Acta Mathematica Sinica, English Series Nov., 2014, Vol. 30, No. 11, pp. 1897–1904 Published online: October 15, 2014 DOI: 10.1007/s10114-014-3661-y Http://www.ActaMath.com

Acta Mathematica Sinica, English Series © Springer-Verlag Berlin Heidelberg &

The Editorial Office of AMS 2014

The Exceptional Set for Sums of Unlike Powers of Primes

Li Lu ZHAO

School of Mathematics, Hefei University of Technology, Hefei 230009, P. R. China E-mail: zhaolilu@gmail.com

Abstract It is established that all even positive integers up to N but at most $O(N^{15/16+\varepsilon})$ exceptions can be expressed in the form $p_1^2 + p_2^3 + p_3^4 + p_4^5$, where p_1, p_2, p_3 and p_4 are prime numbers.

 ${\bf Keywords} \quad {\rm Circle\ method,\ Waring-Goldbach\ problem,\ exceptional\ set}$

MR(2010) Subject Classification 11P55 (11P05, 11P32)

1 Introduction

In 1951, Roth [9] proved that almost all positive integers n can be represented in the form

$$n=m_1^2+m_2^3+m_3^4+m_4^5, \\$$

where m_1, m_2, m_3 and m_4 are positive integers. In 1953, Prachar [4] refined the above result by establishing that almost all positive even integers n can be represented in the form

$$n = p_1^2 + p_2^3 + p_3^4 + p_4^5, (1.1)$$

where p_1, p_2, p_3 and p_4 are prime numbers. Let E(N) denote the number of positive even integers n up to N, which cannot be expressed in the form (1.1). Prachar [4] proved

$$E(N) \ll N(\log N)^{-\frac{30}{47}+\varepsilon},\tag{1.2}$$

where $\varepsilon > 0$ is an arbitrary positive number. Bauer [1] improved (1.2) to

$$E(N) \ll N^{1-\delta+\varepsilon}$$
 with $\delta = \frac{1}{2742}$. (1.3)

The estimate (1.3) was further improved by Ren and Tsang to $\delta = 1/66$ in [7], and to $\delta = 1/48$ in [8]. Recently, Bauer [2] proved that one can take $\delta = 47/1680$.

In this note, we establish the following result.

Theorem 1.1 Let E(N) be defined as above. Then we have

$$E(N) \ll N^{1-\frac{1}{16}+\varepsilon} \tag{1.4}$$

for any $\varepsilon > 0$.

Note that 47/1680 < 1/35.7, Theorem 1.1 improves upon the result of Bauer [2] by a factor more than 2. We establish Theorem 1.1 by the Hardy–Littlewood method.

As usual, we abbreviate $e^{2\pi i\alpha}$ to $e(\alpha)$. The letter p, with or without a subscript, always denotes a prime number. We use ε to denote a sufficiently small positive number, and the value

Received November 20, 2013, accepted April 1, 2014

Supported by National Natural Science Foundation of China (Grant No. 11326205)

of ε may change from statement to statement. Denote by d(n) the number of divisors of n, and denote by $\phi(n)$ the Euler function. We use $\Lambda(n)$ to stand for the von Mangoldt function.

2 Preliminary

Suppose that N is a large positive integer. For $2 \le k \le 5$, we define

$$f_k(\alpha) = \sum_{P_k$$

where $P_k = (N/5)^k$. Let

$$r(n) = \sum_{\substack{p_2^2 + p_3^3 + p_4^4 + p_5^5 = n \\ P_k < p_k \le 2P_k (2 \le k \le 5)}} (\log p_2) (\log p_3) (\log p_4) (\log p_5).$$

By orthogonality, we have

$$r(n) = \int_0^1 \left(\prod_{k=2}^5 f_k(\alpha)\right) e(-n\alpha) d\alpha.$$

We apply the Hardy–Littlewood method to show that r(n) > 0 for all even numbers $n \le N$ but at most $O(N^{1-\frac{1}{16}+\varepsilon})$ exceptions. Let

$$L = \log N, \quad P = N^{1/10-\varepsilon}, \quad Q = NP^{-1}.$$
 (2.1)

Denote by $\mathfrak{M}(q, a)$ the interval $[\frac{a}{q} - \frac{1}{qQ}, \frac{a}{q} - \frac{1}{qQ}]$. We write \mathfrak{M} for the union of $\mathfrak{M}(q, a)$ for $1 \leq a \leq q \leq P$ and (a,q) = 1. Then we define the minor arcs \mathfrak{m} as the complement of \mathfrak{M} in $[N^{-1/2}, 1 + N^{-1/2}]$.

In order to describe the contribution from the major arcs, we introduce some notations. Let

$$C_k(q,a) = \sum_{\substack{r=1\\(r,q)=1}}^q e\left(\frac{ar^k}{q}\right)$$

and

$$B(q;n) = \sum_{\substack{a=1\\(a,q)=1}}^{q} e\left(-\frac{an}{q}\right) \prod_{k=2}^{5} C_k(q,a).$$

The singular series is defined by

$$\mathfrak{S}(n) = \sum_{q=1}^{\infty} \frac{B(q;n)}{\phi(q)^4}.$$

We define the singular integral as

$$\Im(n) = \int_{-\infty}^{+\infty} \prod_{j=2}^{5} \Phi_j(\lambda) e(-n\lambda) d\lambda$$

where

$$\Phi_k(\lambda) = \frac{1}{k} \int_{P_k^k}^{(2P_k)^k} u^{\frac{1}{k} - 1} e(\lambda u) du.$$

We point out that for even integers $n \in [N, 2N]$, one has

$$1 \ll \mathfrak{S}(n) \ll 1 \tag{2.2}$$

and

$$N^{17/60} \ll \Im(n) \ll N^{17/60}.$$
 (2.3)

Lemma 2.1 ([8, Lemma 2.1]) Let $S_k(\alpha) = \sum_{P_k < m \leq 2P_k} \Lambda(m) e(m^k \alpha)$. Suppose that $N \leq n \leq 2N$ and n is even. Then we have

$$\int_{\mathfrak{M}} \left(\prod_{k=2}^{5} S_k(\alpha) \right) e(-n\alpha) d\alpha = \mathfrak{S}(n)\mathfrak{I}(n) + O(N^{\frac{17}{60}}L^{-A}),$$

where A is arbitrary large.

Lemma 2.2 ([6, Theorem 1.1]) Suppose that α is a real number, and that $|\alpha - a/q| \leq q^{-2}$ with (a,q) = 1. Let $\beta = \alpha - a/q$. Then one has

$$f_k(\alpha) \ll d(q)^{c_k} (\log N)^c \left(P_k^{1/2} \sqrt{q(1+N|\beta|)} + P_k^{4/5} + \frac{P_k}{\sqrt{q(1+N|\beta|)}} \right),$$

where $c_k = 1/2 + \log k / \log 2$ and c is a constant.

Lemma 2.3 ([3, Theorem 3]) Suppose that α is a real number, and that there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ with

$$(a,q) = 1, \quad 1 \le q \le N^{1/2} \quad and \quad |q\alpha - a| \le N^{-1/2}.$$

Then for $k \in \{2, 4\}$, one has

$$f_k(\alpha) \ll P_k^{1-\eta_k+\varepsilon} + \frac{q^{-\frac{1}{2}}P_k^{1+\varepsilon}}{(1+N|\alpha-a/q|)^{1/2}},$$

where $\eta_2 = 1/8$ and $\eta_4 = 1/24$.

Let \mathfrak{R} denote the union of intervals $\mathfrak{R}(q, a)$ for $1 \leq a \leq q \leq N^{1/6}$ and (a, q) = 1, where $\mathfrak{R}(q, a) = \left[\frac{a}{q} - \frac{1}{qN^{5/6}}, \frac{a}{q} + \frac{1}{qN^{5/6}}\right]$. We write $\mathfrak{m}_1 = \mathfrak{m} \cap \mathfrak{R}$ and $\mathfrak{m}_2 = \mathfrak{m} \setminus \mathfrak{R}$.

For $\alpha \in \mathfrak{m}_1$, Lemma 2.2 provides the following estimate.

Lemma 2.4 Suppose that $\alpha \in \mathfrak{m}_1$. Then we have

$$f_3(\alpha) \ll P_3^{1-\frac{1}{5}+\varepsilon}.$$

Proof For $\alpha \in \mathfrak{m}_1$, there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ such that

$$(a,q) = 1, \quad 1 \le a \le q \le N^{1/6} \quad \text{and} \quad |q\alpha - a| \le N^{-5/6}.$$

Since $\alpha \notin \mathfrak{M}$, one has either q > P or $|q\alpha - a| > Q^{-1}$. Then we apply Lemma 2.2 to conclude that $f_3(\alpha) \ll P_3^{4/5+\varepsilon}$ for $\alpha \in \mathfrak{m}_1$.

Lemma 2.5 Suppose that $\alpha \in \mathfrak{m}_2$. Then we have

$$f_2(\alpha) \ll P_2^{1-\frac{1}{8}+\varepsilon}$$
 and $f_4(\alpha) \ll P_4^{1-\frac{1}{24}+\varepsilon}$.

Proof By Dirichlet's approximation theorem, there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ with

 $(a,q) = 1, \quad 1 \le q \le N^{1/2} \quad \text{and} \quad |q\alpha - a| \le N^{-1/2}.$

Since $\alpha \in \mathfrak{m} \setminus \mathfrak{R}$, we have either $q > N^{1/6}$ or $N|q\alpha - a| > N^{1/6}$. The conclusions follow from Lemma 2.3.

Lemma 2.6 Let $g_k(\alpha) = \sum_{P_k < x \le 2P_k} e(m^k \alpha)$, where x denotes an integer. Suppose that $F \in \{g_3^4, g_4^4, g_3^2 g_5^2, g_5^6\}$. Then one has

$$\int_0^1 |g_2^2(\alpha)F(\alpha)| d\alpha \ll F(0)^{1+\varepsilon}$$

Proof The conclusion can be deduced by counting the number of solutions for the underlying diophantine equation. We only give the details for

$$\int_0^1 |g_2^2(\alpha) g_5^6(\alpha)| d\alpha \ll g_5(0)^{6+\varepsilon}.$$

The above integration is no more than the number of solutions for the equation

$$x_1^2 - x_2^2 = y_1^5 + y_2^5 + y_3^5 - y_4^5 - y_5^5 - y_6^5$$

with $P_2 < x_j \leq 2P_2$ and $P_5 < y_k \leq 2P_5$. If $x_1 \neq x_2$, the contribution is bounded by $P_5^{6+\varepsilon}$. If $x_1 = x_2$, the contribution is bounded by $P_2 \int_0^1 |g_5(\alpha)|^6 d\alpha$. An application of Hua's lemma (see [10, Lemma 2.5]) gives

$$\int_0^1 |g_5(\alpha)|^6 d\alpha \ll P_5^{7/2+\varepsilon}$$

The conclusion is established.

3 The Minor Arcs Estimate

We define the multiplicative function w(q) by taking

$$w(p^{3u+v}) = \begin{cases} 3p^{-u-1/2}, & \text{when } u \ge 0 \text{ and } v = 1, \\ p^{-u-1}, & \text{when } u \ge 0 \text{ and } 2 \le v \le 3. \end{cases}$$
(3.1)

Lemma 3.1 For $\gamma \in \mathbb{R}$, we define

$$\mathcal{L}(\gamma) = \sum_{w(q) \ge P_3^{-1/4}} \sum_{\substack{1 \le a \le q \\ (a,q)=1}} \int_{|\alpha-a/q| \le N} \frac{w(q)^2 |\sum_{P_5 \le p \le 2P_5} e(p^k(\alpha+\gamma))|^2}{1+N|\alpha-a/q|} d\alpha.$$

One has uniformly for $\gamma \in \mathbb{R}$ that

$$\mathcal{L}(\gamma) \ll P_5^2 N^{-1+\varepsilon}.$$
(3.2)

Proof We have

$$\begin{split} \sum_{1 \le a \le q} \bigg| \sum_{P_5$$

One can deduce from (3.1) and $w(q) \ge P_3^{-1/4}$ that (p,q) = 1 for $P_5 . Then we have$

$$\sum_{1 \le a \le q} \left| \sum_{P_5$$

Sums of Unlike Powers of Primes

 $\ll (P_5^2 + qP_5) \sum_{\substack{1 \le b < q \\ b^k \equiv 1 \pmod{q}}} 1$ $\ll (P_5^2 + qP_5)q^{\varepsilon}.$

We conclude from above that

$$\mathcal{L}(\gamma) \ll \sum_{w(q) \ge P_3^{-1/4}} w(q)^2 (P_5^2 + qP_5) N^{-1+\varepsilon}$$

For any $q \in \mathbb{N}$, one has the unique decomposition $q = sr^3$ with s cube-free. Then by the definition of w(q), we have $w(q) \ll s^{-1/2}r^{-1}P_3^{\varepsilon}$. Therefore,

$$\sum_{w(q) \ge P_3^{-1/4}} w(q)^2 q \ll P_3^{\varepsilon} \sum_{s^{-1/2} r^{-1} \gg P_3^{-1/4-\varepsilon}} r \ll P_3^{1/2+\varepsilon}$$

On applying Lemma 2.1 in [11], we can obtain $\mathcal{L}(\gamma) \ll P_5^2 N^{-1+\varepsilon}$.

Let

$$\mathcal{M}(q,a) = \left\{ \alpha : |\alpha - a/q| \le \frac{P_3^{3/4}}{qN} \right\} \text{ and } \mathcal{M}(q) = \bigcup_{\substack{a=1\\(a,q)=1}}^q \mathcal{M}(q,a)$$

We define \mathcal{M} to be the union of $\mathcal{M}(q)$ with $w(q) \geq P_3^{-1/4}$. Then we define the function $\Psi(\alpha)$ on \mathcal{M} by taking

$$\Psi(\alpha) = \frac{1}{1 + N|\alpha - a/q|} \quad \text{if } \alpha \in \mathcal{M}(q, a)$$

for a and q satisfying $1 \le a \le q$ and $w(q) \ge P_3^{-1/4}$. Let

$$\mathfrak{J} = \sup_{\beta \in [0,1)} \int_{\mathcal{M}} w(q)^2 \Psi(\alpha)^2 |f_5(\alpha + \beta)|^2 \alpha.$$
(3.3)

For $t \geq 1/2$, we define

$$\mathcal{I}(t) = \int_{\mathfrak{m}_2} |f_2(\alpha)^2 f_3(\alpha)^t f_4(\alpha)^2 f_5(\alpha)^2 | d\alpha$$
(3.4)

and

$$J(t) = P_2^2 P_3^t P_4^2 P_5^2. aga{3.5}$$

Lemma 3.2 Let $\mathcal{I}(t)$ be defined in (3.4). Then we have

$$\mathcal{I}(2) \ll P_3 \mathfrak{J}^{1/4} \bigg(\int_{\mathfrak{m}_2} |f_2(\alpha)^4 f_3(\alpha)^2 f_4(\alpha)^4 f_5(\alpha)^2 |d\alpha \bigg)^{1/4} \mathcal{I}(1)^{1/2} + P_3^{1-1/8+\varepsilon} \mathcal{I}(1),$$

where \mathfrak{J} is given in (3.3).

Proof In view of [11, Lemma 2.3], one has

$$\sum_{P_3 < x \le 2P_3} e(x^3 \alpha) \ll P_3 w(q) \Psi(\alpha)$$

if $\alpha \in \mathcal{M}(q, a)$ for some $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfying (a, q) = 1 and $w(q) \ge P_3^{-1/4}$. Otherwise, one has

$$\sum_{P_3 < x \le 2P_3} e(x^3 \alpha) \ll P_3^{3/4 + \varepsilon}$$

Then the desired conclusion can be established by following the proof of Lemma 3.1 in [11]. \Box

1901

Lemma 3.3 Let $\mathcal{I}(t)$ be defined in (3.4). Then we have

$$\begin{aligned} \mathcal{I}(2) &\ll (P_3^4 P_5^2 N^{-1+\varepsilon})^{1/4} \bigg(\int_{\mathfrak{m}_2} |f_2(\alpha)^4 f_3(\alpha)^2 f_4(\alpha)^4 f_5(\alpha)^2 |d\alpha \bigg)^{1/4} \mathcal{I}(1)^{1/2} \\ &+ P_3^{1-1/8+\varepsilon} \mathcal{I}(1). \end{aligned}$$

Proof This follows from Lemmas 3.1 and 3.2.

Lemma 3.4 Let J(1/2) be given by (3.5). Then one has

$$\int_0^1 |f_2(\alpha)^2 f_3(\alpha)^{1/2} f_4(\alpha)^2 f_5(\alpha)^2 | d\alpha \ll J(1/2) N^{-1+\varepsilon}$$

Proof By Hölder's inequality,

$$\int_0^1 |f_2^2 f_3^{1/2} f_4^2 f_5^2 | d\alpha \ll \left(\int_0^1 |f_2^2 f_4^4 | d\alpha \right)^{1/2} \left(\int_0^1 |f_2^2 f_3^2 f_5^2 | d\alpha \right)^{1/4} \left(\int_0^1 |f_2^2 f_5^6 | d\alpha \right)^{1/4}.$$

The desired estimate follows by applying Lemma 2.6.

Lemma 3.5 We have

$$\mathcal{I}(2) \ll J(2) N^{-1 - \frac{1}{16} + \varepsilon}$$

Proof By Lemma 2.5, one has

$$\int_{\mathfrak{m}_{2}} |f_{2}(\alpha)^{4} f_{3}(\alpha)^{2} f_{4}(\alpha)^{4} f_{5}(\alpha)^{2} | d\alpha \ll \sup_{\alpha \in \mathfrak{m}_{2}} |f_{2}(\alpha)^{2} f_{4}(\alpha)^{2} | \mathcal{I}(2)$$
$$\ll P_{3}^{-7/16+\varepsilon} P_{2}^{2} P_{4}^{2} \mathcal{I}(2).$$

Then we conclude from Lemma 3.3 that

$$\mathcal{I}(2) \ll (P_3^4 P_5^2 N^{-1+\varepsilon})^{1/4} (P_3^{-7/16+\varepsilon} P_2^2 P_4^2 \mathcal{I}(2))^{1/4} \mathcal{I}(1)^{1/2} + P_3^{1-1/8+\varepsilon} \mathcal{I}(1).$$

By Hölder's inequality, $\mathcal{I}(1) \leq \mathcal{I}(2)^{1/3} \mathcal{I}(1/2)^{2/3}$. Therefore,

$$\begin{split} \mathcal{I}(2) \ll P_3^{-7/64} (P_3^4 P_5^2 N^{-1+\varepsilon} P_2^2 P_4^2)^{1/4} \mathcal{I}(2)^{5/12} \mathcal{I}(1/2)^{1/3} \\ &+ P_3^{1-1/8+\varepsilon} \mathcal{I}(2)^{1/3} \mathcal{I}(1/2)^{2/3}, \end{split}$$

and this implies

$$\mathcal{I}(2) \ll P_3^{-3/16} (P_3^4 P_5^2 N^{-1+\varepsilon} P_2^2 P_4^2)^{3/7} \mathcal{I}(1/2)^{4/7} + P_3^{3/2-3/16+\varepsilon} \mathcal{I}(1/2).$$

The desired conclusion now follows by applying Lemma 3.4.

4 Proof of Theorem 1.1

Proof of Theorem 1.1 By Bessel's inequality,

$$\sum_{N < n \le 2N} \left| \int_{\mathfrak{m}} f_2(\alpha) f_3(\alpha) f_4(\alpha) f_5(\alpha) e(-n\alpha) d\alpha \right|^2 \le \int_{\mathfrak{m}} |f_2(\alpha) f_3(\alpha) f_4(\alpha) f_5(\alpha)|^2 d\alpha.$$
(4.1)

On applying Lemma 3.5, we have

$$\int_{\mathfrak{m}_2} |f_2(\alpha) f_3(\alpha) f_4(\alpha) f_5(\alpha)|^2 d\alpha \ll N^{17/30 + 1 - 1/16 + \varepsilon}.$$
(4.2)

For the contribution from \mathfrak{m}_1 , one has

$$\int_{\mathfrak{m}_{1}} |f_{2}(\alpha)f_{3}(\alpha)f_{4}(\alpha)f_{5}(\alpha)|^{2}d\alpha$$

$$\ll \sup_{\alpha \in \mathfrak{m}_{1}} |f_{3}(\alpha)^{3/2}| \int_{\mathfrak{m}_{1}} |f_{2}(\alpha)^{2}f_{3}(\alpha)^{1/2}f_{4}(\alpha)^{2}f_{5}(\alpha)^{2}|d\alpha.$$

Then we can conclude from Lemmas 2.4 and 3.4 that

$$\int_{\mathfrak{m}_{1}} |f_{2}(\alpha)f_{3}(\alpha)f_{4}(\alpha)f_{5}(\alpha)|^{2} d\alpha \ll N^{17/30+1-1/16+\varepsilon}.$$
(4.3)

Thus (4.2) and (4.3) yield

$$\int_{\mathfrak{m}} |f_2(\alpha) f_3(\alpha) f_4(\alpha) f_5(\alpha)|^2 d\alpha \ll N^{17/30 + 1 - 1/16 + \varepsilon}.$$
(4.4)

Inserting (4.4) into (4.1), we arrive at

$$\sum_{N < n \leq 2N} \left| \int_{\mathfrak{m}} f_2(\alpha) f_3(\alpha) f_4(\alpha) f_5(\alpha) e(-n\alpha) d\alpha \right|^2 \ll N^{17/30 + 1 - 1/16 + \varepsilon}.$$

Thus for all even integers $n \in (N,2N]$ but at most $O(N^{1-1/16+\varepsilon})$ exceptions, one has the estimate

$$\left| \int_{\mathfrak{m}} f_2(\alpha) f_3(\alpha) f_4(\alpha) f_5(\alpha) e(-n\alpha) d\alpha \right| \ll N^{17/60-\varepsilon}.$$
(4.5)

Next we show that

$$\sum_{N \le n \le 2N} \left| \int_{\mathfrak{M}} \left(\prod_{k=2}^{5} f_k(\alpha) - \prod_{k=2}^{5} S_k(\alpha) \right) e(-n\alpha) d\alpha \right|^2 \ll N^{17/30 + 1 - 2/15 + \varepsilon}.$$
(4.6)

In view of Bessel's inequality, our task is to prove

$$\int_{\mathfrak{M}} \left| \prod_{k=2}^{5} f_k(\alpha) - \prod_{k=2}^{5} S_k(\alpha) \right|^2 d\alpha \ll N^{17/30 + 1 - 2/15 + \varepsilon}.$$
(4.7)

Note that

$$f_2 f_3 f_4 f_5 - S_2 S_3 S_4 S_5 = (f_2 - S_2) f_3 f_4 f_5 + (f_3 - S_3) S_2 f_4 f_5 + (f_4 - S_4) S_2 S_3 f_5 + (f_5 - S_5) S_2 S_3 S_4.$$

The estimate (4.7) follows from

$$\int_{\mathfrak{M}} |(f_5(\alpha) - S_5(\alpha))S_2(\alpha)S_3(\alpha)S_4(\alpha)|^2 d\alpha \ll N^{17/30 + 1 - 1/5 + \varepsilon},$$
(4.8)

$$\int_{\mathfrak{M}} |(f_4(\alpha) - S_4(\alpha))S_2(\alpha)S_3(\alpha)S_5(\alpha)|^2 d\alpha \ll N^{17/30 + 1 - 1/4 + \varepsilon},$$
(4.9)

and

$$\int_{\mathfrak{M}} |F(\alpha)|^2 d\alpha \ll N^{17/30+1-2/15+\varepsilon},\tag{4.10}$$

where $F \in \mathcal{F} := \{(f_2 - S_2)f_3f_4f_5, (f_3 - S_3)S_2f_4f_5\}.$ For $2 \le k \le 5$, one has $f_k(\alpha) - S_k(\alpha) \ll P_k^{1/2+\varepsilon}$. By Lemma 2.6, we have

$$\int_{\mathfrak{M}} |(f_5(\alpha) - S_5(\alpha))S_2(\alpha)S_3(\alpha)S_4(\alpha)|^2 d\alpha$$

Zhao L. L.

$$\ll N^{1/5+\varepsilon} \left(\int_0^1 |S_2(\alpha)^2 S_3(\alpha)^4| d\alpha \right)^{1/2} \left(\int_0^1 |S_2(\alpha)^2 S_4(\alpha)^4| d\alpha \right)^{1/2} \\ \ll N^{17/30+1-1/5+\varepsilon}.$$

This establishes (4.8). The estimate (4.9) can be established similarly. For $F \in \mathcal{F}$, one has

$$\int_{\mathfrak{M}} |F(\alpha)|^2 d\alpha \ll (P_2 P_3 P_4 P_5)^2 P_3^{-1+\varepsilon} \int_{\mathfrak{M}} d\alpha \ll N^{17/30+1-2/15+\varepsilon}.$$

Thus (4.10) is established. Now by (4.6), for all even integers $n \in (N, 2N]$ but at most $O(N^{1-2/15+\varepsilon})$ exceptions, one has

$$\int_{\mathfrak{M}} \left(\prod_{k=2}^{5} f_k(\alpha) \right) e(-n\alpha) d\alpha = \int_{\mathfrak{M}} \left(\prod_{k=2}^{5} S_k(\alpha) \right) e(-n\alpha) d\alpha + O(N^{\frac{17}{60}-\varepsilon})$$

Then by Lemma 2.1, for all even integers $n \in (N, 2N]$ but at most $O(N^{1-2/15+\varepsilon})$ exceptions, we have

$$\int_{\mathfrak{M}} \left(\prod_{k=2}^{5} f_k(\alpha) \right) e(-n\alpha) d\alpha = \mathfrak{S}(n)\mathfrak{I}(n) + O(N^{\frac{17}{60}}L^{-A}).$$
(4.11)

The argument around (4.5) and (4.11) together with (2.2) and (2.3) imply that $r(n) \gg N^{17/60}$ for all even integers $n \in (N, 2N]$ but at most $O(N^{1-1/16+\varepsilon})$ exceptions. We now complete the proof of Theorem 1.1 by the dyadic argument.

Acknowledgements We thank the referees for their time and comments.

References

- Bauer, C.: An improvement on a theorem of the Goldbach–Waring type. Roky Mountain J. Math., 53, 1–20 (2001)
- [2] Bauer, C.: A Goldbach–Waring problem for unequal powers of primes. Roky Mountain J. Math., 38, 1073–1090 (2008)
- [3] Kumchev, A. V.: On Wely sums over prime and almost primes. Michigan Math. J., 54, 243–268 (2006)
- [4] Prachar, K.: Uber ein Problem vom Waring–Goldbach'schen. Typ. Monatsh. Math., 57, 66–74 (1953)
- [5] Prachar, K.: Uber ein Problem vom Waring–Goldbach'schen. Typ. II. Monatsh. Math., 57, 113–116 (1953)
- [6] Ren, X. M.: On exponential sum over primes and application in Waring–Goldbach probelm. Sci. China Ser. A, 48(6), 785–797 (2005)
- [7] Ren, X. M., Tsang, K. M.: Waring-Goldbach problem for unlike powers. Acta Math. Sin., Engl. Series, 23, 265–280 (2007)
- [8] Ren, X. M., Tsang, K. M.: Waring–Goldbach problem for unlike powers (II). Acta Math. Sin., Chin. Series, 50, 175–182 (2007)
- [9] Roth, K. F.: A problem in additive number theory. Proc. London Math. Soc. (2), 53, 381–395 (1951)
- [10] Vaughan, R. C.: The Hardy–Littlewood Method, 2nd ed., Cambridge University Press, Cambridge, 1997
- [11] Zhao, L.: On the Waring–Goldbach problem for fourth and sixth powers. Proc. London Math. Soc., 108(6), 1593–1622 (2014)