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Abstract We explicitly compute the first and second cohomology groups of the Schrödinger algebra

S(1) with coefficients in the trivial module and the finite-dimensional irreducible modules. We also

show that the first and second cohomology groups of S(1) with coefficients in the universal enveloping

algebras U(S(1)) (under the adjoint action) are infinite dimensional.
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1 Introduction

Cohomology is an important tool in mathematics. Its range of applications contains algebra and
topology as well as the theory of smooth manifolds or of holomorphic functions. The cohomology
theory of Lie algebras has its origins in the work of Cartan, but the foundation of the theory,
as an independent topic of research, is due to Chevalley and Eilenberg [5], Koszul [10] and
Hochschild and Serre [9]. A unifying treatment of the cohomology theory of groups, associative
algebras, and Lie algebras has been given by Cartan and Eilenberg [4]. As is well-known, several
classical results in Lie algebra theory have a cohomological interpretation. If g is a Lie algebra,
the structure of the extensions of g-modules (and hence the question of semi-simplicity of g-
modules) is described by the 1-cohomology of g, and the structure of the Lie algebra extensions
(and hence the Levi, Malcev theorem) is related to the 2-cohomology [5].

Non-semisimple Lie algebras and groups play a very important role in the physics applica-
tions, recall, e.g., the Poincaré algebra and groups (for this and other examples, cf., e.g., [2]).
The Schrödinger group is the symmetry group of the free particle Schrödinger equation and
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its Lie algebra is the so-called Schrödinger algebra. The Schrödinger algebra is non-semisimple
and plays an important role in mathematical physics and its applications (see, e.g., [1–3, 11]
and the recent review [6] containing many relevant references).

In this paper we compute the first and second cohomology groups for the Schrödinger algebra
S(1) with coefficients in the trivial module and finite-dimensional irreducible modules. These
cohomology groups are of crucial importance to the understanding of extensions of modules,
and also extensions of the Lie algebras themselves. We also determine that the dimensions of
the first and second cohomology groups for S(1) with coefficients in the universal enveloping
algebra are infinite.

Let us briefly comment on the actual computation of the cohomology groups. The computa-
tion is carried at an elementary level. Detailed knowledge on the structure of finite-dimensional
irreducible modules is used extensively, which in fact constitutes the essential input of the
calculations. To determine the dimensions of the first and second cohomology groups for S(1)
with coefficients in the universal enveloping algebra, we explore the first and second cohomology
groups with coefficients in a 3-dimensional indecomposable S-module.

The organization of the paper is as follows. Section 2 provides some necessary background
material on S(1). Sections 3 and 4 contain the computations of the first and second cohomology
groups of S(1) with coefficients in the trivial module and the finite-dimensional irreducible
modules respectively. Section 5 is devoted to determining the dimensions of the first and
second cohomology groups of S(1) with coefficients in the universal enveloping algebra.

2 Preliminaries

2.1 Schrödinger Algebra S(1)

We shall work over the field C of complex numbers throughout the paper. The Schrödinger
algebra S := S(1) is the Lie algebra with basis {f, q, h, z, p, e} and relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

[h, p] = p, [h, q] = −q, [p, q] = z,

[e, q] = p, [p, f ] = −q, [f, q] = 0,

[e, p] = 0, [z,S] = 0.

The Schrödinger algebra can be viewed as a semidirect product

S = H � sl2

of two subalgebras: a Heisenberg subalgebra H = span{p, q, z} and sl2 = span{e, h, f}. Observe
that S =

⊕2
i=−2 Si is Z -graded, where S−2 = Cf, S−1 = Cq, S0 = Ch + Cz, S1 = Cp, S2 =

Ce. S also has a triangular decomposition

S = S− ⊕ S0 ⊕ S+,

where S− = span{f, q}, S0 = span{h, z}, S+ = span{p, e}. Denote by U(S) the universal
enveloping algebra of S.
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2.2 Lie Algebra Cohomology

In this subsection we explain some basic concepts of Lie algebra cohomology. The material can
be found in many sources, say, [5]. For n ≥ 1 and an S-module V , let the space Cn(S, V ) of
n-cochains be the vector space of all n-linear maps ϕ : S × · · · × S → V satisfying the skew
symmetry condition

ϕ(x1, . . . , xi, xi+1, . . . , xn) = −ϕ(x1, . . . , xi+1, xi, . . . , xn)

for 1 ≤ i ≤ n − 1. Set C0(S, V ) = V . We define the differential operator δ : Cn(S, V ) →
Cn+1(S, V ) by

(δϕ)(x0, . . . , xn) =
n∑

i=0

(−1)ixi · ϕ(x0, . . . , x̂i, . . . , xn)

+
∑

i<j

(−1)jϕ(x0, . . . , xi−1, [xi, xj ], xi+1, . . . , x̂j , . . . , xn) (2.1)

for ϕ ∈ Cn(S, V ) and x0, . . . , xn ∈ S, where the sign ˆ means that the element below it is
omitted. It can be verified that δ2 = 0. Set

Zn(S, V ) = {ϕ ∈ Cn(S, V ) | δϕ = 0},
Bn(S, V ) = {δϕ |ϕ ∈ Cn−1(S, V )},
Hn(S, V ) = Zn(S, V )/Bn(S, V ).

The elements in Zn(S, V ) are called n-cocycles, while those in Bn(S, V ) are n-coboundaries.
The space Hn(S, V ) is called the n-th Lie algebra cohomology group of S with coefficients in the
module V . Two elements of Zn(S, V ) are said to be cohomologous if their images in Hn(S, V )
are equal.

For x ∈ S, we define maps

ix : Cn(S, V ) → Cn−1(S, V ), θx : Cn(S, V ) → Cn(S, V )

respectively by

(ixϕ)(x1, . . . , xn−1) = ϕ(x, x1, . . . , xn−1), (2.2)

(θxϕ)(x1, . . . , xn) = x · ϕ(x1, . . . , xp) −
n∑

i=1

ϕ(x1, . . . , xi−1, [x, xi], xi+1, . . . , xn). (2.3)

One can verify that
δix + ixδ = θx and δθx = θxδ. (2.4)

Note that θ : x �→ θx defines an S-module structure on Cn(S, V ) such that Zn(S, V ), Bn(S, V )
are submodules by (2.4). One can also see that S acts on Hn(S, V ) trivially by (2.4). If V is
finite-dimensional, we can decompose

Zn(S, V ) = Zn
0 (S, V ) ⊕Bn(S, V ) (2.5)

as a direct sum of sl2-submodules. Then Zn
0 (S, V ) is isomorphic toHn(S, V ). For any S-module

W , we denote

W sl2 = {v ∈W | sl2 · v = 0}. (2.6)
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The elements in W sl2 are said to be sl2-invariant.
Since Zn(S, V ) is finite dimensional, Zn(S, V ) as sl2-module is completely reducible. From

this one can easily prove the following results.

Proposition 2.1 Let V be any finite-dimensional S-module.
(1) For any cocycle ϕ ∈ Zn(S, V ) there exists an sl2-invariant cocycle ϕ′ ∈ Zn(S, V ) which

is cohomologous to ϕ.
(2) Any sl2-invariant coboundary b ∈ Bn(S, V ) is equal to δn−1g with an sl2-invariant

cochain g ∈ Cn−1(S, V ).

The following two propositions will also be used later.

Proposition 2.2 Let U, V, W be three S-modules such that

0 → U
j−→ V

g−→W → 0

is a short exact sequence, where j, g are S-module homomorphisms. Then there exists a long
exact sequence

· · · → Hn(S, U)
jn

−→ Hn(S, V )
gn

−→ Hn(S,W ) d∗−→ Hn+1(S, U) → · · · ,
where the maps jn, gn can be defined easily from j, g, and d∗ is the connecting homomorphism.

Proposition 2.3 Suppose that V is the direct sum of a family (Vi)i∈I of submodules, i.e.,
V =

⊕
i∈I Vi. Then as vector spaces

⊕

i∈I

Hn(S, Vi) ∼= Hn(S, V ).

3 First and Second Cohomology Groups with Coefficients in Trivial Module

In this section we shall determine H1(S,C ) and H2(S,C ).
Consider a 1-cocyle ϕ ∈ Z1(S,C ). For x0, x1 ∈ S, we have

0 = (δϕ)(x0, x1) = x0 · ϕ(x1) − x1 · ϕ(x0) − ϕ([x0, x1]) = ϕ([x0, x1]).

Since [S,S] = S, one can easily deduce that Z1(S,C ) = 0. Thus

H1(S,C ) = 0.

Now we compute H2(S,C ). Choose a 2-cocycle ϕ ∈ Z2(S,C ). By Proposition 2.1, we only
need to consider sl2-invariant cocycles. Thus we may assume that ϕ is sl2-invariant. Define a
linear map ξ : S → C by

ξ(z) = ϕ(p, q), ξ(e) = ξ(f) = ξ(h) = ξ(p) = ξ(q) = 0.

One can easily check that ξ and δξ are sl2-invariant. Replacing ϕ by ϕ+ (δξ) if necessary, we
may assume that

ϕ(p, q) = 0.

The sl2-invariance and the cocycle condition imply that

−ϕ([x0, x1], x2) + ϕ([x0, x2], x1) + ϕ(x0, [x1, x2]) = 0, (3.1)

ϕ([e, x], y) + ϕ(x, [e, y]) = 0, (3.2)

ϕ([f, x], y) + ϕ(x, [f, y]) = 0, (3.3)
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ϕ([h, x], y) + ϕ(x, [h, y]) = 0 (3.4)

for x0, x1, x2, x, y ∈ S. Putting (x, y) = (e, f), (h, f) in (3.2), we have

ϕ(e, h) = 0, ϕ(e, f) = 0.

Putting (x, y) = (e, f) in (3.3), we have

ϕ(h, f) = 0.

Putting (x, y) = (f, z), (q, z), (h, p) in (3.2), we obtain

ϕ(h, z) = 0, ϕ(p, z) = 0, ϕ(e, p) = 0.

Similarly, one can obtain

ϕ(q, z) = ϕ(f, q) = 0.

Putting (x, y) = (h, p) in (3.3) and (x, y) = (f, q) in (3.2) respectively, we have

2ϕ(f, p) + ϕ(h, q) = 0, ϕ(h, q) + ϕ(f, p) = 0.

This forces that

ϕ(f, p) = ϕ(h, q) = 0.

Similarly, we have

ϕ(h, p) = ϕ(e, q) = 0.

Putting (x, y) = (e, z) in (3.4), we have ϕ(e, z) = 0. Similarly, we have ϕ(f, z) = 0.
Now we have proved that

H2(S,C ) = 0.

In conclusion, we obtain

Theorem 3.1 H1(S,C ) = 0, H2(S,C ) = 0.

4 First and Second Cohomology Groups with Coefficients in Finite-Dimensional
Irreducible Modules

Let V be a finite-dimensional irreducible S-module. Then V must be an irreducible sl2-module
with

p · V = q · V = z · V = 0 (4.1)

as shown in [7].

4.1 First Cohomology

Choose any sl2-invariant 1-cocycle ϕ ∈ Z1(S, V ). Since V is an irreducible sl2-module, it is
well known that H1(sl2, V ) = 0. Replacing ϕ by ϕ − b for some 1-coboundary b ∈ B1(S, V ) if
necessary, we can assume that

ϕ(sl2) = 0.

The cocycle condition implies that

0 = (δϕ)(x, y) = x · ϕ(y) − y · ϕ(x) − ϕ([x, y]) (4.2)
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for x, y ∈ S. Putting (x, y) = (p, q) in (4.2) and using (4.1), we obtain

ϕ(z) = 0.

Putting (x, y) = (e, p), (h, p), (f, p), (e, q), (h, q), (f, q) in (4.2) respectively, we have

e · ϕ(p) = 0, h · ϕ(p) = ϕ(p), f · ϕ(p) = ϕ(q),

e · ϕ(q) = ϕ(p), h · ϕ(q) = −ϕ(q), f · ϕ(q) = 0,

which implies that ϕ(p), ϕ(q) span an irreducible S-module if ϕ(p) 	= 0, ϕ(q) 	= 0. Thus if
dimV 	= 2, we have

ϕ(p) = ϕ(q) = 0 and H1(S, V ) = 0.

Now suppose that V is 2-dimensional and has a basis {v, f · v} such that h · v = v. Then one
can check that the linear map φ : S → V defined by

φ(p) = v, φ(q) = f · v,
φ(e) = φ(f) = φ(h) = φ(z) = 0

is a 1-cocycle. Furthermore, one can check φ is non-trivial because any 1-coboundary maps p, q
to zero by (4.1). Using the representation theory of sl2, we easily see that the space

{ϕ ∈ Z1(S, V ) |ϕ(e) = ϕ(f) = ϕ(h) = ϕ(z) = 0}
is 1-dimensional.

Theorem 4.1 H1(S, V ) ∼=
⎧
⎨

⎩

C , if dimV = 2,

0, otherwise.

4.2 Second Cohomology

Choose any sl2-invariant 2-cocycle ϕ ∈ Z2(S, V ). Since V is an irreducible sl2-module, it is
well known that H2(sl2, V ) = 0. Replacing ϕ by ϕ − b for some 2-coboundary b ∈ B2(S, V ) if
necessary, we can assume that

ϕ(sl2, sl2) = 0.

The sl2-invariance and the cocycle condition imply that

x0 · ϕ(x1, x2) − x1 · ϕ(x0, x2) + x2 · ϕ(x0, x1)

−ϕ([x0, x1], x2) + ϕ([x0, x2], x1) + ϕ(x0, [x1, x2]) = 0, (4.3)

e · ϕ(x, y) − ϕ([e, x], y) − ϕ(x, [e, y]) = 0, (4.4)

f · ϕ(x, y) − ϕ([f, x], y) − ϕ(x, [f, y]) = 0, (4.5)

h · ϕ(x, y) − ϕ([h, x], y) − ϕ(x, [h, y]) = 0 (4.6)

for x0, x1, x2, x, y ∈ S. Putting (x, y) = (p, q) in (4.4), (4.5) and (4.6) respectively, we obtain

e · ϕ(p, q) = 0, f · ϕ(p, q) = 0, h · ϕ(p, q) = 0,

which implies that
ϕ(p, q) = 0. (4.7)

Putting (x, y) = (f, p) in (4.4), we have

e · ϕ(f, p) = ϕ(h, p). (4.8)
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Putting (x0, x1, x2) = (e, f, p) in (4.3) and using (4.8), we obtain

f · ϕ(e, p) = ϕ(e, q). (4.9)

Putting (x, y) = (e, p) in (4.5), using (4.9) and (4.8), we obtain

ϕ(h, p) = 0, e · ϕ(f, p) = 0. (4.10)

Similarly, one can obtain
ϕ(h, q) = 0, f · ϕ(e, q) = 0. (4.11)

Putting (x, y) = (f, p) in (4.6), we have

h · ϕ(f, p) = −ϕ(f, p). (4.12)

Since V is finite dimensional, (4.12) and (4.10) imply

ϕ(f, p) = 0. (4.13)

Similarly, we obtain
ϕ(e, q) = 0. (4.14)

Putting (x0, x1, x2) = (e, f, q) in (4.3) and (x, y) = (f, q) in (4.6) respectively, using (4.11),
(4.13) and (4.14), we have

e · ϕ(f, q) = 0, h · ϕ(f, q) = −3ϕ(f, q),

which forces that
ϕ(f, q) = 0.

Similarly, we obtain
ϕ(e, p) = 0.

Putting (x0, x1, x2) = (e, p, q), (f, p, q), (h, p, q) in (4.3) respectively and using (4.7), we have

ϕ(e, z) = 0, ϕ(f, z) = 0, ϕ(h, z) = 0.

Putting (x, y) = (p, z), (q, z) in (4.4), (4.5) and (4.6) respectively, we have

e · ϕ(p, z) = 0, f · ϕ(p, z) = ϕ(q, z), h · ϕ(p, z) = ϕ(p, z),

e · ϕ(q, z) = ϕ(p, z), f · ϕ(q, z) = 0, h · ϕ(q, z) = −ϕ(q, z),

which implies that ϕ(p, z), ϕ(q, z) span an irreducible S-module if ϕ(p, z) 	= 0, ϕ(q, z) 	= 0.
Thus if dimV 	= 2, we have

ϕ(p, z) = ϕ(q, z) = 0 and H2(S, V ) = 0.

Now suppose that V is 2-dimensional and has a basis {v, f · v} such that h · v = v. Then one
can check that the skew symmetric linear map φ : S × S → V defined by

φ(p, z) = v, φ(q, z) = f · v,
φ(S, sl2) = φ(p, q) = 0

is a 2-cocycle. Furthermore, one can check φ is non-trivial because any 2-coboundary maps
(p, z), (q, z) to zero by (4.1). Using the representation theory of sl2, we easily see that the space

{ϕ ∈ Z2(S, V ) |ϕ(S, sl2) = ϕ(p, q) = 0}
is 1-dimensional.
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Theorem 4.2 H2(S, V ) ∼=
⎧
⎨

⎩

C , if dimV = 2,

0, otherwise.

5 First and Second Cohomology Groups with Coefficients in the Universal En-
veloping Algebra

In this section we want to determine dimH1(S, U(S)) and dimH2(S, U(S)). For convenience,
set U := U(S). Note that U is an S-module with respect to the adjoint action.

For m ≥ 1 denote by Sm the symmetric group on {1, 2, . . . ,m}. Set

Sm = span
{

1
m!

∑

σ∈Sm

xiσ(1) · · ·xiσ(m)

∣
∣
∣
∣xi1 , . . . , xim

∈ {f, q, h, z, p, e}
}

.

It is easy to see that Sm are finite-dimensional S-modules with respect to the adjoint action.
Set S0 = C and S =

⊕∞
m=0 Sm. It is not difficult to see that U ∼= S regarded as S-modules.

Thus from Proposition 2.3, we have

Hi(S, U) ∼= Hi(S,S) =
∞⊕

m=0

Hi(S,Sm). (5.1)

Lemma 5.1 For m ≥ 1,

dimH1(S,Sm) ≥ 1, dimH2(S,Sm) ≥ 1.

Proof Each Sm (m ≥ 1) can be decomposed as a direct sum of finite-dimensional indecom-
posable submodules

Sm =
⊕

j∈J

Sm
j , where J is a finite set. (5.2)

Observe that each Sm (m ≥ 1) contains a 3-dimensional indecomposable S-submodule V

spanned by pzm−1, qzm−1, zm. Set U = Czm, W = span{pzm−1, qzm−1}. Regarded as sl2-
module, V ∼= U ⊕W . It is well known that

H1(sl2, U) = H1(sl2,W ) = 0, H2(sl2, U) = H2(sl2,W ) = 0.

Thus from Proposition 2.3, H1(sl2, V ) = H1(sl2, V ) = 0.
Define ϕ ∈ Z1(S, V ), ψ ∈ Z2(S, V ), respectively, by

ϕ(p) = pzm−1, ϕ(q) = qzm−1, ϕ(sl2) = 0,

ψ(p, z) = pzm−1, ψ(q, z) = qzm−1, ψ(sl2,S) = ψ(p, q) = 0.

Using similar arguments in Sections 4.1 and 4.2, it is not difficult to see that

H1(S, V ) = Cϕ, H2(S, V ) = Cψ.

Thus dimH1(S, V ) = dimH2(S, V ) = 1. Combining this with (5.2) and Proposition 2.3, we
have

dimH1(S,Sm) ≥ 1, dimH2(S,Sm) ≥ 1. �

Remark 5.2 To prove dimH1(S,Sm) ≥ 1, one can also consider the short exact sequence

0 → U
i−→ V

π−→ V/U → 0,
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where i, π are the canonical maps. By Proposition 2.2, there exists a long exact sequence

· · · → H0(S, V/U) d∗−→ H1(S, U) i1−→ H1(S, V ) π1−→ H1(S, V/U)
d∗
−→ H2(S, U) i2−→ H2(S, V ) π2

−→ H2(S, V/U) → · · · . (5.3)

Note that U is a 1-dimensional trivial S-module and the quotient V/U is a 2-dimensional simple
S-module. From Theorems 3.1 and 4.1, we have

dimH1(S, U) = dimH2(S, U) = 0, dimH1(S, V/U) = 1.

Thus from (5.3), we have

dimH1(S, V ) = dimH1(S, V/U) = 1.

It follows from Proposition 2.3 that

dimH1(S,Sm) ≥ 1.

The following result directly follows from Lemma 5.1 and (5.1).

Theorem 5.3
dimH1(S, U(S)) = ∞, dimH2(S, U(S)) = ∞.
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