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Abstract We study space-like self-shrinkers of dimension n in pseudo-Euclidean space R with
index m. We derive drift Laplacian of the basic geometric quantities and obtain their volume estimates
in pseudo-distance function. Finally, we prove rigidity results under minor growth conditions in terms

of the mean curvature or the image of Gauss maps.
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1 Introduction

Let R™*™ be an (m + n)-dimensional pseudo-Euclidean space with the index m. The indefinite
flat metric on R™*" is defined by ds® = 37, (d2*)? = S_0 0", | (dz®)?. In what follows we agree
with the following range of indices

A B, C,...=1,....m+n; i, 4 k,...=1,....n;

s,t=1,....m; o, B,...=n+1,...,m+n.

Let F : M — R be a space-like n-dimensional submanifold in R”'*" with the sec-
ond fundamental form B defined by Bxy dg'(?XY)N for X,Y € T(TM). We denote (---)7
and (---)" for the orthogonal projections into the tangent bundle TM and the normal bun-
dle NM, respectively. For v € T'(NM) we define the shape operator AY : TM — TM by
A¥(V) = —(Vywv)T. Taking the trace of B gives the mean curvature vector H of M in Rm+n
and Hdéf'trace(B) = Be,e;, where {e;} is a local orthonormal frame field of M. Here and in
the sequel we use the summation convention. The mean curvature vector is time-like, and a
cross-section of the normal bundle.

We now consider a one-parameter family F; = F(-,t) of immersions F; : M — R”*" with
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the corresponding images M; = F;(M) such that

d

—F(x,t) = H(x,t), z€M

F(z,0) = F(x)
are satisfied, where H(z,t) is the mean curvature vector of M; at F(z,t). There are many inter-
esting results on mean curvature flow on space-like hypersurfaces in certain Lorentzian manifolds
[10-13]. For higher codimension we refer to the previous work of the second author [19].

A special but important class of solutions to (1.1) are self-similar shrinking solutions, whose

profiles, space-like self-shrinkers, satisfy a system of quasi-linear elliptic PDE of the second
order

H=-". (1.2)

Besides the Lagrangian space-like self-shrinkers [2, 9, 14], there is an interesting paper
on curves in the Minkowski plane [15]. The present paper is devoted to general situation on
space-like self-shrinker.

For a space-like n-submanifold M in R”*" we have the Gauss map v : M — G- The
target manifold is a pseudo-Grassmann manifold, dual space of the Grassmann manifold G, .
In the next section, we will describe its geometric properties, which will be used in the paper.

Choose a Lorentzian frame field {e;, e, } in R7*T" with space-like {e;} € TM and time-like
{ea} € NM along the space-like submanifold F': M — R”*", Define coordinate functions

b= (F,e;), y*=—(F eq).

We then have
|F|2 = X2 - Y27

where X = /37 (z)2,Y = /S 0" | (y*)2. We call |F|? the pseudo-distance function from

the origin 0 € M.

We always put the origin on M in the paper. We see that |F|? is invariant under the
Lorentzian action up to the choice of the origin in R™*". Set z = |F|?. It has been proved
that z is proper provided M is closed with the Euclidean topology (see [4] for m = 1 and [16]
for any codimension m).

Following Colding et al. [6], we can also introduce the drift Laplacian,
]. z z
L=A-— §<F, V() =erdiv(e” £ V(+)). (1.3)

It can be showed that £ is self-adjoint with respect to the weighted volume element e~ dp,
where dp is the volume element of M with respect to the induced metric from the ambient
space R™*T™ Tn the present paper we carry out integrations with respect to this measure. We
denote p = e~ 7 and the volume form du might be omitted in the integrations for notational
simplicity.

For a space-like submanifold in R”'*"  there are several geometric quantities, the squared
norm of the second fundamental form |B|?, the squared norm of the mean curvature |[H|? and
the w-function, which is related to the image of the Gauss map. In Section 3, we will calculate

drift Laplacian £ of those quantities, see Proposition 3.1.
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Corresponding to the weighted measure and drift Laplacian there is so-called the Baker—
Emery Ricci tensor. It is noted that in [3] Ricy > % with f = Z. Using the comparison
technique, the weighted volume of the geodesic ball can be estimated from above in terms of
the distance function [18].

For a space-like n-submanifold M in R™*" there are several global conditions: closed one
with Euclidean topology; entire graph; complete with induced Riemannian metric. A complete
space-like one has to be entire graph, but the converse claim is not always the case. Closed one
with Euclidean topology is complete under the parallel mean curvature assumption (see [4] for
codimension one and [16] for higher codimension).

In our case of closed one with Euclidean topology, the pseudo-distance function z is always
proper. It is natural to consider the volume growth in z. For the proper self-shrinkers in
Euclidean space Ding—Xin [8] gave the volume estimates. It has been generalized in [5] for
more general situation. But, the present case does not satisfy the conditions in Theorem 1.1
in [5]. However, the idea in [8] is still applicable for space-like self-shrinkers. In Section 4,
we will give volume estimates for space-like self-shrinkers, in a similar manner as in [§8], see
Theorem 4.3.

Finally, using integral method we can obtain rigidity results as follows.

Theorem 1.1 Let M be a space-like self-shrinker of dimension n in RT™ which is closed
with respect to the Fuclidean topology. If there is a constant a < é, such that |H|?> < e, then
M is an affine n-plane.

Theorem 1.2 Let M be a complete space-like self-shrinker of dimension n in R%F™. If there
is a constant a < %, such that Inw < e’ (p,) for certain p € M, where d(p,-) is the distance

function from p, then M is affine n-plane.

Remark 1.3 In the special situation, for the Lagrangian space-like self-shrinkers, the rigidity
results hold without the growth condition (see [9]). Let R2" be Euclidean space with null
coordinates (x,y) = (£1,...,%n; Y1,---,Yn), which means that the indefinite metric is defined
by ds* = Y, dz;dy;. It M = {(z, Du(x))| x € R"} is a space-like submanifold in R2", then u
is convex and the induced metric on M is given by ds? = ZZ j Wijdzidr;. M is a space-like
Lagrangian submanifold in R2". It is worthy to point out that the potential function w is proper
if M is an entire gradient graph, as the following consideration. On R™ set p’ = |z| = \/Z—xf .
At any direction § € S771,
4 T
Uy = upfa—xi = ?upf
and the pseudo-distance

/
2= TiUs; = P Up,

which is positive when the origin is on M, since it is space-like. It implies that u is increasing
in p’. Moreover,

/
Zp = Up + P Uy >0,

which means that z is also increasing in p’. Hence,

, N 1 1
u(p’) —u(e) = [ uydp’ = ;dp > 2(€) ;dp > 2(e) ;dp—wo

€
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as p/ — oo.

Remark 1.4 Rigidity problem for space-like extremal submanifolds was raised by Calabi [1],
and solved by Cheng—Yau [4] for codimension 1. Later, Jost—Xin generalized the results to
higher codimension [16]. The rigidity problem for space-like submanifolds with parallel mean
curvature was studied in [20, 22] and [16] (see also in Chap. 8 of [21]).

2  Geometry of G,

In R%™ all space-like n-subspaces form the pseudo-Grassmannian G- It is a specific Cartan—
Hadamard manifold which is the noncompact dual space of the Grassmann manifold G, .
Let P and A € G, be two space-like n-plane in R}:*". The angles between P and A are
defined by the critical values of angel € between a nonzero vector x in P and its orthogonal
projection z* in A as x runs through P.
Assume that eq, ..., e, are orthonormal vectors which span the space-like P and aq,...,a,

for space-like A. For a nonzero vector in P,
x = E Ti€;,
i
its orthonormal projections in A is

x* = Z x;a;.
Thus, for any y € A, we have

(x —z",y) =0.
Set

Wi i = (ei,aj).

*
.Z‘j: E Wijl‘i.
i

Since z is a vector in a space-like n-plane and its projection x* in A is also a space-like vector,

We then have

we then have a Minkowski plane R? spanned by z and x*. Then angle 6 between x and z* is
defined by

coshf = 02 I*>
|z|x
Let
(e1,a1) (en,ar)
W= (W)=
<67L5 a1> <67L5 an>

Now define the w-function as
w={(eg AN - Nep,a1 N+ Aay) =det W.
WTW is symmetric, its eigenvalues are u?, ..., u2, then there exist eq,...,e, in P, such that
g0
WIW = :

0
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in which pu; > 1 and p; = cosh ;. Then
1
w = Hcosh@i :1'[7, \; = tanh 6;. (2.1)
i PERVA )\f

The distance between P and A in the canonical Riemannian metric on G}, is (see [17] for

AP, A) = Y 62

For the fixed A € G, which is spanned by {a;}, choose time-like {a,+} such that {a;, an s}
form an orthonormal Lorentzian bases of R%T™.
Set

example)

e; = cosh 6;a; + sinh 0;a,,4,
en+i = sinh 6;a; + cosh0;a,,; (and e+ = apiq if m > n).

Then e; € Ty,M, ey € N, M. In this case

Wiq ={e1 A ANei_1 Neg Neir1 A ANep,a1 A Nay)
= cosh 0y cosh 6;_1 sinh 6; cosh 6; 1 cosh 8,, = \;wd,+; «,
which is obtained by replacing e; by e, in w. We also have w;q;3 by replacing e; by eg in w; 4.
We obtain
Aidjw, a=n+1,8=n+7,
Wiajg = § —NA\jw, a=n+j,08=n+1, (2.2)

0 otherwise.

3 Drift Laplacian of Some Geometric Quantities

The second fundamental form B can be viewed as a cross-section of the vector bundle
Hom(®?TM, NM) over M. A connection on Hom(®?TM, NM) can be induced from those
of TM and N M naturally. There is a natural fiber metric on Hom(®2?T'M, N M) induced from
the ambient space and it becomes a Riemannian vector bundle. There is the trace-Laplace
operator V2 acting on any Riemannian vector bundle.

In [19], we already calculate V2B for general space-like n-submanifolds in R 7,

Set

Bij = Be,e; = hiea, Sap = h&h;

15"

From Proposition 2.1 in [19], we have

(V2B,B) = (V;V;H,Bi;) + (Bix, H)(Bi1, By1) — |[RY | = Y S2 4, (3.1)
a,B

where RL denotes the curvature of the normal bundle and
IR = —(Re, e;Va, Re, e;Va)-
Then from the self-shrinker equation (1.2), we obtain

ViFN = [Vi(F — (F,e;)e;)]N
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= [e; — -V (Fej)e; — (F, 63>V6763]
= —(F,¢;)Bij,
and
V,V,;FN = —V,[(F, ex)Bs;]
= —0FBy; — (FN,By;)Byj — (F,ex)ViBy
=—B;; — (FN,By:)Brj — (F,er)ViBi;
= —B;;+ (2H, By:)Bi;j — (F,e;)ViBij.
Set P;j = (B;;, H). Then

1 1
VN]»H = EBij — P;“-Bkj + §<F, ek>kaij-

Substituting (3.2) into (3.1), we obtain

1
(V’B,B) = < B;;, B;; > — (H, By i)(Bgj, Bij) + —<F7€k><VkBij,Bij>

+(Biy, H)(Bi1, Br1) — |[R|* - Z

This also means that

2 1 1, Lp2
(V2B,B) = (B, B) + [(F",V(B, B)) — |R*| Zs

Note that A(B, B) = 2(V?B, B) + 2(VB,VB), so

A(B,B) = (B,B) + %(FT, V(B,B)) —2R'|?—2) 52,

a,B
+2(VB,VB).
We denote
|B? = =Y hk; IVB]* = —(VB,VB),
17,0
|H|? = —(H,H), |VH|* = —(VH,VH).
Then

1
(FT VB + 2R +2) 82, +2VBJ.

A|B* = |B]* +
2 ~

From (3.2), we also obtain
V2H = %H — PyiBj + %(F, ex) Vi H.
Since
AlH|? = ~A(H,H) = —2(V*H,H) — 2(VH,VH),
we obtain

1 1
AlHP? = —2<§H ~ PiiBi + 5 (F.ex) Vi, H> —2(VH,VH)

1
= [H> +2|P]* + §<FT,V\H|2> +2|VH],

(3.2)

(3.3)
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where |P|? = > P2

In the pseudo-Grassmann manifold G7,,, there are w-functions with respect to a fixed
point A € G',,, as shown in Section 2. For the space-like n-submanifold M in R+ we define
the Gauss map v : M — GJ,,, which is obtained by parallel translation of T}, M for any p € M
to the origin in R, Then, we have functions w oy on M, which is still denoted by w for
notational simplicity.

For any point p € M around p there is a local tangent frame field {e;}, and which is normal
at p. We also have a local orthonormal normal frame field {e,}, and which is normal at p.
Define a w-function by

w={e1 A - Nep,a1 A+ Aay),
where {a;} is a fixed orthonormal vectors which span a fixed space-like n-plane A. Denote
Ciqg =€ N~ NegN---Nep,
which is got by substituting e, for e; in e; A --- A e, and e;q;3 is obtained by substituting eg

for e; in ;4. Then

n
Vejw:Z(el/\~~/\?ejei/\---/\en,al/\-'-/\an>
n
:Z(el/\--~/\Bij/\~-~/\en,a1/\-~-/\an>
n
=th-<61---/\ea/\~-~/\en,a1/\---/\an>

:th‘j<em,a1/\~~/\an>. (3.7)

Furthermore,

Ve, Ve,w = (?eiﬁej (e1 A+ Aep),ar A+ ANay)

:Z(el/\~-~/\?€jek/\---/\?eiel/\---/\en,al/\---/\an>
[

—|—Z<el/\---?ei?ejek/v-J\emal/\-~-/\an>

k
:Z(el/\~-~/\Bjk/\---/\Bil/\---/\en,al/\~-~/\an> (3.8)
[
+Z<el/\---/\(?ﬁjek)T/\---/\en,al/\---/\an> (3.9)
k
D er A AN(ViVieR)N A Nepar A Aay). (3.10)
k
Note that
(3.8) = > hSyhf) (earpr, a1 A+ Aan),

k#l
(39) = <?iﬁjek, ek>w = —<vj€k, ?iek)w = —<Bjk, Bik>w = hjakh?k’w,
(3.10) = —<(viv]—ek)N, ea)(€ak,a1 N - Nap)
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= —((?Z(B]k + Vejek))N, ea)<eak,a1 VANRERWAN an>

= _<vz’Bjkaea><eakaa1 AN /\an> = _<VkBij7eoz><eakaa1 AN

where we use the Codazzi equation in the last step. Thus, we obtain

Aw = Z h?khfl<egﬁl,a1 Ao Nap) + | BPw — (ViH, eq) (e, a1 A Aay).

i k£l
Since
ViFYN = —(F,¢;)Bij,

from (1.2), we obtain

1 1
V.H = §<F7 ej)Bij, (ViH,eq) = —§<F, ej)hi;,
S0,
1
Aw = |B|2w + Z h;'xkhiﬁl <eo¢k/3l7 S ARERWAN an> + §<F, 6i>hgi<eak7al AREE

i kAl

1
= |BPw+ > heyhi(earp,ar A+ Aay) + 3 (. V),
i kAl

where (3.7) has been used in the last equality.

Proposition 3.1 For a space-like self-shrinker M of dimension n in R we have

LIB* = |B> + 2[R |* +2) S2;5+2|VBP,
a,B
LIH]? = |H> +2|P] +2[VH|?,
L(Inw) > |i—|22
Proof From (1.3), (3.5), (3.6), we can obtain (3.13) and (3.14) easily.
From (1.3), (3.12), we have

Aap),

Aap)

Lw = |B]*w + Z hf‘khfl<eakﬂl,a1 A Aap) = |B*w+ Z hf‘khflwakm

i k£l i k£l
= |BPw+ D> MNi(hFERE = B R )w.,
i k£l

Furthermore, since
[Vwl|?

2 bl

L(lnw) = lﬁw -
w

w

we obtain
[Vwl?

5 -

Lnw) = B+ > MeM(hFRT = hyEh) —
ikl

w

From (3.7), we obtain

n

n n 2
Sl = 30170l = 32 (30 hne)
j=1

j=1 Vi=1 «

n n 2 n
:Z<Zh;g+mw> = > NwhIhp T,
Jj=1 Yi=1

i,5,k=1

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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In the case of m > n, we rewrite (otherwise, we treat the situation similarly)

|B|2 _ Z hn+o¢ _,_Z hn+z +ZZ thrk +ZZ thrk

J,k,a>n J k<t J i<k

So, we obtain

Llnw) = [BP+ 3 AN RIS — W) = 3T ARk R

1,5, k#1 i,j,k=1
_ |B|2 Z A )\khn+zhn+k Z A )\kthrkthrz _ Z A )\khn+zhn+k
i,5,k7i 1,4, k#i i,j,k=1

_ Z hn+a + Z hn{ri 2 + Z Z(hZ‘JFk + Z Z thrk

Jik,a>n Jok<i J i<k

= NH(hT? Z A ARhISTER

] ij,k#i

_ Z hn+o¢ + Z 1 _ )\2 hn+z + Z Z hanrk: + Z Z hn+k:

J.k,a>n J k<i j i<k

—9 Z Z e\ hn+zhn+k

7 k<i

> Z hn+a +Z 1 _ )\2 hn+z +ZZ 1— )\2 hanrk)Q

J,k,a>n 7 k<i

+ Z Z 1 _ AQ hn-‘rk)

7 i<k

= D (R (=AY (h?

7,k,a>n i,7,k
> Y (h)? +H (1= A7) > (hthy2, (3.17)

J,k,a>n 0,5,k

Noting (2.1), the inequality (3.15) has been proved. O

Remark 3.2 For a space-like graph M = (z, f(z)) with f : R®™ — R™ its induced metric is
ds* = (0i; fa‘fa)dxzdxj Set g = det(d;; — ff5*). Then w = %.
Remark 3.3 (3.15) is a generalization of a formula (5.8) for space-like graphical self-shrinkers

in [7] to more general situation.

4 Volume Growth

To draw our results we intend to integrate those differential inequalities obtained in the last
section. We need to know the volume growth in the pseudo-distance function z on the space-like
submanifolds. In [16] the following property has been proved.

Proposition 4.1 ([16, Proposition 3.1]) Let M be a space-like n-submanifold in RTMT™.  [f
M is closed with respect to the Euclidean topology, then when 0 € M, z = (F,F) is a proper
function on M.

we also need a lemma from [8]:

Lemma 4.2 If f(r) is a monotonic increasing nonnegative function on [0,400) satisfying
f(r) < Cir"f(5) on [Cq,+00) for some positive constant n,Cy,Cy, here Cy > 1, then f(r) <
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Cye?n(log M on [Ca, +00) for some positive constant Cs depending only on n,Cq, Ca, f(Cs).
Using similar method as in [8], we obtain the following volume growth estimates.

Theorem 4.3 Let z = (F, F) be the pseudo-distance of RT™, where F € R%T™ is the position
vector with respect to the origin 0 € M. Let M be an n-dimensional space-like self-shrinker of
RI™ - Assume that M is closed with respect to the Euclidean topology. Then for any o > 0,
fM e~ *du is finite, in particular M has finite weighted volume.

Proof We have

Z dgf‘ei(z) = 2(F,

ei>7
def. aLa
zij = Hess(2)(ei, ;) = 2(6i; — y*hij),
Az=2n—2y*H™ =2n+Y?, (4.1)
where the self-shrinker equation (1.2) has been used in third equality. For our self-shrinker M™

in R we define a functional F}; on any set Q C M by

1

Fy(Q) = (Art)n /2

/e*idu, for t > 0.
Q

Set B, = {p € R™*™" 2(p) < r?} and D, = B, N M. We differential F}(D,) with respect
to t,

F/(D,) = (47)’%t’(%+1)/ (— 24 i)eftdu.
D, 2 4t

Noting (4.1),
5 . 1
—etidiv(e ™ Vz) = —Az + EVz -Vz

X2
=-2n-Y?+ e
> ; —2n (when 0 <¢<1). (4.2)
Since
Vz=2FT

and the unit normal vector to D, is FYT, then

F/(D,) <7 % (4t)~ G+ / —div(e” % Vz)dpu
D,

7% (4) "G+ /BD —2Xe 3 <0. (4.3)

We integrate F}(D,) over ¢ from % to 1, 7 > 1, and get

/e_id/ig?"%/ e~ dpu.
D D

r "

Z 7‘2
/ e idu Ze_T/ 1du
D, D,

Note that
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and

Set V(r) = [, 1du. Then,

2
r2 3 n
Let g(r) =e~7 —e~Trz. g(r) > 0 when r sufficiently large (say r > 8n). Since
T
2 2 16
T N n_ 3 = 8
> (—2—27’2 1+16T2+2>e 16 >07
g(r) is increasing in r and ¢g~!(r) is decreasing in 7. Therefore,
_ 1
g Hr) < - =C).

e~ 16n? _ g=32n% (83
We then have
Vir) < C’lr"V<g> for r sufficiently large (say, r > 8n).

By Lemma 4.2, we have
Vir) < C’4€2”(1°gT)2 for r > 8n,

here Cj is a constant depending only on n, V(8n). Hence, for any « > 0,

/ e~ “*du = Z/ e”du < Ze’a(S”j)2V(8n(j +1))
Dsn(j+1)\Dsnj

Jj=0

<0y Ze a(8nj)? e2n (log(8n)+log(j+1))? < 05

where Cj5 is a constant depending only on n, V(8n). So we obtain our estimates. Certainly, M

has weighted finite volume. O

Corollary 4.4 Any space-like self-shrinker M of dimension n in R with closed Euclidean
topology has finite fundamental group.

From the Gauss equation, we have

Ric(e;, e;) = (H, Bii) = Y _(Bi;, B

J

and

lHess(z)(ei,ei) = 151 + 1<F‘, B7,]> = 162] — <H, Bij>-

Hess(f)(eivei) = 4 277 9 2

It follows that
Rin (61‘7 61') = Ric(ei, 61') + Hess(f) (61‘7 61') >

N =
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Set Br(p) C M, a geodesic ball of radius R and centered at p € M. From Theorem 3.1 in [18],
we know that for any r there are constant A, B and C such that

R
/ p< A+ B/ e 3t 0y, (4.4)
Br(p) r

5 Rigidity Results
Now, we are in a position to prove rigidity results mentioned in the introduction.

Theorem 5.1 Let M be a space-like self-shrinker of dimension n in R which is closed

with respect to the Euclidean topology. If there is a constant o < % 3, such that |H|? < e, then
M is an affine n-plane.

Proof Let 1 be a smooth function with compact support in M. Then by (3.14), we obtain

1 1
[ (3le w1 92 Yoo =5 [ @i =3 [ apvimtye

—/ npV|H[* - Vn

M

—2 [ wp(ViHH) Vi
M

< [ 1vHPp+ [ 1HEVIRS. (5.1)
M M

1
(e 1ee) o< [ 1mpvaey (5.2

Let n = gi)(l ‘) for any r > 0, where ¢ is a nonnegative function on [0, +00) satisfying

We then have

1, ifzelo1),
p(x) = ,
0, ifzxel2+0),

and |¢’| < C for some absolute constant. Since Vz = 2F7,

1, 1, FT
n_r(bv\/g_r \/}‘

By (1.2), we have

|Vn|? < C*(z+4|H|?).

C2IFT)2 1
2z rz
It follows that (5.2) becomes

Lo 2 c? 2 | 2
SHE+IPP) p< =5 HE2(1+ 720 ). (5.3)
D, " JDy,\D,

ks

By Theorem 4.3, then under the condition on |H|, we obtain that the right-hand side of (5.3)
approaches to zero as r — 4o0. This implies that H = 0.

According to Theorem 3.3 in [16], we see that M is complete with respect to the induced
metric from R7**". In a geodesic ball B,(x) of radius a and centered at € M, we can make

gradient estimates of |B|? in terms of the mean curvature. From (2.9) in [16], we have

2m(n — 4)a®
B’ <kZ—a—ot.
|BI” < (a2 — 12)2
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Since M is complete, we can fix z and let a go to infinity. Hence, |B|?> = 0 at any z € M and

M is an n-plane. O

Theorem 5.2 Let M be a complete space-like self-shrinker of dimension n in R%T™. If there

is a constant o < L, such that Inw < eod’ (p2) for certain p € M, where d(p,-) is the distance

27
function from p, then M is affine n-plane.

Proof (3.15) tells us

|BJ”
As an application to (4.4) (Theorem 3.1 in [18]), Corollary 4.2 in [18] tells us that Inw is
constant. This forces |B|? = 0. O

References
[1] Calabi, E.: Examples of Bernstein problems for some nonlinear equations. Proc. Symp. Global Analysis U.
C. Berkeley, 1968
[2] Chau, A., Chen, J., Yuan, Y.: Rigidity of Entire self-shrinking solutions to curvature flows. J. Reine Angew.
Math., 664, 229-239 (2012)
[3] Chen, Q., Qiu, H. B.: Rigidity theorems for self-shrinker in Euclidean space and Pseudo-Eclideanspace,
preprint
[4] Cheng, S. Y., Yau, S. T.: Maximal spacelike hypersurfaces in the Lorentz—Minkowski spaces. Ann. Math.,
104, 407-419 (1976)
[5] Cheng, X., Zhou, D. T.: Volume estimates about shrinkers, arXiv:1106.4950
[6] Colding, T. H., Minicozzi II, W. P.: Generic mean curvature flow I; generic singularities. Ann. Math., 175,
755-833 (2012)
[7] Ding, Q., Wang, Z. Z.: On the self-shrinking system in arbitrary codimensional spaces, arXiv:1012.0429v2
[math.DG]
[8] Ding, Q., Xin, Y. L., Volume growth, eigenvalue and compactness for self-shrinkers. Asian J. Math., 17,
443-456 (2013)
9] Ding, Q., Xin, Y. L.: The rigidity theorems for Lagrangian self-shrinkers. J. Reine Angew. Math., accepted,
arXiv:1112.2453 [math.DG]
[10] Ecker, K.: On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetime. J. Austral.
Math. Soc. Ser. A, 55(1), 41-59 (1993)
[11] Ecker, K.: Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike
hypersurfaces in Minkowski space. J. Differential Geom., 46(3), 481-498 (1997)
[12] Ecker, K.: Mean curvature flow of of spacelike hypersurfaces near null initial data. Comm. Anal. Geom.,
11(2), 181-205 (2003)
[13] Ecker, K., Huisken, G.: Parabolic methods for the construction of spacelike slices of prescribed mean
curvature in cosmological spacetimes. Commun. Math. Phys., 135, 595-613 (1991)
[14] Huang, R. L., Wang, Z. Z.: On the entire self-shrinking solutions to Lagrangian mean curvature flow. Calc.
Var. Partial Differential Equations, 41, 321-339 (2011)
[15] Halldorsson, H. P.: Self-similar sulutions to the mean curvature flow in the Minkowski plane R:1,
arXiv:1212.0276v1[math.DG]
[16] Jost, J., Xin, Y. L.: Some aspects ofthe global geometry of entire space-like submanifolds. Result Math.,
40, 233-245 (2001)
[17] Wong, Y.-C.: Euclidean n-planes in pseudo-Euclidean spaces and differential geometry of Cartan domain.
Bull. A. M. S., 75, 409-414 (1969)
[18] Wei, G. F., Wylie, W.: Comparison geometry for Bakry—Emery Ricci tensor. J. Differential Geometry,
83(2), 377-405 (2009)
[19] Xin, Y. L.: Mean curvature flow with bounded Gauss image. Results Math., 59, 415-436 (2011)
[20] Xin, Y. L.: On the Gauss image of a spacelike hypersurfaces with constant mean curvature in Minkowski
space. Comment. Math. Helv., 66, 590-598 (1991)



82 Liv H. Q. and Xin Y. L.

[21] Xin, Y. L.: Minimal Submanifolds and Related Topics, World Scientific Publ., Singapore, 2003
[22] Xin, Y. L., Ye, R. G.: Bernstein-type theorems for space-like surfaces with parallel mean curvature. J. Rein
Angew. Math., 489, 189-198 (1997)



