specific Cartan–
Hadamard manifold which is the noncompact dual space of the Grassmann manifold Gn,m.

Let P and A ∈ Gm
n,m be two space-like n-plane in R

m+n
m . The angles between P and A are

defined by the critical values of angel θ between a nonzero vector x in P and its orthogonal
projection x∗ in A as x runs through P .

Assume that e1, . . . , en are orthonormal vectors which span the space-like P and a1, . . . , an

for space-like A. For a nonzero vector in P ,

x =
∑

i

xiei,

its orthonormal projections in A is
x∗ =

∑

i

x∗
i ai.

Thus, for any y ∈ A, we have
〈x − x∗, y〉 = 0.

Set
Wi j = 〈ei, aj〉.

We then have
x∗

j =
∑

i

Wi jxi.

Since x is a vector in a space-like n-plane and its projection x∗ in A is also a space-like vector,
we then have a Minkowski plane R2

1 spanned by x and x∗. Then angle θ between x and x∗ is
defined by

cosh θ =
〈x, x∗〉
|x||x∗| .

Let

W = (Wi j) =

⎛

⎜
⎜
⎜
⎝

〈e1, a1〉 · · · 〈en, a1〉
...

. . .
...

〈en, a1〉 · · · 〈en, an〉

⎞

⎟
⎟
⎟
⎠

.

Now define the w-function as

w = 〈e1 ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉 = detW.

WT W is symmetric, its eigenvalues are μ2
1, . . . , μ

2
n, then there exist e1, . . . , en in P , such that

WT W =

⎛

⎜
⎜
⎜
⎝

μ2
1 0

. . .

0 μ2
n

⎞

⎟
⎟
⎟
⎠

,
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in which μi ≥ 1 and μi = cosh θi. Then

w =
∏

i

cosh θi =
∏

i

1
√

1 − λ2
i

, λi = tanh θi. (2.1)

The distance between P and A in the canonical Riemannian metric on Gm
n,m is (see [17] for

example)

d(P, A) =
√∑

i

θ2
i .

For the fixed A ∈ Gm
n,m, which is spanned by {ai}, choose time-like {an+s} such that {ai, an+s}

form an orthonormal Lorentzian bases of Rn+m
m .

Set

ei = cosh θiai + sinh θian+i,

en+i = sinh θiai + cosh θian+i (and en+α = an+α if m > n).

Then ei ∈ TpM, en+i ∈ NpM. In this case

wi α = 〈e1 ∧ · · · ∧ ei−1 ∧ eα ∧ ei+1 ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉
= cosh θ1 cosh θi−1 sinh θi cosh θi+1 cosh θn = λiwδn+i α,

which is obtained by replacing ei by eα in w. We also have wiαjβ by replacing ej by eβ in wi α.

We obtain

wiαjβ =

⎧
⎪⎪⎨

⎪⎪⎩

λiλjw, α = n + i, β = n + j,

−λiλjw, α = n + j, β = n + i,

0 otherwise.

(2.2)

3 Drift Laplacian of Some Geometric Quantities

The second fundamental form B can be viewed as a cross-section of the vector bundle
Hom(�2TM, NM) over M. A connection on Hom(�2TM, NM) can be induced from those
of TM and NM naturally. There is a natural fiber metric on Hom(�2TM, NM) induced from
the ambient space and it becomes a Riemannian vector bundle. There is the trace-Laplace
operator ∇2 acting on any Riemannian vector bundle.

In [19], we already calculate ∇2B for general space-like n-submanifolds in R
m+n
m .

Set
Bi j = Bei ej

= hα
i jeα, Sα β = hα

i jh
β
i j .

From Proposition 2.1 in [19], we have

〈∇2B, B〉 = 〈∇i∇jH, Bi j〉 + 〈Bi k, H〉〈Bi l, Bk l〉 − |R⊥|2 −
∑

α,β

S2
α β , (3.1)

where R⊥ denotes the curvature of the normal bundle and

|R⊥|2 = −〈Rei ej
να, Rei ej

να〉.
Then from the self-shrinker equation (1.2), we obtain

∇iF
N = [∇̄i(F − 〈F, ej〉ej)]N
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= [ei − ∇̄i〈F, ej〉ej − 〈F, ej〉∇̄ei
ej ]N

= −〈F, ej〉Bi j ,

and

∇i∇jF
N = −∇i[〈F, ek〉Bk j ]

= −δk
i Bk j − 〈FN , Bk i〉Bk j − 〈F, ek〉∇iBk j

= −Bi j − 〈FN , Bk i〉Bk j − 〈F, ek〉∇kBi j

= −Bi j + 〈2H, Bk i〉Bk j − 〈F, ek〉∇kBi j .

Set Pi j = 〈Bi j , H〉. Then

∇i∇jH =
1
2
Bi j − Pk iBk j +

1
2
〈F, ek〉∇kBi j . (3.2)

Substituting (3.2) into (3.1), we obtain

〈∇2B, B〉 =
〈

1
2
Bi j , Bi j

〉

− 〈H, Bk i〉〈Bk j , Bi j〉 +
1
2
〈F, ek〉〈∇kBi j , Bi j〉

+〈Bi k, H〉〈Bi l, Bk l〉 − |R⊥|2 −
∑

α,β

S2
α β.

This also means that

〈∇2B, B〉 =
1
2
〈B, B〉 +

1
4
〈FT ,∇〈B, B〉〉 − |R⊥|2 −

∑

α,β

S2
α β. (3.3)

Note that Δ〈B, B〉 = 2〈∇2B, B〉 + 2〈∇B,∇B〉, so

Δ〈B, B〉 = 〈B, B〉 +
1
2
〈FT ,∇〈B, B〉〉 − 2|R⊥|2 − 2

∑

α,β

S2
α β

+ 2〈∇B,∇B〉. (3.4)

We denote

|B|2 = −〈B, B〉 =
∑

i,j,α

h2
αij , |∇B|2 = −〈∇B,∇B〉,

|H|2 = −〈H, H〉, |∇H|2 = −〈∇H,∇H〉.
Then

Δ|B|2 = |B|2 +
1
2
〈FT ,∇|B|2〉 + 2|R⊥|2 + 2

∑

α,β

S2
α β + 2|∇B|2. (3.5)

From (3.2), we also obtain

∇2H =
1
2
H − Pk iBk j +

1
2
〈F, ek〉∇kH.

Since

Δ|H|2 = −Δ〈H, H〉 = −2〈∇2H, H〉 − 2〈∇H,∇H〉,
we obtain

Δ|H|2 = −2
〈

1
2
H − Pk iBk i +

1
2
〈F, ek〉∇kH, H

〉

− 2〈∇H,∇H〉

= |H|2 + 2|P |2 +
1
2
〈FT ,∇|H|2〉 + 2|∇H|2, (3.6)
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where |P |2 =
∑

i,j P 2
ij .

In the pseudo-Grassmann manifold Gm
n,m, there are w-functions with respect to a fixed

point A ∈ Gm
n,m, as shown in Section 2. For the space-like n-submanifold M in R

m+n
m we define

the Gauss map γ : M → Gm
n,m, which is obtained by parallel translation of TpM for any p ∈ M

to the origin in R
m+n
m . Then, we have functions w ◦ γ on M , which is still denoted by w for

notational simplicity.
For any point p ∈ M around p there is a local tangent frame field {ei}, and which is normal

at p. We also have a local orthonormal normal frame field {eα}, and which is normal at p.
Define a w-function by

w = 〈e1 ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉,
where {ai} is a fixed orthonormal vectors which span a fixed space-like n-plane A. Denote

ei α = e1 ∧ · · · ∧ eα ∧ · · · ∧ en,

which is got by substituting eα for ei in e1 ∧ · · · ∧ en and eiαjβ is obtained by substituting eβ

for ej in ei α. Then

∇ej
w =

n∑

i=1

〈e1 ∧ · · · ∧ ∇̄ej
ei ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

=
n∑

i=1

〈e1 ∧ · · · ∧ Bi j ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

=
n∑

i=1

hα
i j〈e1 · · · ∧ eα ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

=
n∑

i=1

hα
i j〈ei α, a1 ∧ · · · ∧ an〉. (3.7)

Furthermore,

∇ei
∇ej

w = 〈∇̄ei
∇̄ej

(e1 ∧ · · · ∧ en), a1 ∧ · · · ∧ an〉
=

∑

k �=l

〈e1 ∧ · · · ∧ ∇̄ej
ek ∧ · · · ∧ ∇̄ei

el ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

+
∑

k

〈e1 ∧ · · · ∇̄ei
∇̄ej

ek ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

=
∑

k �=l

〈e1 ∧ · · · ∧ Bj k ∧ · · · ∧ Bil ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉 (3.8)

+
∑

k

〈e1 ∧ · · · ∧ (∇̄i∇̄jek)T ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉 (3.9)

+
∑

k

〈e1 ∧ · · · ∧ (∇̄i∇̄jek)N ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉. (3.10)

Note that

(3.8) =
∑

k �=l

hα
j khβ

i l〈eαkβl, a1 ∧ · · · ∧ an〉,

(3.9) = 〈∇̄i∇̄jek, ek〉w = −〈∇̄jek, ∇̄iek〉w = −〈Bj k, Bi k〉w = hα
j khα

i kw,

(3.10) = −〈(∇̄i∇̄jek)N , eα〉〈eα k, a1 ∧ · · · ∧ an〉
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= −〈(∇̄i(Bj k + ∇ej
ek))N , eα〉〈eα k, a1 ∧ · · · ∧ an〉

= −〈∇iBj k, eα〉〈eα k, a1 ∧ · · · ∧ an〉 = −〈∇kBi j , eα〉〈eα k, a1 ∧ · · · ∧ an〉,
where we use the Codazzi equation in the last step. Thus, we obtain

Δw =
∑

i,k �=l

hα
i khβ

i l〈eα
kβl, a1 ∧ · · · ∧ an〉 + |B|2w − 〈∇kH, eα〉〈eαk, a1 ∧ · · · ∧ an〉.

Since
∇iF

N = −〈F, ej〉Bi j ,

from (1.2), we obtain

∇iH =
1
2
〈F, ej〉Bi j , 〈∇iH, eα〉 = −1

2
〈F, ej〉hα

i j , (3.11)

so,

Δw = |B|2w +
∑

i,k �=l

hα
i khβ

i l〈eαkβl, a1 ∧ · · · ∧ an〉 +
1
2
〈F, ei〉hα

k i〈eαk, a1 ∧ · · · ∧ an〉

= |B|2w +
∑

i,k �=l

hα
i khβ

i l〈eαkβl, a1 ∧ · · · ∧ an〉 +
1
2
〈F,∇w〉, (3.12)

where (3.7) has been used in the last equality.

Proposition 3.1 For a space-like self-shrinker M of dimension n in R
m+n
m , we have

L|B|2 = |B|2 + 2|R⊥|2 + 2
∑

α,β

S2
α β + 2|∇B|2, (3.13)

L|H|2 = |H|2 + 2|P |2 + 2|∇H|2, (3.14)

L(lnw) ≥ |B|2
w2

. (3.15)

Proof From (1.3), (3.5), (3.6), we can obtain (3.13) and (3.14) easily.
From (1.3), (3.12), we have

Lw = |B|2w +
∑

i,k �=l

hα
i khβ

i l〈eαkβl, a1 ∧ · · · ∧ an〉 = |B|2w +
∑

i,k �=l

hα
i khβ

i lwαkβl

= |B|2w +
∑

i,k �=l

λkλl(hn+k
i k hn+l

i l − hn+l
i k hn+k

i l )w. (3.16)

Furthermore, since

L(lnw) =
1
w
Lw − |∇w|2

w2
,

we obtain

L(lnw) = |B|2 +
∑

i,k �=l

λkλl(hn+k
i k hn+l

i l − hn+l
i k hn+k

i l ) − |∇w|2
w2

.

From (3.7), we obtain

|∇w|2 =
n∑

j=1

|∇ej
w|2 =

n∑

j=1

( n∑

i=1

∑

α

hα
ijwi α

)2

=
n∑

j=1

( n∑

i=1

hn+i
ij λiw

)2

=
n∑

i,j,k=1

λiλkw2hn+i
i j hn+k

k j .
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In the case of m ≥ n, we rewrite (otherwise, we treat the situation similarly)

|B|2 =
∑

j,k,α>n

(hn+α
jk )2 +

∑

i,j

(hn+i
ij )2 +

∑

j

∑

k<i

(hn+k
ij )2 +

∑

j

∑

i<k

(hn+k
ij )2.

So, we obtain

L(lnw) = |B|2 +
∑

i,j,k �=i

λiλk(hn+i
i j hn+k

j k − hn+k
i j hn+i

j k ) −
n∑

i,j,k=1

λiλkhn+i
ij hn+k

j k

= |B|2 +
∑

i,j,k �=i

λiλkhn+i
i j hn+k

j k −
∑

i,j,k �=i

λiλkhn+k
i j hn+i

j k −
n∑

i,j,k=1

λiλkhn+i
ij hn+k

j k

=
∑

j,k,α>n

(hn+α
jk )2 +

∑

i,j

(hn+i
i j )2 +

∑

j

∑

k<i

(hn+k
ij )2 +

∑

j

∑

i<k

(hn+k
ij )2

−
∑

i,j

λ2
i (h

n+i
ij )2 −

∑

ij,k �=i

λiλkhn+k
ij hn+i

jk

=
∑

j,k,α>n

(hn+α
jk )2 +

∑

i,j

(1 − λ2
i )(h

n+i
ij )2 +

∑

j

∑

k<i

(hn+k
ij )2 +

∑

j

∑

i<k

(hn+k
ij )2

− 2
∑

j

∑

k<i

λkλih
n+i
jk hn+k

ij

≥
∑

j,k,α>n

(hn+α
jk )2 +

∑

i,j

(1 − λ2
i )(h

n+i
ij )2 +

∑

j

∑

k<i

(1 − λ2
i )(h

n+k
ij )2

+
∑

j

∑

i<k

(1 − λ2
i )(h

n+k
ij )2

=
∑

j,k,α>n

(hn+α
jk )2 +

∑

i,j,k

(1 − λ2
i )(h

n+k
ij )2

≥
∑

j,k,α>n

(hn+α
jk )2 +

∏

i

(1 − λ2
i )

∑

i,j,k

(hn+k
ij )2. (3.17)

Noting (2.1), the inequality (3.15) has been proved. �

Remark 3.2 For a space-like graph M = (x, f(x)) with f : R
n → R

m its induced metric is
ds2 = (δij − fα

i fα
j )dxidxj . Set g = det(δij − fα

i fα
j ). Then w = 1√

g .

Remark 3.3 (3.15) is a generalization of a formula (5.8) for space-like graphical self-shrinkers
in [7] to more general situation.

4 Volume Growth

To draw our results we intend to integrate those differential inequalities obtained in the last
section. We need to know the volume growth in the pseudo-distance function z on the space-like
submanifolds. In [16] the following property has been proved.

Proposition 4.1 ([16, Proposition 3.1]) Let M be a space-like n-submanifold in R
m+n
m . If

M is closed with respect to the Euclidean topology, then when 0 ∈ M , z = 〈F, F 〉 is a proper
function on M .

we also need a lemma from [8]:

Lemma 4.2 If f(r) is a monotonic increasing nonnegative function on [0, +∞) satisfying
f(r) ≤ C1r

nf( r
2 ) on [C2, +∞) for some positive constant n, C1, C2, here C2 > 1, then f(r) ≤
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C3e2n(log r)2 on [C2, +∞) for some positive constant C3 depending only on n, C1, C2, f(C2).

Using similar method as in [8], we obtain the following volume growth estimates.

Theorem 4.3 Let z = 〈F, F 〉 be the pseudo-distance of Rn+m
m , where F ∈ Rn+m

m is the position
vector with respect to the origin 0 ∈ M . Let M be an n-dimensional space-like self-shrinker of
Rn+m

m . Assume that M is closed with respect to the Euclidean topology. Then for any α > 0,
∫

M
e−αzdμ is finite, in particular M has finite weighted volume.

Proof We have

zi
def.= ei(z) = 2〈F, ei〉,

zij
def.= Hess(z)(ei, ej) = 2(δij − yαhα

ij),

Δz = 2n − 2yαHα = 2n + Y 2, (4.1)

where the self-shrinker equation (1.2) has been used in third equality. For our self-shrinker Mn

in R
n+m
m , we define a functional Ft on any set Ω ⊂ M by

Ft(Ω) =
1

(4πt)n/2

∫

Ω

e−
z
4t dμ, for t > 0.

Set Br = {p ∈ R
m+n
m , z(p) < r2} and Dr = Br ∩ M . We differential Ft(Dr) with respect

to t,

F ′
t(Dr) = (4π)−

n
2 t−( n

2 +1)

∫

Dr

(

− n

2
+

z

4t

)

e−
z
4t dμ.

Noting (4.1),

−e
z
4t div(e−

z
4t ∇z) = −Δz +

1
4t
∇z · ∇z

= −2n − Y 2 +
X2

t

≥ z

t
− 2n (when 0 < t ≤ 1). (4.2)

Since

∇z = 2FT

and the unit normal vector to ∂Dr is F T

X , then

F ′
t (Dr) ≤ π−n

2 (4t)−( n
2 +1)

∫

Dr

−div(e−
z
4t ∇z)dμ

= π−n
2 (4t)−( n

2 +1)

∫

∂Dr

−2Xe−
z
4t ≤ 0. (4.3)

We integrate F ′
t(Dr) over t from 1

r to 1, r ≥ 1, and get
∫

Dr

e−
z
4 dμ ≤ r

n
2

∫

Dr

e−
zr
4 dμ.

Note that ∫

Dr

e−
z
4 dμ ≥ e−

r2
4

∫

Dr

1dμ



Some Results on Space-Like Self-Shrinkers 79

and ∫

Dr

e−
zr
4 dμ =

∫

Dr\D r
2

e−
zr
4 dμ +

∫

D r
2

e−
zr
4 dμ

≤ e−
r3
16

∫

Dr

1dμ +
∫

D r
2

1dμ.

Set V (r) =
∫

Dr
1dμ. Then,

(e−
r2
4 − e−

r3
16 r

n
2 )V (r) ≤ r

n
2 V

(
r

2

)

.

Let g(r) = e−
r2
4 − e−

r3
16 r

n
2 . g(r) > 0 when r sufficiently large (say r ≥ 8n). Since

g′(r) = −r

2
e−

r2
4 − n

2
r

n
2 −1e−

r3
16 +

3r2

16
r

n
2 e−

r3
16

>

(

− r

2
− n

2
r

n
2 −1 +

3
16

r
n
2 +2

)

e−
r3
16 > 0,

g(r) is increasing in r and g−1(r) is decreasing in r. Therefore,

g−1(r) ≤ 1
e−16n2 − e−32n3(8n)

n
2

= C1.

We then have

V (r) ≤ C1r
nV

(
r

2

)

for r sufficiently large (say, r ≥ 8n).

By Lemma 4.2, we have

V (r) ≤ C4e2n(log r)2 for r ≥ 8n,

here C4 is a constant depending only on n, V (8n). Hence, for any α > 0,
∫

M

e−αzdμ =
∞∑

j=0

∫

D8n(j+1)\D8nj

e−αzdμ ≤
∞∑

j=0

e−α(8nj)2V (8n(j + 1))

≤ C4

∞∑

j=0

e−α(8nj)2e2n(log(8n)+log(j+1))2 ≤ C5,

where C5 is a constant depending only on n, V (8n). So we obtain our estimates. Certainly, M

has weighted finite volume. �

Corollary 4.4 Any space-like self-shrinker M of dimension n in R
m+n
m with closed Euclidean

topology has finite fundamental group.

From the Gauss equation, we have

Ric(ei, ei) = 〈H, Bii〉 −
∑

j

〈Bij , Bij〉,

and

Hess(f)(ei, ei) =
1
4
Hess(z)(ei, ei) =

1
2
δij +

1
2
〈F, Bij〉 =

1
2
δij − 〈H, Bij〉.

It follows that

Ricf (ei, ei) = Ric(ei, ei) + Hess(f)(ei, ei) ≥ 1
2
.
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Set BR(p) ⊂ M , a geodesic ball of radius R and centered at p ∈ M . From Theorem 3.1 in [18],
we know that for any r there are constant A, B and C such that

∫

BR(p)

ρ ≤ A + B

∫ R

r

e−
1
2 t2+Ctdt. (4.4)

5 Rigidity Results

Now, we are in a position to prove rigidity results mentioned in the introduction.

Theorem 5.1 Let M be a space-like self-shrinker of dimension n in Rn+m
m , which is closed

with respect to the Euclidean topology. If there is a constant α < 1
8 , such that |H|2 ≤ eαz, then

M is an affine n-plane.

Proof Let η be a smooth function with compact support in M. Then by (3.14), we obtain
∫

M

(
1
2
|H|2 + |P |2 + |∇H|2

)

η2ρ =
1
2

∫

M

(L|H|2)η2ρ =
1
2

∫

M

div(ρ∇|H|2)η2

= −
∫

M

ηρ∇|H|2 · ∇η

= 2
∫

M

ηρ〈∇iH, H〉 · ∇iη

≤
∫

M

|∇H|2η2ρ +
∫

M

|H|2|∇η|2ρ. (5.1)

We then have ∫

M

(
1
2
|H|2 + |P |2

)

η2ρ ≤
∫

M

|H|2|∇η|2ρ. (5.2)

Let η = φ( |F |
r ) for any r > 0, where φ is a nonnegative function on [0, +∞) satisfying

φ(x) =

⎧
⎨

⎩

1, if x ∈ [0, 1),

0, if x ∈ [2, +∞),

and |φ′| ≤ C for some absolute constant. Since ∇z = 2FT ,

∇η =
1
r
φ′∇√

z =
1
r
φ′ F

T

√
z
.

By (1.2), we have

|∇η|2 ≤ C2

r2

|FT |2
z

=
1

r2z
C2(z + 4|H|2).

It follows that (5.2) becomes
∫

Dr

(
1
2
|H|2 + |P |2

)

ρ ≤ C2

r2

∫

D2r\Dr

|H|2
(

1 +
4|H|2

z

)

ρ. (5.3)

By Theorem 4.3, then under the condition on |H|, we obtain that the right-hand side of (5.3)
approaches to zero as r → +∞. This implies that H ≡ 0.

According to Theorem 3.3 in [16], we see that M is complete with respect to the induced
metric from R

m+n
m . In a geodesic ball Ba(x) of radius a and centered at x ∈ M , we can make

gradient estimates of |B|2 in terms of the mean curvature. From (2.9) in [16], we have

|B|2 ≤ k
2m(n − 4)a2

(a2 − r2)2
.
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Since M is complete, we can fix x and let a go to infinity. Hence, |B|2 = 0 at any x ∈ M and
M is an n-plane. �

Theorem 5.2 Let M be a complete space-like self-shrinker of dimension n in Rn+m
m . If there

is a constant α < 1
2 , such that ln w ≤ eαd2(p,x) for certain p ∈ M , where d(p, ·) is the distance

function from p, then M is affine n-plane.

Proof (3.15) tells us

L(lnw) ≥ |B|2
w2

≥ 0.

As an application to (4.4) (Theorem 3.1 in [18]), Corollary 4.2 in [18] tells us that lnw is
constant. This forces |B|2 ≡ 0. �
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