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Abstract It is established that all even positive integers up to N but at most O(N15/16+ε) exceptions

can be expressed in the form p2
1 + p3

2 + p4
3 + p5

4, where p1, p2, p3 and p4 are prime numbers.
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1 Introduction

In 1951, Roth [9] proved that almost all positive integers n can be represented in the form

n = m2
1 + m3

2 + m4
3 + m5

4,

where m1, m2, m3 and m4 are positive integers. In 1953, Prachar [4] refined the above result
by establishing that almost all positive even integers n can be represented in the form

n = p2
1 + p3

2 + p4
3 + p5

4, (1.1)

where p1, p2, p3 and p4 are prime numbers. Let E(N) denote the number of positive even
integers n up to N , which cannot be expressed in the form (1.1). Prachar [4] proved

E(N) � N(log N)−
30
47+ε, (1.2)

where ε > 0 is an arbitrary positive number. Bauer [1] improved (1.2) to

E(N) � N1−δ+ε with δ =
1

2742
. (1.3)

The estimate (1.3) was further improved by Ren and Tsang to δ = 1/66 in [7], and to δ = 1/48
in [8]. Recently, Bauer [2] proved that one can take δ = 47/1680.

In this note, we establish the following result.

Theorem 1.1 Let E(N) be defined as above. Then we have

E(N) � N1− 1
16+ε (1.4)

for any ε > 0.

Note that 47/1680 < 1/35.7, Theorem 1.1 improves upon the result of Bauer [2] by a factor
more than 2. We establish Theorem 1.1 by the Hardy–Littlewood method.

As usual, we abbreviate e2πiα to e(α). The letter p, with or without a subscript, always
denotes a prime number. We use ε to denote a sufficiently small positive number, and the value
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of ε may change from statement to statement. Denote by d(n) the number of divisors of n, and
denote by φ(n) the Euler function. We use Λ(n) to stand for the von Mangoldt function.

2 Preliminary

Suppose that N is a large positive integer. For 2 ≤ k ≤ 5, we define

fk(α) =
∑

Pk<p≤2Pk

(log p)e(pkα),

where Pk = (N/5)k. Let

r(n) =
∑

p2
2+p3

3+p4
4+p5

5=n
Pk<pk≤2Pk(2≤k≤5)

(log p2)(log p3)(log p4)(log p5).

By orthogonality, we have

r(n) =
∫ 1

0

( 5∏

k=2

fk(α)
)

e(−nα)dα.

We apply the Hardy–Littlewood method to show that r(n) > 0 for all even numbers n ≤ N

but at most O(N1− 1
16+ε) exceptions. Let

L = log N, P = N1/10−ε, Q = NP−1. (2.1)

Denote by M(q, a) the interval [a
q − 1

qQ , a
q − 1

qQ ]. We write M for the union of M(q, a) for
1 ≤ a ≤ q ≤ P and (a, q) = 1. Then we define the minor arcs m as the complement of M in
[N−1/2, 1 + N−1/2].

In order to describe the contribution from the major arcs, we introduce some notations. Let

Ck(q, a) =
q∑

r=1
(r,q)=1

e

(
ark

q

)

and

B(q; n) =
q∑

a=1
(a,q)=1

e

(
− an

q

) 5∏

k=2

Ck(q, a).

The singular series is defined by

S(n) =
∞∑

q=1

B(q; n)
φ(q)4

.

We define the singular integral as

I(n) =
∫ +∞

−∞

5∏

j=2

Φj(λ)e(−nλ)dλ,

where

Φk(λ) =
1
k

∫ (2Pk)k

P k
k

u
1
k −1e(λu)du.

We point out that for even integers n ∈ [N, 2N ], one has

1 � S(n) � 1 (2.2)
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and

N17/60 � I(n) � N17/60. (2.3)

Lemma 2.1 ([8, Lemma 2.1]) Let Sk(α) =
∑

Pk<m≤2Pk
Λ(m)e(mkα). Suppose that N ≤ n ≤

2N and n is even. Then we have
∫

M

( 5∏

k=2

Sk(α)
)

e(−nα)dα = S(n)I(n) + O(N
17
60 L−A),

where A is arbitrary large.

Lemma 2.2 ([6, Theorem 1.1]) Suppose that α is a real number, and that |α − a/q| ≤ q−2

with (a, q) = 1. Let β = α − a/q. Then one has

fk(α) � d(q)ck(log N)c

(
P

1/2
k

√
q(1 + N |β|) + P

4/5
k +

Pk√
q(1 + N |β|)

)
,

where ck = 1/2 + log k/ log 2 and c is a constant.

Lemma 2.3 ([3, Theorem 3]) Suppose that α is a real number, and that there exist a ∈ Z and
q ∈ N with

(a, q) = 1, 1 ≤ q ≤ N1/2 and |qα − a| ≤ N−1/2.

Then for k ∈ {2, 4}, one has

fk(α) � P 1−ηk+ε
k +

q−
1
2 P 1+ε

k

(1 + N |α − a/q|)1/2
,

where η2 = 1/8 and η4 = 1/24.

Let R denote the union of intervals R(q, a) for 1 ≤ a ≤ q ≤ N1/6 and (a, q) = 1, where
R(q, a) = [a

q − 1
qN5/6 , a

q + 1
qN5/6 ]. We write m1 = m ∩ R and m2 = m\R.

For α ∈ m1, Lemma 2.2 provides the following estimate.

Lemma 2.4 Suppose that α ∈ m1. Then we have

f3(α) � P
1− 1

5+ε
3 .

Proof For α ∈ m1, there exist a ∈ Z and q ∈ N such that

(a, q) = 1, 1 ≤ a ≤ q ≤ N1/6 and |qα − a| ≤ N−5/6.

Since α �∈ M, one has either q > P or |qα − a| > Q−1. Then we apply Lemma 2.2 to conclude
that f3(α) � P

4/5+ε
3 for α ∈ m1. �

Lemma 2.5 Suppose that α ∈ m2. Then we have

f2(α) � P
1− 1

8+ε
2 and f4(α) � P

1− 1
24+ε

4 .

Proof By Dirichlet’s approximation theorem, there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 ≤ q ≤ N1/2 and |qα − a| ≤ N−1/2.

Since α ∈ m\R, we have either q > N1/6 or N |qα − a| > N1/6. The conclusions follow from
Lemma 2.3. �
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Lemma 2.6 Let gk(α) =
∑

Pk<x≤2Pk
e(mkα), where x denotes an integer. Suppose that

F ∈ {g4
3 , g

4
4 , g2

3g
2
5 , g6

5}. Then one has
∫ 1

0

|g2
2(α)F (α)|dα � F (0)1+ε.

Proof The conclusion can be deduced by counting the number of solutions for the underlying
diophantine equation. We only give the details for

∫ 1

0

|g2
2(α)g6

5(α)|dα � g5(0)6+ε.

The above integration is no more than the number of solutions for the equation

x2
1 − x2

2 = y5
1 + y5

2 + y5
3 − y5

4 − y5
5 − y5

6

with P2 < xj ≤ 2P2 and P5 < yk ≤ 2P5. If x1 �= x2, the contribution is bounded by P 6+ε
5 . If

x1 = x2, the contribution is bounded by P2

∫ 1

0
|g5(α)|6dα. An application of Hua’s lemma (see

[10, Lemma 2.5]) gives ∫ 1

0

|g5(α)|6dα � P
7/2+ε
5 .

The conclusion is established. �

3 The Minor Arcs Estimate

We define the multiplicative function w(q) by taking

w(p3u+v) =

⎧
⎨

⎩
3p−u−1/2, when u ≥ 0 and v = 1,

p−u−1, when u ≥ 0 and 2 ≤ v ≤ 3.
(3.1)

Lemma 3.1 For γ ∈ R, we define

L(γ) =
∑

w(q)≥P
−1/4
3

∑

1≤a≤q
(a,q)=1

∫

|α−a/q|≤N

w(q)2|∑P5<p≤2P5
e(pk(α + γ))|2

1 + N |α − a/q| dα.

One has uniformly for γ ∈ R that

L(γ) � P 2
5 N−1+ε. (3.2)

Proof We have

∑

1≤a≤q

∣∣∣∣
∑

P5<p≤2P5

e

(
pk a

q
+ pk(β + γ)

)∣∣∣∣
2

= q
∑

P5<p1,p2≤2P5

pk
1≡pk

2 (mod q)

e((pk
1 − pk

2)(β + γ))

� q
∑

P5<p1≤2P5

∑

P5<p2≤2P5

pk
2≡pk

1 (mod q)

1.

One can deduce from (3.1) and w(q) ≥ P
−1/4
3 that (p, q) = 1 for P5 < p ≤ 2P5. Then we have

∑

1≤a≤q

∣∣∣∣
∑

P5<p≤2P5

e

(
pk a

q
+ pk(β + γ)

)∣∣∣∣
2

� q
∑

P5<p1≤2P5

∑

1≤b<q

bk≡pk
1 (mod q)

(
P5

q
+ 1

)
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� (P 2
5 + qP5)

∑

1≤b<q

bk≡1(mod q)

1

� (P 2
5 + qP5)qε.

We conclude from above that

L(γ) �
∑

w(q)≥P
−1/4
3

w(q)2(P 2
5 + qP5)N−1+ε.

For any q ∈ N, one has the unique decomposition q = sr3 with s cube-free. Then by the
definition of w(q), we have w(q) � s−1/2r−1P ε

3 . Therefore,
∑

w(q)≥P
−1/4
3

w(q)2q � P ε
3

∑

s−1/2r−1�P
−1/4−ε
3

r � P
1/2+ε
3 .

On applying Lemma 2.1 in [11], we can obtain L(γ) � P 2
5 N−1+ε. �

Let

M(q, a) =
{

α : |α − a/q| ≤ P
3/4
3

qN

}
and M(q) =

q⋃

a=1
(a,q)=1

M(q, a).

We define M to be the union of M(q) with w(q) ≥ P
−1/4
3 . Then we define the function Ψ(α)

on M by taking

Ψ(α) =
1

1 + N |α − a/q| if α ∈ M(q, a)

for a and q satisfying 1 ≤ a ≤ q and w(q) ≥ P
−1/4
3 . Let

J = sup
β∈[0,1)

∫

M
w(q)2Ψ(α)2|f5(α + β)|2α. (3.3)

For t ≥ 1/2, we define

I(t) =
∫

m2

|f2(α)2f3(α)tf4(α)2f5(α)2|dα (3.4)

and

J(t) = P 2
2 P t

3P 2
4 P 2

5 . (3.5)

Lemma 3.2 Let I(t) be defined in (3.4). Then we have

I(2) � P3J
1/4

( ∫

m2

|f2(α)4f3(α)2f4(α)4f5(α)2|dα

)1/4

I(1)1/2 + P
1−1/8+ε
3 I(1),

where J is given in (3.3).

Proof In view of [11, Lemma 2.3], one has
∑

P3<x≤2P3

e(x3α) � P3w(q)Ψ(α)

if α ∈ M(q, a) for some a ∈ Z and q ∈ N satisfying (a, q) = 1 and w(q) ≥ P
−1/4
3 . Otherwise,

one has ∑

P3<x≤2P3

e(x3α) � P
3/4+ε
3 .

Then the desired conclusion can be established by following the proof of Lemma 3.1 in [11]. �
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Lemma 3.3 Let I(t) be defined in (3.4). Then we have

I(2) � (P 4
3 P 2

5 N−1+ε)1/4

( ∫

m2

|f2(α)4f3(α)2f4(α)4f5(α)2|dα

)1/4

I(1)1/2

+ P
1−1/8+ε
3 I(1).

Proof This follows from Lemmas 3.1 and 3.2. �

Lemma 3.4 Let J(1/2) be given by (3.5). Then one has
∫ 1

0

|f2(α)2f3(α)1/2f4(α)2f5(α)2|dα � J(1/2)N−1+ε.

Proof By Hölder’s inequality,
∫ 1

0

|f2
2 f

1/2
3 f2

4 f2
5 |dα �

( ∫ 1

0

|f2
2 f4

4 |dα

)1/2( ∫ 1

0

|f2
2 f2

3 f2
5 |dα

)1/4( ∫ 1

0

|f2
2 f6

5 |dα

)1/4

.

The desired estimate follows by applying Lemma 2.6. �

Lemma 3.5 We have

I(2) � J(2)N−1− 1
16+ε.

Proof By Lemma 2.5, one has
∫

m2

|f2(α)4f3(α)2f4(α)4f5(α)2|dα � sup
α∈m2

|f2(α)2f4(α)2|I(2)

� P
−7/16+ε
3 P 2

2 P 2
4 I(2).

Then we conclude from Lemma 3.3 that

I(2) � (P 4
3 P 2

5 N−1+ε)1/4
(
P

−7/16+ε
3 P 2

2 P 2
4 I(2)

)1/4I(1)1/2 + P
1−1/8+ε
3 I(1).

By Hölder’s inequality, I(1) ≤ I(2)1/3I(1/2)2/3. Therefore,

I(2) � P
−7/64
3 (P 4

3 P 2
5 N−1+εP 2

2 P 2
4 )1/4I(2)5/12I(1/2)1/3

+ P
1−1/8+ε
3 I(2)1/3I(1/2)2/3,

and this implies

I(2) � P
−3/16
3 (P 4

3 P 2
5 N−1+εP 2

2 P 2
4 )3/7I(1/2)4/7 + P

3/2−3/16+ε
3 I(1/2).

The desired conclusion now follows by applying Lemma 3.4. �

4 Proof of Theorem 1.1

Proof of Theorem 1.1 By Bessel’s inequality,

∑

N<n≤2N

∣∣∣∣
∫

m

f2(α)f3(α)f4(α)f5(α)e(−nα)dα

∣∣∣∣
2

≤
∫

m

|f2(α)f3(α)f4(α)f5(α)|2dα. (4.1)

On applying Lemma 3.5, we have
∫

m2

|f2(α)f3(α)f4(α)f5(α)|2dα � N17/30+1−1/16+ε. (4.2)
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For the contribution from m1, one has
∫

m1

|f2(α)f3(α)f4(α)f5(α)|2dα

� sup
α∈m1

|f3(α)3/2|
∫

m1

|f2(α)2f3(α)1/2f4(α)2f5(α)2|dα.

Then we can conclude from Lemmas 2.4 and 3.4 that∫

m1

|f2(α)f3(α)f4(α)f5(α)|2dα � N17/30+1−1/16+ε. (4.3)

Thus (4.2) and (4.3) yield
∫

m

|f2(α)f3(α)f4(α)f5(α)|2dα � N17/30+1−1/16+ε. (4.4)

Inserting (4.4) into (4.1), we arrive at

∑

N<n≤2N

∣∣∣∣
∫

m

f2(α)f3(α)f4(α)f5(α)e(−nα)dα

∣∣∣∣
2

� N17/30+1−1/16+ε.

Thus for all even integers n ∈ (N, 2N ] but at most O(N1−1/16+ε) exceptions, one has the
estimate ∣∣∣∣

∫

m

f2(α)f3(α)f4(α)f5(α)e(−nα)dα

∣∣∣∣ � N17/60−ε. (4.5)

Next we show that
∑

N≤n≤2N

∣∣∣∣
∫

M

( 5∏

k=2

fk(α) −
5∏

k=2

Sk(α)
)

e(−nα)dα

∣∣∣∣
2

� N17/30+1−2/15+ε. (4.6)

In view of Bessel’s inequality, our task is to prove
∫

M

∣∣∣∣
5∏

k=2

fk(α) −
5∏

k=2

Sk(α)
∣∣∣∣
2

dα � N17/30+1−2/15+ε. (4.7)

Note that

f2f3f4f5 − S2S3S4S5 = (f2 − S2)f3f4f5 + (f3 − S3)S2f4f5

+ (f4 − S4)S2S3f5 + (f5 − S5)S2S3S4.

The estimate (4.7) follows from
∫

M

|(f5(α) − S5(α))S2(α)S3(α)S4(α)|2dα � N17/30+1−1/5+ε, (4.8)
∫

M

|(f4(α) − S4(α))S2(α)S3(α)S5(α)|2dα � N17/30+1−1/4+ε, (4.9)

and ∫

M

|F (α)|2dα � N17/30+1−2/15+ε, (4.10)

where F ∈ F := {(f2 − S2)f3f4f5, (f3 − S3)S2f4f5}.
For 2 ≤ k ≤ 5, one has fk(α) − Sk(α) � P

1/2+ε
k . By Lemma 2.6, we have

∫

M

|(f5(α) − S5(α))S2(α)S3(α)S4(α)|2dα
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� N1/5+ε

( ∫ 1

0

|S2(α)2S3(α)4|dα

)1/2( ∫ 1

0

|S2(α)2S4(α)4|dα

)1/2

� N17/30+1−1/5+ε.

This establishes (4.8). The estimate (4.9) can be established similarly. For F ∈ F , one has
∫

M

|F (α)|2dα � (P2P3P4P5)2P−1+ε
3

∫

M

dα � N17/30+1−2/15+ε.

Thus (4.10) is established. Now by (4.6), for all even integers n ∈ (N, 2N ] but at most
O(N1−2/15+ε) exceptions, one has

∫

M

( 5∏

k=2

fk(α)
)

e(−nα)dα =
∫

M

( 5∏

k=2

Sk(α)
)

e(−nα)dα + O(N
17
60−ε).

Then by Lemma 2.1, for all even integers n ∈ (N, 2N ] but at most O(N1−2/15+ε) exceptions,
we have

∫

M

( 5∏

k=2

fk(α)
)

e(−nα)dα = S(n)I(n) + O(N
17
60 L−A). (4.11)

The argument around (4.5) and (4.11) together with (2.2) and (2.3) imply that r(n) � N17/60

for all even integers n ∈ (N, 2N ] but at most O(N1−1/16+ε) exceptions. We now complete the
proof of Theorem 1.1 by the dyadic argument.
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